圆锥曲线基本题型总结

圆锥曲线基本题型总结
圆锥曲线基本题型总结

圆锥曲线基本题型总结:

提纲:

一、定义的应用:

1、定义法求标准方程:

2、涉及到曲线上的点到焦点距离的问题:

3、焦点三角形问题:

二、圆锥曲线的标准方程:

1、对方程的理解

2、求圆锥曲线方程(已经性质求方程)

3、各种圆锥曲线系的应用:

三、圆锥曲线的性质:

1、已知方程求性质:

2、求离心率的取值或取值范围

3、涉及性质的问题:

四、直线与圆锥曲线的关系:

1、位置关系的判定:

2、弦长公式的应用:

3、弦的中点问题:

4、韦达定理的应用:

一、定义的应用:

1.定义法求标准方程:

(1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理) 1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()

A .椭圆

B .直线

C .圆

D .线段 【注:2a>|F 1 F 2|是椭圆,2a=|F 1 F 2|是线段】 2.设B (-4,0),C (4,0),且△ABC 的周长等于18,则动点A的轨迹方程为( ) A.

x2

25

+=1 (y ≠0) ??B.+\f (x2,9)=1 (y ≠0)

C.错误!+错误!=1 (y ≠0) ?

D.错误!+=1 (y ≠0) 【注:检验去点】

3.已知A(0,-5)、B(0,5),|P A |-|PB |=2a ,当a =3或5时,P 点的轨迹为( ) A.双曲线或一条直线 B.双曲线或两条直线 C.双曲线一支或一条直线

D .双曲线一支或一条射线 【注:2a<|F1 F 2|是双曲线,2a=|F1 F 2|是射线,注意一支与两支的判断】

4.已知两定点F1(-3,0),F2(3,0),在满足下列条件的平面内动点P 的轨迹中,是双曲线的是( ) A.||PF 1|-|PF 2||=5 B.||PF 1|-|PF 2||=6 C.||PF 1|-|PF 2||=7

D.||PF 1|-|PF 2||=0 【注:2a<|F1 F 2|是双曲线】

5.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( ) A.\f(x 2,16)-错误!=1(x ≤-4) ?? ?B.错误!-=1(x≤-3) C.-=1(x ≥4) ?

D .-错误!=1(x ≥3) 【注:双曲线的一支】

6.如图,P 为圆B :(x+2)2+y 2

=36上一动点,点A坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨

迹方程.

7.已知点A(0,3)和圆O1:x2+(y+)2=16,点M在圆O1上运动,点P在半径O1M上,且|PM|=|PA|,求动点P的轨迹方程.

(2)涉及圆的相切问题中的圆锥曲线:

8.已知圆A:(x+3)2+y2=100,圆A内一定点B(3,0),圆P过B且与圆A内切,求圆心P的轨迹方程.

已知动圆M过定点B(-4,0),且和定圆(x-4)2+y2=16相切,则动圆圆心M的轨迹方程为()

A.错误!-错误!=1 (x>0)?B.-错误!=1 (x<0)

C.-y2

12=1 D.错误!-=1【注:由题目判断是双曲线的一支还是两支】

9.若动圆P过点N(-2,0),且与另一圆M:(x-2)2+y2=8相外切,求动圆P的圆心的轨迹方程.

【注:双曲线的一支,注意与上题区分】

10.如图,已知定圆F1:x2+y2+10x+24=0,定圆F2:x2+y2-10x+9=0,动圆M与定圆F1、F2都外切,求动圆圆心M的轨迹方程.

11.若动圆与圆(x-2)2+y2=1相外切,又与直线x+1=0相切,则动圆圆心的轨迹是()

A.椭圆

B.双曲线

C.双曲线的一支

D.抛物线

12.已知动圆M经过点A(3,0),且与直线l:x=-3相切,求动圆圆心M的轨迹方程.

【注:同上题做比较,说法不一样,本质相同】

13.已知点A(3,2),点M到F错误!的距离比它到y轴的距离大错误!.(M的横坐标非负)

(1)求点M的轨迹方程; 【注:体现抛物线定义的灵活应用】

(2)是否存在M,使|MA|+|MF|取得最小值?若存在,求此时点M的坐标;若不存在,请说明理由.

【注:抛物线定义的应用,涉及抛物线上的点到焦点的距离转化成到准线的距离】

(3)其他问题中的圆锥曲线:

14.已知A,B两地相距2000m,在A地听到炮弹爆炸声比在B地晚4 s,且声速为340 m/s,求炮弹爆炸点的轨迹方程. 【注:双曲线的一支】

2.

15.如图所示,在正方体ABCD—A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与到直线C1D1的距离相等,则动点P的轨迹所在的曲线是( )

A.直线B.圆

C.双曲线 D.抛物线

【注:体现抛物线定义的灵活应用】

2.涉及到曲线上的点到焦点距离的问题:

16.设椭圆+\f(y2,m2-1)=1 (m>1)上一点P到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为()

A.错误!B.错误! C.错误!D.

