光纤接头损耗测试记录

光纤接头损耗测试记录
光纤接头损耗测试记录

光纤接头损耗测试记录

光纤接头损耗测试记录

熔接机:腾昌60 OTDR:T-BERD / MTS 4000

波长:1550 折射率:1.4682 温度:-15℃接头编号( 01 )号

纤长(A→B) 5.727 纤长(B→A) 5.727

纤号

损耗(dB)

纤号

损耗(dB)

纤号

损耗

正向反向平均正向反向平均正向反向平均

1 0.124 0.123 0.124 2

3 0.131 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

接续人:测试人:监理:日期:

光纤损耗全参数

光纤损耗 1.光纤的衰减的几种因素及光缆的特性: 造成光纤衰减的主要因素有: 本征,弯曲,挤压,杂质,不均匀和对接等。 本征: 是光纤的固有损耗,包括: 瑞利散射,固有吸收等。 弯曲: 光纤弯曲时部分光纤内的光会因散射而损失掉,造成的损耗。 挤压: 光纤受到挤压时产生微小的弯曲而造成的损耗。 杂质: 光纤内杂质吸收和散射在光纤中传播的光,造成的损失。 不均匀: 光纤材料的折射率不均匀造成的损耗。 对接: 光纤对接时产生的损耗,如: 不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。 光缆特性 1) 拉力特性 光缆能承受的最大拉力取决于加强件的材料和横截面积,一般要求大于1km光缆的重量,多数光缆在100~400kg范围。 2) 压力特性 光缆能承受的最大侧压力取决于护套的材料和结构,多数光缆能承受的最大侧压力在100~400kg/10cm。 3)弯曲特性 弯曲特性主要取决于纤芯与包层的相对折射率差△以及光缆的材料和结构。实用光纤最小弯曲半径一般为20~50mm,光缆最小弯曲半径一般为200~500mm,等于或大于光纤最小弯曲半径。在以上条件下,光辐射引起的光纤附加损耗可以忽略,若小于最小弯曲半径,附加损耗则急剧增加。 4)温度特性 光纤本身具有良好的温度特性。光缆温度特性主要取决于光缆材料的选择及结构的设计,采用松套管二次被覆光纤的光缆温度特性较好。温度变化时,光纤损耗增加,主要是由于光缆材料(塑料)的热膨胀系数比光纤材料(石英)大2~3个数量级,在冷缩或热胀过程中,光纤受到应力作用而产生的。在我国,对光缆使用温度的要求,一般在低温地区为-40℃~+40℃,在高温地区为-5℃~+60℃。 2.光纤的连接损耗: 1.永久性光纤连接(又叫热熔): 这种连接是用放电的方法将连根光纤的连接点熔化并连接在一起。一般用在长途接续、永久或半永久固定连接。其主要特点是连接衰减在所有的连接方法中最低,典型值为0.01~0.03db/点。2Km熔接一个点,但连接时,需要专用设备(熔接机)和专业人员进行操作,而且连接点也需要专用容器保护起来。 2.应急连接(又叫)冷熔: 应急连接主要是用机械和化学的方法,将两根光纤固定并粘接在一起。这种方法的主要特点是连接迅速可靠,连接典型衰减为0.1~0.3db/点。但连接点长期使用会不稳定,衰减也会大幅度增加,所以只能短时间内应急用。 3.活动连接: 活动连接是利用各种光纤连接器件(插头和插座),将站点与站点或站点与光缆连接起来的一种方法。这种方法灵活、简单、方便、可靠,多用在建筑物内的计算机网络布线中。其典型衰减为1db/接头。注:系统衰减余量一般不少于4db。 例:发射功率: -16dbm 功率计接收灵敏度: -29.5dbm 线路衰减: 1.5km×3.5db/km=5.25db 连接衰减: 接头2个衰减为: 2点×1db/点=2db

光纤损耗测试方法及其注意事项(1)

光纤损耗测试方法及其注意事项1 引言 由于应用和用户对带宽需求的进一步增加和光纤链路对满足高带宽方面的巨大优势,光纤的使用越来越多。无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/ TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier 1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier 2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。? 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A 和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,我们分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 那么这三种方法各有什么特点,怎么操作,应该在什么场合下使用呢?这正是本文要阐述的问题。另外,光纤链路的测试,不同于双绞线链路的测试,又有什么地方需要注意或者有什么原则可以遵循呢?这也是本文想与读者分享的内容。 2 如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 下面我们具体介绍一下标准中定义的三种测试损耗的方法(以双向测试为例)。 2.1 测试方法A

