催化剂的制备性能评价及使用技术多相催化剂常用哪些

催化剂的制备性能评价及使用技术多相催化剂常用哪些
催化剂的制备性能评价及使用技术多相催化剂常用哪些

第二章催化剂的制备、性能评价及使用技术

1.多相催化剂常用哪些方法来制备?为什么制备固体催化剂都需要经过热处理,其目的是什么?

多相催化剂常用的制备方法有:(1)天然资源的加工,结构不同,含量不同的硅铝酸盐采用不同的方法和条件加工后能适用于某一特定的催化反应;(2)浸渍法,将载体置于含活性组分的溶液中浸泡,达到平衡后将剩余液体除去,再经干燥、煅烧、活化等步骤即得催化剂。此法要求浸渍溶液中所含活性组分溶解度大、结构稳定、受热后分解为稳定的化合物;(3)滚涂法和喷涂法,滚涂法是将活性组分先放在一个可摇动的容器中,再将载体布于其上,经过一段时间的滚动,活性组分逐渐粘附其上,为了提高滚涂效果,有时也添加一定的粘合剂。喷涂法与滚涂法类似,但活性组分不同载体混在一起,而是用喷枪附于载体上;(4)沉淀法,在含金属盐类的水溶液中,加进沉淀剂,以便生成水合氧化物、碳酸盐的结晶或凝胶。将生成的沉淀物分离、洗涤、干燥后,即得催化剂;(5)共混合法:将活性组分与载体机械混合后,碾压至一定程度,再经挤条成型,最后缎烧活化;(6)沥滤法(骨架催化剂的制备方法),将活性组分金属和非活性金属在高温下做成合金,经过粉碎,再用苛性钠来溶解非活性金属即得;(7)离子交换法: 是在载体上金属离子交换而负载的方法, 合成沸石分子筛一般也是先做成Na型,需经离子交换后方显活性;(8) 均相络合催化别的固载化: 将均相催化剂的活性组分移植于载体上, 活性组分多为过渡金属配合物,载体包括无机载体和有机高分子载体。优点是活性组分的分散性好,而且可根据需要改变金属离子的配体。制备各固体催化剂,无论是浸渍法,沉淀法还是共混合法,有的钝态催化剂经过缎烧就可以转变为活泼态,有的还需要进一步活化。

所以,催化剂在制备好以后,往往还要活化;除了干燥外,还都需要较高温度的热处理-煅烧的目的:1)通过热分解除掉易挥发的组分而保留一定的化学组成,使催化剂具有稳定的催化性能。2)借助固态反应使催化剂得到一定的晶型、晶粒大小、孔隙结构和比表面。3)提高催化剂的机械强度。

2.沉淀法制备催化剂的原理是什么?金属盐和沉淀剂的选择原则是什么?

沉淀法制备催化剂的原理是沉淀反应,金属盐一般首选硝酸盐来提供无机催化剂材料所需的阳离子;金、铂、钯等贵金属不溶于硝酸,但可溶于王水。

沉淀剂的选择原则是:(1)尽可能使用易分解并含易挥发成分的沉淀剂;(2)沉淀便于过滤和洗涤;(3)沉淀剂自身的溶解度要足够大;(4)沉淀物的溶解度应很小;(5)沉淀剂必须无毒,不造成环境污染。

3.沉淀法分为哪几类?

沉淀法分为单组份沉淀法、共沉淀法(多组分沉淀法)、均匀沉淀法、超均匀沉淀法、浸渍沉淀法、导晶沉淀法和络合沉淀法。

4.在沉淀反应中,溶液中生成沉淀的首要条件是什么?

溶液中生成沉淀的首要条件之一是其浓度超过饱和浓度。

5.生成晶形沉淀和非晶形沉淀的条件是什么?