17.椭圆错误!+=1的左右焦点为F1,F2,一直线过F1交椭圆于A、B两点,则△ABF2的周长为()A.32 B.16C.8 D.4

18.已知双曲线的方程为

x

a2

-错误!=1,点A,B在双曲线的右支上,线段A B经过双曲线的右焦点F 2,|AB |=m ,F 1

为另一焦点,则△A BF 1的周长为( )

A.2a +2m B .4a +2m C .a +m D.2a +4m

19.若双曲线x 2-4y 2=4的左、右焦点分别是F 1、F 2,过F 2的直线交右支于A 、B两点,若|A B|=5,则△AF 1B 的周长为________.

20.设F1、F2是椭圆错误!+错误!=1的两个焦点,P是椭圆上一点,且P到两个焦点的距离之差为2,则△PF 1F2是( )

A.钝角三角形 B .锐角三角形 C .斜三角形 D .直角三角形

21.椭圆错误!+=1的焦点为F1、F 2,点P 在椭圆上.若|P F1|=4,则|PF 2|=________,∠F1PF 2的大小为________.

【注:椭圆上的点到焦点的距离,最小是a-c,最大是a+c】

22.已知P是双曲线错误!-=1上一点,F 1,F 2是双曲线的两个焦点,若|P F1|=17,则|PF 2|的值为________.

【注:注意结果的取舍,双曲线上的点到焦点的距离最小为c -a】

23.已知双曲线的方程是错误!-=1,点P 在双曲线上,且到其中一个焦点F1的距离为10,点N 是PF 1的中点,求|O N|的大小(O 为坐标原点). 【注:O 是两焦点的中点,注意中位线的体现】 24.设F 1、F2分别是双曲线-=1的左、右焦点.若点P在双曲线上,且1PF ·2PF =0,则|1PF +2PF |等于( ) A.3 B.6 C.1 D.2

25.已知点P是抛物线y2=2x上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值是( ) A .错误! ??B.3 ?C.错误! ?D.错误!

【注:抛物线定义的应用,将抛物线上的点到焦点的距离转化成到准线的距离】

26.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d1,到直线3x -4y +9=0的距离为d2,则d1+d 2的最小

值是( ) A .125 B.6

5 C.2 D.

【注:抛物线定义的应用,将抛物线上的点到准线的距离转化成到焦点的距离】

27.设点A 为抛物线y2=4x 上一点,点B(1,0),且|AB|=1,则A 的横坐标的值为( )

A .-2 B.0 C.-2或0 D .-2或2 【注:抛物线的焦半径,即定义的应用】

3.焦点三角形问题:

椭圆的焦点三角形周长2c 2a 2C PF PF C 21F PF 21+?=++= 椭圆的焦点三角形面积:

推导过程:

2

tan sin cos 121sin 2

1 cos 1

-)cos (12 (1)-(2)

(2)

2a (1)

COS 2-2 1 b 2b PF

PF S 2b

PF

PF 4c 4a PF PF PF PF 4c PF PF PF PF 2

2

2

1

F PF 2

2

1

2

22122

12

2

1

2

2

2

1θθθθθ

θθ=+=

=

+=

=+??

??

?

=+=+

?得

双曲线的焦点三角形面积:

2

tan

b

S 2

F PF 2

=?

28.设P 为椭圆\f(x 2,100)+=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=,求△F 1P F2的面积. 【注:小题中可以直接套用公式。S=

15tan 2b 】

29.已知双曲线\f (x 2

,9)-=1的左、右焦点分别是F1、F2,若双曲线上一点P使得∠F 1PF 2=60°,求△F 1PF 2的面积.

【注:小题中可以直接套用公式。】

30.已知双曲线的焦点在x 轴上,离心率为2,F 1,F2为左、右焦点,P 为双曲线上一点,且∠F 1PF 2=60°,S △PF 1F

=123,求双曲线的标准方程.

31.已知点P (3,4)是椭圆+=1 (a >b >0)上的一点,F 1、F 2为椭圆的两焦点,若PF 1⊥PF 2,试求:

(1)椭圆的方程; (2)△P F1F2的面积.

二、圆锥曲线的标准方程:

1.对方程的理解

32.方程+错误!=1表示焦点在x轴上的椭圆,则实数a的取值范围是()

A.(-3,-1)

B.(-3,-2)

C.(1,+∞) D.(-3,1)

33.若k>1,则关于x,y的方程(1-k)x2+y2=k2-1所表示的曲线是()

A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆

C.焦点在y轴上的双曲线 D.焦点在x轴上的双曲线【注:先化为标准方程形式】

34.对于曲线C:+=1,给出下面四个命题:

①曲线C不可能表示椭圆;

②当1

③若曲线C表示双曲线,则k<1或k>4;

④若曲线C表示焦点在x轴上的椭圆,则1

35.已知椭圆x2sinα-y2cos α=1(0≤α<2π)的焦点在y轴上,则α的取值范围是()

A. B.错误!C.错误!D.

36.双曲线-\f(y2,m-5)=1的一个焦点到中心的距离为3,求m的值. 【注:要根据焦点位置分情况讨论】2.求曲线方程(已经性质求方程)

37.以-y2

12=-1的焦点为顶点,顶点为焦点的椭圆方程为( )

A.\f(x2,16)+错误!=1 B.错误!+错误!=1 C.+=1 D.错误!+=1

38.根据下列条件,求椭圆的标准方程.