光纤熔接方法和步骤

1、光纤接续 (1)光纤接续。光纤接续应遵循的原则是:芯数相等时,要同束管内的对应色光纤对接,芯数不同时,按顺序先接芯数大的,再接芯数小的。 (2)光纤接续的方法有:熔接、活动连接、机械连接三种。在工程中大都采用熔接法。采用这种熔接方法的接点损耗小,反射损耗大,可靠性高。 (3)光纤接续的过程和步骤: ①开剥光缆,并将光缆固定到接续盒内。注意不要伤到束管,开剥长度取1m左右,用卫生纸将油膏擦拭干净,将光缆穿入接续盒,固定钢丝时一定要压紧,不能有松动。否则,有可能造成光缆打滚折断纤芯。 ②分纤将光纤穿过热缩管。将不同束管,不同颜色的光纤分开,穿过热缩管。剥去涂覆层的光纤很脆弱,使用热缩管,可以保护光纤熔接头。 ③打开古河S176熔接机电源,采用预置的42种程式进行熔接,并在使用中和使用后及时去除熔接机中的灰尘,特别是夹具,各镜面和V型槽内的粉尘和光纤碎未。CATV使用的光纤有常规型单模光纤和色散位移单模光纤,工作波长也有1310nm和1550nm两种。所以,熔接前要根据系统使用的光纤和工作波长来选择合适的熔接程序。如没有特殊情况,一般都选用自动熔接程序。 ④制作光纤端面。光纤端面制作的好坏将直接影响接续质量,所以在熔接前一定要做好合格的端面。用专用的剥线钳剥去涂覆层,再用沾酒精的清洁棉在裸纤上擦拭几次,用力要适度,然后用精密光纤切割刀切割光纤,对0.25mm(外涂层)光纤,切割长度为8mm-16mm,对0.9mm(外涂层)光纤,切割长度只能是16mm。 ⑤放置光纤。将光纤放在熔接机的V形槽中,小心压上光纤压板和光纤夹具,要根据光纤切割长度设置光纤在压板中的位置,关上防风罩,即可自动完成熔接,只需11秒。 ⑥移出光纤用加热炉加热热缩管。打开防风罩,把光纤从熔接机上取出,再将热缩管放在裸纤中心,放到加热炉中加热。加热器可使用20mm微型热缩套管和40mm及60mm一般热缩套管,20mm热缩管需40秒,60mm热缩管为85秒。 ⑦盘纤固定。将接续好的光纤盘到光纤收容盘上,在盘纤时,盘圈的半径越大,弧度越大,整个线路的损耗越小。所以一定要保持一定的半径,使激光在纤芯里传输时,避免产生一些不必要的损耗。 ⑧密封和挂起。野外接续盒一定要密封好,防止进水。熔接盒进水后,由于光纤及光纤熔接点长期浸泡在水中,可能会先出现部分光纤衰减增加。套上不锈钢挂钩并挂在吊线上。至此,光纤熔接完成。 2、光纤测试 光纤在架设,熔接完工后就是测试工作,使用的仪器主要是OTDR测试仪,用加拿大EXFO

光纤传输损耗测试-实验报告

光纤传输损耗测试-实验报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成

2016 年05 月日 预习报告 一、实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、实验仪器 20MHz双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、实验原理 αλ,其含义为单位长度光纤引起的光纤在波长λ处的衰减系数为()

光功率衰减,单位是dB/km 。当长度为L 时, 10()()lg (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G.650、G.651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。 偏置电路 注入系统 光源 滤模器 包层模 剥除器 被测光纤 检测器 放大器电平测量 图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条件)由于插入被测光纤引起的功率损耗。显然,功率 1 P 、 2 P 的测量 没有截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。

光纤熔接损耗标准

光纤熔接损耗标准 YDJ44-89第6.1.2条:接续损耗应达到设计文件的规定:光纤衰减常数的标准为:在1310mm波长上,衰减平均值应小于等于0.36dB/km,衰减最大值应小于等于0.4dB/km;在1550mm波长上,衰减平均值应小于等于0.22dB/km,衰减最大值应小于等于0.25dB/km;光纤接续时,其双向平均接头损耗不得大于0.08dB,注意在1550窗口下监测。 根据《YD/T 1272光纤活动连接器第三部分 SC型》 4.5.1 SC型单模连接器插头允许的光学性能指标 (1)任一插头通过标准适配器与标准插头的插入损耗≤0.35dB(含重复性);回波损耗>40dB(SC/PC), >60dB(SC/APC)。 (2)两个插头任一连接的插入损耗≤0.5dB:回波损耗>35dB(SC/PC);>58dB(SC/APC)。 第一次: OLT设备出口≤0.35dB; 第二次: ODF架设备侧≤0.5dB; 第三次: ODF架线路侧≤0.5dB; 第四次:主干光缆熔接≤0.08dB(ppt里说热熔接按0.02计算,国标是要求小于0.08,实际热熔一般小于0.05) 第五次:配线光缆熔接≤0.08dB 注:第四次,第五次之间少了 主干光缆成端与跳线之间的活动连接≤0.5dB;

配线光缆成端与跳线之间的活动连接≤0.5dB; 第六次,第七次,(下图分光器那边的“第四次与第五次”)的衰耗,看ppt里的分光器要求是不带适配器的,需参考带适配器的分光器插入损耗, 如果没有参考,可每端衰耗大概增加≤0.35dB 第八次,ONU设备入口≤0.35dB; 1.主干与尾纤熔接<0.08dB,配线与尾纤熔接<0.08,主干、配线尾纤之间的跳接衰耗≤0.5dB。 2. 皮线光缆与分光器的连接如何处理?如果做现场快速接头的话,标准耦合损耗是≤0.5dB,如果是热熔则是0.08+0.35dB;

光纤接续损耗

目录 [隐藏] 1 什么是光纤接续损 耗 2 光纤接续损耗的种 类 3 解决接续损耗的方 案 光纤接续损耗是光纤通信系统性能指标中的一项重要参数,损耗值的大小直接影响到光传输系统的整体质量,在光缆施工和维护测试中,运用科学的分析方法,对提高整个光缆接续施工质量和维护工作极为重要,尤其是进一步研究光通信中长波长的单模光纤的通信性能、传输衰耗、测量精度和检查维修等方面有一定得现实意义。 光纤的接续损耗主要包括光纤本征因素造成的固有损耗和非本征因素造成的熔接损耗及活动接头损耗三种。 1、光纤固有损耗 光纤固有损耗的产生主要源于光纤模场直径不一致、光纤芯径失配、纤芯截面不圆和纤芯与包层同心度不佳四方面。其中影响最大的是模场直径不一致。 2、熔接损耗 非本征因素的熔接损耗主要由轴向错位、轴心(折角)倾斜、端面分离(间隙)、光纤端面不完整、折射率差、光纤端面不清洁以及接续人员操作水平、操作步骤、熔接机电极清洁程度、熔接参数设置、工作环境清洁程度等其他因素造成。 3、活动接头损耗 非本征因素的活动接头损耗主要由活动连接器质量差、接触不良、不清洁以及与熔接损耗相同的一些因素(如轴向错位、端面间隙、折角、折射率差等)造成。 1、工程设计、施工和维护工作中应选用特性一致的优质光纤