晶形沉淀,沉淀应在适当稀的溶液中进行。开始沉淀时,沉淀剂应在不断搅拌下均匀而缓慢地加入,以免发生局部过浓现象,这样,沉淀开始时,溶液的过饱和度不致于太大,可使晶核生成的速度降低,有利于晶体长大。

非晶形沉淀,应在含有适当电解质、较浓的热溶液中进行沉淀。由于电解质的存在,能使胶体颗粒胶凝,又由于溶液较浓,温度较高,离子的水合程度较小。这样就可以获得比较紧密凝聚的沉淀,而不致于成为胶体溶液。

6.沉淀法制备催化剂过程中,加料方式有哪几种?

沉淀法制备催化过程中,加料方式有正加法、逆加法和并加法。

7.沉淀物的后处理过程有哪些?

沉淀物的后处理过程有沉淀的老化、过滤洗涤、干燥、焙烧和活化。

8.制备催化剂时,沉淀为何要陈化?

陈化阶段的变化(或作用):使小的晶粒进一步长大;晶粒与晶粒之间进一步黏结;使结构稳定。

9.制备催化剂时,干燥和焙烧的目的是什么?

干燥是固体物料的脱水过程,通常在60~300℃下的空气中进行,一般对化学结构没有影响,但对物理结构,特别是孔结构及机械强度会产生影响。

焙烧的目的一是通过物料的热分解,除去化学结合水和挥发性物质(CO2、NO2、NH3等),使之转化成所需的化学成分和化学形态。气体逸出后在催化剂中留下空隙,使内表面增加;二是通过控制焙烧温度,使基体物料向一定晶型或固溶体转变;三是在一定气氛和温度条件下,通过再结晶与烧结过程,控制微晶粒的数目与晶粒大小,从而控制催化剂的孔径和比表面等,控制其初活性,还可以提高机械强度。

10.浸渍法制备催化剂的原理和过程是什么?

当多孔载体与溶液接触时,由于表面张力作用而产生的毛细管压力,使溶液进入毛细管内部,然后溶液中的活性组分再在细孔内表面吸附。当水分蒸发后,活性物质就留在载体表

面上,再经干燥和焙烧,活性组分的盐类发生分解,转变成金属或金属氧化物,这样就制得了负载型催化剂。

浸渍过程为干浸渍阶段、湿浸渍阶段和干燥阶段。

11.浸渍法分为哪几类?

浸渍法分为过量溶液浸渍法、等体积溶液浸渍法、多次浸渍法、蒸气相浸渍法、流化喷洒浸渍法和浸渍沉淀法。

12. 简述干燥速度对活性组分在载体颗粒中分布的影响。

如果干燥速度太慢,在弯液面上蒸发,弯液面后退到孔的内部,在此过程有些溶质沉积在孔壁,但大部分溶质浓集于孔的深部,最终盐的结晶局限在孔的底部或颗粒的中心。当干燥速度太快,则有一温度梯度,在孔中深部的蒸发迫使溶液向外部移动,大部分结晶沉积在那里。

13. 制备Pt/ -Al2O3催化剂时,采用什么方法可使Pt更多地分散在载体的孔内,并简述其制备原理?

采用竞争吸附的方法来制备,因为氯铂酸吸附很快,其扩散进载体孔内是速率控制步骤,通过将盐酸加入氯铂酸溶液中,利用盐酸与氯铂酸对载体吸附部位的竞争性吸附,从而驱使铂深入颗粒内部,从而达到制备目的催化剂。

14.试分别解释混合法、热熔融法和离子交换法。

混合法是指将几种催化剂组分混合在一起制备多组分催化剂,混合的目的是促进物料间的均匀分布,提高分散度。

热熔融法是指在高温条件下将催化剂的各组分熔融成均匀的混合体,合金固溶体和氧化物固熔体,以制备高活性、高稳定性和高机械强度的催化剂。

离子交换法是指利用离子交换反应作为主要制备工序制得催化剂的方法。此方法是将活性组分通过离子交换负载到载体上,然后经适当的处理如洗涤、干燥、焙烧等制得催化剂。

15. 请简述Raney镍催化剂的制备方法其过程。

答:制备采用浸取法,其制备过程为:将Ni 与Al制成Ni-Al合金并磨碎,再用碱液(20% NaOH)浸出其中的Al,接着用蒸馏水洗去碱液,最后得到的Raney 镍贮存在蒸馏水中备用。

16.催化剂成型的含义?成型方法有哪几种?

