等离子弧焊

等离子弧焊
等离子弧焊

等离子弧加工

等离子弧加工是利用等离子弧的热能对金属或非金属进行切割、焊接和喷涂等的特种加工方法。1955年,美国首先研究成功等离子弧切割。产生等离子弧的原理是:让连续通气放电的电弧通过一个喷嘴孔,使其在孔道中产生机械压缩效应;同时,由于弧柱中心比其外围温度高、电离度高、导电性能好,电流自然趋向弧柱中心,产生热收缩效应,同时加上弧柱本身磁场的磁收缩效应。这3种效应对弧柱进行强烈压缩,在与弧柱内部膨胀压力保持平衡的条件下,使弧柱中心气体达到高度的电离,而构成电子、离子以及部分原子和分子的混合物,即等离子弧。

原理

等离子弧切割与焊接是现代科学领域中的一项新技术。它是利用温度高达15000~30000℃的等离子弧来进行切割和焊接的工艺方法。这种新的工艺方法不仅能对一般材料进行切割和焊接,而且还能切割和焊接一般工艺方法难以加工的材料。

等离子弧加工流程

电弧就是中性气体电离并维持放电的现象。若使气体完全电离,形成全部由带正电的正离子和带负电的电子所组成的电离气体,就称为等离子体。一般的焊接电弧是一种自由电弧,弧柱的截面随功率的增加而增大,电弧中的气体电离不充分,其温度被限制在5730~7730℃。若在提高电弧功率的同时,对自由电弧进行压缩,使其横截面减小,则电弧中的电流密度就大大提高,电离度也随之增大,几乎达到全部等离子状态的电弧叫等离子弧。对自由电弧进行的压缩作用称为压缩效应。压缩效应有如下三种形式:

1)、机械压缩效应在钨极(负极)和焊件(正极)之间加上一个高电压,使气体电离形成电弧,当弧柱通过特殊孔形的喷嘴的同时,又施以一定压力的工作气体,强迫弧柱通过细孔,由于弧柱受到机械压缩使横截面积缩小,故称为机械压缩效应。

2)、热收缩效应当电弧通过喷嘴时,在电弧的外围不断送入高速冷却气流(氮气或氢气等)使弧柱外围受到强烈冷却,电离度大大降低,迫使电弧电流只能从弧柱中心通过,导致导电截面进一步缩小,这时电弧的电流密度大大增加,这就是热收缩效应。

3)、磁收缩效应由于电流方向相同,在电流自身产生的电磁力作用下,彼此互相吸引,将产生一个从弧柱四周向中心压缩的力,使弧柱直径进一步缩小。这种因导体自身磁场作用产生的压缩作用叫“磁收缩效应”。电弧电流越大,磁收缩效应越强。自由电弧在上述三种效应作用下被压缩得很细,在高度电离和高温条件下,电弧逐渐趋于稳定的等离子弧。

分类

按电极的不同接法,等离子弧分为转移型弧、非转移型弧、联合型弧三种。电极接负极、喷嘴接正极产生的等离子弧称为非转移型弧。用于焊接或切割较薄的材料。电极接负极、焊件接正极产生的等离子弧称为转移型弧。适用于焊接、堆焊或切割较厚的材料。电极接负极、喷嘴和焊件同时接正极.则非转移弧和转移弧同时存在,称为联合型弧。适用于微弧等离子焊接和粉末材料的喷焊。

等离子弧按导电方式可分为非转移型、转移型和混合型3种(见图)。它们的区别主要是:非转移型的电源正极接喷嘴,而转移型电源正极接工件(一般先按非转移型接线产生等离子弧后再过渡到转移型),混合型的电源正极同时接喷嘴和工件。这3种方式一般都使用具有直流陡降外特性的电源。空载电压高低与使用的气体有关,若使用氩时,空载电压为65~100伏,而使用氮或氢时为250~400伏。转移型等离子弧温度高(10000~52000℃),有效热利用率高,主要用于切割、焊接(见等离子弧焊)和熔炼金属。切割的金属有铜、铝及其合金、不锈钢、各种合金钢、低碳钢、铸铁、钼和钨等。常用的切割气体为氮或氢氩、氢氮、氮氩混合气体。常用的电极为铈钨或钍钨电极,采用压缩空气切割时使用的电极为金属锆或铪。使用的喷嘴材料一般为紫铜或锆铜。切割不锈钢、铝及其合金的厚度一般为3~100毫米,最大厚度可达250毫米。70年代后,又发展了双层气体等离子弧切割、笔式微束等离子弧切割和水压缩等离子弧切割等,这些方法能减小工件的切缝宽度,提高切割质量。非转移型等离子弧温度最高可达18000℃,主要用于工件表面喷涂耐高温、耐磨损、耐腐蚀的高熔点金属或非金属涂层,也可以切割薄板金属材料,还可以作为金属表面热处理的热源。混合型等离子弧主要用于微束等离子弧焊接和粉末堆焊。

特点

(1)微束等离子弧焊可以焊接箔材和薄板。

(2)具有小孔效应,能较好实现单面焊双面自由成形。

(3)等离子弧能量密度大,弧柱温度高,穿透能力强,10~12mm厚度钢材可不开坡口,能一次焊透双面成形,焊接速度快,生产率高,应力变形小。

(4)设备比较复杂,气体耗量大,只宜于室内焊接。

应用

广泛用于工业生产,特别是航空航天等军工和尖端工业技术所用的铜及铜合金、钛及钛合金、合金钢、不锈钢、钼等金属的焊接,如钛合金的导弹壳体,飞机上的一些薄壁容器等。

切割用枪无保护气体2及保护气罩6。压缩喷嘴5是等离子枪的关键部件,一般需用水冷。喷嘴孔径dn及孔道长度l0是压缩喷嘴的两个主要尺寸。喷嘴内通的气体称离子气。中性的离子气在喷嘴内电离后使喷嘴内压力增加,所以喷嘴内壁与电极4之间的空间称增压室。电离了的离子气从喷嘴流出时受到孔径限制,使弧柱截面变小,该孔径对弧柱的压缩作用称机械压缩。水冷喷嘴内壁表面有一层冷气膜,电弧经过孔道时,冷气膜一方面使喷嘴与

弧柱绝缘,另一方面使弧柱有效截面进一步收缩,这种收缩称热收缩。弧柱电流自身磁场对弧柱的压缩作用称磁收缩。在机械压缩与热收缩的作用下,弧柱电流密度增加,磁收缩随之增强,如电流不变,弧柱电场强度及弧压降都随电流密度增加而增加,所以等离子弧(也称压缩电弧)的电弧功率及温度明显高于自由电弧。图2a所示的对比中,等离子弧的电弧温度比自由电弧高30%,电弧功率高100%。由于电离后的离子气仍具有流体的性质,受到压缩从喷嘴孔径喷射出的电弧带电质点的运动速度明显提高(可达300m/s),所以等离子弧具有较小的扩散角及较大的电弧挺度,这也是等离子弧最突出的优点。电弧挺度是指电弧沿电极轴线的挺直程度。等离子弧具有的电弧力、能量密度及电弧挺度等与加工有关的物理性能取决于下列五个参数:1)电流;2)喷嘴孔径的几何尺寸;3)离子气种类;4)离子气流量;5)保护气种类;调整以上五个参数可使等离子弧适应不同的加工工艺。如在切割工艺中,应选择大电流、小喷嘴孔径、大离子气量及导热好的离子气,以便使等离子弧具有高度集中的热量及高的焰流速度。而在焊接工艺中,为防止焊穿工件则应选择小的离子气量及较大的喷嘴孔径。