一条线路上尽量采用同一批次的优质名牌裸纤,以求光纤的特性尽量匹配,使模场直径对光纤熔接损耗的影响降到最低程度。 2、光缆施工应严格按规程和要求进行 配盘时尽量做到整盘配置(单盘≥500米),以尽量减少接头数量。敷设时严格按缆盘编号和端别顺序布放,使损耗值达到最小。 3、挑选经验丰富训练有素的接续人员进行接续和测试 接续人员的水平直接影响接续损耗的大小,接续人员应严格按照光纤熔接工艺流程进行接续,严格控制接头损耗,熔接过程中时刻使用光时域反射仪(OTDR)进行监测(接续损耗≤0.08dB/个),不符合要求的应重新熔接。使用光时域反射仪(OTDR)时,应从两个方向测量接头的损耗,并求出这两个结果的平均值,消除单向OTDR测量的人为因素误差。 4、保证接续环境符合要求 严禁在多尘及潮湿的环境中露天操作,光缆接续部位及工具、材料应保持清洁,不得让光纤接头受潮,准备切割的光纤必须清洁,不得有污物。切割后,光纤不得在空气中暴露时间过长,尤其是在多尘潮湿的环境中。接续环境温度过低时,应采取必要的升温措施。 5、制备完善的光纤端面 光纤端面的制备是光纤接续最为关键的工序。光纤端面的完善与否是决定光纤接续损耗大小的重要因素之一。优质的端面应平整、无毛刺、无缺损,且与轴线垂直,光纤端面的轴线倾角应小于0.3度,呈现一个光滑平整的镜面。应选用优质的切割刀正确切割光纤。裸纤的清洁、切割和熔接应紧密衔接,不可间隔过长。移动光纤时要轻拿轻放,防止与其他物件擦碰而损伤光纤端面。 6、正确使用熔接机 正确使用熔接机是降低光纤接续损耗的重要保证和关键环节。 ◇应严格按照熔接机的操作说明和操作流程,正确操作熔接机。 ◇合理放置光纤,将光纤放置到熔接机的V型槽中时,动作要轻巧。这是因为对纤芯直径为1Onm的单模光纤而言,若要熔接损耗小于0.1dB,则光纤轴线的径向偏移要小于0.8nm。 ◇根据光纤类型正确合理地设置熔接参数(预放电电流、时间及主放电电流、主放电时间等)。在光纤熔接过程中,放电时间、放电强度、推进量三个参数是最重要的因素,直接影响着光纤接头的机械强度和损耗大小。放电时间的长短与光纤接头的强度成正比关系,但是时间过长会使光纤因高温老化,所以应兼顾两者,通常将放电时间控制在2-5S。放电强度也要选择适当,过强会使光纤老化,过弱使光纤接续完成不好,影响接续损耗,通常根据实际情况来确定它的取值,一般在45至65之间。推进量是指光纤被放入熔接机熔接时,必须随着光纤的熔

光纤损耗有哪些

光纤损耗有哪些 光纤传输相比电缆传输和无线传输而言有众多优势。光纤比电缆更轻、更小、更灵活,而且在长距离传输中,光纤比电缆的传播速度更快。然而,影响光纤传输性能的因素很多,为了确保光纤的性能更好更稳定,这些因素不容忽视。光纤的损耗就是其中之一,它已成为许多工程师在选择和使用光纤时最优先考虑的一个因素。这篇教程将为您详细介绍光纤传输中的光损耗。 光信号经光纤传输后,光的强度会逐渐减弱,与此同时,光信号也会逐渐减弱。光纤传输过程中,光信号的损失就叫做光纤损耗或者光的衰减。所谓损耗是指光纤每单位长度上的衰减,单位为dB/km。为了确保光信号安全有效的传输,就要尽可能地降低光纤的损耗。引起光纤损耗的因素主要有两个:内部因素和外部因素,亦即本征光纤损耗和非本征光纤损耗。 本征光纤损耗 本征光纤损耗是指光纤材料固有的一种损耗,引起本征光纤损耗的因素主要有两个:光的吸收和光的散射。 光的吸收是光纤传输中引起光损耗的主要原因,这是由于光纤材料和杂质对光能的吸收而引起的,因此,光的吸收损耗也被称为光纤材料吸收损耗。实际上,光的吸收是光在传播过程中以热能的形式消耗于光纤中,这是由于分子的共振和波长的掺杂不均匀引起的。完全纯净的的原子只吸收特定波长的光,但是绝对纯净的光纤材料几乎不可能生产出来,所以,光纤制造厂商选择掺杂锗这类含有纯硅的材料来优化光纤的性能。 光的散射是光纤损耗的另一个重要原因。光纤的散射损耗是指在玻璃结构中分子水平上的不规则所造成的光的散射。在光纤线路中,当发生散射时,光能量会向各个方向分散,其中一部分能量沿着线路方向继续前行,而其它方向分散的光能量则会丢失,如下图所示。因此,为了减少散射而引起的光纤损耗,必须消除光纤芯的不完善,并对光纤涂层和挤压进行严格控制。 非本征光纤损耗

