土壤水分特征曲线精选文档

土壤水分特征曲线精选文档
土壤水分特征曲线精选文档

土壤水分特征曲线精选

文档

TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

土壤水动力学

学院:环境科学与工程学院专业:水土保持与沙漠化防治学号:

姓名:

土壤水分特征曲线的研究与运用

摘要:土壤水的基质势随土壤含水量而变化,其关系曲线称为土壤水分特征曲线。该曲线反映了土壤水分能量和数量之间的关系,是研究土壤水动力学性质必不可少的重要参数,在生产实践中具有重要意义。本文总结并比较分析了前人在土壤水分特征曲线测定方法中的各种模型,其中对Van Genuchten模型的研究较为广泛。但为之在DPS中求解Van Genuchten模型参数和在试验基础上建立的土壤水分特征曲线的单一参数模型结构较为简单,省时省力,可进一步的推广运用。

关键词:土壤水分特征曲线 Van Genuchten模型运用

1.土壤水分特征曲线的研究

土壤水分特征曲线的概念

土壤水分特征曲线是描述土壤含水量与吸力(基质势)之间的关系曲线。它反映了土壤水能量与土壤水含量的函数关系,因此它是表示土壤基本水力特性的重要指标,对研究土壤水滞留与运移有十分重要的作用[1]。

土壤水分特征曲线的意义

土壤水分特征曲线反映的是土壤基质势(或基质吸力)和土壤含水量之间的关系。土壤水分对植物的有效程度最终决定于土水势的高低而不是自身的含水量。如果测得土壤的含水量,可根据土壤水分特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度[2]。

土壤水分特征曲线的测定方法

1.3.1直接法

通过实验方法直接测定土壤水分特征曲线的方法称为直接法。直接法中有众多的实验室和田间方法,如张力计法、压力膜法、离心机法、砂芯漏斗法、平衡水汽压法等,而前3种应用最为普遍。①张力计法:是土壤通过陶土杯从张力计中吸收水分造成一定的真空度或吸力,当土壤与外界达到平衡时,测出土壤基质势,再测出陶土杯周围的土壤含水量,不断变更土壤含水量并测相应的吸力,就可完成土壤水分特征曲线的测定。张力计法可用于脱水和吸水2个过程,可测定扰动土和原状土的特征曲线,是用于田间监测土壤水分动态变化重要的手段,在实际工作中得到广泛应用。但张力计仅能测定低吸力范围0~0.08Mpa的特征曲线。②压力膜法:是加压使土壤水分流出,导致土壤基质势降低直到基质势与所加压力平衡为止,测定此时的土壤含水量.通过改变压力逐步获取不同压力下的含水量即可得到水分特征曲线。压力膜法可应用于扰动土和原状土,测定特征曲线的形状与土壤固有的特征曲线相符,可应用于土壤水分动态模拟,但测定周期长,存在着土壤容重变化的问题。③离心机法:测定某吸力下所对应的含水量,原理和实验过程同压力膜法相似,但其压力来源于离心机高速旋转产生的离心力。离心机法可应用于扰动土和原状土,测定周期短。特征曲线的相对形状与土壤固有的特征曲线相符,可用于土壤水分动态模拟。但是离心机仅可测定脱水过程,且在测定过程中土壤容重变化很大,若能对容重的影响进行校正,可望有较高的测定准确度。邵明安(1985)从土壤蒸发试验的预测与实测的含水量的偏离程度初步研究了以上3种方法测定土壤基质势的差别及准确性,结果表明考虑容重变化的离心机法有较高的准确度。④砂芯漏斗法:就是用一个砂芯漏斗和连接悬挂水柱的陶土板形成对土样的吸力。它适用于扰动土和原状土,可测定吸水和脱水2个过程,但是只适合在室内使用。⑤平衡水汽压法:是根据在一个平衡体系中各相的自由能相等的原理。让土壤水自然蒸发,使其与容器中的水汽达到平衡。只要测出密封容器中的相对湿度和温度,就可计算出19分子土壤水的势值。它要精确测定密封容器中的相对湿度,对恒温、密封条件要求比较高,但是其测定的土水势范围较宽[3]。

以上方法在概念上相对清晰,是测定土壤水分特征曲线的常用方法,但费时、费力、费资金,在测定范围上也有较大的限制,不能获取整个含水量范围内的土壤水分特征曲线,在田间测定水分特征曲线时还存在较大的不确定性。1.间接法

由干直接法在实际应用中存在诸多问题,特别是在区域尺度上进行实际问题研究时,这类方法多数是不可行的,甚至是不可能的,因此许多土壤物理学家尝试着用数学表达(经验公式)来描述水分特征曲线,通过估计表达式中的参数来确定土壤水分特征曲线。这种方法称为参数估计法(或间接推求法)。目前比较常用的经验公式有Brooks-Corey(1964)模型、Gardner(1970)模型、Van Genuchten(1980)模型和Gardner-Russo(1988)模型。徐绍辉等对此4个模型的话应性进行了分析,认为Van Genuchten模型无论是对粗质地土壤,还是较粘质地的土壤,其拟合效果均较好;夏卫生等[4]通过对国内外土壤水动力学参数研究结果进行分析也得出,该样型不仅拟合效果较好,并能和土壤的机械组成和容重等联系起来,从土壤本身特性上找到其含义。因此,在所有描述土壤水分特征曲线的众多样型中,Van Genuchten模型以其线型与实测数据曲线拟合程度好而得到广泛应用[5]。王小王等[5]人结合了Matlab软件对传统耕作和免耕耕作两种方式下土壤水分特征曲线进行分析,建立相应的Van Genuchten模型,并对模型进行检验和应用,其他们的结果表明Van Genuchten模型适应性好,可以应用于不同耕作条件下的土壤水分分析。

1.3.3 Van Genuchten模型的研究及其进展

1.3.3.1 Van Genuchten模型

土壤水分特征曲线Van Genuchten模型的具体表达形式

- θr)/〔1+(α·h)n〕m

θ= θr+(θ

S

式中:θ是土壤体积含水量(cm3/cm3);h是压力水头(-cm);θr和θS分别代表土壤的剩余体积含水量和饱和体积含水量(cm3/cm3);α(cm-1)和n是经验拟合参数(或曲线性状参数),而m=1-1/n。为适于目前土壤水分测定方法的习惯,本文以土壤水吸力值(+)代替压力水头(-),以重量含水量(g/g)代替体积含水量(cm3/cm3)来研究此模型的参数求解。由于本文的目的在于研究Van Genuchten 模型求参的方法,因此不受所选单位的影响[5]。

