第一节 光合作用的研究历史

第一节 光合作用的研究历史
第一节 光合作用的研究历史

光合作用(photosynthesis)通常是指绿色植物吸收光能,把二氧化碳和水合成有机物,同时释放氧气的过程。地球上一年中通过光合作用约吸收2.0×1011t 碳素(6400t/s),合成5×1011t 有机物,同时将3.2×1021

J 的日光能转化为化学能,并释放出5.35×1011t 氧气。光合作用是地球上规模最巨大的把太阳能转变为可贮存的化学能的过程,也是规模最巨大的将无机物合成有机物和从水中释放氧气的过程。自从有了光合作用,需氧生物才得以进化和发展。由于光合作用中氧的释放和积累而逐渐形成了大气表面的臭氧(O 3)层,O 3能吸收阳光中对生物有害的紫外辐射,使生物可从水中到陆地上生活和繁衍。光合作用是生物界获得能量、食物以及氧气的根本途径,所以光合作用被称为“地球上最重要的化学反应”。没有光合作用也就没有繁荣的生物世界。当今人类社会面临着日趋严峻的食物不足、能源危机、资源匮乏和环境恶化等问题,这些问题的解决无一不与植物的光合作用有着密切的关系。因此深入探讨光合作用的规律,揭示光合作用的机理,使之更好地为人类服务,愈加显得重要和迫切。

一、光合作用总反应式的确定

18世纪以前,人们都认为植物是从土壤中获得生长所需的全部元素的。1771年英国化学家普利斯特利(J.Priestley)发现将薄荷枝条和燃烧的蜡烛放在一个密闭的钟罩里,蜡烛不易熄灭;将小鼠与植物放在同一钟罩里,小鼠也不易窒息死亡。因此,他提出植物可以“净化”空气,现在就把1771年定为发现光合作用的年代。以后又经许多人的研究(见绪论),到了19世纪末,人们写出了如下的光合作用的总反应式:

6CO 2+6H 2O→ C 6H 12O 6+6O 2 (4-1)

从(4-1)式中可以看出:光合作用本质上是一个氧化还原过程。其中CO 2是氧化剂,CO 2中的碳是氧化态的,而C 6H 12O 6中的碳是相对还原态的,CO 2被还原到糖的水平。H 2O 是还原剂,作为CO 2还原的氢的供体。(4-1)式用了几十年,后来又把它简化成下式:

CO 2+H 2O→(CH 2O)+O 2 (△G°′=4.78×105

J) (4-2)

(4-2)式用(CH 2O)表示一个糖类分子的基本单位,比较简洁。用叶绿体代替绿色植物,说明叶绿体是进行光合作用的场所。由于葡萄糖燃烧时释放2870 kJ·mol -1的能量,因而每固定1mol CO 2(即12g 碳)就意味着转化和贮存了约478kJ 的能量。

应该注意到光合作用反应式中所有的反应物和产物都含有氧,而上面两式并没有指出释放的O 2是来自CO 2还是H 2O 。很多年来,人们一直以为光能将CO 2分解成O 2和C ,C 与H 2O 结合成(C H 2O ),然而以下三方面研究证实了光合作用释放的O 2来自于H 2O 。

1.细菌光合作用 能进行光合作用的细菌称之为光合细菌(photosynthetic bacteria)。光合细菌包括蓝细菌、紫细菌

和绿细菌等。其中蓝细菌的光合过程与真核生物相似,紫细菌和绿细菌则不能分解水而需利用有机物或还原的硫化物等作为还原剂。例如:紫色硫细菌(purple-sulfur bacteria)和绿色硫细菌(green-sulfur bacteria)利用H 2S 为氢供体,在光下同化CO 2:

CO 2+2H 2S→(CH 2O)+2S+H 2O (4-3)

光合细菌在光下同化CO 2而没有O 2的释放。因此,细菌光合作用是指光合细菌利用光能,以某些无机物或有机物作供氢体,将CO 2还原成有机物的过程。

1931年微生物学家尼尔(C.B.V an Niel)将细菌光合作用与绿色植物的光合作用加以比较,提出了以下光合作用的通式:

CO 2+2H 2A→(CH 2O)+2A+H 2O (4-5)

这里的H 2A 代表一种还原剂,可以是H 2S 、有机酸等,对绿色植物而言,H 2A 就是H 2O ,2A 就是O 2。绿色植物光合作用中的最初光化学反应是把水分解成氧化剂(OH)与还原剂(H)。还原剂(H)可以把CO 2还原成有机物质;氧化剂(OH)则会通过放出O 2而重新形成H 2O 。

绿色植物和光合细菌都能利用光能将CO 2合成有机物,它们是光养生物。从广义上讲,所谓光合作用,是指光养生物利用光能把CO 2合成有机物的过程。

2.希尔反应 1939年英国剑桥大学的希尔(Robert.Hill)发现在分离的叶绿体(实际是被膜破裂的叶绿体)悬浮液中加入适当的电子受体(如草酸铁),照光时可使水分解而释放氧气:

4Fe 3++2H 2O→4Fe 2+ +4H+

+O2 (4-6)

这个反应称为希尔反应(Hill reaction)。其中的电子受体被称为希尔氧化剂(Hill oxidant),铁氰化钾、草酸铁、多种醌、醛及有机染料都可作为希尔氧化剂。希尔不但证明了给叶绿体照光可使水分解放氧,氧的释放与CO 2还原是两个不同的过程,而且也是第一个用离体的叶绿体做试验,把对光合作用的研究深入到细胞器水平,为光合作用研究开创了新的途径。

以后发现生物中重要的氢载体NADP +也可以作为生理性的希尔氧化剂,从而使得希尔反应的生理意义得到了进

一步肯定。在完整的叶绿体中NADP +作为从

H 2O 到CO 2的中间电子载体,其反应式可写为:

2NADP ++2H 2O→2NADPH +2H ++O 2 (4-7 )

CO 2也可看作为一种生理性的希尔氧化剂,因为向完整的叶绿体悬浮液中充入CO 2或加入能产生CO 2的试剂如NaHCO 3,照光时叶绿体能发生放氧反应。

3.18O 的研究 更为直接的证据是标记同位素的实验。1940年美国科学家鲁宾(S.Ruben)和卡门(M.D.Kamen)等用氧的稳定同位素18O 标记H 2O 或CO 2进行光合作用的实验,发现当标记物为H 218O 时,释放的是18O 2,而标记物为C 18O 2时,在短期内释放的则是O2。这清楚地指出光合作用中释放的O2来自于 H 2O 。

CO 2+2 H 218O→(CH 2O)+ 18O 2+H 2O (4-8)

为了把CO 2中的氧和H 2O 中的氧在形式上加以区别,表明光合作用中释放的O2全来自于H 2O ,而CO 2中的一个O 又被还原成H 2O ,因此,可用下式作为光合作用的总反应式。

CO 2+2H 2O →(C H 2O )+ O2+2 H 2O (4-9)

二、光反应和暗反应

光合作用需要光,然而是否其中每一步反应过程都需要有光呢?20世纪初英国的布莱克曼(Blackman )、德国的瓦伯格(O.Warburg)等人在研究光强、温度和CO 2浓度对光合作用影响时发现,在弱光下增加光强能提高光合速率,但当光强增加到一定值时,再增加光强则不再提高光合速率。这时要提高温度或CO 2浓度才能提高光合速率。据测定,在10~30℃的范围内,如果光强和CO 2浓度都适宜的话,光合作用的Q 10=2~2.5(Q 10为温度系数,即温度每增加10℃,反应速度增加的倍数)。按照光化学原理,光化学反应是不受温度影响的,或者说它的Q 10接近1;而一般的化学反应则和温度有密切关系,Q 10为2~3,这说明光合过程中有化学反应的存在。用藻类进行闪光试验,在光能量相同的前提下,一种用连续照光,另一种用闪光照射,中间隔一定暗期,发现后者光合效率是连续光下的200%~400%。这些实验表明了光合作用可以分为需光的光反应(light reaction)和不需光的暗反应(dark reaction)两个阶段。