光纤传输损耗测试实验报告.doc

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验 1 光纤传输损耗测试 学院:工学院 专业班级:13 光电 姓名:林洋 学号:1395121026 指导教师:王达成

2016 年05月日 预习报告 一、实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、实验仪器 20MHz双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、实验原理 光纤在波长处的衰减系数为( ) ,其含义为单位长度光纤引起的光功率衰减,单位是 dB/km 。当长度为 L 时, ( ) 10 lg P(L) (dB / km) (公式 1.1 )L P(0) ITU-T G. 650 、 G.651 规定截断法为基准测量方法,背向散射法 (OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1 )截断法:(破坏性测量方法)

截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率P2 ( ) 和剪断后约2m长度短光纤的输出功率 P1( ) ,按定义计算出() 。该方法测试精度最高。 偏置电路 包层模被测光纤 光源滤模器剥除器 注入系统检测器 放大器 电平测量 图 1.1截断法定波长衰减测试系统装置 (2 )插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条 件)由于插入被测光纤引起的功率损耗。显然,功率P 1、 P 2的测量没有 截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图 1.2示出了两种参考条件下的测试原理 框图。

光纤通信传输损耗及降低方法(张骥)

光纤通信传输损耗及降低方法光纤通信由于其自身的一些优点,因此得到了广泛的使用,因此,在光纤通信中产生的问题,也值得我们去认真思考并加以解决。光纤接续工作,技术复杂、工艺要求高,是对质量标准严格要求的精细工作,也是关系到光纤通信传输质量的重要工作,因此,在施工中,技术人员要充分重视光纤接续时产生的损耗,按照严格标准做好光纤的接续工作,从而降低光缆的附加损耗,提高光纤的传输质量。同时相关的技术人员在日常的施工工作中注意总结经验教训,不断的提高施工的质量,这也是提高光纤传输效果的一条有效的途径。 1、光纤通信的相关理论 光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以 光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。光纤 通信的应用在当前主要集中于各种信息的传输与控制上。以互联网的发展为例,传统互联网以电缆为传输工具,速度比较慢,随着90年 代美国信息高速公路的建设,现代互联网传输的主体为光纤。去年,我国的有线电视实现了由模拟信号向数字信号的完全转变,有线电视信号的传输也是以光纤的应用为前提的。另外,随着信息化的普及,

光纤通信基本已经深入到每个人的生活。除此之外,由于光纤通信具有保密性高、受干扰性能高的优点,其在军事与科技中的应用也十分广泛。当然光纤在实际应用中也有一些缺陷,比如玻璃的质地比较脆,比较容易折断,因此加工难度高,价格也较昂贵,要求的加工工艺与电缆相比也复杂很多。而且由于光纤通信自身存在着传输过程中的光能损耗等问题,因此,对于光纤通信要有全面的认识。 2、光纤传输损耗的种类及原因 光纤在传输中的损耗一般可分为接续损耗和非接续损耗。接续损耗包括由于光纤自身特性引起的固有损耗以及非自身因素(一般为工业加工下艺以及机械的设置)引起的的熔接损耗和活动接头的损耗。非接续损耗包括光纤自身的弯曲损耗和由于施工等因素造成的损耗,另外由于具体光纤应用环境对光纤传输带来的损耗也属于非接续损耗。除此之外,按照光纤传输过程中损耗产生的原因,可分为吸收损耗、散射损耗和其他损耗。 2.1 吸收损耗 吸收损耗是指光波通过光纤材料时,一部分光能变成热能,造成光功率的损失。光在传输过程中会与介质发生作用,由于光含有能量,因此在传输过程中必然有一部分被介质所吸收,转化为自身的热能。比如太阳以光的形式向地球传输能量,在阳光经过大气层时,由于大气层具有吸收光的作用,因此造成海拔不同的地方,空气含量发生变化,温度也随之变化。这是吸收损耗的一个最典型的例子。

光缆接续损耗及互联网测试计算方法

工信部颁YDJ44-89《电信网光纤数字传输系统施工及验收暂行规定》简称《暂规》,对光纤接续损耗的测量方法做了规定,但没有规定明确的标准。原信产部郑州设计院在中国电信南九试验段以后的工程中提出了中继段单纤平均接续损耗0.08dB/个的设计标准,以后的干线工程均沿用。 1、光纤衰减:1310nm波长,0.35dB/km;1490nm波长,0.22dB/km。 2、光活动连接器插入衰减:0.5dB/个(尾纤连接)。 3、光纤熔接接头衰减:束状光缆0.1dB/每个接头,带状光缆0.2db/每个接头。 4、冷接子双向平均值为0.15dB/每个接头。 互联网(Dedicated Internet Access)测试计算方法: 在计算机网络、IDC机房中,其宽带速率的单位用bps(或b/s)表示;换算关系为:1Byte=8bit 1B=8b----------1B/s=8b/s(或1Bps=8bps) 1KB=1024B----------1KB/s=1024B/s 1MB=1024KB----------1MB/s=1024KB/s 在实际上网应用中,下载软件时常常看到诸如下载速度显示为128KB(KB/s),103KB/s等等宽带速率大小字样,因为ISP提供的线路带宽使用的单位是比特,而一般下载软件显示的是字节(1字节=8比特),所以要通过换算,才能得实际值。然而我们可以按照换算公式换算一下: 128KB/s=128×8(Kb/s)=1024Kb/s=1Mb/s即:128KB/s=1Mb/s 理论上:2M(即2Mb/s)宽带理论速率是:256KB/s(即2048Kb/s),实际速率大约为80--200kB/s;(其原因是受用户计算机性能、网络设备质量、资源使用情况、网络高峰期、网站服务能力、线路衰耗,信号衰减等多因素的影响而造成的)。