1.3.3.2土壤水分特征曲线Van Genuchten模型研究进展

由于Van Genuchten模型得到了广泛的应用,许多科学工作者都对其进行了进一步的研究并发展了一些用以确定Van Genuchten模型的方法。邵明安,王全九等[6-7]基于一维土壤水分运动的Richards方程提出了推求土壤Van Genuchten模型和Brooks模型参数的简单入渗法;王金生等[8]将最小二乘法和非线性单纯形法相结合拟合了Van Genuchten模型参数;徐绍辉等[9]也借助最小二乖法并结合Picard迭代法拟合了砂质粘壤土的Van Genuchten模型参数;李春友等[10]也利用单纯形调优法拟合Van Genuchten模型的参数;魏义长等[11]运用Matlab编程软件对辽西琳溶褐土Van Genuchten模型的参数进行了推导估算。尽管这些方法均得到了较好的拟合结果,但这些方法要么借助干土柱入渗试验,要么算法需要编程,或者借助于Matlab软件。特别是对于Matlab软件来说,它的功能虽然强大,但其工作界面对我国科学工作者来说较难适应,而且要求非常专业的数学知识和较高的外语水平,算法需要编程,这在一定程度上限制了在国内土壤物理领域的应用范围,存在着耗时、费力和利用效率低等问题。刘贤赵等[12]运用DPS数据处理系统求解Van Genuchten模型中的4个参数,不需要复杂的运算符号和繁琐的数学推导,具有操作简单、求解快速、可读性强的忧点,真正使复杂数学问题实现了“所想即所见,所见即所得”。DPS 数据处理系统提供的麦夸特(Marquardt)算法,以绝对平方和为最小目标,获取待估参数,成功地对Van Genuchten模型的参数进行了求算,与Matlab软件计算的参数值相同具有很高的精度。从实用效果上讲,其工效和通用性有明显的提高。从而为土壤学工作者提供了一条运用数值计算方法的新途径。除此之外,宋孝玉等[13]对于Van Genuchten模型参数较多的情况下,在试验的基础上建立了土壤水分特征曲线的单一参数模型,该模型预测的土壤水分特征曲线与实测土壤水分特征曲线比较接近,且该模型参数少,结构简单,省时省力,可进一步推广应用。

2.土壤水分特征曲线的运用

可进行基质势和含水量的相互换算

根据土壤水分特征曲线可将土壤湿度换算为土壤基质势,依据基质势可判断土壤水分对作物的有效程度。也可以将基质势换算为含水量,根据土壤水分特征曲线可查得田间持水量、凋萎湿度和相应的有效水范围[2]。

表示比水容量

土壤水分特征曲线的斜率(纵坐标为含水量,横坐标为基质势)或其倒数(纵坐标为基质势,横坐标为含水量),即单位基质势变化所引起含水量的变化,称之为比水容量或水容量。比水容量是衡量土壤水分对植物的有效性和反映土壤持水性能的一个重要指标。如果作物以相同的能量吸水,在不同基质势下从各种土壤中所吸收的水量因比水容量不同而形成很大的差别,比水容量愈高,作物吸水量愈大,一般比水容重在高基质势段高于低基质势段。在高基质势段轻质地土壤的比水容量高于重质地的土壤,而在低基质势段却低于重质地的土壤[2]。

可间接反映土壤空隙的分布

土壤空隙分布主要由颗粒组成和土壤土壤结构决定,土壤水分特征曲线受颗粒组成的影响。若土壤中空隙设想为各种孔径的圆形毛管,那么水吸力S和毛孔直径d关系可简单表示为

S=4σ/d

式中σ为水的表面粘力系数,室温条件下一般为75×10-5N/cm,若吸力的单位为Pa,空隙直径为mm,则空隙直径d和吸力S的关系可表示为d=300/S,由此公式计算出的孔径称为当量孔径或有效孔径。由此可分析土壤通气和透水、土壤水分的吸持、移动以及作物吸收的难易程度。

可判断土壤质地状况和土壤水分在吸力段的分布状况

只要作出土壤水分特征曲线的图,就可以直观的判断有效水的吸力程度。

参考文献

[1]来剑斌,王全九.土壤水分特征曲线模型比较分析[J].水土保持学报,2003,17(1):137-140

[2] 李开元,李玉山.土壤水分特征曲线的意义及应用[J].陕西农业科学,1991,(4):47-48

[3] 周丽明,王亮,王琳琳,刘广烈. 土壤水分运动参数研究[J].现代农业科技,2009,(4):136—138

[4]夏卫生,雷廷武,刘贤赵,刘纪根,潘英华.土壤水分特征曲线的推算[J].土壤学报,2003,40(2):311-315

[5] 王小华,贾克力,刘景辉.Van Genuchten模型在土壤水分特征曲线拟合分析中的应用[J],干旱地区农业研究,2009,27(2):179-183

[6] 邵明安,王全九.推求土壤水分运动参数的简单入渗法Ι.理论分析[J].土壤学报 ,2000,37(1):9-16

[7] 邵明安,王全九.推求土壤水分运动参数的简单入渗法Ⅱ.理论分析[J].土壤学报 ,2000,37(2):1-8

[8] 王金生,杨志峰.陈家军.包气带土壤水分滞留特征研究[J].水利学报,2000,1(2):1-6

[9] 徐绍辉,张家宝.求土壤水力特征的一种迭代法[J].土壤学报,2000,37(3):271-274

[10] 李春友,任理,李保国.利用优化法算Van Genuchten方程参数[J].水利学进展,2001,12(4):473-478

[11] 魏义长,刘作新,康玲玲.土壤持水曲线Van Genuchten模型求参的Matlab实现[J].土壤学报,2004,41(3):380-386

[12] 刘贤赵,李嘉竹,张振华.土壤持水曲线Van Genuchten模型求参的一种新方法[J].土壤学报,2007,41(6):135-138

[13] 宋孝玉,李亚娟,李怀有.土壤水分特征曲线单一参数模型的建立及应用[J].农业工程学报,2008,24(12):12-15

土壤含水量的测定(烘干法)

土壤含水量的测定(烘干法) 进行土壤水分含量的测定有两个目的: 一是为了解田间土壤的实际含水状况,以便及时进行灌溉、保墒或排水,以保证作物的正常生长;或联系作物长相、长势及耕栽培措施,总结丰产的水肥条件;或联系苗情症状,为诊断提供依据。 二是风干土样水分的测定,为各项分析结果计算的基础。前一种田间土壤的实际含水量测定,目前测定的方法很多,所用仪器也不同,在土壤物理分析中有详细介绍,这里指的是风干土样水分的测定。 风干土中水分含量受大气中相对湿度的影响。它不是土壤的一种固定成分,在计算土壤各种成分时不包括水分。因此,一般不用风干土作为计算的基础,而用烘干土作为计算的基础。分析时一般都用风干土,计算时就必须根据水分含量换算成烘干土。 测定时把土样放在105~110℃的烘箱中烘至恒重,则失去的质量为水分质量,即可计算土壤水分百分数。在此温度下土壤吸着水被蒸发,而结构水不致破坏,土壤有机质也不致分解。下面引用国家标准《土壤水分测定法》。 2.3.1适用范围 本标准用于测定除石膏性土壤和有机土(含有机质20%以上的土壤)以外的各类土壤的水分含量。 2.3.2方法原理 土壤样品在105±2℃烘至恒重时的失重,即为土壤样品所含水分的质量。 2.3.3仪器设备 ①土钻;②土壤筛: xx1mm;③铝盒:

小型直径约40mm,高约20mm;大型直径约55mm,高约28mm;④分析天平: 感量为 0.001g和 0.01g;⑤小型电热恒温烘箱;⑥干燥器: xx变色硅胶或无水氯化钙。 2.3.4试样的选取和制备 2.3. 4.1风干土样选取有代表性的风干土壤样品,压碎,通过1mm筛,混合均匀后备用。 2.3. 4.2新鲜土样在田间用土钻取有代表性的新鲜土样,刮去土钻中的上部浮土,将土钻中部所需深度处的土壤约20g,捏碎后迅速装入已知准确质量的大型铝盒内,盖紧,装入木箱或其他容器,带回室内,将铝盒外表擦拭干净,立即称重,尽早测定水分。 2.3.5测定步骤 2.3. 5.1风干土样水分的测定将铝盒在105℃恒温箱中烘烤约2h,移入干燥器内冷却至室温,称重,准确到至 0.001g。用角勺将风干土样拌匀,舀取约5g,均匀地平铺在铝盒中,盖好,称重,准确至 0.001g。将铝盒盖揭开,放在盒底下,置于已预热至105±2℃的烘箱中烘烤6h。取出,盖好,移入干燥器内冷却至室温(约需20min),立即称重。风干土样水分的测定应做两份平行测定。