电流极性

(1)切割用等离子弧切割时只采用直流正接的电流极性,即工件接电源的正极。切割电流范围:30~1000A。(2)焊接1)直流正接大多数焊接工艺采用直流正接极性电流,如焊合金钢、不锈钢、钛合金及镍基合金等。电流范围:0.1~500A。2)直流反接电极接电源正极的反接极性电流用于焊接铝合金。由于这种方法钨极烧损严重且熔深浅,仅限于焊接薄件,电流不超过100A。3)正弦交流正弦交流电流用来焊铝镁合金,利用正接极性电流获得较大的熔深而用反接极性电流清理工件表面的氧化膜,电流范围:10~100A。为防止反接极性电弧熄灭,焊接设备需有稳弧装置,由于存在焊缝深宽比小及钨极烧损等问题,这种方法趋于被方波交流电流取代。4)变极性方波交流变极性方波交流电流是正反接极性电流及正、负半周时间均可调的交流方形波电流。用变极性方波交流等离子弧焊铝、镁合金时可获得较大的焊缝深宽比及较少的钨极烧损。

焊接方法

按焊缝成形原理,等离子弧有两种基本焊接方法:小孔型等离子弧焊及熔透型等离子弧焊,其中30A以下的熔透型等离子弧焊又可称为微束等离子弧焊。(1)小孔型等离子弧焊利用小孔效应实现等离子弧焊的方法称小孔型等离子弧焊,亦称穿透性焊接法。1)小孔法原理在对一定厚度范围内的金属进行焊接时,适当地配合电流、离子气流及焊接速度三个工艺参数,等离子弧将会穿透整个工件厚度,形成一个贯穿工件的小孔,如图5。小孔周围的液体金属在电弧吹力、液体金属重力与表面张力作用下保持平衡。焊枪前进时,在小孔前沿的熔化金属沿着等离子弧柱流到小孔后面并遂渐凝固成焊缝。

小孔法焊接的主要优点在于可以单道焊接厚板,板厚范围:1.6~9mm。小孔法一般仅限于平焊;然而,对于某些种类的材料,采取必要的工艺措施,用小孔法可实现全位置焊接。2)焊接特点小孔法焊接所具有的优点是:a、孔隙率低。b、由于小孔法产生较为对称的焊缝,焊接横向变形小。c、由于电弧穿透能力强,对厚板可实现单道焊接。

d、不开坡口实现对接焊,焊前对工件坡口加工量减少。小孔法的缺点是:a、焊接可变参数多,规范区间窄。b、厚板焊接时,对操作者的技术水平要求较高,并且小孔法仅限于自动焊接。c、焊枪对焊接质量影响大,喷嘴寿命短。d、除铝合金外,大多数小孔焊工艺仍限于平焊位置。(2)熔透型等离子弧焊焊接过程过程中,只熔透工件,但不产生小孔效应的等离子弧焊方法,又称熔透型焊接法。1)熔透法原理当离子气流量较小,弧柱受压缩程度较弱时,这种等离子弧在焊接过程中只熔化工件而不产生小孔效应,焊缝成形原理与氩弧焊类似。主要用于薄板焊接及厚板多层焊。2)微束等离子弧焊微束等离子通常采用如图3c所示的联合弧。由于非转移弧的存在,焊接电流小至1A以下电弧仍具有较好的稳定性,能够焊接细丝及箔材。这时的非转移弧又称维弧,而用于焊接的转移弧又称主弧。3)焊接特点与GTA W焊相比,熔透法等离子弧焊具有优点是:a、电弧能量集中,因此焊接工艺具有焊接速度快;焊缝深宽比大,截面积小;薄板焊接变形小,厚板焊接缩孔倾向小及热影响区窄等优点。b、电弧稳定性好。由于微束等离子弧焊接采用联合弧,电流小至0.1A时电弧仍能稳定燃烧,因此可焊超薄件,如厚度0.1mm不锈钢片。c、电弧挺直性好。以焊接电流10A为例,等离子弧焊喷嘴高度(喷嘴到工件表面的距离)达6.4mm时,弧柱仍较挺直,而钨极氩弧焊的弧长仅能采用0.6mm(弧长大于0.6mm后稳定性变差)。钨极氩弧的扩散角约450,呈圆锥形(见图6a),工件上的加热面积与弧长成平方关系,只要电弧长度有很小变化将引起单位面积上输入热量的较大变化。而等离子弧的扩散角仅50左右(见图6b)基本上是圆柱形,弧长变化对工件上的加热面积和电流密度影响比较小,所以等离子弧焊弧长变化对焊缝成形的影响不明显。

d、由于等离子弧焊的钨极内缩在喷嘴之内,电极不可能与工件相接触,因而没有焊缝夹钨的问题。与GTA W焊相比,熔缝法的主要缺点是:a、由于电弧直径小,要求焊枪喷嘴轴线更准确地对中焊缝。b、焊枪结构复杂,加工精度高。焊枪喷嘴对焊接质量有着直接影响,必需定期检查、维修,及时更换。

焊接材料

1、母材凡氩弧焊能够焊接的材料均可用等离子弧焊接,如碳钢、耐热钢、蒙乃力<合金、可伐合金、钛合金、铜合金、铝合金以及镁合金等。除铝、镁及其合金外,其余材料均采用直流正接法焊接:铝、镁及其合金采用交流或直流反接法焊接。直流正接等离子弧单道可焊材料厚度范围一般为0.3—6.4mm。交流变极性等离子弧单道可焊铝合金厚度可达12.7mm(小孔法)。等离子弧焊接的冶金过程与氩弧焊相同,只是由等离子弧具有较小的弧柱直径,焊接时母材熔化量少,所以焊缝深宽比大、热影响区窄。每一种母材金属焊接时对预热、后热以及气体保护等工艺要求与氩弧焊相同。

2、填充金属与氩弧焊一样,等离子弧焊工艺可以使用填充金属。填充金属一般制成光焊丝或者光焊条。自动焊使用光焊丝作填充金属,手工焊则用光焊条作填充金属。填充金属的主要成分与被焊母材相同。

3、气体等离子焊枪有两层气体,即从喷嘴流出的离子气及从保护气罩流出的保护气。有时为了增强保护,还需使用保护拖罩及通气的背面垫板以扩大保护气的保护范围。对钨极应该是惰性的;以免钨极烧;护气对母材一般是惰性的,但如果类取决于被焊金属,可供选择的气体有:

1)Ar气Ar气用于焊接碳钢、高强度钢及活性金属,如钛、钽及锆合金。焊接这些金属所用的气体中,即使含有极小量的H,也可能导致焊缝产生气孔、裂纹或降低力学性能。Ar-H2混合气焊接奥氏体不锈钢、镍合金及铜镍合金时,允许使用Ar-H2混合气体。Ar 气中填加H2气可提高电弧温度及电弧电场强度,能够更有效地将电弧热量传递给工件,在给定的电流条件下可以得到较高的焊接速度。同时,H2具有还原性,使用Ar-H2混合气体可以获得更光亮的焊缝外观。但H2含量过多焊缝易出现气孔及裂纹,一般φ(H2)限制在7.5%以下。然而,在小孔焊接工艺中,由于气体以充分逸出,加φ(H2)范围为5%一15%,工件越薄,允许H2的比例越大。如小孔法焊6.4mm不锈钢时,加φ(H2)为5%;而进行3.8mm 不锈钢管道高速焊时,允许加φ(H2)达15%。”使用Ar-H2混合气体作离。混合气体作离子气时,由于电弧温度较高,应降低喷嘴孔径的额定电流。

(3)Ar-He混合气He气也是—种惰性气体,当被焊工件不允许使用Ar-H2混合气时,可考虑使用Ar-He混合气。在Ar-He混合气体中,φ甲(He)超过40%以上电弧热量才能有明显的变化。φ(He)超过75%时,其性能基本与纯He相同,通常在Ar气中加入φ(He)=50%~75%进行钛、铝及其合金的小孔焊及在所有金属材料上熔敷焊道。4)He气采用纯He作离子气时,由于弧柱温度较高,会降低喷嘴的热负载,会降低喷嘴的使用寿命及承载电流的能力,另外He气密度较小,在合理的离子气流量下难以形成小孔。所以,纯He仅用于熔透法焊接,如焊接铜。5)Ar-C02混合气由于保护气体不与钨极接触,在小电流焊接低碳钢及低合金钢时,允许在保护气中添加适性气体,其流量在10~15L/min之内。如在Ar中加甲(C02)为25%作保护气焊接铁心叠片。