如何选择光纤测试仪表

如何选择光纤测试仪表 概述 常用光纤测试表有:光功率计、稳定光源、光万用表、可变光衰减器、光时域反射仪(OTDR)和光故障定位仪。 选择光纤测试仪表,一般需考虑以下四个方面的因素:确定你的系统参数、工作环境、比较性能要素、仪表的维护。 光功率计:用于测量绝对光功率或通过一段光纤的光功率相对损耗。在光纤系统中,测量光功率是最基本的。非常像电子学中的万用表,在光纤测量中,光功率计是重负荷常用表,光纤技术人员应该人手一个。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。稳定光源:对光系统发射已知功率和波长的光。稳定光源与光功率计结合在一起,可以测量光纤系统的光损耗。对现成的光纤系统,通常也可把系统的发射端机当作稳定光源。如果端机无法工作或没有端机,则需要单独的稳定光源。稳定光源的波长应与系统端机的波长尽可能一致。在系统安装完毕后,经常需要测量端到端损耗,以便确定连接损耗是否满足设计要求,如:测量连接器、接续点的损耗以及光纤本体损耗。 光万用表:用来测量光纤链路的光功率损耗。有以下两种光万用表:1、由独立的光功率计和稳定光源组成。 2、光功率计和稳定光源结合为一体的集成测试系统。 在短距离局域网(LAN)中,端点距离在步行或谈话之内,技术人员可在任意一端成功地使用经济性组合光万用表,一端使用稳定光源另一端使用光功率计。对长途网络系统,技术人员应该在每端装备完整的组合或集成光万用表。 当选择仪表时,温度或许是最严格的标准。Bellcore推荐现场便携式设备应在-18℃(无湿度控制)至50℃(95%湿度) 可变光衰减器: 用于仿真系统损耗,以便测量系统容限、接收机工作范围及线性度。系统容限是实际收到功率与保证系统可靠运行的最小接收功率之差。对高端系统,通常需要定性系统在各种条件下的性能。其系统性能可靠性通常由误码率

光纤传输损耗及其解决方法

光纤传输损耗及其解决方法 光纤的传输损耗特性是决定光网络传输距离、传输稳定性和可靠性的最重要因素之一。光纤传输损耗的产生原因是多方面的,在光纤通信网络的建设和维护中,最值得关注的是光纤使用中引起传输损耗的原因以及如何减少这些损耗。光纤使用中引起的传输损耗主要有接续损耗(光纤的固有损耗、熔接损耗和活动接头损耗)和非接续损耗(弯曲损耗和其它施工因素和应用环境所造成的损耗)两类。 1、接续损耗及其解决方案 1.1接续损耗 光纤的接续损耗主要包括:光纤本征因素造成的固有损耗和非本征因素造成的熔接损耗及活动接头损耗三种。 (1)光纤固有损耗: 主要源于光纤模场直径不一致;光纤芯径失配;纤芯截面不圆;纤芯与包层同心度不佳四点;其中影响最大的是模场直径不一致。 (2)熔接损耗: 非本征因素的熔接损耗主要由轴向错位;轴心(折角)倾斜;端面分离(间隙);光纤端面不完整;折射率差;光纤端面不清洁以及接续人员操作水平、操作步骤、熔接机电极清洁程度、熔接参数设置、工作环境清洁程度等其他因素造成。 (3)活动接头损耗: 非本征因素的活动接头损耗主要由活动连接器质量差、接触不良、不清洁以及与熔接损耗相同的一些因素(如轴向错位、端面间隙、折角、折射率差等)造成。 1.2 解决接续损耗的方案 (1)工程设计、施工和维护工作中应选用特性一致的优质光纤。一条线路上尽量采用同一批次的优质名牌裸纤,以求光纤的特性尽量匹配,使模场直径对光纤熔接损耗的影响降到最低程度。 (2)光缆施工时应严格按规程和要求进行: 配盘时尽量做到整盘配置(单盘≥500米),以尽量减少接头数量。敷设时严格按缆盘编号和端别顺序布放,使损耗值达到最小。(3)挑选经验丰富训练有素的接续人员进行接续和测试: 接续人员的水平直接影响接续损耗的大小,接续人员应严格按照光纤熔接工艺流程进行接续,严格控制接头损耗,熔接过程中时刻使用光域反射仪(OTDR)进行监测(接续损耗≤0.08dB/个),不符合要求的应重新熔接。使用光时域反射仪(OTDR)时,应从两个方向测量接头的损耗,并求出这两个结果的平均值,消除单向OTDR测量的人为因素误差。 (4)保证接续环境符合要求: 严禁在多尘及潮湿的环境中露天操作,光缆接续部位及工具、材料应保持清洁,不得让光纤接头受潮,准备切割的光纤必须清洁,不得有污物。切割后光纤不得在空气中暴露时间过长尤其是在多尘潮湿的环境中。接续环境温度过低时,应采取必要的升温措施。 (5)制备完善的光纤端面: 光纤端面的制备是光纤接续最为关键的工序。光纤端面的完善与否是决定光纤接续损耗的重要原因之一。优质的端面应平整,无毛刺、无缺损,且与轴线垂直,光纤端面的轴线倾角应小于0.3度,呈现一个光滑平整的镜面,且保持清洁,避免灰尘污染。应选用优质的切割刀,并正确使用切割刀切割光纤。裸纤的清洁、切割和熔接应紧密衔接,不可间隔过长。移动光纤时要轻拿轻放,防止与其他物件擦碰而损伤光纤端面。 (6)正确使用熔接机: 正确使用熔接机是降低光纤接续损耗的重要保证和关键环节。 ①应严格按照熔接机的操作说明和操作流程,正确操作熔接机。 ②合理放置光纤,将光纤放置到熔接机的V型槽中时,动作要轻巧。这是因为对纤芯直径为10 nm的单模光纤而言,若要熔接损耗小于0.1dB,则光纤轴线的径向偏移要小于0.8nm。 ③根据光纤类型正确合理地设置熔接参数(预放电电流、时间及主放电电流、主放电时间等)。 ④在使用中和使用后应及时去除熔接机中的灰尘(特别是夹具、各镜面和v型槽内的粉尘和光纤碎末)。

