一种下肢外骨骼康复机器人优化的结构设计与控制仿真分析

一种下肢外骨骼康复机器人优化的结构设计与

控制仿真分析

张玉叶1,张小栋2,江 城2,王 贺2,石强勇2

(1.咸阳师范学院物理与电子工程学院,陕西咸阳712000;2.

西安交通大学机械与电子工程学院,陕西西安710049)

OptimizedPhysicalDesignandSimulationofaLower

limbExoskeletons’

RehabilitationRobot

ZHANC Yu y e 1,ZHANC Xiaodon g 2,JIANC Chen g 2,WANC He 2,SHI Q ian gy on g 2

(1.CollegeofPhysicsandElectronicsEngineering,XianyangNormalCollege,Xianyang712000,China;

2.SchoolofMechanicalEngineering,Xi’anJiaotongUniversity,Xi’an710049,China)

摘要:

越来越多的脑卒中患者使得理疗师的康复训练工作繁重且康复效果评估体系不完整,针对此现状,设计出一款优化的外骨骼康复机器人模型。介绍了该机器人优化的结构设计,并对其进行了相对应的控制策略分析,

进而提出一种控制方法并进行了仿真分析。仿真实验研究表明,所提出的控制策略在跟踪精度和速度上都具有明显的优势。

关键词:外骨骼机器人;下肢康复;结构设计;控制策略;

仿真分析中图分类号:TP242文献标识码:A

文章编号:1001

2257(2015)05007704

收稿日期:20150122基金项目:西安交通大学国际科技合作项目(51275388)

;咸阳师范学院教研基金项目(13XSYK015)

Abstract :Nowadays,moreandmorestrokepa-tientsleadtothestrenuousrehabilitationtrainingtasksoftherapistsandtheincompleterehabilita-tionevaluationsystem.Aimingatsuchsituationsourteamdesignanexoskeletonrehabilitationro-bot.Accordingtothedynamiccharactersoftherobotweanalyzedthelower

limbrehabilitation

strategyandthecorrespondingcontrolstrategy.Acontrolmethodwasthereforeproposedandana-lyzedviasimulation.Thesimulationresultsshowthattheproposedcontrolmethodhasobviousad-vantagesintrackingprecisionandspeed.Ke y words :exoskeletons’robot;lowerlimbs

rehabilitation;physicaldesign;controlstrategies;simulationanalysis

0 引言

康复医学理论和临床治疗证明,对患者进行由简单到复杂,由协助到监护,直至患者能够生活自理

的康复训练有非常重要的意义[

1]

。基于康复机器人社会需求和科学价值,开发一款下肢外骨骼康复机器人,其结构设计已完成论证,结构设计简洁,自适应性强,已申请发明专利。在结构设计基础上,参考文献[2

3]

,对康复机器人的运动学以及动力学建模进行了研究,参考文献[4],对下肢外骨骼康复机器人的自适应控制方法进行了研究,并进行二自由度仿真,

为课题的深入研究打下基础。1 下肢外骨骼康复机器人机械结构设

计及运动学关系

设计的康复机器人总体结构如图1所示,

采用曲柄滑块机构驱动关节旋转,

电机采用混合式丝杆电机,最大推力为800N,简化了设计结构,膝关节

平均驱动力矩为40N·m,髋关节平均驱动力矩为50N·m。电机通过联轴器带动滚珠丝杠转动,从而带动固定于丝杠螺母上的髋关节滑块移动,滑块移动带动髋关节推杆运动使得大腿杆摆动,实现关节角度规律变化。本文中轨迹控制的输入量是关节角度,以髋关节为例其运动学关系几何简图如图2所示,图中标注的尺寸单位为mm,定义大腿和小腿

·

77·《机械与电子》2015(5)

一种下肢外骨骼康复机器人优化的结构设计与控制仿真分析

一种下肢外骨骼康复机器人优化的结构设计与 控制仿真分析 张玉叶1,张小栋2,江 城2,王 贺2,石强勇2 (1.咸阳师范学院物理与电子工程学院,陕西咸阳712000;2. 西安交通大学机械与电子工程学院,陕西西安710049) OptimizedPhysicalDesignandSimulationofaLower limbExoskeletons’ RehabilitationRobot ZHANC Yu y e 1,ZHANC Xiaodon g 2,JIANC Chen g 2,WANC He 2,SHI Q ian gy on g 2 (1.CollegeofPhysicsandElectronicsEngineering,XianyangNormalCollege,Xianyang712000,China; 2.SchoolofMechanicalEngineering,Xi’anJiaotongUniversity,Xi’an710049,China) 摘要: 越来越多的脑卒中患者使得理疗师的康复训练工作繁重且康复效果评估体系不完整,针对此现状,设计出一款优化的外骨骼康复机器人模型。介绍了该机器人优化的结构设计,并对其进行了相对应的控制策略分析, 进而提出一种控制方法并进行了仿真分析。仿真实验研究表明,所提出的控制策略在跟踪精度和速度上都具有明显的优势。 关键词:外骨骼机器人;下肢康复;结构设计;控制策略; 仿真分析中图分类号:TP242文献标识码:A 文章编号:1001 2257(2015)05007704 收稿日期:20150122基金项目:西安交通大学国际科技合作项目(51275388) ;咸阳师范学院教研基金项目(13XSYK015) Abstract :Nowadays,moreandmorestrokepa-tientsleadtothestrenuousrehabilitationtrainingtasksoftherapistsandtheincompleterehabilita-tionevaluationsystem.Aimingatsuchsituationsourteamdesignanexoskeletonrehabilitationro-bot.Accordingtothedynamiccharactersoftherobotweanalyzedthelower limbrehabilitation strategyandthecorrespondingcontrolstrategy.Acontrolmethodwasthereforeproposedandana-lyzedviasimulation.Thesimulationresultsshowthattheproposedcontrolmethodhasobviousad-vantagesintrackingprecisionandspeed.Ke y words :exoskeletons’robot;lowerlimbs rehabilitation;physicaldesign;controlstrategies;simulationanalysis 0 引言 康复医学理论和临床治疗证明,对患者进行由简单到复杂,由协助到监护,直至患者能够生活自理 的康复训练有非常重要的意义[ 1] 。基于康复机器人社会需求和科学价值,开发一款下肢外骨骼康复机器人,其结构设计已完成论证,结构设计简洁,自适应性强,已申请发明专利。在结构设计基础上,参考文献[2 3] ,对康复机器人的运动学以及动力学建模进行了研究,参考文献[4],对下肢外骨骼康复机器人的自适应控制方法进行了研究,并进行二自由度仿真, 为课题的深入研究打下基础。1 下肢外骨骼康复机器人机械结构设 计及运动学关系 设计的康复机器人总体结构如图1所示, 采用曲柄滑块机构驱动关节旋转, 电机采用混合式丝杆电机,最大推力为800N,简化了设计结构,膝关节 平均驱动力矩为40N·m,髋关节平均驱动力矩为50N·m。电机通过联轴器带动滚珠丝杠转动,从而带动固定于丝杠螺母上的髋关节滑块移动,滑块移动带动髋关节推杆运动使得大腿杆摆动,实现关节角度规律变化。本文中轨迹控制的输入量是关节角度,以髋关节为例其运动学关系几何简图如图2所示,图中标注的尺寸单位为mm,定义大腿和小腿 · 77·《机械与电子》2015(5)