材料的等离子弧焊接

材料的等离子弧焊接 索引:穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm 以下钛合金、板厚2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。厚度大于上述范围时可采用V 形坡口多层焊。 关键词: 高温合金, 铝及铝合金, 钛及钛合金, 银与铂, 等离子弧焊接 穿孔型等离子弧焊接最适于焊接厚度3~8mm不锈钢、厚度12mm 以下钛合金、板厚 2~6mm低碳或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊缝。这一厚度范围内可不开坡口,不加填充金属,不用衬垫的条件下实现单面焊双面成形。厚度大于上述范围时可采用V形坡口多层焊。

1.高温合金的等离子弧焊接 用等离子弧焊焊接固溶强化和Al、Ti含量较低的时效强化高温合金时,可以填充焊丝也可以不加焊丝,均可以获得良好质量的焊缝。一般厚板采用小孔型等离子弧焊,薄板采用熔透型等离子弧焊,箔材用微束等离子弧焊。焊接电源采用陡降外特性的直流正极性,高频引弧,焊枪的加工和装配要求精度较高,并有很高的同心度。等离子气流和焊接电流均要求能递增和衰减控制。 焊接时,采用氩和氩中加适量氢气作为保护气体和等离子气体,加入氢气可以使电弧功率增加,提高焊接速度。氢气加入量一般在5%左右,要求不大于15%。焊接时是否采用填充焊丝根据需要确定。选用填充焊丝的牌号与钨极惰性气体保护焊的选用原则相同。 高温合金等离子弧焊的工艺参数与焊接奥氏体不锈钢的基本相同,应注意控制焊接热输入。镍基高温合金小孔法自动等离子弧焊的工艺参数见表1-1。在焊接过程中应控制焊接速度,速度过快会产生气孔,还应注意电极与压缩喷嘴的同心度。高温合金等离子弧焊接接头力学性能较高,接头强度系数一般大于90%。

焊接工艺参数

手工电弧焊的焊接工艺参数选择 选择合适的焊接工艺参数,对提高焊接质量和提高生产效率是十分重要. 焊接工艺参数(焊接规范)是指焊接时,为保证焊接质量而选定的诸多物理量. 1、焊接电源种类和极性的选择 焊接电源种类:交流、直流 极性选择:正接、反接 正接:焊件接电源正极,焊条接电源负极的接线方法。 反接:焊件接电源负极,焊条接电源正极的接线方法。 极性选择原则:碱性焊条常采用直流反接,否则,电弧燃烧不稳定, 飞溅严重,噪声大,酸性焊条使用直流电源时通常采用直流正接。 2、焊条直径 可根据焊件厚度进行选择。一般厚度越大,选用的焊条直径越粗,焊条直径与焊件的关系见下表: 焊件厚度(mm) 2 3 4-5 6-12 >13 焊条直径(mm) 2 3.2 3.2-4 4-5 4-6 3、焊接电流的选择 选择焊接电流时,要考虑的因素很多,如:焊条直径、药皮类型、工件厚度、接头类型、焊接位置、焊道层次等。但主要由焊条直径、焊接位置、焊道层次来决定。 (1)焊条直径焊条直径越粗,焊接电流越大。下表供参考 焊条直径(mm) 1.6 2.0 2.5 3.2 4.0 5.0 6.0 焊接电流(A)

25-45 40-65 50-80 100-130 160-210 260-270 260-300 (2)焊接位置平焊位置时,可选择偏大一些焊接电流。横、立、仰焊位置时,焊接电流应比平焊位置小10~20%。角焊电流比平焊电流稍大一些。 (3)焊道层次 打底及单面焊双面成型,使用的电流要小一些。 碱性焊条选用的焊接电流比酸性焊条小10%左右。不锈钢焊条比碳钢焊条选用的焊接电流小左右等。 总之,电流过大过小都易产生焊接缺陷。电流过大时,焊条易发红,使药皮变质,而且易造成咬边、弧坑等到缺陷,同时还会使焊缝过热,促使晶粒粗大。 (4)电弧电压 电弧电压主要决定于弧长。电弧长,则电弧电压高;反之,则低。 在焊接过程中,一般希望弧长始终保持一致,而且尽可能用短弧焊接。所谓短弧是指弧长焊条直径的0.5~1.0倍,超过这个限度即为长弧。 (5)焊接速度 在保证焊缝所要求尺寸和质量的前提下,由操作者灵活掌握。速度过慢,热影响区加宽,晶粒粗大,变形也大;速度过快,易造成未焊透,未熔合,焊缝成型不良好等缺陷。 (6)速度以及电压与焊工的运条习惯有关不用强制要求,但是根据经验公式,可知当电流小于600A时,电压取20+0.04I。当电流大于600A时电压取44V。 参考资料:https://www.360docs.net/doc/751231657.html,/jl 16 回答者: trilsen 焊接工艺参数的选择 手工电弧焊的焊接工艺参数主要有焊条直径、焊接电流、电弧电压、焊接层数、电源种类及极性等。 1.焊条直径 焊条直径的选择主要取决于焊件厚度、接头形式、焊缝位置和焊接层次等因素。在一般情况下,可根据表6-4按焊件厚度选择焊条直径,并倾向于选择较大直径的焊条。另外,在平焊时,直径可大一些;立焊时,所用焊条直径不超过5mm;横焊和仰焊时,所用直径不超过4mm;开坡口多层焊接时,为了防止产生未焊透的缺陷,第一层焊缝宜采用直径为3.2mm 的焊条。

等离子弧焊

等离子弧焊接(WP 15) 一、等离子弧焊原理及方法分类 1. 等离子弧: 是等离子体组成。自由电弧被强迫压缩后,电流密度增加,导致电弧温度升高,电离度增大,中性气体充分电离,就形成等离子弧。 2.等离子弧产生的三要素 (1)机械压缩作用: 利用水冷喷嘴孔道限制弧柱直径,提高弧柱的能量密度和温度。 (2)热收缩作用: 由于水冷喷嘴,在喷嘴内壁建立一层冷气膜,迫使弧柱导电断面进一步减小,电流密度进一步提高。这叫热收缩,也叫热压缩。 (3)磁收缩作用: 弧柱电流本身产生的磁场对弧柱再压缩作用。也叫磁收缩效应。电流密度越大,磁收缩作用越强。 3.等离子弧的特点 (1)能量集中(能量密度105~6 W/cm2TIG自由电弧<10 4W/cm2)。 (2)温度高(18000K~24000K)。 图1 自由电弧和等离子弧的比较图

4.等离子弧的三种基本形式 (1)非转移型等离子弧 钨极为负,喷嘴为正,钨极与喷嘴之间产生等离子弧。(等离子束焊接) 图2 非转移型等离子弧示意图 (2)转移型等离子弧 钨极为负,工件为正,钨极与喷嘴之间先引弧后,转移到钨极与工件之间产生等离子弧。(等离子弧焊接) 图3 转移型等离子弧示意

(3)联合型等离子弧 非转移型和转移型弧同时并存。主要用于微束等离子弧焊、粉末堆焊等方面。 图4 联合型等离子弧示意图 5.等离子弧焊基本方法 (1)小孔型等离子弧焊(穿孔、锁孔、穿透焊) 利用能量密度大和等离子流力大的特 点,将工件完全熔透并产生一个贯穿工件的 小孔,熔化金属被排挤在小孔的周围,沿着 电弧周围的熔池壁向熔池后方移动,使小孔 跟着等离子弧向前移动,形成完全熔透的焊 缝。 一般大电流等离子弧(100~300安培) 时采用该方法。 图5 小孔型等离子弧焊焊缝成形原理