成型是指各类粉体、颗粒、溶液或熔融原料在一定外力作用下互相聚集,制成具有一定形状、大小和强度的固体颗粒的单元过程。

成型方法有压片成型、挤条成型、油中成型、喷雾干燥成型和转动成型。

17.如何对催化剂进行评价?

答:设计和制备催化剂以后,其性能优劣还要进行催化剂的评价。评价催化剂是指对适用于某一反应的催化剂进行较全面的考察。其主要考察的项目有(1)活性:活性组分,助剂,载体,化学结合状态,结构缺陷,有效表面,表面能,孔结构等;(2)选择性:与活性类似;(3)寿命:稳定性,机械强度,耐热性,抗毒性,耐污性,再生性,物理性质:形状,粒径,粒度分布.密度.导热性,成型性。机械强度,吸水性,流动性等,制备方法:制造设备,制备条件,难易性,重现性,活化条件,保存条件,使用方法:反应装置,催化剂装填方法,反应操作条件,安全程度,腐蚀性,再活化条件,分离回收,格性: 催化剂原料的价格,制备工序,价毒:操作过程中的毒性,废物的毒性. 一般来说,催化剂的活性、选择性和寿命是评价催化剂最重要的指标。

18. 简述催化剂活性评价的目的。

(1)筛选催化剂,评价其优劣;(2)制备参数的优化;(3)确定过程参数,以确定催化剂的最佳操作区域;(4)失活研究;(5)失效催化剂的诊断;(6)催化剂产品质量检验

19.表征催化剂可提供的信息有哪些?

提供的信息有化学组成和结构、纹理结构及机械性质和催化活性三种最基本信息。

20.一般来说表征催化剂物理结构时主要表征哪些参数?

(1)表面积的测定:主要有气体吸附法,射线小角度衍射法,直接测量法。(2)结构参量测定,有催化剂的密度,催化剂的孔容,孔隙率,孔的简化模型和孔的平均半径等。(3)催化剂的机械强度(4)催化剂晶粒大小及其分布。

21.请说明常用的测定催化剂表面积的方法,以及实验室常用的方法和特点是什么?

测定表面积的方法有:气体吸附法、x射线小角度衍射法、直接测量法等。实验室常采用吸附法、BET法。用吸附法时,如果是非孔性样品,则从所得的II型等温线计算比表面;如果是孔性样品,则从所得到的IV型等温线计算比表面。一般,固体若是具有孔径大小在中等范围的细孔,将得到IV型等温线。

22. 简述活性表面积的测定。

用BET法测定的是催化剂的总表面积。通常只有其中的一部分才有活性,这部分叫活性表面。“选择化学吸附”可用来测定活性表面的面积。

从气体吸附量计算活性表面,首先要确定选择化学吸附的计量关系,即每一个吸附分子能覆盖几个活性中心。对于氢的吸附来说,计量系数一般是2,因为氢分子在吸附时发生解

离,而且每个氢原子占据一个金属原子。表面氢氧滴定也是一种选择吸附测定活性表面积的方法。先让催化剂吸附氧,然后再吸附氢。吸附的氢与氧反应生成水。由消耗的氢按比例推出吸附的氧的量。从氧的量算出吸附中心数,由此数乘上吸附中心的截面积,即得活性表面积。

23.催化剂的密度分为哪几类?

堆密度、颗粒密度、真密度或骨架密度。

24.简述氦-汞法测定比孔容的原理和步骤。

氦气的分子小,可以进入颗粒之间的空隙和颗粒内部的细孔。将装填慢催化剂颗粒的容器抽真空,然后冲入氦气,根据气体定律和实验时的温度、压力可测算出氦气所占的体积。它表示了V隙+V孔。

因为汞在常压下汞只能充满颗粒之间的空隙和进入颗粒孔半径大于5×104nm的孔。实际测定时,取一定堆体积的催化剂扣除催化剂颗粒之间的空隙的体积,即得颗粒密度。

25.测定颗粒大小和分布的方法有哪些?