土壤水份和植物组织含水量的测定

土壤水份和植物组织含水量的测定 实验的目的与要求: 通过对植物和土壤水分的测定来学习和使用烘干法水分测定仪,掌握实验和实习的技巧,了解一定的实习的规则! 通过对实习数据的比较,以及结合自身的知识来分析土壤和植物组织含水量的关系,了解水分对植物生长的影响,了解土壤中水分对植物生长的影响。 结合生态学的知识来分析土壤和植物含水量受整个生态系统的影响。 实验的主要内容: 记录实验地的周围环境的各种生态环境因素,如温度,风向,湿度。 测量土壤和植物组织含水量值,在不同的环境下测量对比,同一环境下不同物种的值。 记录实验测量的数据值,分析得出结论。 实习的主要工具: 1.烘干法水分测定仪(LSH-100A型): 最大秤量:100g 实际标尺分度值:1mg 准确度级别:2级 水分测量允许误差:±0.2%(样品≥2克) 水分含量测定可读性:0.01% 测量水分范围:0~100% 加热源:卤素灯(环型400W) 温控精度:±1℃ 加热温度设定:室温~160℃(以1℃调整) 时间设定:0~180min(以1min调整) 测量方法:手动、自动 操作温度范围:10~30℃ 电源及功耗:AC220V±22V 50Hz 420W 秤盘尺寸:¢100mm 外壳尺寸:360mm×250mm×270mm 净重:7kg 实验用剪刀、小袋子 实验原理: 首先对同一环境下的不同生长情况的高山榕进行水分的测定,记录数据并比较,然后对不同环境下的不同株池杉进行水分的测定,在数据中得出结论。用烘干法测定仪进行含水量的测定,使用小塑料袋来装实验品以防止植物叶子和土壤水分的蒸发。 实验的步骤: 首先进行样本的采样,在学校的马路边分别进行不同生长情况高山榕叶子的取样,然后再树下进行土壤的取样。在昭阳湖旁不同地方生长情况相同的池杉的叶子和土壤的进行取样。将取来的样品装入袋中,并做好标签。 预热烘干法测定仪后,将取来的样品放入烘干仪中保持5-8分钟,待屏幕中的数值稳定后进行数据的记录。 对数据进行整理分析和讨论,得出结论。 实验的结果:

土壤水特征曲线

研究生课程论文封面 课程名称土壤水动力学 教师姓名 研究生姓名 研究生学号 研究生专业 所在院系 类别: 日期: 2012 年1月7 日

评语 对课程论文的评语: 平时成绩:课程论文成绩: 总成绩:评阅人签名: 注:1、无评阅人签名成绩无效; 2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效; 3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。

水分特征曲线测定实验报告 1 实验的目的要求 理解水分特征曲线的含义,掌握水分特征曲线的测定方法,以及比较不同土壤水分特征曲线的特点。 2 实验的原理 土壤水的基质势(或土壤吸力)与土壤含水量之间的关系曲线称为土壤水分特征曲线或土壤持水曲线(soil water retention function )。土壤水分特征曲线表示土壤水的能量和数量之间的关系,是研究土壤水分的保持和运动所用到的反映土壤水分基本特性的曲线。各种土壤的水分特征曲线均需由实验测定。 水分特征曲线仪主要由陶土头、集气管、压力传导管、水银测压计(由玻璃管和水银槽组成)、观测板以及样品容器组成,其结构如图1所示。 图1 水分特征曲线仪结构图 1.样品容器; 2.陶土头; 3.集气管; 4.压力传导管; 5.水银测压计; 6.观测板; 7.水银槽 陶土头是仪器的传感部件,由具有均匀微细孔隙的陶土材料制成,当仪器内充满水使陶土头被水饱和时,陶土头管壁就形成张力相当大的一层水膜,陶土头与土壤充分接触后,土壤水与其内部的水体通过陶土头建立了水力联系,在一定的压差范围内,水分和溶质可以通过陶土头管壁,而气体则不能通过,即所谓透水不透气。因此,如果陶土头内外之间存在压力差,水分就会发生运动,直至内外压力达到平衡为止。这时,通过水银压力表测定的负压值就是陶土头所在位置土壤水的基质势。 陶土头所在位置的压力水头(基质势或负压)的计算公式为: w m w m m h h h h h h --=-+-=6.12)(6.13 式中h 为压力水头,h m 为压力表中水银柱高度(以水银槽水银液面为基准面),h m 是水银槽液面到陶土头中心位置的垂直距离。

土壤含水量测定方法小结

土壤含水量测定方法小结 1,烘干称重; 这个不多说了。准确度最高,但测定得到的是质量含 水量,与其他方法所得数据进行比较是注意换算。 2,中子仪; 技术比较成熟,准确性极高,是烘干法以外的第二标 准方法。 但是中子仪测定需要安装套管,理论上可达任何深度,设备昂贵,投入很大。中子射线对操作者身体有损害,严格来说需要相关证件才可以操作。无法测定表层土 壤。 3,电阻法; 一般使用石膏块作为介质埋设地下,石膏块中埋设两根导线,导线之间的石膏成分组成电阻,石膏块电阻与土壤含水量相关。石膏块制作简单,哪怕进口的成品成本也是非常低廉,可以作很多重复,可以不破坏土壤在田间连续自动监测。存在问题,石膏块滞后时间较长,所以不可能用来做移动式测定和自动灌溉系统。石膏块只适合用于非盐碱土壤中,同时石膏块不适合使用直流电(文献查得,表示怀疑,因为所有的石膏块读书表都是用干电池作为电源),测定受土壤类型影响很大,标定结果会随时间改变,达到一定年 限后,石膏会逐渐溶解到土壤中。 4,TDR(Time Domain Reflectometry) TDR有两种时域反射仪和时域延迟,两者均简称TDR。TDR技术是当前土壤水分测定装置的主流原理,可以连续、快速、准确测量。可以测量土壤表层含

水量。一般的TDR原理的设备响应时间约10-20秒,适合移动测量和定点监测。测定结果受盐度影响很小,TDR缺点是电路比较复杂,设备较昂贵。 5,FDR(Frequency Domain Reflectometry)几乎具有TDR的所有优点,探头形状非常灵活。比较夸张的甚至可以放在做成犁状放在拖拉机后面运动中 测量。FDR相对TDR需要更少的校正工作。 TDR和FDR同样有一个缺点,当探头附近的土壤有空洞或者水分含量非常不均匀时,会影响测定结果。 非常奇怪的是,基于FDR原理的往往是低端的仪器设备,根据笔者实际使用经验,FDR技术可能在精度上存在瓶颈,经常在5%的误差左右,写文章时候数据基本上不好用。