1954年美国科学家阿农(D.I.Arnon)等在给叶绿体照光时发现,当向体系中供给无机磷、ADP 和NADP 时,体系中就会有ATP 和NADPH 产生。同时发现,只要供给了A TP 和NADPH +

,即使在黑暗中,叶绿体也可将CO 2转变为糖。由于A TP 和NADPH 是光能转化的产物,具有在黑暗中同化CO 2为有机物的能力,所以被称为“同化力”(assimilatory power)。可见,光反应的实质在于产生“同化力”去推动暗反应的进行,而暗反应的实质在于利用“同化力”将无机碳(CO 2)转化为有机碳(CH 2O)。

图 4-1 光合作用中“光”反应与“暗”反应的主要产物

光合作用中光反应和碳同化(暗反应)分别在叶绿体的不同区域内。光反应所需要的ATP 和NADPH 底物合成的一系列反应发生在叶绿体类囊体膜上。光反应产物在碳同化反应中一系列的基质酶的作用下固定CO 2转化为碳水化合物。

当然,进一步研究发现光、暗反应对光的需求不是绝对的。即在光反应中有不需光的过程(如电子传递与光合磷酸化),在暗反应中也有需要光调节的酶促反应。现在认为,“光”反应不仅产生“同化力”,而且产生调节“暗”反应中酶活性的调节剂(图4-1),如还原性的铁氧还蛋白。

三、光合单位

释放一个氧分子需要吸收几个光量子?需要多少个叶绿素分子参与?在研究这些问题的过程中,提出了“光合单位”的概念。在研究光能转化效率时,需要知道光合作用中吸收一个光量子所能引起的光合产物量的变化(如放出的氧分子数或固定CO 2的分子数),即量子产额(quantum yield)或叫量子效率(quantum efficiency)。量子产额的倒数称为量子需要量(quantum requirement)即释放1分子氧和还原1分子二氧化碳所需吸收的光亮子数。1922年,瓦伯格等计算出最低量子需要量为4,而他的学生爱默生(R.Emersen)等则测定出最低量子需要量为8。后来的实验证据都支持了爱默生的观点,于是8的最低量子需要量得到了普遍的承认,这个数值相当于0.125的量子效率。根据光化学定律(一个分子吸收一个量子,发生一次光化学变化),如果植物的每个叶绿素分子都能进行光化学反应,按还原1个CO 2和释放1个O 2

需吸收8个光量子算,则每当有8个叶绿素分子在一起时,一次足够强的闪光就会造成1个O 2的释放。但在1932年,爱默生及阿诺德(W.Arnold)对小球藻(chlorella)悬浮液做闪光试验,计算每次闪光的最高产量是约2 500个叶绿素分子产生1个O 2分子,似乎在光合组织中是以2 500个叶绿素分子组成1个集合体进行放氧的,于是当时就把释放1分子氧或同化1分子CO 2所需的2 500个叶绿素的分子数目称作1个“光合单位”(photosynthetic unit)。以后又认为,光合是以吸收光量子开始的,应以量子基础计算“光合单位”,1个光合单位应是300(2 500÷8≈300)个叶绿素分子。为什么要300个叶绿素分子吸收1个光子?其解释是:闪光可能被几百个叶绿素分子吸收,可是激发能需传递到1个能够产生光化学反应的“反应中心”(reaction center)区域才能有效。这个反应中心的反应中心色素分子(reaction center pigment)是一种特殊性质的叶绿素a 分子,它不仅能捕获光能,还具有光化学活性,能将光能转换成电能。其余的叶绿素分子和辅助色素分子一起称为聚(集)光色素(light harvesting pigment)或天线色素(antenna pigment),它们的作用好象是收音机的“天线”,起着吸收和传递光能的作用。这样就把原来以叶绿素分子数为指标的光合单位看作了能进行光化学反应的光合机构,光合单位成了天线色素系统和反应中心的总称(图4-2)。

图4-2 光合单位图解

天线色素捕获的一个光量子传递到反应中心色素分子,在那里发生光化学反应进行电荷分离

进一步研究表明,高等植物光反应中电子的传递不只经过一个反应中心,而是要经过两个反应中心,引起两次光化学反应。1986年,霍尔(Hall)等人指出,光合单位应是包括两个反应中心的约600个叶绿素分子(300×2)以及连结这两个反应中心的光合电子传递链。它能独立地捕集光能,导致氧的释放和NADP +

的还原。

可见,随着光合研究的深入,“光合单位”的含义已多次被修改。究竟一个“光合单位”包多少个叶绿素分子?这要依据这个“光合单位”所执行的功能而定。就O 2的释放和CO 2的同化而言,光合单位为2500;就吸收一个光量子而言,光合单位为300;就传递一个电子而言,光合单位为600个叶绿素分子。目前多数人赞同霍尔的看法,认为:所谓的“光合单位”,就是指存在于类囊体膜上能进行完整光反应的最小结构单位。

四、两个光系统

20世纪40年代,以小球藻为材料研究不同光质的量子产额,发现大于680nm 的远红光(far-red light)虽然仍被叶绿素吸收,但量子产额急剧下降,这种现象被称为红降现象(red drop)。1957年,爱默生观察到小球藻在用远红光照射时补加一点稍短波长的光(例如650nm 的光),则量子产额大增(图4-3),比这两种波长的光单独照射的总和还要高。这种

在长波红光之外再加上较短波长的光促进光合效率的现象被称为双光增益效应,或叫爱默生增益效应(Emerson enhancement effect)。以后才知道,这是因为光合作用需要两个光化学反应的协同作用。图4-3中的实线表明≤680nm 的光可以对两个光反应起作用,而≥680nm 的光只对其中的一个光化学反应起作用。

图4-3 双光增益效应(爱默生效应)

当红光和远红一起照射时光合速率远远大于它们分别照射时光合速率的总和。双光增益效应为位置上的一前一后对波长不同选择的进行光合作用的两个光系统的学说存在提供了有利的证据。

据上述实验结果,希尔(1960)等人提出了双光系统(two photosystem)的概念,把吸收长波光的系统称为光系统Ⅰ(photosystem Ⅰ,PS Ⅰ),吸收短波长光的系统称为光系统Ⅱ(photosystem Ⅱ,PS Ⅱ)。

另外,从理论上讲一个量子引起一个分子激发,放出一个电子,那么释放一个O 2,传递4个电子(2H 2O→4H +

+4e+O 2↑) 只需吸收4个量子,而实际测得光合放氧的最低量子需要量为8~12。这也证实了光合作用中电子传递要经过两个光系统,有两次光化学反应。

20世纪60年代以后,人们已能直接从叶绿体中分离出PS Ⅰ和PS Ⅱ的色素蛋白复合体颗粒,分析各系统的组成与功能,证明了光系统Ⅰ与NADP +的还原有关,光系统Ⅱ与水的光解、氧的释放有关。