外骨骼助力机器人研究

外骨骼助力机器人研究现状与关键技术 分析 王庆江 深圳第二高级技工学校广东深圳 518000 摘要:运用比较传统的运载方法以及在工具受到多方面因素的制约,在比较复杂的地形条件之下,传统运载工具不能够很好的工作,而外骨骼助力机器人有效地解决了这个问题,是一个非常明显的突破。因此,在当前世界各地,外骨骼助力机器人的研究有着非常好的前景。本文从不同方面分析外骨骼助力机器人的发展状况,主要分析了外骨骼助力机器人所涉及到的关键技术,并且作出深入的研究。 关键词:外骨骼助力机器人;研究现状;关键技术外骨骼助力机器人是一种全新的现代化装置,这种机器人融合多种信息,控制系统传感系统集于一身,并且为穿戴人员控制好功能和任务。外骨骼助力机器人是一种前沿技术装备,受到多方的关注并且取得了突出的效果。在我国,外骨骼助力机器人研究借鉴先进技术,并且不断地创新,主要研究外骨骼助力机器人在我国国内的发展现状以及其关键技术分析。 1.在国内外,外骨骼助力机器人的研究现状分析 随着时代的进步以及科技的不断发展,最新型的材料和技术充分应用在外骨骼助力机器人的发明上,促使外骨骼助

力机器人得到很好的发展。在一些发达国家,对外骨骼助力机器人进行改良,并且不断创新,经过努力,在我国国内对于外骨骼助力机器人的发明和创新也取得了很明显的成效。下面将归纳分析目前为止国内外外骨骼助力机器人的研究状况。 1.1国外对于外骨骼助力机器人的研究状况分析 表1 国外对于外骨骼助力机器人的研究表 1.2我国国内对于外骨骼助力机器人的研究状况分析 表2 国内对于外骨骼助力机器人的研究表 2.外骨骼助力机器人关键技术分析 2.1驱动技术 2.1.1液压驱动 通过运用液压驱动能够在很大程度上帮助外骨骼助力

康复机器人-设计工程规划书

设计题目:基于索驱动的康复训练仿人机械臂 1 项目的背景和意义 近年来,由于各种原因导致肢体残障的人士越来越多。目前造成残障的主要原因有三。其一,由于灾害事故造成肢体残障。由中国康复研究中心完成的北京市脊髓损伤流行病学调查结果显示,我国每年有近十万新增肢体残疾病人,我国残疾人口总数为8296 万,占总人口的 6.34%,涉及 2.6 亿家庭人口。其二,由于人口老龄化导致瘫痪。据第六次人口普查报告可知,截止2010 年我国60 岁以上的老年人已超过 1.78 亿,占总人口的13.26%,比第五次人口普查上升2.93 个百分点;65 岁以上的老年人达到1.19 亿,占总人口的8.87%,比第五次人口普查上升1.91 个百分点。有关部门预计,从2011年到2015 年,全国60 岁以上老年人将由 1.78 亿增加到2.21 亿,平均每年增加老年人860 万;老年人口比重将由13.3%增加到16%,平均每年递增0.54 个百分点,到2030 年全国老年人口规模将会翻一番。并且我国老年人中,长期卧床、生活不能自理的约有2700 万人,半身不遂的约有70 万人,82 万老年性痴呆病人中约有24万人长期卧床。其三,由于中风、脊髓损伤等疾病引起的肢体残障。中风的世界平均发病率为200/10万,且根据世界卫生组织统计,中国的中风发病率排名世界第一;对于脊髓损伤,国外报道其年发病率为每百万人口15~40例,我国上海市1991年统计的脊髓损伤发生率为34.3人/百万人,北京市2002年脊髓损伤发病率为60人/百万人。 由于以上三点的形势比较严峻,导致残障人士越来越多。而残障人士由于生活不能自理,不仅给其自身造成了痛苦,而且对于其家庭和社会而言都带来了极大的负担,因此,残障人士的康复治疗越来越受社会关注。 早期的康复治疗方式主要是通过理疗师一对一指导进行指导,不仅需要大量的康复治疗中心和理疗师,需要很高的成本,同时由于康复治疗中心离患者有一段距离,而这些残障人士一般又难以独立出行,如此会给患者及其家属造成很大的不便。因此,早期康复治疗的发展一直受到了很大的限制。 而随着机器人的发展和康复机器人这一理念的提出,这一限制得到的缓解。由于康复机器人体积小,不需要单独的理疗师辅助治疗,可以方便患者自主在家庭使用,可以降低治疗的费用并且相对方便。这在缓解残障人士给社会带来的压力方面和缓解残障人士的痛苦方面,有着重大的意义。 2 国内外研究发展现状 2.1 康复机器人发展现状 康复机器人涉及机械、电子、控制、生物、传感等多个方面,起步于20世纪80年代,美国、英国和加拿大在康复机器人方面的研究处于世界的领先地位。1990 年以前全球的56 个研究中心分布在5 个工业区内:北美、英联邦、加拿大、欧洲大陆和斯堪的纳维亚半岛及日本。1990年以后康复机器人的研究进入到全面发展时期。目前康复机器人的研究主要集中在康复机械手、医院机器人系统、智能轮椅、假肢和康复治疗机器人等几个方面。 国内康复机器人由于存在技术含量低、产学研脱节、机械加工水平低等原因,使得目前国内的康复机器人主要还处于研究阶段。虽然在“十二五”