(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P到两焦点的距离之和等于10;

(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点错误!.【注:定义的应用】

39.已知椭圆的中心在原点,焦点在x轴上,离心率为,且过点P(-5,4),则椭圆的方程为______________.

40.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )

A.x2

81+=1 B .x 2

81+=1 C.错误!+=1 D .错误!+=1

41.设椭圆+错误!=1 (m >0,n >0)的右焦点与抛物线y 2=8x的焦点相同,离心率为错误!,则此椭圆的方程为( )

A.+错误!=1 B.错误!+错误!=1 C.错误!+错误!=1 D .+错误!=1

42.已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为F1(-3,0),且右顶点为D(2,

0).设点A 的坐标是错误!.

(1)求该椭圆的标准方程;

(2)若P 是椭圆上的动点,求线段PA 的中点M 的轨迹方程.【注:相关点法求曲线方程】

43.双曲线的实轴长与虚轴长之和等于其焦距的倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )

A.-=1 B.-\f(x2,4)=1

C.y 2

-=1 D.错误!-=1

44.已知双曲线错误!-错误!=1(a >0,b >0)的一条渐近线方程是y =x,它的一个焦点在抛物线y 2=24x的准线上,则双曲线的方程为( )

A.-\f (y2,108)=1

B.x 2

9-错误!=1 C.错误!-错误!=1 D.-=1

45.求与双曲线错误!-=1有公共焦点,且过点(3错误!,2)的双曲线方程.

46.双曲线C 与椭圆错误!+错误!=1有相同的焦点,直线y =x 为C 的一条渐近线.求双曲线C 的方程.

47.根据下列条件写出抛物线的标准方程: (1)经过点(-3,-1);

(2)焦点为直线3x -4y -12=0与坐标轴的交点.

48.抛物线y 2

=2px (p >0)上一点M 的纵坐标为-4错误!,这点到准线的距离为6,则抛物线方程为________.

【注:定义的应用,焦半径】

三、圆锥曲线的性质:

1.已知方程求性质:

49.椭圆2x2+3y2=1的焦点坐标是( )

A.错误!B.(0,±1) C.(±1,0) D.错误!【注:焦点位置】

50.椭圆25x2+9y2=225的长轴长、短轴长、离心率依次是()

A.5,3,错误!B.10,6,错误!C.5,3,错误!D.10,6,错误!

51.设a≠0,a∈R,则抛物线y=ax2的焦点坐标为()

A.错误!

B.

C.错误!

D.错误!

【注:先化为抛物线的标准方程,此处最容易出错】

2.求离心率的取值或取值范围

52.直线x+2y-2=0经过椭圆+=1 (a>b>0)的一个焦点和一个顶点,则该椭圆的离心率等于______.

53.以等腰直角△ABC的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为____________.

54.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )

A.错误!

B.错误!

C.错误!

D.

【注:寻找a,b,c的等量关系,遇b换成a、c,整理成关于a、c的方程】

55.椭圆的两个焦点为F1、F2,短轴的一个端点为A,且三角形F1AF2是顶角为120°的等腰三角形,则此椭圆的离心率为________.

56.设椭圆+=1 (a>b>0)的左、右焦点分别是F1、F2,线段F1F2被点错误!分成3∶1的两段,则此椭圆的离心率为________.

57.中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为()

A. 6 B. 5 C .错误! D. 58.双曲线错误!-=1的两条渐近线互相垂直,那么该双曲线的离心率是( ) A.2

B .

C . D.\f(3,2)

59.已知双曲线\f(x2,a2

)-\f(y2,b 2)=1 (a >0,b >0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )

A .(1,2]

B .(1,2)

C .[2,+∞)

D .(2,+∞)

四、直线与圆锥曲线的关系: 1、 位置关系的判定:

60.已知抛物线的方程为y 2=4x ,直线l过定点P (-2,1),斜率为k.k为何值时,直线l与抛物线y2=4x:只有一个公共点;有两个公共点;没有公共点?

【注:双曲线和抛物线中,都有相交只有一个交点的情况,这是二次项系数为0的时候,因此相离、相切、相交有两个交点,需要用⊿判断时,必须要加上二次项系数不为0的条件】 61.已知抛物线y =4x 2

上一点到直线y =4x -5的距离最短,则该点坐标为( ) A .(1,2) ?

B.(0,0)

C.

D.(1,4)

2.弦长公式的应用:

62.已知斜率为1的直线l 过椭圆+y 2=1的右焦点F 交椭圆于A 、B两点,求弦AB 的长.

63.直线y =kx -2交抛物线y 2=8x 于A、B 两点,若线段AB 中点的横坐标等于2,求弦AB 的长.

64.已知顶点在原点,焦点在x 轴上的抛物线被直线y=2x +1截得的弦长为15,求抛物线的方程.

65.已知椭圆C :

x2

a 2

+=1 (a>b >0)的离心率为错误!,短轴一个端点到右焦点的距离为.