以上仅就光合作用反应式的确定、光暗反应、光合单位、两个光系统等概念的建立介绍了光合作用研究历史中的部分情况。其实,还有许多杰出的成就值得一提。例如,叶绿素分子结构的确定(H.Fischer 1930);光合碳循环的阐明(M.Calvin 1954);叶绿素分子的人工合成(R.B.Woodward 1960);CAM 途径的确定(M.Thomas 1960);磷酸化的化学渗透学说的提出(P.Mitchell 1961);叶绿体DNA 的分离(R.Sagar M.Ishida 1963);C 4途径的确定(M.D.Hatch 1966

C.B.Slack);PS Ⅱ放氧反应中心复合体的分离(葛培根1982等);光合细菌反应中心三维空间结构的阐明(J.Deisenhofer 1982 H.Michel 1982 R.Huber)光电子传递理论的确定(Marcus 1992);ATP 酶的结构与反应机理的研究(Walker 1997 Boyer 1997);……其中有些内容将在下文中提到,有些由于篇幅有限,本章无法安排。

中国的光合作用研究自20世纪50年代开始,取得了长足的进展。如中国科学院上海植物生理研究所在光合作用能量转换、光合碳代谢的酶学研究等方面,中国科学院植物研究所在光合作用的原初反应和光合色素蛋白复合体研究等方面都有所发现和创新。

总之,光合作用研究历史不算长,从1771年至今才200多年,然而由于各国科学工作者的努力探索,已取得了举世瞩目的进展,为指导农业生产提供了充分的理论依据。当前光合作用的研究拟将进一步阐明以下几个关键问题:①光合作用结构与功能的关系及其遗传控制 ②反应中心的结构与功能 ③放氧复合体的结构与功能 ④能量转换与电子、质子传递的规律 ⑤CO 2同化调节机理等。只有弄清了光合作用的机理,人类才能更好地利用太阳能,以至模拟光合作用人工合成有机物。此外航天事业的迅猛发展也迫切需要为宇宙飞船、太空空间站乃至为开发其他星球提供氧气和食

品等。这些都使光合作用的研究面临新的挑战与机遇。

光合作用发现历史

光合作用发现历史资料整理 一、传统史料---光合作用反应式的发现 1.过去,人们一直以为,小小的种子之所以能够长成参天大树,古希腊哲学家亚里士多德认为,植物生长所需的物质完全依靠于土壤。 2. 1648年,一位荷兰科学家范·赫尔蒙特对此产生了怀疑,于是他设计了盆栽柳树称重实验,得出植物的重量主要不是来自土壤而是来自水的推论。虽然他没有认识到空气中的物质参与了有机物的形成,但从此拉开了光合作用的研究史。赫尔蒙特把90千克的土壤放在花盆中,然后种上2千克重的柳树,并经常浇水,5年过去了,柳树长到76千克重,而花盆中的土壤只少了60克。 3.早在1637年,我国明代科学家宋应星在《论气》一文中,已注意到空气和植物的关系,提出“人所食物皆为气所化,故复于气耳”。可惜因受当时科学技术水平的限制,未能用实验来证明这一精辟的论断。直到1727年,英国植物学家斯蒂芬·黑尔斯才提出植物生长时主要以空气为营养的观点。而最先用实验方法证明绿色植物从空气中吸收养分的是英国著名的化学家约瑟夫·普利斯特利。在1771年发现植物可以恢复因蜡烛燃烧而变“坏”了的空气。 4. 1779年,荷兰科学家英恩豪斯(Jan Ingenhousz)进一步证明只有植物的绿色部分在光下才能起使空气变“好”的作用,而其他所有器官即使在白天也会使空气变坏。这些实验结果为后来人们认识植物绿色部分和光在植物光合作用中的重要性奠定了基础。 5.1872年,科学家塞尼比尔(J.Senebier)如何做实验证明光和CO2的必要性。 6.1804年,瑞士学者德·索苏尔研究了植物光合作用过程中吸收的二氧化碳与放出的氧之间的数量关系,结果发现植物制造的有机物和释放出的氧的总量,远远超过它们所吸收的二氧化碳的量。由于实验中只使用植物、空气和水,别无他物,因此,他断定植物在 进行光合作用合成有机物时不仅需要二氧化碳,水也必然是光合作用的原料。他认为是CO 2 O乃是植物体有机物之来源。此结论不仅证实了海尔蒙脱关于柳树生长过程中合成植物和H 2 体的物质主要来自水的推论,而且把人们对光合作用本质的认识提高到一个崭新的阶段。德·索叙尔实验告诉我们,定量分析法在科学研究中的重要性,

生物人教版必修1习题:5.4.2 光合作用的探究历程、光合作用的过程 word版含解析

第22课时光合作用的探究历程、光合作用的过程 [目标导读] 1.阅读科学家对光合作用的探究历程,掌握相关实验设计。2.结合图5-15,掌握光反应和暗反应过程以及二者的关系。 [重难点击]光反应和暗反应过程以及二者的关系。 一光合作用的探究历程 人们对光合作用的认识是一个漫长的渐进的过程,请阅读教材,完成下面内容,理解光合作用的实质。 1.普利斯特利的实验 (1)实验过程 ①点燃的蜡烛与绿色植物,密闭——蜡烛不易熄灭。 ②小鼠与绿色植物,密闭——小鼠不易窒息。 (2)实验结论:植物可以更新因蜡烛燃烧或小白鼠呼吸而变得污浊的空气。 (3)不足之处:①没有考虑到光照的影响。②实验缺少空白对照,说服力不强。 2.英格豪斯的实验 (1)实验过程:500多次植物更新空气的实验。 (2)实验结论:只有在阳光照射下,植物的绿叶部分才能更新空气。 (3)不足之处:没有阐明植物吸收和释放的气体的本质,后来人们才明确植物在光下放出的是氧气,吸收的是二氧化碳。 3.梅耶 根据能量守恒定律推理,植物把光能转换成化学能储存起来。 4.萨克斯的实验 (1)实验过程 (2)实验结论:光合作用的产物除氧气外,还有淀粉。 (3)实验讨论 ①把绿叶先在暗处放置24小时的目的是消耗掉叶片中原有的淀粉,防止干扰实验结果。 ②该实验如何形成对照的? 答案树叶一半遮光,一半曝光,形成了对照。

③本实验除上述结论外,还证明了光合作用需要光照。 5.鲁宾和卡门的实验 (1)实验过程 组别 提供的H 2O 提供的CO 2 产生的O 2 第1组 H 218O CO 2 18O 2 第2组 H 2O C 18O 2 O 2 (2)实验结论:光合作用释放的氧气来自水。(3)该实验能否同时用8O 标记H 2O 和CO 2,然后检测产生氧气中的放射性? 答案 不行。无法确定放射性是来自H 182O ,还是C 18O 2。 6.卡尔文的实验 (1)实验过程:用14C 标记CO 2供小球藻进行光合作用,然后追踪其放射性。 (2)实验结论:探明了CO 2中的碳在光合作用中转化成有机物中碳的途径,即卡尔文循环。 7.根据上述探究总结光合作用的概念 (1)场所:叶绿体。 (2)能量来源:光能。 (3)反应物:二氧化碳和水。 (4)产物:有机物和氧气。 (5)实质:合成有机物,储存能量。 (6)反应式:CO 2+H 2O ――→光能 叶绿体(CH 2O)+O 2。 归纳提炼 产物是葡萄糖的光合作用反应式(标明了各元素的去向) 活学活用 1.如图是利用小球藻进行光合作用实验的示意图,图中A 物质和B 物质的相对分子质量之比是( ) A.1∶2 B.2∶1 C.8∶9 D.9∶8 问题导析 (1)图中A 、B 物质都是氧气。 (2)A 、B 中的元素均来自于反应物中的水。 (3)分别写出A 、B 的化学式:A.O 2;B.18O 2。二者的相对分子质量分别为32_、36。 答案 C 解析 图中A 、B 物质是氧气,均来自于反应物中的水。A 、B 分别为 O 2、18O 2,二者的相