人体下肢外骨骼机器人的步态研究现状

人体下肢外骨骼机器人的步态研究现状 王楠,王建华,周民伟 外骨骼(exoskeleton )一词来源于生物学,是指为生物提供保护和支持的坚硬的外部结构[1],如甲壳类和昆虫等节肢动物的外骨骼系统。人体外 骨骼机器人是将人的智慧与机器的机械动力装置结合为一体的机器人[2]。美国于2000年开展了“增强人体机能的外骨骼”(Exoskeletons for Human Performance Augmentation ,EHPA )研究项目[3-4],自此,外骨骼机器人的开发与应用逐渐进入 人们的视线,成为关注的焦点。由于外骨骼机器人不仅为操作者提供了诸如保护、身体支撑等功能,还能在操作者的控制下完成一定的功能和任务,因此在下肢功能障碍患者的步行功能锻炼过程中的应用逐渐增多[5-7];此外,其在单兵作战装备 【摘要】外骨骼机器人是将人的智慧与机器的机械动力装置相结合的一种机器人,不仅可以为操作者提供保护、身体支撑等功能,还可以在操作者的控制下完成一定的功能和任务,应用前景巨大。文中阐述人体下肢外骨骼机器人下肢外骨骼实现行走应具备的关节及其活动度,介绍下肢外骨骼机器人步态控制的基础——正常步态分析,详细论述了目前控制下肢外骨骼机器人行走及步态稳定性的主要方法。 【关键词】下肢;机器人;外骨骼;步态 中图分类号:R-05,R336文献标识码:A 文章编号:1674-666X(2012)01-0062-06 Current researches of gait analysis on human lower extremity exoskeleton robotic device WANG Nan,WANG Jianhua,ZHOU Minwei.Department of Overseas Chinese,Guangzhou General Hospital of Guangzhou Military Command,Guangdong 510010,China 【Abstract 】Exoskeleton robotic device is a kind of robot that combines the intelligence of human with the mechanical power of machine,which can not only provide protection and support for operators but also accomplish certain functions and missions under the control of operators.In this paper,relative key factors of lower extremity exoskeleton robotic device techniques are introduced briefly such as the joints and the range of motion (ROM)which the lower extremity exoskeleton should be equipped,the normal gait analysis which is the basis of gait control of the exoskeleton robot,and then the major walking control methods and gait stability control methods for lower extremity exoskeleton robotic device which are discussed in detail. 【Key words 】Extremities;Robotics;Exoskeleton;Gait DOI :10.3969/j.issn.1674-666X.2012.01.010 基金项目:广东省科技计划项目(2010B010800006),广州市科技计划项目(2010J-E311) 作者单位:510010广州军区广州总医院华侨科(王楠);脊柱外科(王建华);医务部(周民伟)E-mail :115989930@https://www.360docs.net/doc/7712198886.html, 综述

康复机器人的系统设计

第1章绪论 1.1 概述 据报道,我国60岁以上的老年人已有1.43亿,占全国人口的11%,到2050年将达到4.37亿。在老龄人群众中有大量的脑血管疾病或神经系统疾病患者,这类患者多数伴有偏瘫症状[1]。近年由于患心脑血管疾病使中老年患者出现偏瘫的人数不断增多,而且在年龄上呈现年轻化趋势。同时,由于交通运输工具的迅速增长,因交通事故而造成神经心痛损伤或者肢体损伤的人数也越来越多。在美国数以百万计的有神经科疾病病史和受到过意外伤害的患者需要进行康复治疗,仅以中风为例,每年大约有600,000中风幸存者,其中的二百万病人在中风后存在长期的运动障碍。随着国民经济的发展,这个特殊群体已得到了更多人的关注,为了提高他们的生活质量,治疗、康复和服务于他们的产品的技术和质量也在相应地提高。随着机器人技术和康复医学的发展,在欧洲、美国和日本等国家,医疗康复机器人的市场占有率呈逐年上升的趋势,仅预测日本未来机器人市场,2005年医疗、护理、康复机器人的市场份额约为250,000美元,而到2010年将上升到1,050,000美元,其增长率在机器人的所有应用领域中占据首位。因此,服务于四肢的康复设备的研究和应用有着广阔的发展前景[2]。

康复机器人是康复设备的一种类型。康复机器人技术早已广受世界各国科研工作者和医疗机构的普遍重视,其中以欧美和日本的成果最为显著。在我国康复医学工程虽然得到了普遍的重视,而康复机器人研究仍处于起步阶段,一些简单康复器械远远不能满足市场对智能化、人机工程化的康复机器人的需求,有待进一步的研究和发展。 由于康复训练机器人要与人体直接相连,来带动肢体进行康复训练,所以对驱动器的安全性、柔性的要求较高。近年来,以气动元件柔性驱动器逐渐引起人们的重视,在医疗康复器械领域中得到越来越多的应用。 本课题的研究目的是设计一种用于脑损伤、中风等病人的步态康复训练系统,帮助病人更好地进行康复训练,减轻他人的帮助,挺高效果。 1.2康复机器人的国内外研究现状 在对有运动障碍的老人或残疾人进行治疗和康复的过程中,使用康复机器人可以解决好多问题:机器人的使用可以解决专业护理人员缺乏和医疗费用昂贵的问题,可以避免由于训练方法不科学和专业护理人员个人疏忽等主观原因引起的对病人的伤害,可供病人在家或工作场所使用,使病人获得更多的独立生活能力,提高了病人的生活质量等。康复机器人是一种自动化医疗康复设备,它以医学理论为依据,帮助患者进行科学而有效的康复训练,使患者的运动机能得到更快更好的恢复。目