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

圆锥曲线基本题型总结

锥曲线基本题型总结: 提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题: 4、韦达定理的应用: 一、定义的应用: 1.定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)

1?设F-F2为泄点,∣F1F2∣=6 ,动点M满足IMF I I+∣M F2I= 6 ,则动点M的轨迹是() 1/1 C.圆 D.线段【注:2a>|Fi F2I是椭圆,2a=∣Fι F2 I是线段】 2.设%4, O), C(4,0) ,KZLlSC的周长等于18侧动点/1的轨迹方程为() A.5J+= 1 (yH0) - B.+ ? f ( X2,9)=1 (yH 0 ) C错误!-错误!=1 G?≠ 0) °D?错误! + = 1 (y≠0)【注:检验去点】 3.已知力(0, — 5)、B(0,5),昭I 一砂∣=2α,当α=3或5时,P点的轨迹为() A.双曲线或一条直线 B.双曲线或两条直线 C.双曲线一支或一条直线 D.双曲线一支或一条射线【注:2a<|F I F2∣是双曲线,2a=∣ F1F2∣?射线,注意一支与两支的判断】 4?已知两左点巧(一 3,0),尸2(3.0),在满足下列条件的平而内动点P的轨迹中,是双曲线的是() A↑?PF i?-?PF2 I |=5 B.∣ I PFll-I PF2? I =6 C.∣∣PF1∣-∣PF2∣∣=7 D.∣ I PF1?-?PF2? I =0 【注ι2a<∣Fι F2∣是双曲线】 5?平而内有两个泄点Fι(-5,0)和F2( 5 ,0),动点P满足IPF I l-I PF沪6 ,则动点P的轨迹方程是() A.? f(x2, 1 6)- 错误! = l(xW-4) " B.错误!?=l(xW?3)

最新圆锥曲线题型总结

圆锥曲线题型总结

直线和圆锥曲线常考题型 运用的知识: 1、中点坐标公式:1212,y 22 x x y y x ++= =,其中,x y 是点 1122(,)(,)A x y B x y ,的中点坐标。 2、弦长公式:若点 1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上, 则 1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一, AB === = 或者 AB === = 3、两条直线111222: ,:l y k x b l y k x b =+=+垂直:则121k k =- 两条直线垂直,则直线所在的向量120v v = 4、韦达定理:若一元二次方程2 0(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a +=-=。 常见的一些题型: 题型一:数形结合确定直线和圆锥曲线的位置关系 例题1、已知直线:1l y kx =+与椭圆22 : 14x y C m +=始终有交点,求m 的取值范围 解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆22 : 14x y C m +=过动点04m ≠(,且,如果直线 :1l y kx =+和椭圆22 :14x y C m + =14m ≥≠,且,即14m m ≤≠且。 规律提示:通过直线的代数形式,可以看出直线的特点: :101l y kx =+?过定点(,) :(1)1l y k x =+?-过定点(,0) :2(1)1l y k x -=+?-过定点(,2)

高考圆锥曲线题型归类总结(可编辑修改word版)

1 2 圆锥曲线的七种常考题型 题型一:定义的应用 1、圆锥曲线的定义: (1) 椭圆 (2) 双曲线 (3) 抛物线 2、定义的应用 (1) 寻找符合条件的等量关系 (2) 等价转换,数形结合 3、定义的适用条件: 典型例题 例 1、动圆 M 与圆 C : ( x +1)2 + y 2 = 36 内切,与圆 C : ( x -1)2 + y 2 = 4 外切,求圆心 M 的 轨迹方程。 例 2、 = 8 表示的曲线是 题型二:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 1、椭圆:由 x 2、y 2 分母的大小决定,焦点在分母大的坐标轴上。 2、双曲线:由 x 2、y 2 系数的正负决定,焦点在系数为正的坐标轴上; 3、抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 典型例题 x 2 例 1、已知方程 + y 2 2 - m = 1表示焦点在 y 轴上的椭圆,则 m 的取值范围是 例 2、k 为何值时,方程 x 2 9 - k - y 2 5 - k = 1 表示的曲线: (1)是椭圆;(2)是双曲线. m -1

3 3 2 题型三:圆锥曲线焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题 1、常利用定义和正弦、余弦定理求解 2、 PF 1 = m ,PF 2 = n , m + n ,m - n ,mn ,m 2 + n 2 四者的关系在圆锥曲线中的应用 典型例题 x 2 例 1、椭圆 a 2 + y 2 b 2 = 1(a > b > 0) 上一点 P 与两个焦点 F 1,F 2 的张角∠F 1PF 2 =, 求?F 1PF 2 的面积。 例 2、已知双曲线的离心率为 2,F 1、F 2 是左右焦点,P 为双曲线上一点,且∠F 1PF 2 = 60 , S ?F PF = 12 .求该双曲线的标准方程 1 2 题型四:圆锥曲线中离心率,渐近线的求法 1、a ,b ,c 三者知道任意两个或三个的相等关系式,可求离心率,渐进线的值; 2、a ,b ,c 三者知道任意两个或三个的不等关系式,可求离心率,渐进线的最值或范围; 3、注重数形结合思想不等式解法 典型例题 例 1、已知 F 、 F x 2 是双曲线 - y 2 = ( )的两焦点,以线段 F F 为边作 1 2 a 2 b 1 a > 0,b > 0 1 2 正三角形 MF 1F 2 ,若边 MF 1 的中点在双曲线上,则双曲线的离心率是( ) A. 4 + 2 B. x 2 y 2 - 1 C. 3 + 1 D. + 1 2 例 2、双曲线 - a 2 b 2 = 1 (a > 0,b > 0) 的两个焦点为 F 1、F 2,若 P 为其 上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为 A. (1,3) B. (1, 3] C.(3,+ ∞ ) D. [3, +∞) 3 3