光合作用探究公开课教学设计

光合作用的探究历程的教学设计萧县中学宏新

“光合作用的探究历程”一节的教学设计 萧县中学宏新 设计说明:生物科学史的教学不是简单地让学生学生记住这段历史和结论,而是要将探究性学习和教学方法整合其中,充分应用二手资料创设情境,让学生重走科学家之路,体验科学家发现问题、解决问题、深化认识的过程和探索的精神。本案例中,用二手资料探究光合作用发现的科学过程,让学生经历一个发现过程,既掌握了相关的知识,又可以学会科学的实验方法,并培养了他们学习的能力。 一、设计思想 普通高中《生物课程标准》指出,高中生物学的课程基本理念之一是提高学生的生物科学素养,尤其是发展学生的科学探究能力以及相关的情感态度与价值观,它是公民科学素养构成中重要的组成部分。生物科学发现史的探究性学习是实现此课程基本理念的极为有效的载体,生物学史能够将知识传授、能力培养和情意发展三方面教育融合起来,很好地体现了生物学科的特点和新课程理念的要求。 光合作用探究历程中的经典实验,从一定程度上反映了科学探索的一般方法,是培养学生科学素质的好素材。但是在教学过程中如果仅仅只是照本宣科介绍几个科学家的实验,学生学习的兴趣不能激发,学习的主动性不能调动,要通过光合作用探究历程的再现,达到培养学生科学精神和创新思维能力的目的,就必须充分调动学生的学习能动性。 本课教学的设计思路主要是:在教学过程中,以光合作用探究历程的经典实验为探究的载体,以真实的问题情境作为探究的背景,以真正理解探究过程和实验设计策略并学以致用为中心目标,采用以问题(任务)驱动学习,引导自主、探究和合作学习的教学模式,在教学过程中贯穿从“过去”到“现在”再到“未来”,从“课外”到“课堂”再到“课外”的开放式思想。 二、教材分析 本节课为人教版第高中必修一第五章第四节“能量之源──光与光合作用”的第二部分容“光 合作用的原理和应用”的第一课时:光合作用的探究历程。 本册教材第五章介绍了细胞的能量供应和利用,第四节是对细胞的能量来源进行探讨,光合作用在绿色植物的新代以及整个生态系统的物质循环和能量流动中,具有十分重要的意义,是必修一的重点容之一。 关于光合作用的探究历程,本节课的容是在义务教育课程标准初中生物光合作用的学习的基础上,主要介绍普利斯特利、、英格豪斯、梅耶、萨克斯、鲁宾和卡门、卡尔文等科学家关于光合作用的研究。课文还结合卡尔文等科学家的实验,介绍了同位素标记法这一生物科学领域经常使用的研究方法。并通过这些经典实验归纳得出光合作用的概念和反应式。 这些容能利用科学史的“故事性”,有效地提高学生的学习兴趣;可从科学家三百多年的研究历程体会到科学发现的艰难;重温先人勇于探索的过程,懂得实验是探究生物科学的基本方法,培养学生实事的科学态度、不断探求新知识的创新精神;可以从光合作用经典实验中学习到科学家设计实验的智慧,培养实验设计能力;还能感受到科学研究方法的重要、实验设计的巧妙,新技术、新理论的发现和综合应用在科学发现中的重要作用,从中也可以深切体会到技术的发现和应用,特别是物理、化学技术的使用对生物学起到的推动作用,再一次体验科学、技术、社会的理念;在科学

光合作用的研究历史

第三节光合作用探究历程 【学习目标】 1.说出有关光合作用研究的科学家及其经典实验的结论,能用一个简单的方程式表示光合作用,并能简述出光合作用的原料、产物、条件和反应场所。 2. 分析光合作用探究实验的过程及其设计思路,将大量文字转换成简洁明了的图文,学会在复杂的情景中分析实验的变量和对照的设置。 3. 体验科学探究历程,认同科学概念是在不断的观察、实验、探索和争论中前进的。 【自主探究】 一、阅读教材P100—102的内容,按时间顺序列表总结光合作用的探究历程。 二、探究历程 1、公元前三世纪,亚里士多德:土壤是构成植物的 原材料。1648年,比利时的范·海尔蒙特用了五年 时间完成了一个实验,如图: 植物生长需要养料来自哪里? 2、普里斯特利实验说明谁可以更新空气? 他所指的污浊的空气里有什么?被更新的 空气里有什么?要使实验更有说服力,还 应设置几组实验?依照图示设计画出对照 实验

3、萨克斯的实验目的是什么?黑暗处理的目的是什么?实验的自变量和因变量是什么?如何检测本实验结果?酒精脱色的目的是什么? 此实验除了能证明光合作用的产物有淀粉外, 还能说明什么问题? (实战演练) 实验设计:验证二氧化碳是光合作用的原料 材料:相同大小的绿色植物2盆,透明密闭的玻璃罩2个,NaOH 溶液,CO2释放剂,酒精,碘液 提示:单一因素变量是什么?怎么操控?检测何种实验结果?如何根据所提供的材料进行检测? 4、恩格尔曼实验的自变量和因变量是什么? 该实验的巧妙之处: 实验材料为什么用水绵? 为什么用好氧细菌? 为什么在没有空气的环境中? 为什么在黑暗环境中? 为什么用的是极细的光束? 为什么临时装片要重新暴露在光下? 5、光合作用是指绿色植物通过 ,利用 能,把 和 转化成 ,并且释放出 的过程。 反应式: 6、鲁宾、卡门实验的自变量和因变量是什么?实验的巧妙之处是?

《光合作用的探究历程》教案

《光合作用的探究历程》教案 一、教材分析 新课标对光合作用的认识过程从原来的“了解”水平提高到了“说明”水平,教材中本部分内容从回顾科学家对光合作用的探究历程开始,让学生感知他们探索的科学精神和实事求是的科学态度,学习科学探究的一般方法和实验设计的原则,并且得出光合作用的反应式。教材中详细描述了各探究实验的关键环节,对学生的探究思维具有很好的启发性。 二、教学目标 (一))知识目标: 1.知道光合作用被发现的基本过程 2.简述出光合作用的原料、产物、条件和反应场所。 (二)能力目标: 1.重新走进科学家发现光合作用的有关实验,学会运用科学探究的手段发现问题、解决问题,发展科学探究能力; 2.在实验探究中掌握科学探究的一般原则,重点是对照实验原则和单因子变量原则 3.过读书和师生的讨论活动,培养学生自学和主动探索新知识的技能、技巧。 (三)情感、态度和价值观目标: 1.体验科学探究历程,体会科学概念是在不断观察、实验、探索和争论中形成; 2.认同科学家不仅要继承前人的科研成果,而且要善于吸收不同学科中的有关知识,还要具有质疑、创新及勇于实践的科学精神和科学态度; 3.学会参与、合作和交流探究的内容和结果; 4.认识到技术的发展在科学研究中的作用,尊重科学且用发展的观点看待科学、树立辨证的科学观。 三、教学重点难点 重点:光合作用的发现及研究历史过程中的各实验设计、优缺点和结论。 难点:光合作用的发现过程中各实验如何巧妙地连接起来,如何过渡,如何引导学生进行思考探究从而得出正确结论。 四、学情分析 学生在初中生物课中学习过有关光合作用的知识,而且生活实践中也对光合作用有所了解。但是,对于光合作用的发现历史却很陌生,关键对于我们这节课要达到的目标“科学探究的一般方法”知之甚少。高中学生具备了一定的观察和认知能力,分析思维的目的性、连续性和逻辑性也已初步建立,但还很不完善,对事物的探索好奇,又往往具有盲目性,缺乏目的性,并对探索科学的过程与方法及结论的形成缺乏理性的思考。在教学过程(本文来自优秀教育资源网斐.斐.课.件.园)中,教师要尽量创设学生活动的机会,让学生成为学习活动的主体,教师只是为学生的学习提供必要的指导和知识铺垫。 五、教学方法 探究式教学,结合问题、讨论、比较、归纳多种教学方法,并配以多媒体辅助教学,引导学生再现科学发现过程,并进行分析、讨论、归纳和总结。新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习。 六、课前准备 学生收集了解关于光合作用研究历史。兴趣小组做关于光合作用的探究实践。