(完整版)六自由度机器人结构设计

六自由度机器人结构设计、 运动学分析及仿真 学科:机电一体化 姓名:袁杰 指导老师:鹿毅 答辩日期: 2012.6 摘要 近二十年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获 得应用。我国在机器人的研究和应用方面与工业化国家相比还有一定的差距,因此 研究和设计各种用途的机器人特别是工业机器人、推广机器人的应用是有现实意义 的。 典型的工业机器人例如焊接机器人、喷漆机器人、装配机器人等大多是固定在 生产线或加工设备旁边作业的,本论文作者在参考大量文献资料的基础上,结合项 目的要求,设计了一种小型的、固定在AGV 上以实现移动的六自由度串联机器人。 首先,作者针对机器人的设计要求提出了多个方案,对其进行分析比较,选择

其中最优的方案进行了结构设计;同时进行了运动学分析,用D-H 方法建立了坐标变换矩阵,推算了运动方程的正、逆解;用矢量积法推导了速度雅可比矩阵,并计算了包括腕点在内的一些点的位移和速度;然后借助坐标变换矩阵进行工作空间分析,作出了实际工作空间的轴剖面。这些工作为移动式机器人的结构设计、动力学分析和运动控制提供了依据。最后用ADAMS 软件进行了机器人手臂的运动学仿真,并对其结果进行了分析,对在机械设计中使用虚拟样机技术做了尝试,积累了 经验。 第1 章绪论 1.1 我国机器人研究现状 机器人是一种能够进行编程,并在自动控制下执行某种操作或移动 作业任务的机械装置。 机器人技术综合了机械工程、电子工程、计算机技术、自动控制及 人工智能等多种科学的最新研究成果,是机电一体化技术的典型代表,是当代科技发展最活跃的领域。机器人的研究、制造和应用正受到越来越多的国家的重视。近十几年来,机器人技术发展非常迅速,各种用途的机器人在各个领域广泛获得应用。 我国是从 20 世纪80 年代开始涉足机器人领域的研究和应用的。1986年,我国开展了“七五”机器人攻关计划。1987 年,我国的“863”计划将机器人方面的研究列入其中。目前,我国从事机器人的应用开发的主要是高校和有关科研院所。最初我国在机器人技术方面的主要

伯克利下肢外骨骼(BLEEX)的机械学设计

伯克利下肢外骨骼(BLEEX)的机械学设计 Adam Zoss, H. Kazerooni, Andrew Chu Department of Mechanical Engineering University of California, Berkeley, CA, 94720, USA exo@https://www.360docs.net/doc/7712198886.html,, https://www.360docs.net/doc/7712198886.html, 摘要:第一种能携带负载的高效自主式下肢外骨骼已经在加州大学伯克利分校被展示出来。这篇文章概括了伯克利下肢外骨骼(BLEEX)的机械学设计。基于拟人化的BLEEX每条腿有七个自由度,其中的四个由直线液压驱动器驱动。描述了自由度的选择以及运动范围。另外,文章还包含了BLEEX主要部件方面的重要设计。 关键词:BLEEX,外骨骼,可穿戴式机器人,机械设计,步行 Ⅰ.引言 重物通常由轮式交通工具运输。然而,很多环境例如岩石地形和阶梯,给轮式交通工具带来巨大的困难。因此,在这些环境中,步行就成为一种有吸引力的运输方式,因为腿能适应各种极端地形。伯克利下肢外骨骼(通常称为BLEEX)是第一款由操纵者穿戴的野战用机器人系统,它能为其操纵者提供在任何类型的地形下付出极小努力背负载荷的能力。 BLEEX是由两个动力拟人的腿、一个电源和一个可安装各种重载的背包式框架组成(图1)。BLEEX通过人机交互引导腿的运动提供携带负载的能力,摒弃了主动驱动,BLEEX伴随操纵者的运动就像它是一对人工腿一样被他/她“穿戴”。通过将机器人的力量与智能导航、人的适应能力相结合,BLEEX允许重物在崎岖、松散和未知的地形中运送。 外骨骼通常指包含上肢或下肢或两者兼备的系统。BLEEX项目仅仅着眼于 图1下肢外骨骼的概念图。正确活动的机器腿从穿戴者身上转移走载荷 的重量,同时使穿戴者能够轻松地控制和平衡机器。

外骨骼机器人发展

外骨骼技术研制始于1960 年代的美国,最早的研究成果是美国通用公司研发的Hardiman 外骨骼系统,其主要采用电机驱动控制,可以轻易举起重物。 1978 年,美国麻省理工学院研究出“被动式外骨骼助力机器人”。MIT的外骨骼下肢助力机器人能够在负载36公斤的情况下行走1m/s,其中80%的负重被传递到地面上。它的关节自由度配置包括髋关节有3 个自由度,膝关节 1 个自由度。穿戴者与机器人在肩膀、腕关节、大腿和脚部连接,机器人总重量是11.7Kg。驱动方式不采用电力驱动,只利用弹簧储能和变阻尼器驱动关节驱动。髋关节伸/屈运动时,伸运动时弹簧释放能量,屈运动时弹簧储存能量,膝关节利用磁流变阻尼器,踝关节利用碳纤维弹簧缓冲脚后跟对地面的冲力。传感器系统是由安装在外骨骼下肢助力机器人外壳的应变桥式应变片传感器和安装在膝关