土壤湿度的测定方法

土壤湿度的测定方法 国内外有很多土壤水分测定方法。具体方法列举如下:称重法,时域反射法(TDR),石膏法,红外遥感法,频域反射法/频域法(FDR/FD法),滴定法,电容法,电阻法,微波法,中子法, Karl Fischer法,γ射线法和核磁共振法等。 ①烘干法 烘干法是测定土壤水分最普遍的方法,也是标准方法。具体为:从野外获取一定量的土壤,然后放到105℃的烘箱中,等待烘干。其中烘干的标准为前后两次称重恒定不变。烘干后失去的水分即为土壤的水分含量。计算公式为土壤含水量=W/M*100%,M为烘干前的土壤重量,W为土壤水分的重量,即M与烘干后土壤重量M’的差值。称重法缺点是费时费力(需8小时以上),还需要干燥箱及电源,不适合野外作业。如果采用酒精燃烧法,由于需要翻炒多次,极为不便,不适合用于细粒土壤和含有有机物的土壤,且容易掉落土粒或燃烧不均匀而带来较大误差,而且需要取土测量,对土壤有破坏性。 ②TDR(Time Domain Reflectometry)法 TDR法是上世纪80年代发展起来的一种土壤水分测定方法,中文为时域反射仪。这种方法在国外应用相当普遍,国内才刚开始引进,当各部门都相当重视。TDR是一个类似于雷达系统的系统,有较强的独立性,其结果与土壤类型、密度、温度基本无关。而且还有很重要的一点就是,TDR能在结冰下测定土壤水分,这是其他

方法无法比拟的。另外,TDR能同时监测土壤水盐含量,且前后两次测量的结果几乎没有差别。这种测定方法的精确度可见一斑。 ③欧速土壤水分传感器直接测量法 因为TDR法设备昂贵,我公司开始用比TDR更为简单的方法来测量土壤的介电常数,而且测量时间更短,在经过特定的土壤校准之后,测量精度高,而且探头的形状不受限制,可以多深度同时测量,数据采集实现较容易。

不同干密度砾石土的土-水特征曲线规律及拟合分析

不同干密度砾石土的土-水特征曲线规律及拟合分析 发表时间:2015-01-08T17:02:44.807Z 来源:《价值工程》2014年第8月下旬供稿作者:黄靖 [导读] 非饱和土是目前土力学领域的研究方向,而土-水特征曲线SWCC(Soil-Water Characteristic Curve)是近年国内外研究的热点。 黄靖淤HUANG Jing曰罗启迅于LUO Qi-xun (淤昆明理工大学津桥学院,昆明650106;于四川大学水利水电学院,成都610065) (淤Oxbridge College,Kunming University of Science and Technology,Kunming 650106,China; 于College of Water Resource and Hydropower,Sichuan University,Chengdu 610065,China) 摘要:利用SWC-150 Fredlund 土-水特征曲线压力仪,对不同干密度的砾石土进行土-水特征试验,探讨不同干密度下土-水特征曲线(SWCC)的变化规律;采用四种不同的拟合方程对试验所得的土-水特征曲线通过最小二乘法进行拟合,获得了拟合参数及残差平方和。通过残差平方和剂曲线形状对比,Fredlund & Xing 四参数方程的拟合效果最好。 Abstract: SWC-150 Fredlund Soil-Water Characteristic Cell is used to test the soil-water characteristic curve (SWCC) of gravelly clayeysoils with different densities to discuss the change rule of SWCC. Using least-square method, SWCC is fitted by four fitting tri-parametermodel, the parameters and residual sum of squares of the model are discussed. Through the residual sum of squares and curve shapes, thefitting effect of Fredlund & Xing four parameter equation is best. 关键词:土-水特征曲线;干密度;试验;拟合 Key words: soil-water characteristic curve;dry density;test;fitting 中图分类号:TU44 文献标识码院A 文章编号院1006-4311(2014)24-0067-03 0 引言 非饱和土是目前土力学领域的研究方向,而土-水特征曲线SWCC(Soil-Water Characteristic Curve)是近年国内外研究的热点。土-水特征曲线是描述非饱和土中吸力与饱和度或含水率之间关系的曲线。实验研究表明,非饱和土的性状与其土-水特征曲线存在密切的联系,根据土-水特征曲线可以推导出非饱和土的抗剪强度[1],体应变[2]、渗透系数[2]。因此,土-水特征曲线是描述土的非饱和(持水)特性的一个关键曲线。 总的来说,目前对非饱和土的土-水特征曲线的研究多集中在粉土、粘性土及黄土,而对含粗粒粘性土的研究、尤其是对砾石土的研究很少。 国内工程实践表明,高土石坝采用砾石土作为心墙防渗料已成为发展趋势,砾石土作为高土石坝防渗体的主体,其土水特征曲线的深入研究是非常必要的。为了研究不同干密度下砾石土的土-水特征曲线的影响,本文对6种不同干密度土样进行土-水特征试验,探究不同干密度下土-水特征曲线(SWCC)的变化规律,并采用Gardner 方程,Van Genuchten 方程,Fredlund&Xing 三参数方程,Fredlund & Xing 四参数方程利用matlab 软件,通过最小二乘法对土-水特征曲线试验点进行拟合,获得了土水特征曲线的模型参数,选出拟合的最优模型。 1 试验方法 1.1 试验土样 本次试验选取了内径D 为38 mm,高度H 为31.5 mm的环刀进行土样的制备。试样的直径D 和高度H 与粗粒土最大粒径dmax 有密切关系,通常采用D/dmax= 5 的关系对超出粒径范围的颗粒采用等量替代法进行处理。根据上述关系及试验原土料,本次试验中dmax 取5 mm,按比例等质量替换粒径大于5 mm 的土[3]。选取国内某高土石坝砾石土心墙料的粘土性质和掺砾比进行试验。土样中粘土比重 Gs=2.71,液限wL=33.4豫,塑限wP=19.6豫,塑性指数IP=13.8,定名为低液限粘土(CL)。采用的掺砾比为50%,超径砾石采用一级等量替代。试验采用的砾石土的颗粒组成见表1,级配曲线见图1,按《土工试验规程》(SL237-1999)定名为粘土质砾。 1.2 试验仪器 试验采用的是加拿大GCTS 公司生产的SWC-150Fredlund 土-水特征曲线压力仪。其原理是对装有含水土样的压力容器施加一定的气压力,迫使土样水分渗出达到平衡;利用轴平移技术使土样的基质吸力等于施加的气压力,然后测量此时的土样含水率,从而获得土样的土-水特征曲线。该仪器所用的高进气值陶土板通过用于密封的环氧树脂粘合在特制套环中,试验时陶土板嵌入底座的凹槽,凹槽内壁由O 型圈密封。凹槽底部刻有一组蛇形槽,用于冲刷陶土板底部附着的气泡。试样的含水率可通过测定两个体变管中的排水量算出。 1.3 试验方案 为了对比分析不同干密度的土-水特征曲线的变化规律,在基质吸力施加范围0~450 kPa 内,采用6 个不同干密度籽d 的土样在竖向应力为0 kPa 条件下进行试验,籽d 分别为1.897 g·cm-3,2.046 g·cm-3,2.065 g·cm-3,2.187 g·cm-3,2.194 g·cm-3,2.216 g·cm-3。