光纤测量实验报告

光纤测量实验报告 光纤损耗测量 一、实验目的 1、掌握光功率计的原理及使用方法 2、利用光功率计测量1310nm及1550nm光纤的损耗 二、实验装置 LD激光器,光功率计,直径不同的圆柱型物体若干,光纤跳线若干。 1、LD激光器 半导体激光器是以一定的半导体材料做工作物质而产生激光的器件。.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。电注入式半导体激光器,一般是由砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。 2、光功率计 光功率计是指用于测量绝对光功率或通过一段光纤的光功率相对损耗的仪器。 在光纤系统中,测量光功率是最基本的,非常像电子学中的万用表;在光纤测量中,光功率计是重负荷常用表。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。 3、直径不同的圆柱型物体 分别有笔芯、针管、胶棒等圆柱型物体,如下图所示。 三、实验步骤 如下图所示,连接好实验装置后,首先将光纤拉直,在不进行缠绕的情况下测得初始光功率,再将光纤在不同的圆柱型外缠绕不同的圈数,分别记录下此时的光功率计显示的损耗值,列表分析数据并画出损耗曲线。

四、实验数据及结果分析 1、波长值为1310nm (初始光功率值为5.37dBm ) 2、波长值为1550nm (初始光功率值为2.40dBm ) (1)直径d=5mm

光纤的传输损耗及其解决办法

光纤的传输损耗特性是决定光网络传输距离、传输稳定性和可靠性的最重要因素之一。光纤传输损耗的产生原因是多方面的,在光纤通信网络的建设和维护中,最值得关注的是光纤使用中引起传输损耗的原因以及如何减少这些损耗。光纤使用中引起的传输损耗主要有接续损耗(光纤的固有损耗、熔接损耗和活动接头损耗)和非接续损耗(弯曲损耗和其它施工因素和应用环境所造成的损耗)两类。 1、接续损耗及其解决方案 1.1接续损耗 光纤的接续损耗主要包括:光纤本征因素造成的固有损耗和非本征因素造成的熔接损耗及活动接头损耗三种。 (1)光纤固有损耗: 主要源于光纤模场直径不一致;光纤芯径失配;纤芯截面不圆;纤芯与包层同心度不佳四点;其中影响最大的是模场直径不一致。 (2)熔接损耗: 非本征因素的熔接损耗主要由轴向错位;轴心(折角)倾斜;端面分离(间隙);光纤端面不完整;折射率差;光纤端面不清洁以及接续人员操作水平、操作步骤、熔接机电极清洁程度、熔接参数设置、工作环境清洁程度等其他因素造成。 (3)活动接头损耗: 非本征因素的活动接头损耗主要由活动连接器质量差、接触不良、不清洁以及与熔接损耗相同的一些因素(如轴向错位、端面间隙、折角、折射率差等)造成。 1.2 解决接续损耗的方案 (1)工程设计、施工和维护工作中应选用特性一致的优质光纤。一条线路上尽量采用同一批次的优质名牌裸纤,以求光纤的特性尽量匹配,使模场直径对光纤熔接损耗的影响降到最低程度。 (2)光缆施工时应严格按规程和要求进行: 配盘时尽量做到整盘配置(单盘≥500米),以尽量减少接头数量。敷设时严格按缆盘编号和端别顺序布放,使损耗值达到最小。 (3)挑选经验丰富训练有素的接续人员进行接续和测试: 接续人员的水平直接影响接续损耗的大小,接续人员应严格按照光纤熔接工艺流程进行接续,严格控制接头损耗,熔接过程中时刻使用光域反射仪(OTDR)进行监测(接续损耗≤0.08dB/个),不符合要求的应重新熔接。使用光时域反射仪(OTDR)时,应从两个方向测量接头的损耗,并求出这两个结果的平均值,消除单向OTDR测量的人为因素误差。(4)保证接续环境符合要求: 严禁在多尘及潮湿的环境中露天操作,光缆接续部位及工具、材料应保持清洁,不得让光纤接头受潮,准备切割的光纤必须清洁,不得有污物。切割后光纤不得在空气中暴露时间过长尤其是在多尘潮湿的环境中。接续环境温度过低时,应采取必要的升温措施。 (5)制备完善的光纤端面: 光纤端面的制备是光纤接续最为关键的工序。光纤端面的完善与否是决定光纤接续损耗的重要原因之一。优质的端面应平整,无毛刺、无缺损,且与轴线垂直,光纤端面的轴线倾角应小于0.3度,呈现一个光滑平整的镜面,且保持清洁,避免灰尘污染。应选用优质的切割刀,并正确使用切割刀切割光纤。裸纤的清洁、切割和熔接应紧密衔接,不可间隔过长。移动光纤时要轻拿轻放,防止与其他物件擦碰而损伤光纤端面。