节的电位计组成。 2004年,伯克利分校研制出的下肢外骨骼机器人BLEEX是DARPA项目的第一台带移动电源和能够负重的下肢外骨骼机器人。BLEEX由--个用于负重的背包式外架、两条动力驱动的仿生金属腿及相应动力设备组成,使用背包中的液压传动系统和箱式微型空速传感仪作为液压泵的能量来源,以全面增强人体机能。BLEEX的每条腿具有7个自由度(髋关节3个,膝关节1个,踝关节3个),在该装置中总共有40多个传感器以及液压驱动器,它们组成了一个类似人类神经系统的局域网。BLEEX的负重量能达至75kg,并以0.9m/s的速度行走,在没有负重的情况下,能以1.3m/s的速度行走。

目前,洛克希德·马丁公司和伯克利分校共同研制了新一代外骨骼机器人HULC 。这款新型外骨骼继承了BLEEX 的优点,对一些液压传动装置和结构进行了优化设计,不但能够直立行进,还可完成下蹲和匍匐等多种相对复杂的动作,穿上HULC 后能够明显降低人体对氧气的消耗量。在一次充满电后,HULC 可保证穿着者以4.8km /h 的速度背负90kg 重物持续行进一个小时。而穿着HULC 的冲刺速度则可达到16km /h 。HULC 穿戴起来也非常方便,士兵只需将腿伸进靴子下方的足床,然后用皮带绑住腿部、腰部以及肩部即可,完全脱下需30秒的时间。

上肢康复机器人的结构毕业设计

摘要 康复机器人是康复设备的一种类型,康复机器人技术早已广受世界各国科研工作者和医疗机构的普遍重视,其中以欧美和日本的成果最为显著。在我国康复医学工程虽然得到了普遍的重视,但是康复机器人研究仍处于起步阶段,一些简单康复器械远远不能满足市场对智能化、人机工程化康复机器人的需求,有待进一步的研究和发展。 本文从使用的角度对人体上肢的运动原理进行了分析,设计出了一种坐式上肢康复训练机器人,用于心脑血管疾病致瘫或者意外事故所造成上肢损伤的患者作上肢及其相关关节的康复训练。本设计的康复机器人机身是由放置于平台上的机座,两根可伸缩的立柱和上横梁及其手柄组成,并在其各个组成部分上分别装上上肢屈伸机构、前后摆机构、分合机构和手腕旋转机构;各运动机构由单独的电机和减速器驱动,而传动机构的主件分别是传动轴、丝杠螺母副、同步齿形带传动副。 康复机器人的立柱主要采用薄壁套筒,这样既减轻了重量,也使得丝杠螺母副能构得到套筒的固定和定位。整个设计主要要注意的主要问题是减重和减噪,避免整体结构过于庞大笨重。 关键词:康复;上肢;结构设计;减重;噪音

ABSTRACT Rehabilitation robot is a type of rehabilitation facilities. Rehabilitation robotics have long been well received by the world scientists and the general importance of medical institutions, in which Europe and the United States and Japan, the results are the most significant. Medical Engineering in our country has been received widespread attention though, and rehabilitation robotics still in its infancy, some simple rehabilitation equipment is far from meeting intelligence, ergonomics of the rehabilitation robot needs to be further research and development. This perspective on the human body from the use of upper limb movement principle is analyzed,the seated upper extremity rehabilitation robot is designed , for the paralysis caused by cardiovascular diseases or accidents. The design of the rehabilitation robot body is placed on the platform base, two scalable columns and beams of the handle on the composition and its components are installed on the upper limb flexion which include separate and close agency, before and after agency, lifting agency and the wrist rotation agency; the every movement is driven by the separate drive motor and reducer, and the main parts are the shaft, screw nut pairs, timing belt, deputy. Rehabilitation robot column mainly adopts the thin wall sleeve, so as to reduce weight, also makes the lead screw nut pair can be fixed and the positioning sleeve. The design of the main attention to the major problem is the weight loss and noise reduction, avoid the whole structure is too bulky. Key words:rehabilitation;upper limb;structural design;Weight loss; noise

机器人机械手的设计要求要点

机械手的设计要求 机械手总体结构的类型 工业机器人的结构形式主要有直角坐标结构,圆柱坐标结构,球坐标结构,关节型结构四种。各结构形式及其相应的特点,分别介绍如下。 1.直角坐标机器人结构 直角坐标机器人的空间运动是用三个相互垂直的直线运动来实现的.由于直线运动易于实现全闭环的位置控制,所以,直角坐标机器人有可能达到很高的位置精度(μm级)。但是,这种直角坐标机器人的运动空间相对机器人的结构尺寸来讲,是比较小的。因此,为了实现一定的运动空间,直角坐标机器人的结构尺寸要比其他类型的机器人的结构尺寸大得多。 直角坐标机器人的工作空间为一空间长方体。直角坐标机器人主要用于装配作业及搬运作业,直角坐标机器人有悬臂式,龙门式,天车式三种结构。 2.圆柱坐标机器人结构 圆柱坐标机器人的空间运动是用一个回转运动及两个直线运动来实现的。这种机器人构造比较简单,精度还可以,常用于搬运作业。其工作空间是一个圆柱状的空间。 3. 球坐标机器人结构 球坐标机器人的空间运动是由两个回转运动和一个直线运动来实现的。这种机器人结构简单、成本较低,但精度不很高。主要应用于搬运作业。其工作空间是一个类球形的空间。 4. 关节型机器人结构 关节型机器人的空间运动是由三个回转运动实现的。关节型机器人动作灵活,结构紧凑,占地面积小。相对机器人本体尺寸,其工作空间比较大。此种机器人在工业中应用十分广泛,如焊接、喷漆、搬运、装配等作业,都广泛采用这