P+T焊接工艺参数

P+T焊接设备对不锈钢产品工艺的要求 一、P+T焊接设备: 该设备由纵缝机、环缝机组成,适用于碳钢、不锈钢以及某些有色金属对接焊接。 纵缝机参数: 1、3-8mm 可不开坡口直接焊接,对于较薄板直接用等离子不填丝焊接; 8-14mm 板厚要求开坡口等离子焊接,然后用填丝盖面。拖罩保护焊缝。 2、工件精度要求: 焊缝直线度要求10m长直线度误差≤2mm(直线度不能保障时,可通过摄像监控系统调整焊枪位置) 对接间隙≤1/10T(T 为试件板厚)且不大于 错边≤(T 为试件板厚)且不大于1mm 3.工作对象 ①直径范围:φ1500~φ3200mm ②工件壁厚: 2-14mm(一次熔透8mm,大于8mm需开坡口填丝) ③工件长度:≤2500 mm ④工件材质:不锈钢、碳钢、钛基合金等 工件施焊端面采用机械加工,拼缝要求规则均匀 4.设备参数

可夹持最小壁厚: 2mm 可夹持最大壁厚: 14mm 焊枪行走速度: 100-3000mm/min 跟踪滑板速度:≤200mm/min 液压升降台承载:≤6T 一、设备的用途: 等离子环缝焊接系统用于各类碳钢\合金钢(碳钢、不锈钢、钛基合金等)环缝焊接,采用等离子焊接工艺,壁厚8mm以下可不开坡口直接焊接一次性单面焊双面成形。对于较薄板直接用等离子焊接;对于8mm 板厚以上视情况采用等离子添丝焊接的方式。焊接时正面有拖罩保护焊缝,反面有背气保护系统 设备采用一套飞马特等离子焊接系统和一套KM4030焊接操作机,一套视频系统,一套20T可调式滚轮架,采用等离子高效焊接,实现工件的环缝焊接。 电控系统部分以三菱PLC为控制核心,能够准确控制设备的各种动作,操作盒上安装有触摸屏,便于修改各项控制参数,使用安全可靠,故障率低。 1、焊接成型工艺: 2-8mm 可不开坡口直接焊接,对于较薄板直接用等离子不填丝焊接; 8-14mm 板厚要求开坡口等离子焊接,然后用TIG填丝盖面。拖罩保护焊缝。

等离子弧焊原理及操作安全

等离子弧焊原理及操作安全 什么是等离子弧焊?试述等离子弧的产生方法。 借助水冷喷嘴对电弧的拘束作用,获得高能量浓度的等离子弧进行焊接的方法称为等离子弧焊。 等离子弧是自由电弧压缩而成,它是通过以下三种压缩作用获得的,机械压缩效应示意图见图22。 1.机械压缩将电弧强制通过具有小孔径喷嘴的孔道,使电弧受到压缩。 2.热压缩当等离子气体(Ar、N气)以一定的速度和流量经喷嘴时,靠近电弧一侧的气体通过弧柱,吸收大量热量而电离,成为等离子弧的一个组成部分。但是靠近喷嘴内壁的气体,由于受到喷嘴强烈的冷却作用,形成一个冷气套,迫使弧柱截面进一步缩小称为热压缩。 3.磁压缩弧柱电流是一束平行的同向电流线,必然产生往内的收缩力。当电弧受到机械压缩和热压缩之后,截面缩小,因而电流密度增大,由此产生的电磁收缩力必然增大,形成磁压缩。 试述等离子弧的类型。 按电源连接方式的不同,等离子弧有非转移型、转移型和联合型三种形式见图23。

⑴非转移型等离子弧钨极接电源负端,焊件接电源正端,等离子弧体产生在钨极与喷嘴之间,在等离子气体压送下,弧柱从喷嘴中喷出,形成等离子焰。 ⑵转移型等离子弧钨极接电流负端,焊件接电流正端,等离子弧产生的钨极和焊件之间。因为转移弧能把更多的热量传递给焊件,所以金属焊接、切割几乎都是采用转移型等离子弧。 ⑶联合型等离子弧工作时非转移弧和转移弧同时并存,故称为联合型等离子弧。非转移弧起稳定电弧和补充加热的作用,转移弧直接加热焊件,使之熔化进行焊接。主要用于微束等离子弧焊和粉末堆焊。 56 试述转移型等离子弧的产生方法。 为建立转移型等离子弧,应将钨极接电源负极,喷嘴和焊件同时接正极,转移型弧示意图见图24。首先接通钨极与喷嘴之间的电路,引燃钨极与喷嘴之间的电弧,接着迅速接通钨极和焊件之间的电路,使电弧转移到钨极和焊件之间直接燃 烧,同时切断钨极和喷嘴之间的电路,转移型等离子弧就正式建立。

等离子弧焊

等离子弧焊 一、等离子弧及其形成 等离子弧是在钨极氩弧焊的基础上发展起来的一种焊接方法。钨极氩弧焊使用的热源是常压状态下的自由电弧,简称自由钨弧。等离子弧焊用的热源则是将自由钨弧压缩强化之后而获得电离度更高的电弧等离子体——等离子弧。两者在物理本质上没有区别,仅是弧柱中电离程度上的不同。经压缩的电弧其能量密度更为集中,温度更高。 目前广泛应用压缩电弧的方法将产生钨极氩弧的钨极缩入到焊枪的喷嘴内部,并在喷嘴中通入等离子气,强制电弧从喷嘴的孔道通过。这样电弧就受到了三种压缩——机械压缩、冷收缩、弧柱磁收缩。于是弧柱导电截面缩小,电流密度增大。 改变喷嘴孔径和孔道长度,可在一定范围内调节弧柱的压缩程度。通入冷离子气的作用①作为产生等离子弧的气体介质②冷却电弧③使弧柱周围形成一层良好的电阻和热阻的“冷气壁”,使电弧稳定。 二、等离子弧特性与自由钨弧相比,有如下特点 1、能量特性 等离子弧的最大压降是在弧柱区,因为弧柱被强烈压缩,使电场强度明显增大。因此等离子弧焊主要是利用弧柱等离子体热来加热金属。 另外,等离子弧能量密度可达100000~1000000W/cm2,比自由钨弧高,其温度可达18000~24000K,比自由钨弧高很多。 2、静特性

其静特性曲线接近U形。在小电流时,等离子弧为缓降或平的,易与电源外特性相交建立稳定工作点。 3、等离子弧形态 等离子弧成圆柱形,扩散角约5度,焊接时,当弧长发生波动时,母材的加热面积不会发生明显变化。 4、等离子弧的挺直度 由于等离子弧是自由钨弧经压缩而成,故挺度比自由钨弧好,焰流速度大,可达每秒300米以上,因而指向性好,喷射有力,其熔透能力强。 三、等离子弧的类型 按电源联接方式和形成等离子弧的过程不同,等离子弧有转移型、非转移型和联合型三种 1、非转移型等离子弧电源接于钨极和喷嘴之间,在离子气流押送下,弧焰从喷嘴中喷出,形成等离子焰。工件本身不导电,而是被间接加热,因此热的有效利用率不高。主要用于焊接金属薄板、喷涂和许多非金属材料的切割与焊接。 2、转移型等离子弧电源接于钨极和工件之间。因该电弧难以形成,需在喷嘴上接入正极,先在钨极与喷嘴之间引燃电流较小的等离子弧,为工件和电极之间提供足够的电离度。然后迅速接通钨极和工件之间的电路,使该电弧转移到钨极和工件之间直接燃烧,随即切断喷嘴与钨极之间的电路。 3、联合型等离子弧是上述两种的并存

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理及其主要工艺参数摘要:焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊, 电子束焊,激光焊等多种,本文详细介绍了激光焊接的工作原理与工艺参数,还讨论了激光焊接技术在现代工业中的应用,并与其他焊接方法进行对比。研究表明激光焊接技术将逐步得到广泛应用。 关键词:焊接技术;激光焊接;工作原理;工艺参数。 1. 引言 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,