光合作用的研究历史

时间事件 1648 荷兰人van Helmont 。柳树种植实验,认为柳树增加的重量来自于灌溉用的水。1727 英国Stephan Hales 《静力学短论,包括植物静力学或关于植物浆液的一些静力学试验的考察》。植物从空气中得到了一部分营养。 1748,177 0 1748 俄国罗蒙诺索夫 1770 法国Antoine Lavoisier 质量守恒定律 1770-178 5 化学家气体收集及分析 1771 及之Joseph Priestley1776 《对不同种空气的试验和观察》植物改善空气的发现 后 1773 荷兰人Jan Ingenhouse 听闻上述实验.1773 年,做了500 次以上关于植物影响空气的实验。10 月,发表《关于植物的实验,它们是日光下改善空气和在阴 暗处和夜间损坏空气的强大力量的发现》 1782 瑞士Jean Senebier 《关于日光影响的三界物质,特别是植物界所起变化的物理化学论文集》固定的空气(二氧化碳)溶于水就是植物从周围空气中吸取的 营养,这也是它们转化固定空气,供应纯净空气的来源。 1804 日内瓦Nicolas Theodore de Saussure 《关于植物化学的研究》植物产生的有机物质总量以及它们释放的氧量,远远超过它们消耗的固定空气(二氧化碳) 的量。光合作用必定还用水作为反应物。 1817 法国化学家P.J.Pollotier 和J.B.Caventou 提出“chorophyll ”叶绿素一词。来源于希腊文?“chloros ”绿色和“phyllon ”叶。

1845 德国医生Julius Robert Mayer 《有机体的运动及其与代谢的关系》植物取得一种力量——光,并产生另一种力量——化学差异。将能量转化定律公式化。 1864 法国植物生理学家T.B. Boussinganltu ,研究多种陆生植物,发现光合作用比值“吸收二氧化碳量/释放氧气量=1 ” 1864 德国植物生理学家Julius Sachs 植物半叶实验。认为叶绿素存在于某种比细胞还小的结构内。 1870 德国化学家 A.von.Bayer 光合作用中二氧化碳的转化,先合成甲醛,再合成有机物。 1883 K.Schimper 将Sachs 所指的小体命名为叶绿体。 1883 德国植物学家J.Reinke 光合作用速率随着光照强度的增加而按比例增加。在光足够强时,达到饱和状态。 1883-188 5 德国生理学家Th.W.Engelman, 提出,叶绿素吸收的光能也是在其光合作用中所利用的光能。 1905 英国植物生理学家 F.F.Blakman 首次将光合作用曲线形状解释为光反应和暗反应两个步骤。 1913 德国化学家L.Michaelis 首先提出酶促反应的一般机理。 1913,191 Richard Willstatter 和Arthur Stoll 否定了胡萝卜素吸收的光在光合作用不起作 7 用。指出叶绿素是卟啉类化合物,含有铁而不是镁。 1915 年诺Richard Willstatter 阐明在叶肉细胞中叶绿素a:b 为3:1 。研究出将叶绿素制成奖纯品的方法。 1922 Otto Warburg 和E.Negelein 测定小球藻光合作用最高量子产额。 1929 德国化学家H.Fisher 合成铁血红素。

光合作用的研究历史

《光合作用的研究历史》教学设计 一.教学设计的指导思想 “光合作用的发现”凝聚了众多科学家两百多年探究历程中的心血和智慧,在生物学发展史 上堪称经典。大胆的推测、巧妙的实验设计和严密的逻辑推理反映了科学探索的过程,其中经典实验为培养学生实验能力、科学素养提供了非常好的素材。教师通过多媒体方式展示实验过程—设置问题—探究讨论—得出结论的模式,为学生搭设了一个探索、思考、分析、谈论的平台。教师进行有目的、有序的设问,激发学生的思维,从中领悟实验的科学原理和方法,提高学生分析实验,设计实验的能力。 二.教学内容分析 1、教材分析: 《光合作用的研究历史》是高中《生命科学》第四章“生命的物质变化和能量转换”第二节内容。光合作用不仅为植物本身的物质代谢提供了基础,也直接或间接的为动物和人类的生存提供了食物和能源。光合作用是地球上最重要的化学反应,在自然界具有极其重要的意义,这部分教学内容是整个高中生命科学中的重点和难点。老教材的编排上直接介绍叶绿体结构和光合作用的基本过程,教师对这部分科学史要么忽略,要么附带简单介绍。而新教材在编排上更加突出科学史教育,单独安排了一课时介绍几个经典的实验,得出光合作用的原料、产物、场所、条件,获得完整的光合作用概念。这符合学生的认知水平。安排了光合作用的发现过程的目的是:不仅让学生了解这个科学发现的历史,更重要的是让学生认识到科学研究方法的重要性、科学研究的思维方式的重要性,体验到科学家们智慧的力量和创造的快乐,学习科学家们“不断挑战权威、不断创新”精神,提高科学素养。 2、教学重点、难点 重点:光合作用的发现过程 难点:科学研究的过程和方法 3、教学策略 通过问题设置,引导学生讨论经典实验,分析他们精巧的设计思路,体验科学研究的过程和方法。并让学生运用这些设计思想进行实验设计,加深对经典实验的理解。 三.学情分析 学生在初中课程中学习过相关光合作用知识。对光合作用的原料、产物、场所、条件几个方面有一定的认知。也知道可以用简单的化学方法验证绿色植物放出的气体和制造的有机物。但光合作用是怎样被人们发现的,二氧化碳和水怎样转变成有机物的,受学生本身年龄和知识结构限制,无法深入下去。高中生命科学以较高的起点,重新认识光合作用,体验科