直线和圆锥曲线题型总结

姓 名 年级 性 别 学 校 学 科 教师 上课日期 上课时间 课题 直线和圆锥曲线总结 题型一:数形结合确定直线和圆锥曲线的位置关系 例题1、已知直线:1l y kx =+与椭圆22 :14x y C m +=始终有交点,求m 的取值范围 题型二:弦的垂直平分线问题 例题2、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 题型三:动弦过定点的问题 例题3、已知椭圆C :22221(0)x y a b a b +=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。 (I )求椭圆的方程; (II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任 一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭 圆的焦点?并证明你的结论

题型四:过已知曲线上定点的弦的问题 例题4、已知点A 、B 、C 是椭圆E :22221x y a b += (0)a b >>上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3x =对称,求直线PQ 的斜率。 题型五:共线向量问题 例题5、设过点D(0,3)的直线交曲线M :22 194 x y +=于P 、Q 两点,且DP DQ ,求实数的取值范围。

(完整版)高考圆锥曲线题型归类总结(最新整理)

)直接法:直接利用条件建立之间的关系; 和直线的距离之和等于 ),端点向圆作两条切线

的距离比它到直线的距离小于 :和⊙:都外切,则动圆圆心 代入转移法:动点依赖于另一动点的变化而变化,并且又在某已知曲线上,则可先用的代数式表示,再将代入已知曲线得要求的轨 是抛物线上任一点,定点为,分所成的比为 参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。 过抛物线的焦点作直线交抛物线于

?OA OB ⊥?121K K ?=-?0OA OB ?= ?12120 x x y y += ②“点在圆内、圆上、圆外问题” “直角、锐角、钝角问题” “向量的数量积大于、等于、小于0问题”?? >0; ?1212x x y y + ③“等角、角平分、角互补问题” 斜率关系(或);?120K K +=12K K = ④“共线问题” (如: 数的角度:坐标表示法;形的角度:距离转化法); AQ QB λ= ?(如:A 、O 、B 三点共线直线OA 与OB 斜率相等);? ⑤“点、线对称问题” 坐标与斜率关系;? ⑥“弦长、面积问题” 转化为坐标与弦长公式问题(提醒:注意两个面积公式的合理选择);?六、化简与计算;七、细节问题不忽略; ①判别式是否已经考虑;②抛物线问题中二次项系数是否会出现0.基本解题思想: 1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明。 4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明 5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 7、思路问题:大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而

高考圆锥曲线解题技巧总结

第五篇 高考解析几何万能解题套路 解析几何——把代数的演绎方法引入几何学,用代数方法来解决几何问题。 与圆锥曲线有关的几种典型题,如圆锥曲线的弦长求法、与圆锥曲线有关的最值(极值)问题、与圆锥曲线有关的证明问题以及圆锥曲线与圆锥曲线有关的证明问题等,在圆锥曲线的综合应用中经常见到。 第一部分:基础知识 1.概念 特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F 1,F 2的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,a b ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向; (2)在椭圆中,a 最大,222 a b c =+,在双曲线中,c 最大,222c a b =+。 2.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0), 四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22221x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时, 称为等轴双曲线,其方程可设为22,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离 心率:c e a =,双曲线?1e >,等轴双曲线?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦 点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线:一条准线2p x =-; ⑤离心率:c e a =,抛物线?1e =。

圆锥曲线基本题型总结

圆锥曲线基本题型总结:提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题:

4、韦达定理的应用: 一、定义的应用: 1. 定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处 理) 1.设F1, F2 为定点,|F1F2| =6,动点M满足|MF1| + |MF2| = 6,则动点M的轨 迹是() A.椭圆 B.直线 C.圆 D.线段【注:2a>|F1 F2| 是椭圆,2a=|F1 F2|是线段】 2. 设 B - 4,0) , C4,0),且厶ABC的周长等于18,则动点A的轨迹方程为) x2 y2 y2 x2 A.25+ -9 = i y z0) B.25^9 = 1 徉0) x2 y2 y2 x2 C.^+16= 1 y z 0) D£+_9 = 1 y z 0) 【注:检验去点】 3. 已知A0, - 5)、B0,5) ,|PA| - |PB| = 2a,当a= 3 或 5 时,P点的轨迹为) A. 双曲线或一条直线 B. 双曲线或两条直线 C. 双曲线一支或一条直线