等离子弧焊接原理及设备

第4章等离子弧焊接等离子弧焊接设备

4.1 等离子弧的产生及其特性1. 等离子弧的产生 1 )等离子弧概念 等离子电弧的形成及电弧形态比较 等离子弧是通过外部拘束 使自由电弧的弧柱被强烈 压缩形成的电弧。 通常情况下的GTA和GMA 电弧,为自由电弧,除受到电弧 自身磁场拘束和周围环境的冷却拘束 外,不受其他条件束缚,电弧相同相对比较扩展,电弧能量密度和温度较低。若把自由电弧缩进到喷嘴里,喷嘴的孔径小,电弧通过时,弧柱截面积受到限制,不能自由扩展,产生了外部拘束作用,电弧在径向上被强烈压缩,形成等离子弧。

2)等离子弧的工作方式 ①转移型等离子弧。 (a)等离子弧方式 在喷嘴内电极与被加工工件间 产生等离子弧。由于电极到工件的 距离较长,引燃电弧时,首先在电极 和喷嘴内壁间引燃一个小电弧,称作“引燃弧”, 电极被加热,空间温度升高,高温气流从喷嘴孔道中流出,喷射到工件表面,在电极与工件间有了高温气层,随后在主电源较高的空载电压下,电弧能够自动的转移到电极与工件之间燃烧,称为“主弧”或“转移弧”。

②等离子焰流 在钨电极与喷嘴内壁之间引燃等离子弧。由于保护气通过电弧区被加热,流出喷嘴时带出高温等离子焰流,堆被加工工件进行加热,称作“等离子焰流”。电极与喷嘴内壁间的电弧,其电流值较小,电弧温度低,故等离子焰流的温度也明显低于电弧,指向性不如等离子弧。 等离子焰流方式 ③混合型等离子弧 当电弧引燃并形成转移电弧后仍然能保持引燃弧的存在,即形成两个电弧同时燃烧的局面,效果是转移弧的燃烧更为稳定。

2. 等离子弧特性及用途 1)电弧静特性 与TIG电弧相比,等离子弧的静特性的特点: ①受到水冷喷嘴孔道壁的拘束,弧柱截面积小,弧柱电场强度增大,电弧电压明显提高,从大范围电流变化看,静特性曲线中平特性区不明显,上升特性区斜率增加。 等离子弧静特性变化特点 (a)等离子弧与TIG电弧静特性(b)小弧电流对等离子弧静特性影响

等离子弧焊接技术

等离子弧焊接技术 摘要:焊接技术可以追溯到几千年前的青铜器时代,在人类早期工具制造中,无论是中国还是当时的埃及等文明地区都能见到焊接 技术的雏形。 关键词:等离子弧焊 焊接是指通过适当的物理化学过程使两个分离的固态物体产生原子(分子)间的结合力而连接成一体的连接方法。被连接的两个物体可以是各种同类或不同类的金属、非金属,也可以是一种金属与一种非金属。由于金属的连接在现代工业中具有很重要的实际意义,因此,狭义地说,焊接通常就是指金属的焊接。等离子弧焊是一种不熔化极电弧焊,是钨极氩弧焊的进一步发展。等离子弧是自由电弧压缩而成,其功率密度比自由电弧可提高100倍以上。其离子气为氩气、氮气、氦气或其中二者的混合气。等离子弧的能量集中,温度高,焰流速度大。这些特性使得等离子弧广泛应用于焊接、喷涂和堆焊。 等离子弧焊的起源 在第三次工业革命,这阶段在能源、微电子技术、航天技术等领域取得重大突破,推动了焊接技术的发展,1950年后成为又一次焊接方法迅速发展的时期,在这个阶段各个国家的焊接工作者开发了不少崭新的焊接方法。1957年美国的盖奇发明了等离子弧焊;20世纪40年代德国和法国科学家发明的电子束焊,也在

20世纪50年代得到了应用和进一步发展;20世纪60年代又出现了激光焊。等离子、电子束和激光焊接方法的出现,标志着高能量密度熔焊的新发展,大大改善了材料的焊接性,使得许多难以用其他方法焊接的材料和结构得以焊接。 等离子弧焊的原理 等离子弧焊(PAW,Plasma Arc Welding)是利用等离子弧作为热源的焊接方法。气体由电弧加热产生离解,在高速通过水冷喷嘴时受到压缩,增大能量密度和离解度,形成等离子弧。它的稳定性、发热量和温度都高于一般电弧,因而具有较大的熔透力和焊接速度。形成等离子弧的气体和它周围的保护气体一般用氩。根据各种工件的材料性质,也有使用氦、氮、氩或其中两者混合的混合气体的。 等离子弧焊的分类 按焊缝成型原理等离子弧焊分为: a.穿孔型等离子弧焊 b.熔透型等离子弧焊 c.微束等离子弧焊 脉冲等离子弧焊、交流等离子弧焊、熔化极等离子弧焊等 1.穿孔型等离子弧焊 原理:利用等离子弧能量密度大和等离子流吹力大的特点,将工件完全熔透,并在熔池上产生一个贯穿焊件的小孔。

等离子焊机说明书

目录 1.等离子焊接方法简介 (2) 1.1简介 (2) 1.2等离子电弧 (2) 1.3等离子基本焊接方法 (3) 2.等离子焊接设备及其主要功能 (3) 2.1 PHOENIX EWA 400DC-P等离子焊接电源 (3) 2.2 HP400等离子焊枪 (5) 2.3等离子焊接控制电源 (6) 2.4 RC-3型冷却水箱 (6) 2.5焊接工装 (7) 3.等离子焊接方法的主要参数 (8) 3.1焊接电流 (8) 3.2等离子气流量 (8) 3.3焊接速度 (8) 3.4喷嘴距离 (9) 3.5正面保护气流量 (9) 4.等离子焊接操作及其注意事项 (9) 5.常见故障及其解决方法 (11)

1.等离子焊接方法简介 1.1简介 等离子焊接是当今焊接中等厚度金属材料的首选方法,电流范围可达0.1~500A,适合于厚度在0.1mm~9mm的不锈钢、合金钢、钛合金、镍基合金及铝合金的焊接,采用这种焊接方法可以获得质量优良的焊缝和更快的焊接速度,从而大大提高产品的制造质量和竞争优势。 华恒公司自创立之出一直致力于等离子焊接设备的研究及生产,以及等离子焊接工艺拟订和更新,并取得了显著的成果。目前已制造出了等离子焊接电源及焊枪等整套设备,并已成功的应用到染整、食品、管道等行业的生产和制造之中,并得到了广大用户的一致好评。 下图为等离子焊接在全国各种行业中的几个应用实例: 图1 操作机等离子焊接的应用图2 边梁等离子焊接的应用1 图3边梁等离子焊接的应用2 图4 纵环缝等离子焊接的应用 1.2 等离子电弧 等离子焊接主要是获得等离子弧,等离子弧是利用等离子枪将阴极和阳极之间的自由电弧压缩成高温、高电离度、高能量密度及高焰流速度的电弧。