筛分法、淘析法、沉降法、显微镜法和其他方法。

26.催化剂微观结构的表征方法有哪些?

催化剂微观结构表征的方法有很多,例如电子显微分析、热分析技术、X射线衍射分析方法、电子能谱分析、程序升温分析技术、红外光谱方法、漫反射紫外-可见光谱方法、拉曼光谱方法、核磁共振及几种方法的联用等。

27. 工业固体催化剂在使用前和使用中会受到的机械应力,它们大致有哪几种?

(1)运输过程中的磨损,催化剂颗粒与容器壁接触磨擦所致。(2)催化剂装入反应器时的碰撞冲击,工业上往下倾倒催化剂可能使它破碎。(3)由于在活化和再生过程中发生相变而致的催化剂内应力。(4)由于流体流动,压力降,催化剂床重量和温度的循环变化而致的外应力。(5)移动床或流化床中,颗粒和颗粒之间,颗粒和反应器壁或内构件间的碰撞和摩擦。

28.什么是催化剂活化?

在一定压力和温度下,用一定组成的气体对催化剂进行处理,使其中以某种氧化物、氢氧化物、盐的形态存在的活性组分得到还原或发生相变,而获得催化反应所必需的活性组分和相组成的过程称为催化剂活化。

29.催化剂失活的原因有哪些?

结焦、金属污染、催化剂中毒、催化剂烧结,除此之外,还有催化剂颗粒破碎会导致催

化剂失活;使用过程中形成污垢;助催化剂有效组分流失和挥发。

30. 简述金属污染的危害

有机金属化合物吸附于催化剂表面,接着分解成高度分散的金属,它封闭了催化剂的表面部位于孔,使其活性下降。更大的危害是这些高度分散的金属杂质自身的催化活性,它的脱氢活性导致结焦的加快生成,而在再生过程中这些金属氧化,它们的氧化物起氧化催化剂的作用,导致过分大的燃烧速率,造成催化剂烧结。

31.简述解决金属污染的办法

一是用化学或吸附处理,以除去加工用原料中的卟啉,保护催化剂。另一是在加工用原料中添加物,它沉积在催化剂表面,与金属杂质形成合金,从而使后者钝化。

32.催化剂再生的方法有哪些?

氧化烧炭法、补充组分法、洗涤法。

催化剂常用制备方法

催化剂常用制备方法 固体催化剂的构成 ●载体(Al2O3 ) ●主催化剂(合成NH3中的Fe) ●助催化剂(合成NH3中的K2O) ●共催化剂(石油裂解SiO2-Al2O3 催化剂制备的要点 ●多种化学组成的匹配 –各组分一起协调作用的多功能催化剂 ●一定物理结构的控制 –粒度、比表面、孔体积 基本制备方法: ?浸渍法(impregnating) ?沉淀法(depositing) ?沥滤法(leaching) ?热熔融法(melting) ?电解法(electrolyzing) ?离子交换法(ion exchanging) ?其它方法 固体催化剂的孔结构 (1)比表面积Sg 比表面积:每克催化剂或吸附剂的总面积。 测定方法:根据多层吸附理论和BET方程进行测定和计算 注意:测定的是总表面积,而具有催化活性的表面积(活性中心)只占总表面的很少一部分。 内表面积越大,活性位越多,反应面越大。 (2)催化剂的孔结构参数 密度:堆密度、真密度、颗粒密度、视密度 比孔容(Vg):1克催化剂中颗粒内部细孔的总体积. 孔隙率(θ):颗粒内细孔的体积占颗粒总体积的分数. (一) 浸渍法 ?通常是将载体浸入可溶性而又易热分解的盐溶液(如硝酸盐、醋酸盐或铵盐等)中进 行浸渍,然后干燥和焙烧。 ?由于盐类的分解和还原,沉积在载体上的就是催化剂的活性组分。 浸渍法的原理 ●活性组份在载体表面上的吸附