D. 双曲线一支或一条射线【注:2av|F1 F2|是双曲线,2a=|F1 F2|是射线,注意一支与两支的判断】

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

高中数学 圆锥曲线题型总结

直线和圆锥曲线常考题型 运用的知识: 1、中点坐标公式:1212,y 22 x x y y x ++= =,其中,x y 是点 1122(,)(,)A x y B x y ,的中点坐标。 2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上, 则 1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一, AB === = 或者 AB === = 3、两条直线111222: ,:l y k x b l y k x b =+=+垂直:则121k k =- 两条直线垂直,则直线所在的向量120v v = 4、韦达定理:若一元二次方程2 0(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a +=-=。 常见的一些题型: 题型一:数形结合确定直线和圆锥曲线的位置关系 例题1、已知直线:1l y kx =+与椭圆22 : 14x y C m +=始终有交点,求m 的取值范围 解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆22 : 14x y C m +=过动点04m ±≠(,且,如果直线 :1l y kx =+和椭圆22 :14x y C m + =14m ≥≠,且,即14m m ≤≠且。 规律提示:通过直线的代数形式,可以看出直线的特点: :101l y kx =+?过定点(,) :(1)1l y k x =+?-过定点(,0) :2(1)1l y k x -=+?-过定点(,2) 题型二:弦的垂直平分线问题 例题2、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在, 求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。

直线与圆锥曲线题型总结

直线与圆锥曲线题型总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

直线和圆锥曲线基本题型 题型一:数形结合确定直线和圆锥曲线的位置关系 例题1、已知直线:1l y kx =+与椭圆22 :14x y C m +=始终有交点,求m 的取值范 围 解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆 22 :14x y C m +=过动点04m ±≠(,且,如果直线:1l y kx =+和椭圆22 :14x y C m +=始 终有交点,则 14m ≥≠,且,即14m m ≤≠且。 题型二:弦的垂直平分线问题 例题2、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。 设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。 由2 (1) y k x y x =+?? =?消y 整理,得 2222(21)0k x k x k +-+= ① 由直线和抛物线交于两点,得2242(21)4410k k k ?=--=-+> 即21 04 k << ② 由韦达定理,得:212221 ,k x x k -+=-121x x =。则线段 AB 的中点为 22 211(,)22k k k --。 线段的垂直平分线方程为:2 2 1112()22k y x k k k --=-- 令y=0,得021122 x k = -,则211( ,0)22 E k -

圆锥曲线十大题型全归纳

目录 圆锥曲线十大题型全归纳 题型一弦的垂直平分线问题 (2) 题型二动弦过定点的问题 (3) 题型三过已知曲线上定点的弦的问题 (4) 题型四共线向量问题 (5) 题型五面积问题 (7) 题型六弦或弦长为定值、最值问题 (10) 题型七直线问题 (14) 题型八轨迹问题 (16) 题型九对称问题 (19) 题型十存在性问题 (21)

圆锥曲线题型全归纳 题型一:弦的垂直平分线问题 例题1、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0), 使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。

题型二:动弦过定点的问题 例题2、已知椭圆C :22 221(0)x y a b a b +=>>的离心率为3,且在x 轴上的顶点分别为 A 1(-2,0),A 2(2,0)。 (I )求椭圆的方程; (II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论

题型三:过已知曲线上定点的弦的问题 例题4、已知点A 、B 、C 是椭圆E :22 221x y a b += (0)a b >>上的三点,其中点A (23,0)是 椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3 x =对称,求直线PQ 的斜率。

圆锥曲线基本题型总结

圆锥曲线基本题型总结: 提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题: 4、韦达定理的应用: 一、定义的应用: 1.定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是( )

A .椭圆 B .直线 C .圆 D .线段 【注:2a>|F 1 F 2|是椭圆,2a=|F 1 F 2|是线段】 2.设B -4,0),C 4,0),且△ABC 的周长等于18,则动点A 的轨迹方程为 ) A.x 225+y 29 =1 y ≠0) B.y 225+x 29=1 y ≠0) C.x 216+y 216=1 y ≠0) D.y 216+x 2 9=1 y ≠0) 【注:检验去点】 3.已知A 0,-5)、B 0,5),|PA |-|PB |=2a ,当a =3或5时,P 点的轨迹为 ) A.双曲线或一条直线 B.双曲线或两条直线 C.双曲线一支或一条直线 D.双曲线一支或一条射线 【注:2a<|F 1 F 2|是双曲线,2a=|F 1 F 2|是射线,注意一支与两支的判断】 4.已知两定点F 1-3,0),F 23,0),在满足下列条件的平面内动点P 的轨迹中,是双曲线的是 ) A.||PF 1|-|PF 2||=5 B.||PF 1|-|PF 2||=6 C.||PF 1|-|PF 2||=7 D.||PF 1|-|PF 2||=0 【注:2a<|F 1 F 2|是双曲线】 5.平面内有两个定点F 1-5,0)和F 25,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是 ) A.x 216-y 29=1x ≤-4) B.x 29-y 216=1x ≤-3) C.x 216-y 29=1x ≥4) D.x 29-y 2 16=1x ≥3) 【注:双曲线的一支】 6.如图,P 为圆B :x +2)2+y 2=36上一动点,点A 坐标为2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程. 7.已知点A(0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M 上,且|PM|=|PA|,求动点P 的轨迹方程.