实验一:土壤水分测定

《节水灌溉试验技术》实验报告 课程名称:《节水灌溉试验技术》 实验名称:土壤水分测定方法实验类型: 学生姓名:专业:年级: 同组学生姓名: 指导教师: 实验地点:农业水土工程实验室实验日期:年月日 一实验目的和要求 目的: (1)了解土壤水分含水量的一般测量方法及田间持水量的两种测量方法。 (2)重点了解现代土壤水分测定仪器的应用,包括中子仪、TDR土壤水分测定仪、TRIME-IPH土壤水分测定仪、DIVINER2000土壤水分测定仪、张力计土壤水势测定仪。要求:对部分重点仪器进行操作使用 二、仪器的名称及主要规格 1、土钻、电子天平(1/100)、烘箱、铝盒、环刀等 2、中子仪CS830 南京产 3、TDR土壤水分测定仪美国 4、TRIME-TPH土壤水分测定仪德国产 5、张力计WM-1型 6、DIVINER2000土壤水分测定仪英国产 三、实验步骤 1、介绍测量土壤水分的一般方法和现代土壤含水率测定仪器 2、张力计(WM-1)测定土壤水势步骤 (1)安装 1)张力计探头的埋没方式:直插式、斜插式和暗埋式 2)安装张力计探头时,先在孔中注入泥浆、以保证陶土头与周围土体之间的紧密接触。 3)各连接处要保证接牢,以防漏气。 4)采用暗埋式时,调试完了之后要填土,填土要仔细,切勿将连接处拉断。 (2)调试测量 1)往水银槽内注入水银,约占水银槽容积的2/3,并调节观测板水平。 2)无水气制作:将当地的水煮沸约3分钟之后注入容器中(如医用盐水瓶)加盖密封 3)注水除气处理:注水除气是张力计调试的关键。负压计在使用前腰检查,连通管各部分应密封良好,充满无气水后管中气泡应排出干净。 (3)注意:张力计的缺点是测定范围较窄(0-0.8bar) 3、TDR法测量土壤含水量的步骤 (1)原理:TDR是根据探测器发出的电磁波在土壤中传播的速度依赖于土壤的介质特性和土壤含水量而设定的。它通过测定电磁脉冲的传播速度,求出介电常数Ka,再根据内部Ka与体积含水率?v之间的标定曲线求出体积含水率?v。 (2)仪器组成 主机:电源、电磁波发生器、内存板、显示器和操作控制板等组成。此外读数LCD显示(256×128),可灵活调整参数,自带RS232口和多工口。

实验三 土壤水分含量的测定

实验三 土壤水分含量的测定 一、目的要求 土壤水分是土壤的重要组成部分,也是重要的土壤肥力因素。进行土壤水分的测定 有两个目的:一是了解田间土壤的水分状况,为土壤耕作、播种、合理排灌等提供依据; 二是在室内分析工作中,测定风干土的水分,把风干土重换算成烘干土重,可作为各项 分析结果的计算基础。 本实验要求掌握烘干法和酒精燃烧法测定土壤水分的原理和方法, 能较准确地测定 出土壤的水分含量。 二、仪器与试剂 天平(感量0.01g和0.001g)、烘箱、干燥器、称样皿、铝盒、量筒(10ml)、无 水酒精、滴管、玻棒等。 三、测定方法 测定土壤中水分含量的方法很多,常用的有烘干法和酒精燃烧法。烘干法是目前测 土壤水分的标准方法,其测定结果比较准确,适合于大批量样品的测定,但这种方法需 要时较长。酒精燃烧法测定土壤水分快但精确度较低,只适合田间速测。 (一)烘干法 1. 方法原理 在105±2℃的温度下从土壤中全部蒸发,而结构水不会破坏,土壤 有机质也不被分解。因此,将土壤样品至于105±2℃下烘至恒重,根据其烘干前后质量 之差,就可以计算出土壤水分含量的百分数。 2. 操作步骤 (1)取有盖的铝盒(或称样皿),洗净,放入干燥器中冷却至室温,然后再分析天 平上称重(W1),并注意标好号,以防弄错。 (2)用角匙取过1mm筛孔的风干土样4~5g(精确至0.001g),铺在铝盒中(或 称样皿中)进行称重(W2) (3)将铝盒盖打开,放入恒温箱中,在105±2℃的温度下烘6h左右。 (4)盖上铝盒盖子,将铝盒放入干燥器中20~30min,使其冷却至室温,取出称 重。 (5)打开铝盒盖子,放入恒温箱中,在105±2℃的温度下再烘2h,冷却,称重至 恒重(W3)。 3. 结果计算 以烘干土为基数计算土壤水分的百分含量(W%) 土壤水分含量= (W2- W3)/W3*100% 水分系数(x)=烘干土重/风干土重

土壤水分特征曲线

土壤水动力学 学院:环境科学与工程学院专业:水土保持与沙漠化防治学号: 姓名:

土壤水分特征曲线的研究与运用 摘要:土壤水的基质势随土壤含水量而变化,其关系曲线称为土壤水分特征曲线。该曲线反映了土壤水分能量和数量之间的关系,是研究土壤水动力学性质必不可少的重要参数,在生产实践中具有重要意义。本文总结并比较分析了前人在土壤水分特征曲线测定方法中的各种模型,其中对Van Genuchten模型的研究较为广泛。但为之在DPS中求解Van Genuchten模型参数和在试验基础上建立的土壤水分特征曲线的单一参数模型结构较为简单,省时省力,可进一步的推广运用。 关键词:土壤水分特征曲线Van Genuchten模型运用 1.土壤水分特征曲线的研究 1.1土壤水分特征曲线的概念 土壤水分特征曲线是描述土壤含水量与吸力(基质势)之间的关系曲线。它反映了土壤水能量与土壤水含量的函数关系,因此它是表示土壤基本水力特性的重要指标,对研究土壤水滞留与运移有十分重要的作用[1]。 1.2土壤水分特征曲线的意义 土壤水分特征曲线反映的是土壤基质势(或基质吸力)和土壤含水量之间的关系。土壤水分对植物的有效程度最终决定于土水势的高低而不是自身的含水量。如果测得土壤的含水量,可根据土壤水分特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度[2]。

1.3土壤水分特征曲线的测定方法 1.3.1直接法 通过实验方法直接测定土壤水分特征曲线的方法称为直接法。直接法中有众多的实验室和田间方法,如力计法、压力膜法、离心机法、砂芯漏斗法、平汽压法等,而前3种应用最为普遍。①力计法:是土壤通过土杯从力计中吸收水分造成一定的真空度或吸力,当土壤与外界达到平衡时,测出土壤基质势,再测出土杯周围的土壤含水量,不断变更土壤含水量并测相应的吸力,就可完成土壤水分特征曲线的测定。力计法可用于脱水和吸水2个过程,可测定扰动土和原状土的特征曲线,是用于田间监测土壤水分动态变化重要的手段,在实际工作中得到广泛应用。但力计仅能测定低吸力围0~0.08Mpa的特征曲线。②压力膜法:是加压使土壤水分流出,导致土壤基质势降低直到基质势与所加压力平衡为止,测定此时的土壤含水量.通过改变压力逐步获取不同压力下的含水量即可得到水分特征曲线。压力膜法可应用于扰动土和原状土,测定特征曲线的形状与土壤固有的特征曲线相符,可应用于土壤水分动态模拟,但测定周期长,存在着土壤容重变化的问题。③离心机法:测定某吸力下所对应的含水量,原理和实验过程同压力膜法相似,但其压力来源于离心机高速旋转产生的离心力。离心机法可应用于扰动土和原状土,测定周期短。特征曲线的相对形状与土壤固有的特征曲线相符,可用于土壤水分动态模拟。但是离心机仅可测定脱水过程,且在测定过程中土壤容重变化很大,若能对容重的影响进行校正,可望有较高的测定准确度。邵明安(1985)从土壤蒸发试验的预测与实测的含水量的偏离程度初步研究了以上3种方法测定土壤基质势的差别及准确性,结果表明考虑容重变化的离心机法有较高的准确度。④砂芯漏斗法:就是用一个砂芯漏斗和连接悬挂水柱的土板形成