关于光纤接续损耗测试以及分析

关于光纤接续损耗测试以及分析 作者:舒伟明 光纤接续损耗是光纤通信系统 性能指标中的一项重要参数,损耗值的大小直接影响到光传输系统的整体传输质量,在光缆施工和维护测试中,运用科学的测试分析方法,对提高整个光缆接续施工质量和维护工作极其重要,尤其是进一步研究光通信中长波长的单模光纤的通信性能、传输衰耗、测量精度和检查维修等方面有一定现实意义。 一、 光纤接续损耗分析 1、 光纤接续损耗产生的原因 1.1 本征损耗 本征损耗是光纤材料所固有的一种损耗,预制棒拉丝成纤后就确定了,这种损耗无法避免,引起光纤本征损耗的主要原因是散射和吸收,散射是由于材料密度不均匀而产生的瑞利散射,吸收主要是光纤材料中的杂质粒子对某些波长的光产生强烈的吸收。 1.2光纤的附加损耗 附加损耗是成纤后产生的损耗,主要是由于光纤受到弯曲和微弯所产生的,在成缆和光缆的施工过程中,都不可避免地要发生弯曲,因此就会产生附加损耗,对于单模光纤,对接的两根纤,由于模场直径,纤芯和包层的同心度、纤芯的不圆度参数的差异,会导致光纤接续损耗的产生,在两根光纤完全对准,且忽略端面间隙的情况下,接续损耗主要取决于光纤模场直径的差异,接续损耗的计算为:b=20lg[1/2(d1/d2+ d2/ d1)], d1与d2分别为两对接光纤的模场直径,从计算公式可以看出,两对接光纤的模场直径相等(即d1=d2)时,其接续损耗b=0。 2、 影响光纤接续损耗的原因

影响光纤接续损耗的原因,主要是光纤本身的结构参数和熔接机的熔接质量,同时还有一些人为因素和机械因素,比如光纤收容盘纤产生的弯曲损耗,光纤切割的断面质量,横向失配、纵向分离、轴向倾斜等。 二、光纤接续损耗测试分析 1、熔接机对接续损耗估算原理 熔接机接续是通过对光纤X轴和Y轴方向的错位调整,在轴心错位最小时进行熔接的,这种能调整轴心的方法称为纤芯直视法,这种方法不同于功率检测法,现场是无法知道接续损耗的确切数值的,在整个调整轴心和熔接接续过程中,通过摄像机把探测到所熔接纤芯状态的信息,送到熔接机的分析程序中,然后熔接机计算出接续损耗值,其实准确地说,这只能是说明光纤轴心对准的程度,并不含有光纤本身的固有特性所影响的损耗,而OTDR 的测试方法是后向散射法,它包含有光纤参数的不同形式的反射损耗,所以熔接机所显示的数据配合观察光纤接续断面情况只是粗略地估计了光纤接续点损耗的状况,不能作为光纤接续损耗的真实值。 2、OTDR的工作原理 背向散射法是将大功率的窄脉冲光注入待测光纤,然后在同一端检测沿光纤轴向向后返回的散射光功率,由于光纤材料密度不均匀,其本身的缺陷和掺杂成分不均匀,当脉冲通过光纤传输时,沿光纤长度上的每一点均会引起瑞利散射,其中总有一部分进入光纤的数值孔径角,沿光纤轴反向传输到输入端。瑞利散射光的波长与入射光的波长相同,其光功率与散射点的入射光功率成正比,测量沿光纤轴向返回的背向瑞利散射光功率可采集到沿光纤传输损耗的信息,从而测得光纤的衰减。 光时域反射仪通过光发送脉冲进入输入光纤,同时在输入端接收其中的菲涅尔反射光和瑞利背向散射光,再变成电信号,随时间在示波器上显示。 使用OTDR测试光纤接续损耗时,1550nm的波长对光纤弯曲的损耗较1310nm敏感,所以光纤接续损耗测试应选择1550nm波长,以便观察光缆敷设和光纤接续中是否会因光纤弯曲过度而造成损耗增大,但采用光源光功率计全程传输损耗测试时应对1310nm和1550nm两波长进行分测。

光纤损耗测试方法及其注意事项

光纤损耗测试方法及其注意事项 1 引言 随着应用和用户对带宽需求的进一步增加,光纤链路对满足高带宽方面的巨大优势逐步体现,光纤的使用越来越多。在施工中,无论是布线施工人员,还是网络维护人员,都有必要掌握光纤链路测试的技能。 2004年2月颁布的TIA/ TSB-140测试标准,旨在说明正确的光纤测试步骤。该标准建议了两级测试,分别为: Tier 1(一级),使用光缆损耗测试设备(OLTS)来测试光缆的损耗和长度,并依靠OLTS或者可视故障定位仪(VFL)验证极性; Tier 2(二级),包括一级的测试参数,还包括对已安装的光缆链路的OTDR追踪。 根据TSB-140标准,对于一条光纤链路来说,一级测试主要包括两个参数:长度和损耗。事实上,早在标准ANSI/TIA/EIA-526-14A 和ANSI/TIA/EIA-526-7中,已经分别对多模和单模光纤链路的损耗测试,定义了三种测试方法(长度的测量,取决于仪表是否支持,如果仪表支持,在测试损耗的同时,长度同时也会测量)。为了方便,本文中分别称为:方法A、方法B和方法C。TSB-140就是在这基础上发展而来,与此兼容。 本文主要就这三种方法各自的特点、操作方法、应该使用的场合进行分析和阐述。另外,对光纤链路的测试中需要注意的问题进行分析。 2 如何测试光纤链路损耗 光纤链路损耗的测试,包含两大步骤:一是设置参考值(此时不接被测链路),二是实际测试(此时接被测链路)。 标准中定义了三种测试损耗的方法(以双向测试为例): 2.1 测试方法A 方法A设置参考值时,采用两条光纤跳线和一个连接器(考虑一个方向,如图1)。设置参考值后,将被测链路接进来(如图2),进行测试。 图1 图2 每个方向的测试结果中包括光纤和一端的连接器的损耗。因此,方法 A 是用来测试这种光缆链路:光纤链路一端有连接器,另一端没有。 2.2 测试方法B 方法B设置参考值时,只使用了一条光纤跳线(考虑一个方向,如图3)。设置参考值后,将被测链路接进来(如图4),进行测试。 图3 图4 这种方法的测试结果中,包括光纤链路和两端连接的损耗。因此,方法B是用来测试这种光缆链路:链路两端都有连接器,其连接器的损耗是整个损耗的重要部分。这就是室内光缆的常见例子。 从技术角度讲,测试结果中还包括了额外的光纤跳线(3-4)的损耗,但是其长度较短,损耗可以忽略不计。对室内光缆网络,这种方法提供了精确的光缆链路测试,因为它包括了光缆本身以及电缆两端的连接器。 2.3 测试方法C 方法C设置参考值时,使用三条光纤和两个连接器(单方向,见图5),其中两个连接