圆锥曲线经典题型总结(含答案)

圆锥曲线整理 1.圆锥曲线的定义: (1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d . 圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时 要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12 222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。 (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。 注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。 2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 椭圆:由x 2 ,y 2分母的大小决定,焦点在分母大的坐标轴上。 双曲线:由x 2 ,y 2项系数的正负决定,焦点在系数为正的坐标轴上; 抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 3.与双曲线x 2a 2- y 2 b 2 =1有相同渐近线的双曲线方程也可设为x 2a 2- y 2 b 2 =λ(λ≠0), 渐近线方程为y =±b a x 的双曲线方程也可设为x 2a 2- y 2 b 2 =λ(λ≠0).要求双曲线x 2a 2- y 2b 2 =λ(λ≠0)的渐近线,只需令λ=0即可. 4.直线与圆锥曲线的位置关系的判断是利用代数方法,即将直线的方程与圆锥曲线的方程联立,根据方程组解的个数判断直线与圆锥曲线的位置关系. 解决直线与圆锥曲线问题的通法 (1)设方程及点的坐标. (2)联立直线方程与曲线方程得方程组,消元得方程. (3)应用韦达定理及判别式. (4)结合已知、中点坐标公式、斜率公式及弦长公式求解. 5.若直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),且直线P 1P 2的斜率为 k ,则弦长|P 1P 2|=1+k 2|x 1-x 2|= 1+1 k 2|y 1-y 2|(k ≠0).|x 1-x 2|,|y 1-y 2|

圆锥曲线经典题型总结(含答案)

圆锥曲线整理 1.圆锥曲线的定义: (1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d . 圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时 要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1 (0a b >>)。 % (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。 (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。 注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。 2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 双曲线:由x 2 ,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; 抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 在椭圆中,a 最大,222a b c =+,在双曲线中,c 最大,222 c a b =+。 | 3.与双曲线x 2a 2-y 2b 2=1有相同渐近线的双曲线方程也可设为x 2a 2-y 2 b 2=λ(λ≠0),渐近线方程为y =±b a x 的双曲线方程也可设为x 2a 2-y 2b 2=λ(λ≠0).要求双曲线x 2a 2-y 2b 2=λ(λ≠0)的渐近线,只需令λ=0即可. 4.直线与圆锥曲线的位置关系的判断是利用代数方法,即将直线的方程与圆锥曲线的方程联立,根据方程组解的个数判断直线与圆锥曲线的位置关系. 解决直线与圆锥曲线问题的通法 (1)设方程及点的坐标. (2)联立直线方程与曲线方程得方程组,消元得方程. (3)应用韦达定理及判别式. (4)结合已知、中点坐标公式、斜率公式及弦长公式求解. — 5.若直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),且直线P 1P 2的斜率为k , 则弦长|P 1P 2|=1+k 2|x 1-x 2|= 1+1 k 2|y 1-y 2|(k ≠0).|x 1-x 2|,|y 1-y 2|的求法, 通常使用根与系数的关系,需要作下列变形:|x 1-x 2|=x 1+x 2 2-4x 1x 2,|y 1 -y 2|= y 1+y 2 2-4y 1y 2. 6.与圆锥曲线的弦的中点有关的问题 (1)通法.联立方程利用根与系数的关系 (2)“点差法”.点差法的作用是用弦的中点坐标表示弦所在直线的斜率. 点差法的步骤: ①将两交点A (x 1,y 1),B (x 2,y 2)的坐标代入曲线的方程. ②作差消去常数项后分解因式得到关于x 1+x 2,x 1-x 2,y 1+y 2,y 1-y 2的关系式.

高考圆锥曲线题型归类总结

圆锥曲线的七种常考题型 题型一:定义的应用 1、圆锥曲线的定义: (1)椭圆 (2)双曲线 (3)抛物线 2、定义的应用 (1)寻找符合条件的等量关系 (2)等价转换,数形结合 3、定义的适用条件: 典型例题 例1、动圆M 与圆C 1:()2 2 136x y ++=内切,与圆C 2:()2 2 14x y -+=外切,求圆心M 的 轨迹方程。 例2、方程() () 2 2 22668x y x y -+- ++=表示的曲线是 题型二:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 1、椭圆:由2 2 x y 、分母的大小决定,焦点在分母大的坐标轴上。 2、双曲线:由2 2 x y 、系数的正负决定,焦点在系数为正的坐标轴上; 3、抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 典型例题 例1、已知方程1212 2=-+-m y m x 表示焦点在y 轴上的椭圆,则m 的取值范围是 例2、k 为何值时,方程 1592 2=---k y k x 表示的曲线: (1)是椭圆;(2)是双曲线.