土壤含水量测量实验报告

土壤水分的测定实验 一、实验目的 1、了解土壤的实际含水情况,以便适时灌排,保证植物生长对水分的需求。 2、风干土样水分的测定,是各项分析结果计算的基础。土壤水分含量的多少,直接影响土壤的固、液、气三相比例,以及土壤的适耕性和植物的生长发育。 二、实验原理 土壤水分大致分为化学结合水、吸湿水和自由水三类。自由水是可供植物自由利用的有效水和多余水,可以通过土壤在空气中自然风干的方法从土壤中释放出来;吸湿水是土壤颗粒表面被分子张力所吸附的单分子水层,只有在105-110℃下才能摆脱土壤颗粒表面分子力的吸附,以气态的形式释放出来,由于土粒对水汽分子的这种吸附力高达成千上万个大气压,所以这层水分子是定向排列,而且排列紧密,水分不能自由移动,也没有溶解能力,属于无效水;而化学结合水因为参与了粘土矿物晶格的组成,所以是以OH-的形式存在的,要在600--700℃时才能脱离土粒的作用而释放出来。 土壤含水量的测定方法很多,如烘干法、酒精燃烧法和中子测量法等,其中烘干法是目前国际上土壤水分测定的标准方法,虽然需要采集土样,并且干燥时间较长但是因为它比较准确,且便于大批测定,故为常用的方法。 将土壤样品放在105℃±2℃的烘箱中烘至恒重,求出土壤失水重量占烘干重量的百分数。在此温度下,包括吸湿水(土粒表面从空气中吸取活动力强的水汽分子而成的一种水分)在内的所有水分烘掉,而一般土壤有机质不致分解。 三、实验器材 铝盒、烘箱、干燥器、天平、小铲子、小刀。 四、实验步骤 1、在室内将铝盒编号并称重,重量记为W0 。 2、用已知重量的铝盒在天平上称取欲测土样15—20克,称量铝盒与新鲜土壤样

土壤离心机测量土壤水分特征曲线的方法及应用意义

土壤离心机测量土壤水分特征曲线的方法及应用意义 土壤水分特征曲线一般也叫做土壤特征曲线或土壤pF曲线,它表述了土壤水势(土壤水吸力)和土壤水分含量之间的关系。通常土壤含水量Q以体积百分数表示,土壤吸力S以大气压表示。由于在土壤吸水和释水过程中土壤空气的作用和固、液而接触角不同的影响,实测土壤水分特征曲线不是一个单值函数曲线。 用非线性函数表示土壤水分特征曲线与渗透系数变化的理论模型有Van Genuchten模型 (V-G模型)、Brooks-Corey模型等。这些理论模型的参数需要通过对土壤水分特征曲线的 观测加以确定。 土壤水分特征曲线是重要的土壤水力性质参数之一: 土壤水的基质势或土壤水吸力是随土壤含水率而变化的,其关系曲线称为土壤水分特征曲线。该曲线反映了土壤水分能量和数量之间的关系,属于土壤的基本物理性质,是研究土壤水动力学性质比不可少的重要参数,对研究土壤水运动及其溶质运移有重要作用,在生产实践中具有重要意义。 已有的土壤水分特征曲线测定方法主要包括负压计法、砂性漏斗法、压力仪法、离心机法等。土壤的渗透系数也随含水率变化,表现为曲线关系。 以土壤吸力表示土壤水分的状态,干燥的土壤对土壤水分的吸力强,湿润的土壤对水分的吸力弱,所以用土壤对水分吸力的大小,在一定范围内可以表示土壤水分状态和土壤水势。土壤吸力一般用大气压表示,干燥土壤的吸水极强,可达几千甚至上万个大气压,为了书写方便起见,一般用与大气压相当的水柱高度的厘米数(负值)对数来表示,称pF。 检测土壤水分特征pF曲线高速冷冻离心机HR21M

怎样用离心机法测土壤水分特征曲线? 用土壤离心机测土壤水分特征曲线方法:去取原状土或者扰动土,在不同转速和时间下测量含水量做水分特征曲线即可。根据离心机实测试验数据,分析不同质地土壤水分特征曲线变化趋势。相同离心力下,随着黏粒含量增加,最佳离心时间变长。 用离心机法测土壤水分特征曲线意义: 土壤水分对植物的有效程度最终决定于土水势的高低,而不是自身的含水量。如果测得土壤的含水量,可根据土壤水分土特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度。 土壤水分特征曲线可反映不同土壤的持水和释水特性,也可从中了解给定土类的一些土壤水分常数和特征指标。曲线的斜率倒数称为比水容量,是用扩散理论求解水分运动时的重要参数。曲线的拐点可反映相应含水量下的土壤水分状态,如当吸力趋于0时,土壤接近饱和,水分状态以毛管重力水为主;吸力稍有增加,含水量急剧减少时,用负压水头表示的吸力值约相当于支持毛管水的上升高度;吸力增加而含水量减少微弱时,以土壤中的毛管悬着水为主,含水量接近于田间持水量;饱和含水量和田间持水量间的差值,可反映土壤给水度等。故土壤水分特征曲线是研究土壤水分运动、调节利用土壤水、进行土壤改良等方面的最重要和最基本的工具。 土壤水分特征曲线主要有以下几方面的应用: 1.进行基质势和含水量的相互换算。 根据土壤水分特征曲线可将土壤湿度换算成土壤基质势,依据基质势可判断土壤水分对作物的有效度。也可将基质势换算成含水量,根据土壤水分特征曲线可查得田间持水量、凋萎湿度和相应的有效水范围。土壤水分特征曲线斜率的倒数,即单位基质势变化所引起含水量的变化,称之为比水容重,是衡量土壤水分对植物的有效性和反映土壤持水性能的一个重要重要指标。 2.表示比水容重。 土壤水分特征曲线斜率的倒数,即单位基质势变化所引起含水量的变化,称之为比水容重,是衡量土壤水分对植物的有效性和反映土壤持水性能的一个重要重要指标。 3.可以间接反映土壤孔隙的分布。 若将土壤中的孔隙设想为各种孔径的圆形毛细管,那么S和毛细管直径d的关系可简单的表示为S=4σd。式中σ为水的表面张力系数,室温条件下一般为75×105N/cm。应用数学物理方法对土壤中的水运动进行定量分析时,水分特征曲线是不可缺少的重要参数。 4.可以判断土壤质地状况和土壤水分在吸力段的分布状况。 曲线的拐点可反映相应含水量下的土壤水分状态,如当吸力趋于0 时,土壤接近饱和,水分状态以毛管重力水为主;吸力稍有增加,含水量急剧减少时,用负压水头表示的吸力值约相当于支持毛管水的上升高度;吸力增加而含水量减少微弱时,以土壤中的毛管悬着水为主,含水量接近于田间持水量;饱和含水量和田间持水量间的差值,可反映土壤给水度等。故土壤水分特征曲线是研究土壤水分运动、调节利用土壤水、进行土壤改良等方面的最重要和最基本的工具。