如何减少光纤在应用中的损耗

如何减少光纤在应用中的损耗? https://www.360docs.net/doc/7610374361.html, ( 2008/8/26 14:34 ) 光纤的传输损耗特性是决定光网络传输距离、传输稳定性和可靠性的最重要因素之一。光纤传输损耗的产生原因是多方面的,在光纤通信网络的建设和维护中,最值得关注的是光纤使用中引起传输损耗的原因以及如何减少这些损耗。光纤使用中引起的传输损耗主要有接续损耗(光纤的固有损耗、熔接损耗和活动接头损耗)和非接续损耗(弯曲损耗和其它施工因素和应用环境所造成的损耗)两类。 1、接续损耗及其解决方案 1.1接续损耗 光纤的接续损耗主要包括:光纤本征因素造成的固有损耗和非本征因素造成的熔接损耗及活动接头损耗三种。 (1)光纤固有损耗主要源于光纤模场直径不一致;光纤芯径失配;纤芯截面不圆;纤芯与包层同心度不佳四点;其中影响最大的是模场直径不一致。 (2)熔接损耗非本征因素的熔接损耗主要由轴向错位;轴心(折角)倾斜;端面分离(间隙);光纤端面不完整;折射率差;光纤端面不清洁以及接续人员操作水平、操作步骤、熔接机电极清洁程度、熔接参数设置、工作环境清洁程度等其他因素造成。 (3)活动接头损耗非本征因素的活动接头损耗主要由活动连接器质量差、接触不良、不清洁以及与熔接损耗相同的一些因素(如轴向错位、端面间隙、折角、折射率差等)造成。 1.2解决接续损耗的方案 (1)工程设计、施工和维护工作中应选用特性一致的优质光纤一条线路上尽量采用同一批次的优质名牌裸纤,以求光纤的特性尽量匹配,使模场直径对光纤熔接损耗的影响降到最低程度。 (2)光缆施工时应严格按规程和要求进行 配盘时尽量做到整盘配置(单盘≥500米),以尽量减少接头数量。敷设时严格按缆盘编号和端别顺序布放,使损耗值达到最小。 (3)挑选经验丰富训练有素的接续人员进行接续和测试 接续人员的水平直接影响接续损耗的大小,接续人员应严格按照光纤熔接工艺流程进行接续,严格控制接头损耗,熔接过程中时刻使用光域反射仪(OTDR)进行监测(接续损耗≤0.08dB/个),不符合要求的应重新熔接。使用光时域反射仪(OTDR)时,应从两个方向测量接头的损耗,并求出这两个结果的平均值,消除单向OTDR测量的人为因素误差。

光纤损耗测试数据表

工程名称:南京禄口国际机场指挥调度信息管理系统 使用仪器:OPTICAL POWER METER G&H 2024A 光源类型:850激光模块 光缆编号:候机楼D1B、D1A弱电机房12芯多模测试日期:2009-05-12 区域:光纤主配线架端光纤主配线架端操作员:房铭瑄光纤分配线架端光纤分配线架端操作员:陈红立测试要求:MAX期望损耗小于3dB 光缆损耗:

工程名称:南京禄口国际机场指挥调度信息管理系统 使用仪器:OPTICAL POWER METER G&H 2024A 光源类型:850激光模块 光缆编号:候机楼T1B、T2A弱电机房12芯多模测试日期:2009-05-12 区域:光纤主配线架端光纤主配线架端操作员:房铭瑄光纤分配线架端光纤分配线架端操作员:陈红立测试要求:MAX期望损耗小于3dB 光缆损耗:

工程名称:南京禄口国际机场指挥调度信息管理系统 使用仪器:OPTICAL POWER METER G&H 2024A 光源类型:850激光模块 光缆编号:候机楼T3A弱电机房12芯多模测试日期:2009-05-12 区域:光纤主配线架端光纤主配线架端操作员:房铭瑄光纤分配线架端光纤分配线架端操作员:陈红立测试要求:MAX期望损耗小于3dB 光缆损耗:

工程名称:南京禄口国际机场指挥调度信息管理系统 使用仪器:OPTICAL POWER METER G&H 2024A 光源类型:1310激光模块 光缆编号:候机楼D1B、D1A弱电机房12芯单模测试日期:2009-05-12 区域:光纤主配线架端光纤主配线架端操作员:房铭瑄光纤分配线架端光纤分配线架端操作员:陈红立测试要求:MAX期望损耗小于3dB 光缆长度(米)米光缆损耗:

相关文档
最新文档