题型三:圆锥曲线焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题 1、常利用定义和正弦、余弦定理求解 2、12PF m PF n ==,,2 2 m n m n mn m n +-+,,,四者的关系在圆锥曲线中的应用 典型例题 例1、椭圆x a y b a b 222 210+=>>()上一点P 与两个焦点F F 12,的张角α=∠21PF F , 求21PF F ?的面积。 例2、已知双曲线的离心率为2,F 1、F 2是左右焦点,P 为双曲线上一点,且 6021=∠PF F , 31221=?PF F S .求该双曲线的标准方程 题型四:圆锥曲线中离心率,渐近线的求法 1、a,b,c 三者知道任意两个或三个的相等关系式,可求离心率,渐进线的值; 2、a,b,c 三者知道任意两个或三个的不等关系式,可求离心率,渐进线的最值或范围; 3、注重数形结合思想不等式解法 典型例题 例1、已知1F 、2F 是双曲线122 22=-b y a x (00>>b a ,)的两焦点,以线段21F F 为边作 正三角形21F MF ,若边1MF 的中点在双曲线上,则双曲线的离心率是( ) A. 324+ B. 13- C. 2 1 3+ D. 13+ 例2、双曲线)00(122 22>>=-b a b y a x ,的两个焦点为F 1、F 2,若P 为其 上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为 A. (1,3) B.(]13, C.(3,+∞) D.[)3,+∞

圆锥曲线大题题型归纳72769

圆锥曲线大题题型归纳 基本方法: 1. 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a 、b 、c 、e 、p 等等; 2. 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题; 3. 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根; 4. 点差法:弦中点问题,端点坐标设而不求。也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式; 5. 距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题; 基本思想: 1.“常规求值”问题需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解; 3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关; 4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决; 5.有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 6.大多数问题只要真实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。 题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题 例1、 已知F 1,F 2为椭圆2100x +2 64 y =1的两个焦点,P 在椭圆上,且∠F 1PF 2=60°,则△F 1PF 2的面积为多少 点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。 变式1、已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且 12F PF ∠=120?,求12F PF ?的面积。

圆锥曲线基本题型总结

圆锥曲线基本题型总结: 提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题: 4、韦达定理的应用: 一、定义的应用: 1.定义法求标准方程: (1)由题目条件判断就是什么形状,再由该形状的特征求方程:(注意细节的处理) 1、设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹就是() A.椭圆 B.直线 C.圆 D.线段【注:2a>|F1 F2|就是椭圆,2a=|F1 F2|就是线段】 2、设B(-4,0),C(4,0),且△ABC的周长等于18,则动点A的轨迹方程为()

A 、x 225+y 29 =1 (y ≠0) B 、y 225+x 29=1 (y ≠0) C 、x 216+y 216=1 (y ≠0) D 、y 216+x 29 =1 (y ≠0) 【注:检验去点】 3、已知A (0,-5)、B (0,5),|P A |-|PB |=2a ,当a =3或5时,P 点的轨迹为( ) A 、双曲线或一条直线 B 、双曲线或两条直线 C 、双曲线一支或一条直线 D 、双曲线一支或一条射线 【注:2a<|F 1 F 2|就是双曲线,2a=|F 1 F 2|就是射线,注意一支与两支的判断】 4、已知两定点F 1(-3,0),F 2(3,0),在满足下列条件的平面内动点P 的轨迹中,就是双曲线的就是( ) A 、||PF 1|-|PF 2||=5 B 、||PF 1|-|PF 2||=6 C 、||PF 1|-|PF 2||=7 D 、||PF 1|-|PF 2||=0 【注:2a<|F 1 F 2|就是双曲线】 5、平面内有两个定点F 1(-5,0)与F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程就是( ) A 、x 216-y 29 =1(x ≤-4) B 、x 29-y 216=1(x ≤-3) C 、x 216-y 29=1(x ≥4) D 、x 29-y 216 =1(x ≥3) 【注:双曲线的一支】 6、如图,P 为圆B :(x +2)2+y 2=36上一动点,点A 坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程、

圆锥曲线基本题型总结

圆锥曲线基本题型总结: 提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题: 4、韦达定理的应用: 一、定义的应用: 1.定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理) 1.设F1,F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是()

A .椭圆 B .直线 C .圆 D .线段 【注:2a>|F 1 F 2|是椭圆,2a=|F 1 F 2|是线段】 2.设B (-4,0),C (4,0),且△ABC 的周长等于18,则动点A的轨迹方程为( ) A. x2 25 +=1 (y ≠0) ??B.+\f (x2,9)=1 (y ≠0) C.错误!+错误!=1 (y ≠0) ? D.错误!+=1 (y ≠0) 【注:检验去点】 3.已知A(0,-5)、B(0,5),|P A |-|PB |=2a ,当a =3或5时,P 点的轨迹为( ) A.双曲线或一条直线 B.双曲线或两条直线 C.双曲线一支或一条直线 D .双曲线一支或一条射线 【注:2a<|F1 F 2|是双曲线,2a=|F1 F 2|是射线,注意一支与两支的判断】 4.已知两定点F1(-3,0),F2(3,0),在满足下列条件的平面内动点P 的轨迹中,是双曲线的是( ) A.||PF 1|-|PF 2||=5 B.||PF 1|-|PF 2||=6 C.||PF 1|-|PF 2||=7 D.||PF 1|-|PF 2||=0 【注:2a<|F1 F 2|是双曲线】 5.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( ) A.\f(x 2,16)-错误!=1(x ≤-4) ?? ?B.错误!-=1(x≤-3) C.-=1(x ≥4) ? D .-错误!=1(x ≥3) 【注:双曲线的一支】 6.如图,P 为圆B :(x+2)2+y 2 =36上一动点,点A坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨

相关文档
最新文档