土壤含水量测量方法

土壤含水量测量方法 ( 1 )称重法(Gravimetric) 也称烘干法,这是唯一可以直接测量土壤水分方法,也是目前国际上的标准方法。用土钻采取土样,用0.1g 精度的天平称取土样的重量,记作土样的湿重 M,在 105℃的烘箱内将土样烘 6~8 小时至恒重,然后测定烘干土样,记作土样的干重 Ms 土壤含水量=(烘干前铝盒及土样质量-烘干后铝盒及土样质 量)/(烘干后铝盒及土样质量-烘干空铝盒质量)*100% ( 2 )张力计法(Tensiometer) 也称负压计法,它测量的是土壤水吸力测量原理如下:当陶土头插入被测土壤后,管内自由水通过多孔陶土壁与土壤水接触,经过交换后达到水势平衡,此时,从张力计读到的数值就是土壤水(陶土头处)的吸力值,也即为忽略重力势后的基质势的值,然后根据土壤含水率与基质势之间的关系(土壤水特征曲线)就可以确定出土壤的含水率 ( 3 ) 电阻法(Electricalresistance) 多孔介质的导电能力是同它的含水量以及介电常数有关的,如果忽略含盐的影响,水分含量和其电阻间是有确定关系的电阻法是将两个电极埋入土壤中,然后测出两个电极之间的电阻。但是在这种情况下,电极与土壤的接触电阻有可能比土壤的电阻大得多。因此采用将电极嵌入多孔渗水介质(石膏、尼龙、玻璃纤维等)中形成电阻块以解决这个问题 ( 4 ) 中子法(Neutronscattering) 中子法就是用中子仪测定土壤含水率中子仪的组成主要包括:一个快中子源,一个慢中子检测器,监测土壤散射的慢中子通量的计数器及屏蔽匣,测试用硬管等。快中子源在土壤中不断地放射出穿透力很强的快中子,当它和氢原子核碰撞时,损失能量最大,转化为慢中子(热中子),热中子在介质中扩散的同时被介质吸收,所以在探头周围,很快的形成了持常密度的慢中子云

土壤含水量的测定实验报告书

1. 实验二 土壤含水量的测定 (烘干法与酒精燃烧法) 一、目的意义 进行土壤含水量的测定有两个目的:一是为了解田间土壤的实际含水情况,以便及时进行播种、灌排、保墒措施,以保证作物的正常生长;或联系作物长相长势及耕作栽培措施,总结丰产的水肥条件。二是风干土样水分的测定,是各项分析结果计算的基础。 土壤含水量的测定方法很多,如烘干法、酒精燃烧法和中子测量法等,其中烘干法是目前国际上土壤水分测定的标准方法,虽然需要采集土样,并且干燥时间较长但是因为它比较准确,且便于大批测定,故为常用的方法。 二、土壤自然含水量的测定 土壤自然含水量是指田间土壤中实际的含水量,它随时在变化之中,不是一个常数。土壤自然含水量测定的方法,介绍烘干法和酒精燃烧法。 (一)烘干法 1.方法原理 将土壤样品放在105℃±2℃的烘箱中烘至恒重,求出土壤失水重量占烘干重量的百分数。在此温度下,包括吸湿水(土粒表面从空气中吸取活动力强的水汽分子而成的一种水分)在内的所有水分烘掉,而一般土壤有机质不致分解。 2.操作步骤 (1)将铝盒擦净,烘干冷却,在1/100天平上称重,并记下铝盒号码(A )。 (2)在田间取有代表性的土样(0~20cm )20g 左右,迅速装入铝盒中,盖好盒盖,带回室内(注意铝盒不可倒置,以免样品撒落),在天平上称重(B ),每个样品至少重复测3份。 (3)将打开盖子的铝盒(盖子放在铝盒旁侧或盖子平放在盒下),放人105℃±2℃的恒温箱中烘6~8小时。 (4)待烘箱温度下降至50℃左右时,盖好盖子,置铝盒于干燥器中30分钟左右,冷却至室温,称重(C ),如无干燥器,亦可将盖好的铝盒放在磁盘或木盘中,待至不烫手时称重。 (5)然后,启开盒盖,再烘4小时,冷却后称重,一直到前后两次称重相差不超过1%时为止(C )。 3.结果计算 土壤含水量(%)= 100A C C B ?-- 式中:A — 铝盒重(g ) B — 铝盒加湿土重(g ) C — 铝盒加烘干土重(g ) 4.注意事项 (1)烘箱温度以105℃±2℃为宜,温度过高,土壤有机质易碳化逸失。在烘箱中,一

土壤水分特征曲线精选文档

土壤水分特征曲线精选 文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

土壤水动力学 学院:环境科学与工程学院专业:水土保持与沙漠化防治学号: 姓名:

土壤水分特征曲线的研究与运用 摘要:土壤水的基质势随土壤含水量而变化,其关系曲线称为土壤水分特征曲线。该曲线反映了土壤水分能量和数量之间的关系,是研究土壤水动力学性质必不可少的重要参数,在生产实践中具有重要意义。本文总结并比较分析了前人在土壤水分特征曲线测定方法中的各种模型,其中对Van Genuchten模型的研究较为广泛。但为之在DPS中求解Van Genuchten模型参数和在试验基础上建立的土壤水分特征曲线的单一参数模型结构较为简单,省时省力,可进一步的推广运用。 关键词:土壤水分特征曲线 Van Genuchten模型运用 1.土壤水分特征曲线的研究 土壤水分特征曲线的概念 土壤水分特征曲线是描述土壤含水量与吸力(基质势)之间的关系曲线。它反映了土壤水能量与土壤水含量的函数关系,因此它是表示土壤基本水力特性的重要指标,对研究土壤水滞留与运移有十分重要的作用[1]。 土壤水分特征曲线的意义 土壤水分特征曲线反映的是土壤基质势(或基质吸力)和土壤含水量之间的关系。土壤水分对植物的有效程度最终决定于土水势的高低而不是自身的含水量。如果测得土壤的含水量,可根据土壤水分特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度[2]。 土壤水分特征曲线的测定方法 1.3.1直接法

通过实验方法直接测定土壤水分特征曲线的方法称为直接法。直接法中有众多的实验室和田间方法,如张力计法、压力膜法、离心机法、砂芯漏斗法、平衡水汽压法等,而前3种应用最为普遍。①张力计法:是土壤通过陶土杯从张力计中吸收水分造成一定的真空度或吸力,当土壤与外界达到平衡时,测出土壤基质势,再测出陶土杯周围的土壤含水量,不断变更土壤含水量并测相应的吸力,就可完成土壤水分特征曲线的测定。张力计法可用于脱水和吸水2个过程,可测定扰动土和原状土的特征曲线,是用于田间监测土壤水分动态变化重要的手段,在实际工作中得到广泛应用。但张力计仅能测定低吸力范围0~0.08Mpa的特征曲线。②压力膜法:是加压使土壤水分流出,导致土壤基质势降低直到基质势与所加压力平衡为止,测定此时的土壤含水量.通过改变压力逐步获取不同压力下的含水量即可得到水分特征曲线。压力膜法可应用于扰动土和原状土,测定特征曲线的形状与土壤固有的特征曲线相符,可应用于土壤水分动态模拟,但测定周期长,存在着土壤容重变化的问题。③离心机法:测定某吸力下所对应的含水量,原理和实验过程同压力膜法相似,但其压力来源于离心机高速旋转产生的离心力。离心机法可应用于扰动土和原状土,测定周期短。特征曲线的相对形状与土壤固有的特征曲线相符,可用于土壤水分动态模拟。但是离心机仅可测定脱水过程,且在测定过程中土壤容重变化很大,若能对容重的影响进行校正,可望有较高的测定准确度。邵明安(1985)从土壤蒸发试验的预测与实测的含水量的偏离程度初步研究了以上3种方法测定土壤基质势的差别及准确性,结果表明考虑容重变化的离心机法有较高的准确度。④砂芯漏斗法:就是用一个砂芯漏斗和连接悬挂水柱的陶土板形成对土样的吸力。它适用于扰动土和原状土,可测定吸水和脱水2个过程,但是只适合在室内使用。⑤平衡水汽压法:是根据在一个平衡体系中各相的自由能相等的原理。让土壤水自然蒸发,使其与容器中的水汽达到平衡。只要测出密封容器中的相对湿度和温度,就可计算出19分子土壤水的势值。它要精确测定密封容器中的相对湿度,对恒温、密封条件要求比较高,但是其测定的土水势范围较宽[3]。