种类型的机器人。 手臂的设计要求 机器人手臂的作用,是在一定的载荷和一定的速度下,实现在机器人所要求的工作空间内的运动。在进行机器人手臂设计时,要遵循下述原则; 1.应尽可能使机器人手臂各关节轴相互平行;相互垂直的轴应尽可能相交于一点,这样可以使机器人运动学正逆运算简化,有利于机器人的控制。 2.机器人手臂的结构尺寸应满足机器人工作空间的要求。工作空间的形状和大小与机器人手臂的长度,手臂关节的转动范围有密切的关系。但机器人手臂末端工作空间并没有考虑机器人手腕的空间姿态要求,如果对机器人手腕的姿态提出具体的要求,则其手臂末端可实现的空间要小于上述没有考虑手腕姿态的工作空间。 3.为了提高机器人的运动速度与控制精度,应在保证机器人手臂有足够强度和刚度的条件下,尽可能在结构上、材料上设法减轻手臂的重量。力求选用高强度的轻质材料,通常选用高强度铝合金制造机器人手臂。目前,在国外,也在研究用碳纤维复合材料制造机器人手臂。碳纤维复合材料抗拉强度高,抗振性好,比重小(其比重相当于钢的1/4,相当于铝合金的2/3),但是,其价格昂贵,且在性能稳定性及制造复杂形状工件的工艺上尚存在问题,故还未能在生产实际中推广应用。目前比较有效的办法是用有限元法进行机器人手臂结构的优化设计。在保证所需强度与刚度的情况下,减轻机器人手臂的重量。 4.机器人各关节的轴承间隙要尽可能小,以减小机械间隙所造成的运动误差。因此,各关节都应有工作可靠、便于调整的轴承间隙调整机构。 5.机器人的手臂相对其关节回转轴应尽可能在重量上平衡,这对减小电机负载和提高机器人手臂运动的响应速度是非常有利的。在设计机器人的手臂时,应尽可能利用在机器人上安装的机电元器件与装置的重量来减小机器人手臂的不平衡重量,必要时还要设计平衡机构来平衡手臂残余的不平衡重量。 6.机器人手臂在结构上要考虑各关节的限位开关和具有一定缓冲能力的机械限位块,以及驱动装置,传动机构及其它元件的安装。 腰座结构的设计要求

下肢外骨骼康复机器人设计及运动学分析

下肢外骨骼康复机器人设计及运动学分析 发表时间:2017-03-16T14:57:02.420Z 来源:《科技中国》2017年1期作者:王子鸣[导读] 本文对该机构进行了运动学分析,并使用MATLAB对机构进行了轨迹规划仿真。 (宜昌市葛洲坝中学湖北宜昌 443002) 摘要:下肢运动功能障碍患者为数众多,常规的康复训练高度依赖理疗师,成本昂贵,常人难以承受。下肢外骨骼康复机器人能有效解决这一社会问题。本文设计了一个单腿两自由度主动驱动的下肢外骨骼康复机器人。采用两个直线驱动器分别驱动髋关节和膝关节的运动,直线驱动器末端安装有力传感器,通过时时检测人-机作用力实现机器人的柔顺控制。本文对该机构进行了运动学分析,并使用MATLAB对机构进行了轨迹规划仿真。仿真结果表明该下肢外骨骼康复机器人具备辅助病人的能力。关键词:下肢外骨骼,柔顺控制,轨迹规划 0 引言 随着人口老龄化的发展,脑卒中,骨关节炎等老龄化疾病患者数量逐渐增加。这类患者往往患有各种致残的疾病,丧失正常的运动能力[1]。在这样的时代背景下,未来社会对康复医疗的需求将越来越迫切。下肢外骨骼机器人将为解决这一社会问题发挥重要的作用。 近年来,国内外众多研究机构对康复机器人开展了深入的研究。在台架式下肢外骨骼康复机器人研究方面,瑞士HOCOMA公司和瑞士苏黎世联邦理工大学共同研制的Lokomat外骨骼康复机器人,它髋关节和膝关节各采用一个直线电机进行驱动,单腿具有两个自由度,双腿四个自由度。该机器人在轨迹控制的基础上采用了阻抗控制的方式,具有很好的实用性和用户体验[2-4]。哥伦比亚大学研发的ALEX,除了单腿的四个自由度之外,骨盆上还具有四个自由度,机器人总共具有十二个自由度,它将电机放在下肢外骨骼后方,采用带轮等实现电机远端驱动,有效地降低了机器人运动部件的惯量,该机器人采取将切向力和法向力作用在患者的踝关节的方式,切向力帮助患者按照轨迹移动,法向力用于调整踝关节轨迹的法向运动阻碍[5]。荷兰屯特大学研发的LOPES,该机器人采用绳驱动的方式,单腿有四个自由度,除了髋关节和膝关节在矢状面上的各一个旋转自由度外,还增加了骨盆的移动和髋关节的内收外展运动。该机器人同时具有两种不同的控制模式,分别为机器人主动和患者主动,充分考虑到了不同人的行走能力,能根据患者的实际需要提供必要的辅助[6]. 瑞士洛桑理工大学研制的WalkTrainer,它髋关节,膝关节,踝关节各一个自由度,单腿具有3个自由度,同时骨盆具有6个自由度,机器人总共有12个自由度。该机器人采用了肌肉电刺激的物理疗法,同时通过腿部外骨骼上的力传感器,实现了人-机的闭环控制[7]。国内上海璟和研制的Flexbot机器人实现了多体位的康复训练,病情严重的病人在康复训练初期可以躺着进行康复训练,待恢复得较好时,可以选择站立式训练[8]。 此外,在独立式下肢康复外骨骼方面,以色列的Rewalk[9], 美国的EKSO[10],日本的HAL[11]等都是下肢康复机器人中的杰出代表。国内的电子科技大学研制的外骨骼机器人[12],北航研制的“大艾’外骨骼机器人[13]也取得了可喜的成绩。 与传统的工业机器人相比,康复机器人的一个突出特点是与人的交互十分频繁。安全性,舒适性,以及适应各种不同的工作环境是康复机器人需要考虑的重要问题。相反,工业机器人所需的高精度,高速度等特性在这里要求并不高。因此,设计出具有柔顺性的下肢外骨骼康复机器人具有重要的意义。 本文将就设计出一套下肢外骨骼康复机器人展开论述。首先,将根据人体下肢结构进行机器人的机械机构设计,接着进行机构的运动学分析,并使用MATLAB软件对该机构进行仿真。仿真结果表明该机器人具有协助病人进行康复运动训练的能力。 1 机构模型 1.1机构模型设计 人体结构模型是设计下肢外骨骼康复机器人基础。因此,我们先对人体下肢进行分析。人体下肢主要有三个关节,分别是髋关节,膝关节,踝关节。髋关节主要有髋臼和股骨组成,在运动时,股骨绕着髋臼运动,是一个球窝关节。膝关节连接了股骨和胫骨,踝关节主要由胫骨和腓骨下端的关节面与距骨滑车构成[14]。人体行走过程中,矢状面上的运动占主导地位。为了机构的简化,我们仅考虑下肢在矢状面上的运动,并把髋、膝、踝关节都简化为铰链关节。 该下肢外骨骼康复机器人为台架式下肢外骨骼机器人,上方的支架与台架相连接。髋关节与膝关节之间的连杆与大腿绑定,膝关节与踝关节之间的连杆与小腿绑定。直线驱动器由直流电机,同步带,滚珠丝杠,以及末端的力传感器组成。同步带,滚珠丝杠等机构把直流电机的转动转化为直线运动。力传感器能够实时检测到直线驱动器的推力,当推力过大时,直线驱动器减慢速度或者停止运动甚至向反方向运动,力传感器的加入增加了康复机器人的柔顺性,避免了机器人对人的伤害。该机构中髋关节和膝关节由两个直线电机主动驱动,踝关节为被动运动。为了能够适应不同人的腿长,设计了长度调节机构。该调节机构为在调节机构上下部之间都加工出一系列出通孔,上下两部分通过螺栓连接。通过调节机构下部分与上部分在不同位置连接,可以改变机构的长度。 1.2机构参数 人体正常步行过程中,髋关节最大屈曲约30°,最大伸展约20°,膝关节最大屈曲约为65°、最大伸展为0°。踝关节最大背屈约为30°,最大跖屈约为50°[14].我们设计的该机构的适应人体身高为150mm-190mm.根据这个数据,经过运动学解算,我们选择直线驱动器的工作行程范围如表1所示。