光合作用发现史学习资料

光合作用发现史 1、早在两千多年前,古希腊著名哲学家亚里士多德认为,植物是由“土壤汁”构成的。这一观点一直沿用到18世纪中期。17 世纪上半叶,比利时学者海尔蒙特所做的柳树试验,使他自然而然地相信:柳树生长所需要的物质,来自于浇灌的水。这个结论首次提出了水参与植物有机物制造,但没有考虑到空气对植物体物质形成的作用。 2、我国明代学者宋应星、英国植物学家斯蒂芬.黑尔斯也曾指出:植物在生长时主要用空气当养分。但他们并未用实验证明这一判断。 3、1771年,英国科学家普利斯特利通过实验证实,植物可以更新因蜡烛燃烧或小白鼠呼吸而变得污浊的空气。由于普里斯特利所做的这个出色的实验,人们把1771 年定为发现光合作用的年代。但是,他并没有发现光在植物更新空气中的作用,而是将空气的更新归因于植物的生长。当时有人重复他的实验,却得到完全相反的结论。因此这个实验引起人们的关注。 4、1779年,荷兰科学家英格豪斯做了500多次植物更新空气的实验,得出结论:绿色植物只有在光下才能更新空气。直到1785年,人们才明确绿叶在光下放出的气体是氧气,吸收的是二氧化碳。 5、1782年,瑞士牧师吉恩.谢尼伯证实了英格豪斯的发现,并指出植物“净化”空气的活性,除光合作用外,还取决于“所固定的空气”。 6、1804年,瑞士学者索热尔研究植物光合作用过程中,二氧化碳吸收量、有机物生成量、氧气释放量之间的数量关系。他发现,植物制造的有机物质总量和氧气释放量,远远超过二氧化碳吸收量。根据实验中除植物、空气和水以外,没有其他物质,他断定光合作用除吸收二氧化碳外,二氧化碳水也是光合作用的反应物。 7、1817年,法国的两位植物学家,佩利蒂欧和卡文陶从叶片中分离出叶绿素。后来有人证明叶绿素对于光能的吸收、传递和转化起着极为重要的作用。 8、1845年,德国科学家梅耶根据能量转化与守恒定律明确指出,植物在进行光合作用时,把光能转换成化学能储存起来。当时人们用下式表示光合作用: 绿色植物 CO2 + H2O + 光——→O2 + 有机物质+ 能量 9、1864 年,法国植物生理学家鲍辛高特根据阿伏伽德罗定律,精密地测定多种陆生植物,发现它们在进行光合作用时,放出的氧气和吸收的二氧化碳体积的比值接近1。 10、1864 年,德国著名植物生理学家朱利叶斯.萨克斯用实验成功地证明植物叶片在光合作用中形成淀粉。他先把绿叶放在黑暗中数小时,在这段时间内,由于叶片中的物质的输出和呼吸代谢的结果,使原先存在于叶片里的淀粉消失。然后把经黑暗处理的叶片一半曝光,另一半叶片仍然置于黑暗中,经过一定时间后,用碘蒸汽处理叶子,结果发现处于黑暗的一半叶片无颜色变化,而曝光的一半叶片显示出深蓝色。这是由于碘与淀粉形成淀粉-碘络合物的结果。 11、1880 年,德国科学家恩吉尔曼把装有水绵和嗜氧细菌悬浮液的载玻片置于没有空

第一节 光合作用的研究历史

光合作用(photosynthesis)通常是指绿色植物吸收光能,把二氧化碳和水合成有机物,同时释放氧气的过程。地球上一年中通过光合作用约吸收2.0×1011t 碳素(6400t/s),合成5×1011t 有机物,同时将3.2×1021 J 的日光能转化为化学能,并释放出5.35×1011t 氧气。光合作用是地球上规模最巨大的把太阳能转变为可贮存的化学能的过程,也是规模最巨大的将无机物合成有机物和从水中释放氧气的过程。自从有了光合作用,需氧生物才得以进化和发展。由于光合作用中氧的释放和积累而逐渐形成了大气表面的臭氧(O 3)层,O 3能吸收阳光中对生物有害的紫外辐射,使生物可从水中到陆地上生活和繁衍。光合作用是生物界获得能量、食物以及氧气的根本途径,所以光合作用被称为“地球上最重要的化学反应”。没有光合作用也就没有繁荣的生物世界。当今人类社会面临着日趋严峻的食物不足、能源危机、资源匮乏和环境恶化等问题,这些问题的解决无一不与植物的光合作用有着密切的关系。因此深入探讨光合作用的规律,揭示光合作用的机理,使之更好地为人类服务,愈加显得重要和迫切。 一、光合作用总反应式的确定 18世纪以前,人们都认为植物是从土壤中获得生长所需的全部元素的。1771年英国化学家普利斯特利(J.Priestley)发现将薄荷枝条和燃烧的蜡烛放在一个密闭的钟罩里,蜡烛不易熄灭;将小鼠与植物放在同一钟罩里,小鼠也不易窒息死亡。因此,他提出植物可以“净化”空气,现在就把1771年定为发现光合作用的年代。以后又经许多人的研究(见绪论),到了19世纪末,人们写出了如下的光合作用的总反应式: 6CO 2+6H 2O→ C 6H 12O 6+6O 2 (4-1) 从(4-1)式中可以看出:光合作用本质上是一个氧化还原过程。其中CO 2是氧化剂,CO 2中的碳是氧化态的,而C 6H 12O 6中的碳是相对还原态的,CO 2被还原到糖的水平。H 2O 是还原剂,作为CO 2还原的氢的供体。(4-1)式用了几十年,后来又把它简化成下式: CO 2+H 2O→(CH 2O)+O 2 (△G°′=4.78×105 J) (4-2) (4-2)式用(CH 2O)表示一个糖类分子的基本单位,比较简洁。用叶绿体代替绿色植物,说明叶绿体是进行光合作用的场所。由于葡萄糖燃烧时释放2870 kJ·mol -1的能量,因而每固定1mol CO 2(即12g 碳)就意味着转化和贮存了约478kJ 的能量。 应该注意到光合作用反应式中所有的反应物和产物都含有氧,而上面两式并没有指出释放的O 2是来自CO 2还是H 2O 。很多年来,人们一直以为光能将CO 2分解成O 2和C ,C 与H 2O 结合成(C H 2O ),然而以下三方面研究证实了光合作用释放的O 2来自于H 2O 。 1.细菌光合作用 能进行光合作用的细菌称之为光合细菌(photosynthetic bacteria)。光合细菌包括蓝细菌、紫细菌