等离子弧焊的研究现状及发展趋势

等离子弧焊的研究现状及发展趋势 1 概述 等离子弧焊发明于1953年,英文学名为“Plasma Arc Welding”,缩写为PAW,由钨极氩弧焊发展而成,是该领域内的一项重大技术创新。等离子弧焊与原始的TIG焊相比,具有优质、高效、经济等优点,早在上世纪60年代初已成功用于金属制品生产。近20年来,等离子弧焊技术获得了进一步的发展,并成为现代焊接结构制造业中不可缺少的精密焊接工艺方法,在压力容器、管道、航天航空、石化装置、核能装备和食品及制药机械生产中得到普遍的推广应用,可以焊接普通优质碳钢、低合金钢、不锈钢、镍基合金、铜镍合金、钛、钽、锆及其合金和铝及其合金等金属材料。 为充分发挥等离子弧焊方法的潜在优势,增强其工艺适应性,进一步扩大应用范围,已开发出各种等离子弧焊工艺方法,如微束等离子弧焊、熔透型(弱等离子)等离子弧焊、锁孔型等离子弧焊、脉冲等离子弧焊、交流变极性等离子弧焊、等离子弧钎焊和等离子弧堆焊等。可以预料,等离子弧焊必将在现代工业生产中发挥出愈来愈重要的作用。 2 等离子弧焊的基本工作原理 等离子弧焊是早期对焊接电弧物理深入研究的最重要的成果之一。通过试验研究发现,在任何一种焊接电弧中,都存在温度超过3000℃的等离子区,但在自由状态的电弧中,这一区域的尺寸显得过小,且紧靠阴极,未能充分发挥其作用。TIG焊自由状态电弧的形貌成锥形,大部分能量被散失,电弧的热效率很低,从而大大降低了焊接效率。为充分利用电弧的能量,自然萌发出将电弧柱进行压缩,使其能量集中的想法,并逐步形成了等离子弧焊的设计思想。 等离子弧是一种被压缩的钨极氢弧,或者说是一种受约束的非自由电弧。一般情况下,借助于水冷喷嘴的约束作用,等离子体电弧弧柱在压缩作用下形成压缩电弧,即等离子弧。等离子弧由特殊结构的等离子体发生器产生,具有热压缩效应、机械压缩效应以及电磁压缩效应的特点。根据电极接电方式,等离子弧可以分为非转移型等离子弧和转移型等离子弧。 非转移型等离子弧的电极接负极,喷嘴接正极,电极与喷嘴之间产生等离子

P+T焊接工艺参数

P+T焊接工艺参数-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

P+T焊接设备对不锈钢产品工艺的要求 一、P+T焊接设备: 该设备由纵缝机、环缝机组成,适用于碳钢、不锈钢以及某些有色金属对接焊接。 纵缝机参数: 1、3-8mm 可不开坡口直接焊接,对于较薄板直接用等离子不填丝焊接; 8-14mm 板厚要求开坡口等离子焊接,然后用填丝盖面。拖罩保护焊缝。 2、工件精度要求: 焊缝直线度要求10m长直线度误差≤2mm(直线度不能保障时,可通过摄像监控系统调整焊枪位置) 对接间隙≤1/10T(T 为试件板厚)且不大于0.5mm 错边≤0.2T(T 为试件板厚)且不大于1mm 3.工作对象 ①直径范围:φ1500~φ3200mm ②工件壁厚: 2-14mm(一次熔透8mm,大于8mm需开坡口填丝) ③工件长度:≤2500 mm ④工件材质:不锈钢、碳钢、钛基合金等 工件施焊端面采用机械加工,拼缝要求规则均匀 4.设备参数

可夹持最小壁厚: 2mm 可夹持最大壁厚: 14mm 焊枪行走速度: 100-3000mm/min 跟踪滑板速度:≤200mm/min 液压升降台承载:≤6T 一、设备的用途: 等离子环缝焊接系统用于各类碳钢\合金钢(碳钢、不锈钢、钛基合金等)环缝焊接,采用等离子焊接工艺,壁厚8mm以下可不开坡口直接焊接一次性单面焊双面成形。对于较薄板直接用等离子焊接;对于8mm 板厚以上视情况采用等离子添丝焊接的方式。焊接时正面有拖罩保护焊缝,反面有背气保护系统 设备采用一套飞马特等离子焊接系统和一套KM4030焊接操作机,一套视频系统,一套20T可调式滚轮架,采用等离子高效焊接,实现工件的环缝焊接。 电控系统部分以三菱PLC为控制核心,能够准确控制设备的各种动作,操作盒上安装有触摸屏,便于修改各项控制参数,使用安全可靠,故障率低。 1、焊接成型工艺: 2-8mm 可不开坡口直接焊接,对于较薄板直接用等离子不填丝焊接; 8-14mm 板厚要求开坡口等离子焊接,然后用TIG填丝盖面。拖罩保护焊缝。

等离子焊机说明书

等离子焊机说明书 Prepared on 22 November 2020

目录 1.等离子焊接方法简介 (2) 简介 (2) 等离子电弧 (2) 等离子基本焊接方法 (3) 2.等离子焊接设备及其主要功能 (3) PHOENIX EWA 400DC-P等离子焊接电源 (3) HP400等离子焊枪 (5) 等离子焊接控制电源 (6) RC-3型冷却水箱 (6) 焊接工装 (7) 3.等离子焊接方法的主要参数 (8) 焊接电流 (8) 等离子气流量 (8) 焊接速度 (8) 喷嘴距离 (9) 正面保护气流量 (9) 4.等离子焊接操作及其注意事项 (9) 5.常见故障及其解决方法 (11) 1.等离子焊接方法简介 简介

等离子焊接是当今焊接中等厚度金属材料的首选方法,电流范围可达~500A,适合于厚度在~9mm的不锈钢、合金钢、钛合金、镍基合金及铝合金的焊接,采用这种焊接方法可以获得质量优良的焊缝和更快的焊接速度,从而大大提高产品的制造质量和竞争优势。 华恒公司自创立之出一直致力于等离子焊接设备的研究及生产,以及等离子焊接工艺拟订和更新,并取得了显着的成果。目前已制造出了等离子焊接电源及焊枪等整套设备,并已成功的应用到染整、食品、管道等行业的生产和制造之中,并得到了广大用户的一致好评。 下图为等离子焊接在全国各种行业中的几个应用实例: 图1 操作机等离子焊接的应用图2 边梁等离子焊接的应用1 图3边梁等离子焊接的应用2 图4 纵环缝等离子焊接的应用 等离子电弧 等离子焊接主要是获得等离子弧,等离子弧是利用等离子枪将阴极和阳极之间的自由电弧压缩成高温、高电离度、高能量密度及高焰流速度的电弧。 自由电弧经过等离子焊枪中的三个压缩:机械压缩,热压缩和电磁压缩后形成等离子电弧,等离子电弧的功率及温度明显高于自由电弧,其功率基本上是自由电弧的两倍。 等离子电弧主要分为三种类型: 1.非转移型等离子电弧 主要用于非金属材料的焊接。 2.转移型等离子电弧 金属材料的焊接一般采用此电弧。

等离子焊接工艺

等离子焊接工艺 (1)焊接电流 焊接电流是根据板厚或熔透要求来选定。焊接电流过小,难于形成小孔效应:焊接电流增大,等离子弧穿透能力增大,但电流过大会造成熔池金属因小孔直径过大而坠落,难以形成合格焊缝,甚至引起双弧,损伤喷嘴并破坏焊接过程的稳定性。因此,在喷嘴结构确定后,为了获得稳定的小孔焊接过程,焊接电流只能在某一个合适的范围内选择,而且这个范围与离子气的流量有关。 (2)焊接速度 焊接速度应根据等离子气流量及焊接电流来选择。其他条件一定时,如果焊接速度增大,焊接热输入减小,小孔直径随之减小,直至消失,失去小孔效应。如果焊接速度太低,母材过热,小孔扩大,熔池金属容易坠落,甚至造成焊缝凹陷、熔池泄漏现象。因此,焊接速度、离子气流量及焊接电流等这三个工艺参数应相互匹配。 (3)喷嘴离工件的距离 ·喷嘴离工件的距离过大,熔透能力降低:距离过小,易造成喷嘴被飞溅物堵塞,破坏喷嘴正常工作。喷嘴离工件的距离一般取3~8mm。与钨极氩弧焊相比,喷嘴距离变化对焊接质量的影响不太敏感。 (4)等离于气及流量 等离子气及保护气体通常根据被焊金属及电流大小来选择。大电流等离子弧焊接时,等离子气及保护气体通常采取相同的气体,否则电弧的稳定性将变差。小电流等离子弧焊接通常采用纯氩气作等离子气。这是因为氧气的电离电压较低,可保证电弧引燃容易。 离子气流量决定了等离子流力和熔透能力。等离子气的流量越大,熔透能力越大。但等离子气流量过大会使小孔直径过大而不能保证焊缝成形。因此,应根据喷嘴直径、等离子气的种类、焊接电流及焊接速度选择适当的离子气流量。利用熔人法焊接时,应适当降低等离子气流量,以减小等离子流力。 保护气体流量应根据焊接电流及等离子气流量来选择。在一定的离子气流量下,保护气体流量太大,会导致气流的紊乱,影响电弧稳定性和保护效果。而保护气体流量太小,保护效果也不好,因此,保护气体流量应与等离子气流量保持适当的比例。 小孔型焊接保护气体流量一般在15~30L/min范围内。采用较小的等离子气流量焊接时,电弧的等离子流力减小,电弧的穿透能力降低,只能熔化工件,形不成小孔,焊缝成形过程与TIG焊相似。这种方法称为熔入型等离子弧焊接,适用于薄板、多层焊的盖面焊及角焊缝的焊接。 (5)引弧及收弧