上下肢康复机器人的结构设计与开发开题报告

上下肢康复机器人的结构设计与开发 开题报告 班级/学号:机械1101班/2011010015姓名:陈炜 指导教师:刘相权 一、综述 1.1研究的背景和意义 随着医疗卫生条件的发展和经济条件的改善,人类平均寿命不断增长,老年人口日益增多,老龄人群的健康问题也成了人们共同关心和面临的问题。其中,对老年人造成严重伤害的一种疾病就是中风。中风,属于脑血管疾病的一种,其所出现的脑血液循环障碍将直接对人的大脑组织造成不可恢复的损伤,从而导致偏瘫后遗症的产生,偏瘫后遗症的康复治疗更是广大医护工作者和患者所面临的棘手问题。因此,中风由于它的高致残率、高复发率和高死亡率等特点,被世界卫生组织确定为危害当今人类健康的第一杀手。 在当前医疗条件下,医护人员对于患者的急性中风能够采取比较有效的治疗手段来保证患者的生命安全。但是,中风所引起的诸如偏瘫、运动功能障碍、语言功能障碍、神志障碍等后遗症,却成为当今医疗界所面临的一个难题。在中风后遗症患者中,大多属于运动功能障碍,资料显示中风后因运动功能障碍而生活不能自理的高达42.5%。这不仅使得患者生活不能自理,而且也为患者家庭带来极大的心理与经济负担。临床研究表明,对中风后遗症患者,必须争取早期康复治疗,尤其在发病后的前三个月内进行康复治疗是获得理想功能恢复的最佳时机,治疗总有效率可达92.4%。因此,我们迫切需要寻求一种有效的康复手段,使得中风后遗症患者能够最大限度的恢复到正常状态,以减轻患者的生理和心理痛苦,减轻家庭和社会的负担。 目前,在偏瘫上下肢康复训练方面,国内外医疗界所采用的主要是康复训练师亲自对患者进行康复指导和训练。这种治疗方式虽然取得较好的治疗效果,但是仍然存在下述三方面的问题: (1)患者较多的情况下,一名康复训练师不可能在同一时间对多名患者进行有效地康复训练,治疗效率低下。即便是技术娴熟的康复训练师可以同时照顾多名患者,那么由于其体力的限制,也不能保证每个患者都能得到足够强度的康复训练。此外,康复训练师的技术能力不尽相同,不同康复训练师的治疗效果也有很大差异,很难保证每个患者都能得到高效合理的康复治疗。 (2)因为技术差异,一些康复训练师不能根据患者病况程度精确拿捏康复治疗方法和力度,不能准确记录患者康复进程中的各种病况数据,从而导致康复评价指标不够客观合理,影响治疗方案的进一步完善和改进,耽误患者的康复治疗。 (3)由于现在人力成本的不断提高,康复训练师的服务费用也不断增加,对于经济条件较差的患者,其家庭将无力承担高昂的康复训练费用,这也无疑会耽误患者治疗,影响患者一生的幸福。 综上所述,仅依靠康复训练师亲自对患者进行的康复指导和训练,无疑会制约偏瘫后

下肢助力外骨骼机构设计与研究毕业论文

硕士学位论文 下肢助力外骨骼机构设计与研究 RESEARCH AND MECHANISM DESIGN OF LOWER LIMB POWER EXOSKELETONS (全日制工程型)