光合作用发现历史资料整理知识讲解

光合作用发现历史资 料整理

光合作用发现历史资料整理 一、传统史料---光合作用反应式的发现 1.过去,人们一直以为,小小的种子之所以能够长成参天大树,古希腊哲学家亚里士多德认为,植物生长所需的物质完全依靠于土壤。 2. 1648年,一位荷兰科学家范·赫尔蒙特对此产生了怀疑,于是他设计了盆栽柳树称重实验,得出植物的重量主要不是来自土壤而是来自水的推论。虽然他没有认识到空气中的物质参与了有机物的形成,但从此拉开了光合作用的研究史。赫尔蒙特把90千克的土壤放在花盆中,然后种上2千克重的柳树,并经常浇水,5年过去了,柳树长到76千克重,而花盆中的土壤只少了60克。 3.早在1637年,我国明代科学家宋应星在《论气》一文中,已注意到空气和植物的关系,提出“人所食物皆为气所化,故复于气耳”。可惜因受当时科学技术水平的限制,未能用实验来证明这一精辟的论断。直到1727年,英国植物学家斯蒂芬·黑尔斯才提出植物生长时主要以空气为营养的观点。而最先用实验方法证明绿色植物从空气中吸收养分的是英国著名的化学家约瑟夫·普利斯特利。在1771年发现植物可以恢复因蜡烛燃烧而变“坏”了的空气。 4. 1779年,荷兰科学家英恩豪斯(Jan Ingenhousz)进一步证明只有植物的绿色部分在光下才能起使空气变“好”的作用,而其他所有器官即使在白天也会使空气变坏。这些实验结果为后来人们认识植物绿色部分和光在植物光合作用中的重要性奠定了基础。 5.1872年,科学家塞尼比尔(J.Senebier)如何做实验证明光和CO2的必要性。 6.1804年,瑞士学者德·索苏尔研究了植物光合作用过程中吸收的二氧化碳与放出的氧之间的数量关系,结果发现植物制造的有机物和释放出的氧的总量,远远超过它们所吸收的二氧化碳的量。由于实验中只使用植物、空气和水,别无他物,因此,他断定植物在进行光合作用合成有机物时不仅需要二氧化碳,水也必然是光合作用的原料。他认为是CO2和H2O乃是植物体有机物之来源。此结论不仅证实了海尔蒙脱关于柳树生长过程中合成植物体的物质主要来自水的推论,而且把人们对光合作用本质的认识提高到一个崭新的阶段。德·索叙尔实验告诉我们,定量分析法在科学研究中的重要性, 7、1845德国科学家梅耶R。Mayer.据能量转化定律指出,植物在进行光合作用时,把光能转化成化学能储存起来。 8.德国的又一位科学家萨克斯在1864年用紫苏进行实验。这一实验成功地证明了绿色叶片在光合作用中产生了淀粉。因此,最终确定了至今人们还在沿用的光合作用总反应式。 二、近代思想与技术应用,光反应和暗反应概念提出 1、1880年,德国科学家恩格尔曼(C.Engelmann)用水绵进行了进行了光合作用的实验。恩吉尔曼的实验巧妙地证明了光合作用的场所是叶绿体。 2、19世纪60年代,科学家总结出光合作用的反应式能不能解决光合作用产生的氧是来自什么物质?应该注意到光合作用反应式中所有的反应物和产物都含有氧,而上面两式并没有指出释放的O2是来自CO2还是H2O。很多年来,人们一直以为光能将CO2分解成O2和C,C与H2O 结合成(CH2O ) 。 3、1931年微生物学家尼尔(C.B.Van Niel)将细菌光合作用与绿色植物的光合作用加以比较,提出了以下光合作用的通式:CO2+2H2A→(CH2O)+2A+H2O ,这里的H2A代表一种还原剂,可以是H2S、有机酸等,紫色硫细菌(purple-sulfur bacteria)和绿色硫细菌(green-sulfur bacteria)利用H2S为氢供体,在光下同化CO2:CO2+2H2S→

光合作用的探究历程教学设计

光合作用的探究历程教 学设计 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

《光合作用的探索历程》教学设计 抚宁一中杨滨 [教材分析] 本节课为高中必修1《分子与细胞》(新人教版)第5章第4节能量之源——光与光合作用中的内容。第4节包括“捕获光能的色素和结构”、“光合作用的原理和应用”两大部分,其中“光合作用的探究历程”这部分内容往往被许多老师在上课时一带而过,并未加以重视。事实上,光合作用探究过程中的经典实验,从一定程度上反映了科学探究的一般方法,是培养学生科学精神、科学态度和科学研究方法的好素材,为后面众多的实验打下一个良好的感知基础,也为讲述光合作用的原理、过程做好知识铺垫。因此,“光合作用的探究历程”这部分内容相当重要,不容忽视。 [教学目标] 知识性目标: 1.说出光合作用的探究历程。 2.初步掌握科学探究的一般方法。 技能性目标: 尝试分析实验、设计实验。 情感性目标: 1.关注科学工作的方法和过程,形成严谨的科学态度及创新、合作的科学精神。

2.体验科学发现的艰难和科学家们的智慧力量,确立进行科学研究的欲望和信心。 [教学重点] 1.光合作用的探究历程。 2.科学探究实验的基本方法。 [教学难点] 真正领悟探究实验的科学原理和方法,并很好地运用到设计实验中。[教学方法] 探究与发现式教学;小组合作学习 [教学媒体] 实物投影、多媒体课件 [教学设计思路] 本节课以“光合作用的探究历程”为主线,遵循科学家的探索思路,通过对几个经典实验的讨论分析,采取“提出问题—探究—解决问题”的教学方法,层层递进,环环相扣,让学生对科学探究有一个比较完整的认识,从中领悟科学探究的原则和一般方法。 在教学中,采用多元化的教学方式:利用视频动画、录像等教学手段,让学生对实验过程有直观感性的认识;充分调动学生学习主动积极性;把学生分为若干小组活动,使学生在较短的时间内确定实验方案,培养团队合作精神;通过师生共同总结并同步板书,让学生更深入地理解光合作用的概念和总反应式中的各个部分;通过课堂实验设计,及时加深巩固本节课所学习、涉及到的实验原理和方法,培养学生的科学素质和创新精神。

《光合作用的探究历程》教学设计(省获奖教案

《光合作用的探究历程》教学设计 [教材分析] 本节课为高中必修1《分子与细胞》(人教版)第5章第4节能量之源——光与光合作用中的内容。第4节包括“捕获光能的色素和结构”、“光合作用的原理和应用”两大部分,其中“光合作用的探究历程”这部分内容往往被许多老师在上课时一带而过,并未加以重视。事实上,光合作用探究过程中的经典实验,从一定程度上反映了科学探究的一般方法,是培养学生科学精神、科学态度和科学研究方法的好素材,为后面众多的实验打下一个良好的感知基础,也为讲述光合作用的原理、过程做好知识铺垫。因此,“光合作用的探究历程”这部分内容相当重要,不容忽视。 [教学目标] 知识性目标: 1.说出光合作用的探究历程。 2.初步掌握科学探究的一般方法。 技能性目标: 尝试分析实验、设计实验。 情感性目标: 1.关注科学工作的方法和过程,形成严谨的科学态度及创新、合作的科学精神。 2.体验科学发现的艰难和科学家们的智慧力量,确立进行科学研究的欲望和信心。 [教学重点] 1.光合作用的探究历程。 2.科学探究实验的基本方法。 [教学难点] 真正领悟探究实验的科学原理和方法,并很好地运用到设计实验中。 [教学方法] 探究与发现式教学;小组合作学习 [教学媒体] 实物投影、多媒体课件 [教学设计思路] 本节课以“光合作用的探究历程”为主线,遵循科学家的探索思路,通过对几个经典实验的讨论分析,采取“提出问题—探究—解决问题”的教学方法,层层递进,环环相扣,让学生对科学探究有一个比较完整的认识,从中领悟科学探究的原则和一般方法。 在教学中,采用多元化的教学方式:利用视频动画、录像等教学手段,让学生对实验过程有直观感性的认识;通过学生课前设计表格、角色扮演、代表介绍等手段,充分调动学生学习主动积极性;把学生分为若干小组活动,使学生在较短的时间内确定实验方案,培养团队合作精神;通过师生共同总结并同步板书,让学生更深入地理解光合作用的概念和总反应式中的各个部分;通过课堂实验设计,及时加深巩固本节课所学习、涉及到的实验原理和方法,培养学生的科学素质和创新精神。 在探究问题的过程中,使学生感受到知识产生与发展是受当时科学发展水平限制的,并通过一些具体的数据:500多次、300多年,让学生体会到科学上的每一项发明和发现的背后都凝聚着无数探索者的辛勤劳动,更好地理解为什么说生物学的发展史就是一部众多生物学家不计个人名利为科学事业奉献毕生精力的奋斗史,对学生进行情感教育,这也是本节课的重中之重。 [教学过程]