安全:等离子弧焊接及切割的操作技术

安全:等离子弧焊接及切割的操作技术 等离子弧焊接及切割的安全操作技术 1.等离子弧焊接和切割用电源的空载电压较高,尤其在乎操作时,有电击妁危险。因此: (1)电源在使用时必须可靠接地。 (2)焊枪枪体或割枪枪体与手触摸部分必须可靠绝缘。 (3)可以采用较低电压引燃非转移弧后再接通较高电压的转移弧回路。 (4)如果起动开关装在手把上,必须对外露开关套上绝缘橡胶管,避免手直接接触开关。 (5)等离子弧焊接和切割用喷嘴及电极的寿命相对较短,要经常更换,更换时要保证电源处于断开状态。 2.防电弧光辐射 等离子弧较其他电弧的光辐射强度更大,尤其是紫外线强度,故对皮肤损伤严重,操作者在焊接和切割时必须戴上良好的面罩、手套,颈部也要保护。面罩上除具有黑色目镜外,最好加上吸收紫外线的镜片。自动操作时,可在操作者与操作区之间设置防护屏。等离子弧切割时,可采用水下切割方法,利用水来吸收光辐射。 3.防高频和射线

等离子弧焊接和切割都采用高频振荡器引弧,但高频对人体有一定的危害。引弧频率选择在20~60kHz较为合适,还要求工件接地可靠,转移弧引弧后,立即可靠地切断高频振荡器电源。等离子弧焊接和切割采用钍钨极时,同钨极氩弧焊一样,要注意射线的危害。 4.防灰尘和烟气 等离子弧焊接和切割过程中伴随有大量气化的金属蒸气、臭氧、氮氧化物等。尤其切割时,由于气体流量大,致使工作场地上的灰尘大量扬起,这些烟气和灰尘对操作工人的呼吸道、肺等产生严重影响。因此要求工作场地必须配罩良好的通风设备措施。切割时,在栅格工作台下方还可安置排风装置,也可以采取水中切割方法。 5.防噪声 等离子弧会产生高强度、高频率的噪声,尤其采用大功率等离子弧切割时,其噪声更大,这对操作者的听觉系统和神经系统非常有害。要求操作者必须戴耳塞,或可能的话,尽量采用自动化切割,使操作者在隔音良好的操作室内工作,也可以采取水中切割方法,利用水来吸收噪声。

电子束焊及等离子弧焊特点

电子束焊 真空电子束焊接具有以下特点: ●电子束能焊接不同的金属及合金材料,尤其高难熔金属都能焊接 ●电子束可以精确的确定焊缝的位置,精度和重复性误差为0% 。 ●最大的穿透深度,可达15MM ●最高的深宽比大于10:1。 ●焊接直径可达400MM ●电子束焊接,其焊缝化学成份纯净, 焊接接头强度高、质量好。 ●电子束焊接所需线能量小,而焊接速度高,因此焊件的热影响区小、焊件变形小,除一般焊接外,还可以对精加工后的零部件进行焊接。 ●可焊接异种金属, 如铜和不锈钢、钢与硬质合金、铬和钼、铜铬和铜钨等。 ●真空电子束焊接不仅可以防止熔化金属受到氧、氮等有害气体的污染,而且有利于焊缝金属的除气和净化,因而特别适于活泼金属焊接。也常用于电子束焊接真空密封元件,焊后元件内部保持在真空状态 ●在真空中进行焊接,焊缝纯净、光洁,呈镜面,无氧化等缺陷。 ●电子束能量密度高达108瓦/厘米2,能把焊件金属迅速加热到很高温度,因而能熔化任何难熔金属与合金。熔深大、焊速快,热影响区极小,因此对接头性能影响小,接头基本无变形。 ●与普通焊接相比, 其焊接速率更高(尤其对于大厚件的焊接工件)。 等离子弧焊 1.1 等离子弧的产生: (1)等离子弧的概念: 自由电弧:未受到外界约束的电弧,如一般电弧焊产生的电弧。 等离子弧:受外部拘束条件的影响使孤柱受到压缩的电弧。 自由电弧弧区内的气体尚未完全电离,能量未高度集中,而等离子弧弧区内的气体完全电离,能量高度集中,能量密度很大,可达10~10W/cm2,电弧温度可高达24000~50000K(一般自由状态的钨极氩弧焊最高温度为10000~20000K,能量密度在10W/cm2以下)能迅速熔化金属材料,可用来焊接和切割。

等离子弧焊

等离子弧焊 等离子弧焊成品 等离子弧焊是利用等离子弧作为热源的焊接方法。气体由电弧加热产生离解,在高速通过水冷喷嘴时受到压缩,增大能量密度和离解度,形成等离子弧。它的稳定性、发热量和温度都高于一般电弧,因而具有较大的熔透力和焊接速度。形成等离子弧的气体和它周围的保护气体一般用氩。根据各种工件的材料性质,也有使用氦或氩氦、氩氢等混合气体的。 目录

基本信息 缩写abbr. :PAW. [军] Plasma-Arc Welding, 等离子弧焊 ——简明英汉词典 工作方式 等离子弧有两种工作方式。一种是“非转移弧”,电弧在钨极与喷嘴之间燃烧,主要用於等离子喷镀或加热非导电材料;另一种是“转移弧”,电弧由辅助电极高频引弧后,电弧燃烧在钨极与工件之间,用於焊接。形成焊缝的方式有熔透式和穿孔式两种。前一种形式的等离子弧只熔透母材,形成焊接熔池,多用於0.8~3毫米厚的板材焊接;后一种形式的等离子弧只熔穿板材,形成钥匙孔形的熔池,多用於 3~12毫米厚的板材焊接。此外,还有小电流的微束等离子弧焊,特别适合於0.02~1.5毫米的薄板焊接。等离子弧焊接属于高质量焊接方法。焊缝的深/宽比大,热影响区窄,工件变形小,可焊材料种类多。

特别是脉冲电流等离子弧焊和熔化极等离子弧焊的发展,更扩大了等离子弧焊的使用范围。 过程特点 操作方式 等离子弧焊与TIG焊十分相似,它们的电弧都是在尖头的钨电极和工件之间形成的。但是,通过在焊炬中安置电极,能将等离子弧从保护气体的气囊中分离出来,随后推动等离子通过孔型良好的铜喷管将弧压缩。通过改变孔的直径和等离子气流速度,可以实现三种操作方式: 1、微束等离子:0.1~15A 在很低的焊接电流下,材苁褂梦⑹?壤胱踊<词乖诨〕け浠?怀??0mm时,柱状弧仍能保持稳定。 2、中等电流:15~200A 在较大的15~200A电流下,等离子弧的过程特点与TIG弧相似,但由于等离子被压缩过,弧更加挺直。虽然可提高等离子气流速度来增加焊接熔池的度深,但会造成在紊乱的保护气流中,混入空气和保护气体的风险。 3、小孔型等离子:大于100A 通过增加焊接电流和等离子气流速度,可产生强有力的等离子束,与激光或电子束焊接一样,它能够在材料上形成充分的熔深。焊接时,随着焊接熔池的流动,金属穿过小孔被切割后在表面张力作用下形成焊道。单道焊时,该过程可用于焊接较厚的材料(厚度不超过10mm的不锈钢)。 电源 使用等离子弧焊时,通常采用直流电流和垂降特性电源。由于从特别的焊炬排列方式和各自分离的等离子、保护气流中获得了独特的操作特性,可在等离子控制台上增加一个普通的TIG电源,还可以使用特别组建的等离子系统。采用正弦波交流电时,不容易使等离子弧稳定。当电极和工件间距较长且等离子被压缩时,等离子弧很难发挥作用,而且,在正半周期内,过热的电极会使导电嘴变成球形,从而干扰弧的稳定。