国内图书分类号:TP242.6 学校代码:10213国际图书分类号:621 密级:公开 工程硕士学位论文 下肢助力外骨骼机构设计与研究

Classified Index: TP242.6 U.D.C: 621 Dissertation for the Master Degree in Engineering RESEARCH AND MECHANISM DESIGN OF LOWER LIMB POWER EXOSKELETONS

哈尔滨工业大学工程硕士学位论文 0要 外骨骼研究已成为国内外机器人技术领域研究的热点。外骨骼机器人能够有效结合人类的智慧和机器人的强壮,让复杂环境下的负重难题不复存在。随着单兵作战装备重量的提高,一款适用于士兵穿戴,能有效提高士兵负重能力,且适用于各种复杂环境的外骨骼机器人具有极大的应用前景。本论文围绕下肢助力外骨骼的机械驱动系统设计、运动学和动力学分析、传感系统设计及仿真和实验等关键问题进行了深入的研究。 在对人体下肢运动机理进行仔细分析的基础上,本论文对下肢助力外骨骼的机械驱动系统进行了设计和研究。根据仿生设计的方法,对外骨骼的髋关节、膝关节和踝关节等结构进行了设计,并对髋关节、大腿连杆、小腿连杆等关键零部件进行了有限元力学分析;最后结合关节肌肉运动机理,对外骨骼液压驱动系统方案进行了设计。 针对外骨骼机械结构,本论文对下肢助力外骨骼进行了运动学及动力学分析。对外骨骼机械腿进行 D-H 建模,求解运动学正解,采用微分变换法求雅克比矩阵。然后采用拉格朗日功能平衡法,对外骨骼进行动力学求解。 根据外骨骼整体结构和控制策略,本论文对下肢助力外骨骼的传感系统进行了设计。通过分析人体足底压力分布信息,对压力传感器进行了选取和布位,并设计传感鞋,保证采集压力的可靠性和传感器的安全性。选取了合适的关节转动角度传感器,实现对外骨骼进行准确的控制。 最后,本论文对下肢助力外骨骼进行了仿真分析及实验研究。仿真分析主要包括关节仿真和行走仿真;实验研究则包括穿戴舒适性试验、关节信息采集实验、步态信息采集实验和外骨骼关节驱动实验等。仿真与实验结果表明,下肢助力外骨骼机械结构设计合理可靠、穿戴舒适,能够满足外骨骼负重和灵活性要求。 关键词:下肢助力;外骨骼机器人;结构设计;运动学与动力学

康复机器人的系统设计

康复机器人的系统设计 哈尔滨工程大学本科生毕业论文 第1章绪论 1.1 概述 据报道,我国60岁以上的老年人已有1.43亿,占全国人口的11%,到 2050年将达到4.37亿。在老龄人群众中有大量的脑血管疾病或神经系统疾病 [1]患者,这类患者多数伴有偏瘫症状。近年由于患心脑血管疾病使中老年患 者出现偏瘫的人数不断增多,而且在年龄上呈现年轻化趋势。同时,由于交通运输工具的迅速增长,因交通事故而造成神经心痛损伤或者肢体损伤的人数也越来越多。在美国数以百万计的有神经科疾病病史和受到过意外伤害的患者需要进行康复治疗,仅以中风为例,每年大约有600,000中风幸存者,其中的二百万病人在中风后存在长期的运动障碍。随着国民经济的发展,这个特殊群体已得到了更多人的关注,为了提高他们的生活质量,治疗、康复和服务于他们的产品的技术和质量也在相应地提高。随着机器人技术和康复医学的发展,在欧洲、美国和日本等国家,医疗康复机器人的市场占有率呈逐年上升的趋势,仅预测日本未来机器人市场,2005年医疗、护理、康复机器人的市场份额约为250,000美元,而到2010年将上升到1,050,000美元,其增长率在机器人的所有应用领域中占据首位。因此,服务于四肢的康复设备的研究和应用有着广阔的发展前景 [2]。 康复机器人是康复设备的一种类型。康复机器人技术早已广受世界各国 科研工作者和医疗机构的普遍重视,其中以欧美和日本的成果最为显著。在我国康复医学工程虽然得到了普遍的重视,而康复机器人研究仍处于起步阶段,一些简单康复器械远远不能满足市场对智能化、人机工程化的康复机器

人的需求,有待进一步的研究和发展。 由于康复训练机器人要与人体直接相连,来带动肢体进行康复训练,所 以对驱动器的安全性、柔性的要求较高。近年来,以气动元件柔性驱动器逐渐引起人们的重视,在医疗康复器械领域中得到越来越多的应用。 本课题的研究目的是设计一种用于脑损伤、中风等病人的步态康复训练 1 哈尔滨工程大学本科生毕业论文 系统,帮助病人更好地进行康复训练,减轻他人的帮助,挺高效果。 1.2 康复机器人的国内外研究现状 在对有运动障碍的老人或残疾人进行治疗和康复的过程中,使用康复机 器人可以解决好多问题:机器人的使用可以解决专业护理人员缺乏和医疗费用昂贵的问题,可以避免由于训练方法不科学和专业护理人员个人疏忽等主观原因引起的对病人的伤害,可供病人在家或工作场所使用,使病人获得更多的独立生活能力,提高了病人的生活质量等。康复机器人是一种自动化医疗康复设备,它以医学理论为依据,帮助患者进行科学而有效的康复训练,使患者的运动机能得到更快更好的恢复。目前,康复机器人已经广泛地应用到康复护理、假肢和康复治疗等方面,这不仅促进了康复医学的发展,也带动了相关领域的新技术和新理论的发展。 康复机器人有两种:辅助型康复机器人和康复训练机器人。辅助型康复 机器人主要是帮助肢体运动有困难的患者完成各种动作,该类产品有机器人轮椅、机器人护士、机器人假肢、机械外骨骼等。康复训练机器人的主要功能是帮助患者完成各种运动功能的恢复训练,该类产品有行走训练、手臂运动训练、脊椎运动训练等。 康复机器人是康复医学和机器人技术的完美结合,康复机器人技术在欧

相关文档
最新文档