高考生物复习题光合作用的探究历程与基本过程检测含解析

光合作用的探究历程与基本过程 [基础达标] 1.(2019·黑龙江哈尔滨六中高三开学段考)下列对叶绿体和光合作用的分析,正确的是( ) A.没有叶绿体的细胞不能进行光合作用 B.用8%的盐酸处理叶绿体有利于各种色素的提取 C.将叶绿体粉碎加工成匀浆并给予一定的光照,光合作用仍能正常进行 D.叶绿体能产生和消耗ATP,两个过程完全在叶绿体内完成 解析:选D。蓝藻没有叶绿体,但细胞内含藻蓝素和叶绿素,可以进行光合作用,A错误。叶绿体色素是脂溶性色素,可以通过加入无水乙醇溶解色素,便于提取;色素不溶于盐酸,不能用盐酸提取色素,B错误。将叶绿体粉碎加工成匀浆后,其中色素分子可能被破坏,光合作用相关酶的活性可能丧失,所以即便给予一定的光照,光合作用也不一定能正常进行,C错误。叶绿体中光反应产生的ATP,完全被叶绿体内暗反应所利用,D正确。 2.(2019·甘肃武威六中高三段考)下图所示为叶绿体中色素蛋白等成分在膜上的分布。下列关于相关过程以及发生场所的说法,不正确的是( ) A.H2O→[H]+O2发生在光反应阶段,场所是叶绿体类囊体薄膜 B.膜上的叶绿素主要吸收蓝紫光和红光用于光合作用 C.发生的能量转换是光能→化学能 D.产生的ATP可用于植物体的各项生理活动 解析:选D。水的光解发生在光反应阶段,场所是叶绿体的类囊体薄膜,A项正确;叶绿素主要吸收蓝紫光和红光,类胡萝卜素主要吸收蓝紫光,B项正确;光能在类囊体薄膜上转换为ATP中的化学能,C项正确;叶绿体类囊体薄膜上经光反应产生的ATP只能用于暗反应,D项错误。 3.(2019·山西太原期末)下列关于叶绿体色素在光合作用过程中作用的描述,错误的是( ) A.叶绿体色素与ATP的合成有关 B.叶绿体色素参与ATP的分解 C.叶绿体色素与O2和[H]的形成有关 D.叶绿体色素能吸收和传递光能

《光合作用的探究历程》教学设计

《光合作用的探索历程》教学设计 抚宁一中杨滨 [教材分析] 本节课为高中必修1《分子与细胞》(新人教版)第5章第4节能量之源——光与光合作用中的内容。第4节包括“捕获光能的色素和结构”、“光合作用的原理和应用”两大部分,其中“光合作用的探究历程”这部分内容往往被许多老师在上课时一带而过,并未加以重视。事实上,光合作用探究过程中的经典实验,从一定程度上反映了科学探究的一般方法,是培养学生科学精神、科学态度和科学研究方法的好素材,为后面众多的实验打下一个良好的感知基础,也为讲述光合作用的原理、过程做好知识铺垫。因此,“光合作用的探究历程”这部分内容相当重要,不容忽视。 [教学目标] 知识性目标: 1.说出光合作用的探究历程。2.初步掌握科学探究的一般方法。 技能性目标: 尝试分析实验、设计实验。 情感性目标: 1.关注科学工作的方法和过程,形成严谨的科学态度及创新、合作的科学精神。 2.体验科学发现的艰难和科学家们的智慧力量,确立进行科学研究的欲望和信心。[教学重点] 1.光合作用的探究历程。 2.科学探究实验的基本方法。 [教学难点] 真正领悟探究实验的科学原理和方法,并很好地运用到设计实验中。 [教学方法] 探究与发现式教学;小组合作学习 [教学媒体] 实物投影、多媒体课件 [教学设计思路] 本节课以“光合作用的探究历程”为主线,遵循科学家的探索思路,通过对几个经典实验的讨论分析,采取“提出问题—探究—解决问题”的教学方法,层层递进,环环相扣,让学生对科学探究有一个比较完整的认识,从中领悟科学探究的原则和一般方法。 在教学中,采用多元化的教学方式:利用视频动画、录像等教学手段,让学生对实验过程有直观感性的认识;充分调动学生学习主动积极性;把学生分为若干小组活动,使学生在较短的时间内确定实验方案,培养团队合作精神;通过师生共同总结并同步板书,让学生更深入地理解光合作用的概念和总反应式中的各个部分;通过课堂实验设计,及时加深巩固本节课所学习、涉及到的实验原理和方法,培养学生的科学素质和创新精神。 在探究问题的过程中,使学生感受到知识产生与发展是受当时科学发展水平限制的,并通过一些具体的数据:500多次、300多年,让学生体会到科学上的每一项发明和发现的背后都凝聚着无数探索者的辛勤劳动,更好地理解为什么说生物学的发展史就是一部众多生物学家不计个人名利为科学事业奉献毕生精力的奋斗史,对学生进行情感教育,这也是本节课的重中之重。

光合作用的原理和过程

光合作用的原理和过程

————————————————————————————————作者:————————————————————————————————日期:

光合作用的原理和过程 一、教材分析与教学设计思路?光合作用是植物体最基本的新陈代谢,是生物界物质和能量的基本来源。光合作用知识的掌握为生态系统结构和功能的学习奠定基础,当今人类社会面临的粮食、资源、环境等问题与光合作用有着密切联系,所以光合作用知识在全书教材中占有重要地位,是整个高中阶段的重点,也是高考必考的知识点。?本节教学设计意图沿着光合作用的发现历程对光合作用的光反应和暗反应这两个阶段从物质变化和能量转化的高度作深入的探讨和研究,引导学生从物质和能量转变的角度去理解光合作用的实质,掌握本节重点;同时希望通过对教材中科学家关于光合作用探究过程的经典实验的学习和分析,使学生体会经典实验所蕴含着科学探究的一般方法,初步建立科学探究的能力。 二、教学目标设计?1、知识目标:?(1)学生能够描述光合作用的认识过程。(2)描述光反应暗反应过程的物质变化和能量转化。?2、能力目标:?(1)尝试进行实验设计,学会控制自变量、设置对照实验。?(2)在有关实验、资料分析、思考与与讨论、探究等的问题讨论中,运用语言表达的能力及分享信息的能力。 3、情感、态度和价值观目标:?通过光合作用的探究历程,学生能体验前人设计实验的技能和思维方式,同时能认识到科学是在不断的观察、实验和探索中前进的。通过光反应和暗反应关系的分析,能树立科学的辨证观点。

三、重点难点及确立依据: 1.教学重点 (1)光合作用的发现及研究历史。(2)光合作用的光反应、暗反应过程及相互关系。 2.教学难点?光反应和暗反应的过程。?学生了解了在光合作用探索历程中所出现的问题和解决的方法,等于沿着科学家的发现思路作了一次思维的探究。这有利于培养学生的科学精神和科学思维,同时为讲述光合作用的原理做好知识铺垫。因此,光合作用的发现及研究历史是教学的重点。 光反应和暗反应过程的物质变化和能量转化比较抽象,又是理解光合作用实质、探究影响光合作用强度的环境因素的基础。因此,光合作用的光反应、暗反应过程及相互关系是教学的重点和难点。?四、教法学法及媒体选择 1.教法及媒体选择 根据新课程理念,针对本节内容,我主要采取探究式教学与多媒体辅助教学相结合的方法。在教学过程中,以光合作用发现历程的经典实验为线索,启发学生从现象入手提出问题,进而设计实验进行验证,通过探究性学习,使学生积极主动地参与教学过程中,探索光合作用的实质,充分体现学生的主体地位。 因为光反应和暗反应过程的物质变化和能量转化比较抽象,而多媒体它不仅使教学视听化、形声化,而且使课堂的直观性更加突出;更重

相关文档
最新文档