微束等离子弧焊工艺与设备

微束等离子弧焊工艺与设备 一、实验目的 1、熟悉等离子弧焊接过程及工艺参数的选择 2、熟悉等离子焊接设备 3、理解等离子的产生 二、实验设备及材料 1、LH-10型等离子焊机 2、氩气瓶 3、减压表 4、冷却泵 5、试验材料 1Cr18Ni9不锈钢管 三、实验原理 1、等离子弧的产生 等离子弧是利用等离子枪将阴极(如钨极)和阳极之间的自由电弧压缩成高温、高电离度、高能量密度及高焰流速度的电弧。等离子弧可用于焊接、喷涂、堆焊及切割。等离子枪的结构及电弧压缩方式:

2、等离子焊枪的结构及工艺参数 等离子焊枪的结构如图1所示,从图中可以看出,压缩喷嘴5是等离子枪的关键部件,一般需用水冷,对于微束等离子枪可以不进行直接水冷,但需要间接水冷和直接气冷。喷嘴孔径d0和孔道长度L0是压缩喷嘴的两个主要尺寸。喷嘴内通的气体称为离子气。中性的离子气在喷嘴内电离后使喷嘴内压力增加,所以喷嘴内壁与电极4之间的空间称增压室。电离了的离子气从喷嘴流出时受到孔径限制,使弧柱截面变小,该孔径对弧柱的压缩作用称为机械压缩。水冷喷嘴内壁表面有一层冷气膜,电弧经过孔道时,冷气膜一方面使喷嘴与弧柱绝缘,另一方面使弧柱有效截面进一步收缩,这种收缩称热收缩。弧柱电流自身磁场对弧柱的压缩作用称为磁收缩。在机械与热收缩的作用下,弧柱电流密度增加,磁收缩随之增强, 如电流不变,弧柱电场强度及弧压降都随电流密度增加而增加,所以等离子弧的电弧功率及温度明显高于自由电弧。从图2看出,等离子电弧温度比自由弧高30%,电弧功率高100%。 由于电离后的离子气仍具有流体的性质,受到压缩从喷嘴孔径喷射出的电弧带电质点的运动速度明显提高(可达300m/s),所以等离子弧具有较小的扩散角及较大的电弧挺度。 等离子弧具有的电弧力、能量密度及电弧挺度等与加工有关的物理性能取决于下列五个参数: 1)电流 2)喷嘴孔径的几何尺寸 3)离子气种类

等离子弧焊

等离子弧加工 等离子弧加工是利用等离子弧的热能对金属或非金属进行切割、焊接和喷涂等的特种加工方法。1955年,美国首先研究成功等离子弧切割。产生等离子弧的原理是:让连续通气放电的电弧通过一个喷嘴孔,使其在孔道中产生机械压缩效应;同时,由于弧柱中心比其外围温度高、电离度高、导电性能好,电流自然趋向弧柱中心,产生热收缩效应,同时加上弧柱本身磁场的磁收缩效应。这3种效应对弧柱进行强烈压缩,在与弧柱内部膨胀压力保持平衡的条件下,使弧柱中心气体达到高度的电离,而构成电子、离子以及部分原子和分子的混合物,即等离子弧。 原理 等离子弧切割与焊接是现代科学领域中的一项新技术。它是利用温度高达15000~30000℃的等离子弧来进行切割和焊接的工艺方法。这种新的工艺方法不仅能对一般材料进行切割和焊接,而且还能切割和焊接一般工艺方法难以加工的材料。 等离子弧加工流程 电弧就是中性气体电离并维持放电的现象。若使气体完全电离,形成全部由带正电的正离子和带负电的电子所组成的电离气体,就称为等离子体。一般的焊接电弧是一种自由电弧,弧柱的截面随功率的增加而增大,电弧中的气体电离不充分,其温度被限制在5730~7730℃。若在提高电弧功率的同时,对自由电弧进行压缩,使其横截面减小,则电弧中的电流密度就大大提高,电离度也随之增大,几乎达到全部等离子状态的电弧叫等离子弧。对自由电弧进行的压缩作用称为压缩效应。压缩效应有如下三种形式: 1)、机械压缩效应在钨极(负极)和焊件(正极)之间加上一个高电压,使气体电离形成电弧,当弧柱通过特殊孔形的喷嘴的同时,又施以一定压力的工作气体,强迫弧柱通过细孔,由于弧柱受到机械压缩使横截面积缩小,故称为机械压缩效应。 2)、热收缩效应当电弧通过喷嘴时,在电弧的外围不断送入高速冷却气流(氮气或氢气等)使弧柱外围受到强烈冷却,电离度大大降低,迫使电弧电流只能从弧柱中心通过,导致导电截面进一步缩小,这时电弧的电流密度大大增加,这就是热收缩效应。 3)、磁收缩效应由于电流方向相同,在电流自身产生的电磁力作用下,彼此互相吸引,将产生一个从弧柱四周向中心压缩的力,使弧柱直径进一步缩小。这种因导体自身磁场作用产生的压缩作用叫“磁收缩效应”。电弧电流越大,磁收缩效应越强。自由电弧在上述三种效应作用下被压缩得很细,在高度电离和高温条件下,电弧逐渐趋于稳定的等离子弧。

等离子焊机说明书

目录 1.等离子焊接方法简 介 (2) 简介 (2) 等离子电弧 (2) 等离子基本焊接方法 (3) 2.等离子焊接设备及其主要功 能 (3) PHOENIX EWA 400DC-P等离子焊接电源 (3) HP400等离子焊枪 (5) 等离子焊接控制电源 (6) RC-3型冷却水箱 (6) 焊接工装 (7) 3.等离子焊接方法的主要参 数 (8)

焊接电流 (8) 等离子气流量 (8) 焊接速度 (8) 喷嘴距离 (9) 正面保护气流量 (9) 4.等离子焊接操作及其注意事 项 (9) 5.常见故障及其解决方 法 (11) 1.等离子焊接方法简介 简介 等离子焊接是当今焊接中等厚度金属材料的首选方法,电流范围可达~500A,适合于厚度在~9mm的不锈钢、合金钢、钛合金、镍基合金及铝合金的焊接,采用这种焊接方法可以获得质量优良的焊缝和更快的焊接速度,从而大大提高产品的制造质量和竞争优势。 华恒公司自创立之出一直致力于等离子焊接设备的研究及生产,以及等离子焊接工艺拟订和更新,并取得了显着的成果。目前已制造出了等离子焊接电源及焊枪等整套设备,并已成功的应用到染整、食品、管道等行

业的生产和制造之中,并得到了广大用户的一致好评。 下图为等离子焊接在全国各种行业中的几个应用实例: 图1 操作机等离子焊接的应用图2 边梁等离子焊接的应用1 图3边梁等离子焊接的应用2 图4 纵环缝等离子焊接的应用 等离子电弧 等离子焊接主要是获得等离子弧,等离子弧是利用等离子枪将阴极和阳极之间的自由电弧压缩成高温、高电离度、高能量密度及高焰流速度的电弧。 自由电弧经过等离子焊枪中的三个压缩:机械压缩,热压缩和电磁压缩后形成等离子电弧,等离子电弧的功率及温度明显高于自由电弧,其功率基本上是自由电弧的两倍。 等离子电弧主要分为三种类型: 1.非转移型等离子电弧 主要用于非金属材料的焊接。 2.转移型等离子电弧

相关文档
最新文档