土壤水分特征曲线测定

土壤水分特征曲线测定实验 一、实验原理 土壤水分特征曲线(又称持水曲线,见图1)是土壤含水量与土壤水吸力的关系曲线,该曲线能够间接反映土壤孔隙大小的分布,分析不同质地土壤的持水性和土壤水分的有效性等,在水文学、土壤学等学科的研究与实践中都具有重要作用。目前,负压计法是测量土壤水吸力最简单、最直观的方法,而时域反射仪(TDR)是测量土壤体积含水率的最常用、最便捷的方法之一。 图1 土壤水分特征曲线 (一)负压计 负压计由陶土头、腔体、集气管和真空(负压)表等部件组成(见图2)。陶土头是仪器的感应部件,具有许多微小而均匀的孔隙,被水浸润后会在孔隙中形成一层水膜。当陶土头中的孔隙全部充水后,孔隙中水就具有张力,这种张力能保证水在一定压力下通过陶土头,但阻止空气通过。将充满水且密封的负压计插入不饱和土样时,水膜就与土壤水连接起来,产生水力上的联系。土壤系统的水势不相等时,水便由水势高处通过陶土头向水势低处流动,直至两个的系统的水势平衡为止。总土水势包括基质势、压力势、溶质势和重力势。由于陶土头为多孔透水材料,溶质也能通过,因此内外溶质势相等,陶土头内外重力势也相等。非饱和土壤水的压力势为零,仪器中无基质,基质势为零。因此,土壤水的基质势便可由仪器所示的压力(差)来量度。非饱和土壤水的基质势抵于仪器里的压力势,土壤就透过陶土头向仪器吸水,直到平衡为止。因为仪器是密封的,仪器中就产生真空,这样仪器内负压表的读数这就是土壤的吸力。土壤水吸力与土壤水基质势在数值上是相等的,只是符号相反,在非饱和土壤中,基质势为负值,吸力为正值。

图2 负压计结构图 (二)TDR 土壤水分对土壤介电特性的影响很大。自然水的介电常数为80.36,空气介电常数为1,干燥土壤为3~7之间。这种巨大差异表明,可以通过测量土壤介电性质来推测土壤含水量。时域反射仪以一对平行棒(也叫探针)作为导体,土壤作为电介质,输出的高频电磁波信号从探针的始端传播到终端,由于终端处于开路状态,脉冲信号被反射回来。通过电磁波沿探针来回传播的时间可以计算土壤表观介电常数,介电常数与土壤含水量之间的函数关系而得到土壤含水量。 对相同的土壤在不同的土壤湿度条件下测量一系列(土壤含水量θ,土壤水吸力S)的值,便可绘制土壤水分特征曲线,然后用S(θ)经验公式拟合观测数据。 二、实验材料和仪器 1.土样(室外取土) 2.蒸馏水(实验室通过冷凝装置制备) 3.装土容器(底部有孔) 4.负压计 5.便携式TDR(TDR300,见图3) 图 3 TDR300土壤水分仪

土壤水分测定法

土壤水分测定法 依据标准:NY/T52-1987 1适用范围 本标准用于测定除石膏性土壤和有机土(含有机质20%以上的土壤)以外的各类土壤的水分含量。 2测定原理 土壤样品在105±2℃烘至恒重时的失重,即为土壤样品所含水分的质量。 3仪器、设备 3.1土钻; 3.2土壤筛:孔径1mm; 3.3铝盒:小型的直径约40mm,高约20mm; 大型的直径约55mm,高约28mm; 3.4分析天平:感量为0.001g和0.01g; 3.5小型电热恒温烘箱; 3.6干燥器:内盛变色硅胶或无水氯化钙。 4试样的选取和制备 4.1风干土样:选取有代表性的风干土壤样品,压碎,通过1mm筛,混合均匀后备用。 4.2新鲜土样:在田间用土钻取有代表性的新鲜土样,刮去土钻中的上部浮土,将土钻中部所需深度处的土壤约20g捏碎后迅速装入已知准确质量的大型铝盒内,盖紧,装入木箱或其他容器,带回室内,将铝盒外表擦拭干净,立即称重,尽早测定水分。

5测定步骤 5.1风干土样水分的测定 取小型铝盒在105℃恒温箱中烘烤约2h ,移入干燥器内冷却至室温,称重,准确至0.001g 。用角勺将风干土样拌匀,舀取约5g ,均匀的平铺在铝盒中,盖好,称重,准确至0.001g 。将铝盒盖揭开,放在盒底下,置于已预热至105±2℃的烘箱中烘烤6h 。取出,盖好,移入干燥器内冷却至室温(约20min ),立即称重。风干土样水分的测定应做两份平行测定。 5.2新鲜土样水分的测定 将盛有新鲜土样的大型铝盒在分析天平上称重,准确至0.01g 。揭开盒盖,放在盒底下,置于已预热至105±2℃的烘箱中烘烤12h 。取出,盖好,移入干燥器内冷却至室温(约30min ),立即称重。新鲜土样水分的测定应做三份平行测定。 6测定结果的计算 6.1计算公式 水分(分析基),%=100m m m m 0 121?--……………………(1) 水分(干基),%=100m m m m 0 221?--……………………(2) 式中:m0——烘干空铝盒质量,g ; M1——烘干前铝盒及土样质量,g ; M2——烘干后铝盒及土样质量,g 。 6.2平行测定的结果用算术平均值表示,保留小数后1位。 6.3平行测定结果的相差,水分小于5%的风干土样不得超过0.2%,水分为5~25%的潮湿土样不得超过0.3%,水分大于15%的大粒(粒径约10mm )粘重潮湿土样

土壤水分特征曲线(研究)综述

土壤水分特征曲线(研究)综述 卢常磊(学号:1001064113) (系别:农学系专业:种子科学与工程班级:一班) 前言:土壤水的基质势(或土壤水吸力)随土壤含水量而变化,其关系曲线称为土壤水分特征曲线。该曲线反映了土壤水分能量和数量之间的关系,是研究土壤水动力学性质比不可少的重要参数,在生产实践中具有重要意义。几十年来,人们投入了大量的精力来发展确定该曲线的方法,这些方法归纳起来可分为两大类:一类是直接测定法,另一类是间接推算法(或参数估计法)。这些方法各有优缺点,而在生产实践中有的方法几乎没有实际应用价值。基于这一点,本文针对这些方法以及近年来发展的新方法进行了比较和综述。 关键词:土壤水分特征曲线 van Genuchten模型 1.土壤水分特征曲线 1.1概念土壤水的基质势(或 土壤水吸力)随土壤含水量的变化而 变化,其关系曲线称为土壤水分特征 曲线,英文名称为soil water characteristic curve。在实际中人 们也使用土壤持水曲线或土壤pF曲 线。一般,该曲线以土壤含水量Q(以 体积百分数表示)为横坐标,以土壤 水吸力 S(以大气压表示)为纵坐标。 如右图是一不同质地土壤水分特征曲线图。 1.2意义土壤水分对植物的有效程度最终决定于土水势的高低,而不是自身的含水量。如果测得土壤的含水量,可根据土壤水分土特征曲线查得基质势值,从而可判断该土壤含水量对植物的有效程度。 1.3应用土壤水分特征曲线主要有以下几方面的应用[1]:①进行基质势和含水量的相互换算。根据土壤水分特征曲线可将土壤湿度换算成土壤基质势,依据基质势可判断土壤水分对作物的有效度。也可将基质势换算成含水量,根据土壤水分特征曲线可查得田间持水量、凋萎湿度和相应的有效水范围。②表示比

相关文档
最新文档