●毛细管压力使液体渗透到载体空隙内部 ●提高浸渍量(可抽真空或提高浸渍液温度) ●活性组份在载体上的不均匀分布 浸渍法的优点 ?第一,可使用现成的有一定外型和尺寸的载体材料,省去成型过程。(如氧化铝,氧 化硅,活性炭,浮石,活性白土等) ?第二,可选择合适的载体以提供催化剂所需的物理结构待性.如比表面、孔径和强 度等。 ?第三,由于所浸渍的组分全部分布在载体表面,用量可减小,利用率较高,这对贵 稀材料尤为重要。 ?第四,所负载的量可直接由制备条件计算而得。 浸渍的方法 ?过量浸渍法 ?等量浸渍法 ?喷涂浸渍法 ?流动浸渍法 1.1、过量浸渍法 ?即将载体泡入过量的浸渍液中,待吸附平衡后,过滤、干燥及焙烧后即成。 ?通常借调节浸渍液浓度和体积来控制负载量。 1.2、等量浸渍法 ?将载体与它可吸收体积相应的浸渍液相混合,达到恰如其分的湿润状态。只要混合 均匀和干燥后,活性组分即可均匀地分布在载体表面上,可省却过滤和母液回收之累。但浸渍液的体积多少,必须事先经过试验确定。 ?对于负载量较大的催化剂,由于溶解度所限,一次不能满足要求;或者多组分催化 剂,为了防止竞争吸附所引起的不均匀,都可以来用分步多次浸渍来达到目的。 1.3.多次浸渍法 ●重复多次的浸渍、干燥、焙烧可制得活性物质含量较高的催化剂 ●可避免多组分浸渍化合物各组分竞争吸附 1.4浸渍沉淀法 将浸渍溶液渗透到载体的空隙,然后加入沉淀剂使活性组分沉淀于载体的内孔和表面 (二) 沉淀法 ?借助于沉淀反应。用沉淀剂将可溶性的催化剂组分转变为难溶化合物。经过分离、 洗涤、干燥和焙烧成型或还原等步骤制成催化剂。这也是常用于制备高含量非贵金属、金属氧化物、金属盐催化剂的一种方法。 ?共沉淀、均匀沉淀和分步沉淀 2.1、共沉淀方法 将催化剂所需的两个或两个以上的组分同时沉淀的一个方法,可以一次同时获得几个活性组分且分布较为均匀。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质

催化剂的特性及其作用

催化剂的特性及其作用 一、催化剂的特性 1、三乙基铝(TEAL):三乙基铝为催化剂助剂的一种,显弱酸性,具有非常强的活性,遇空气中的氧气能发生自然,遇水发生爆炸,它与主催化剂形成Ti-C活性中心并可以在聚合反应中杀死对主催化剂有害的物质. 2、给电子体(DONOR):全名甲基环己基二甲氧基硅烷,也是催化剂助剂的一种,显弱碱性,遇水可分解出甲醇对人体皮肤和眼睛造成一定伤害,其主要调节聚丙烯分子量的分布及产品的等规度. 3、主催化剂:四氯化钛为主催化剂,遇水可分解出HCL性水溶液对人体造成伤害. 这三种催化剂除TEAL以纯品投用外其他两种均用白油稀释后注入反应区并且三中催化剂储存时都需要氮封,防止空气进入反应区影响反应活性. 二、催化剂在反应中的作用 本装置采用的催化剂为CS-2,CS-2是我国第四代催化剂,活性可高达≯30KGpp/g催化剂,产品等规度达98%,无脱灰、无脱无规物、无造粒等. 其催化剂成分包括四氯化钛(内给电子体邻苯二甲酸酯),三乙基铝,外给电子体DONOR.由于TEAL显弱酸性能中和掉主CAT中显弱碱性的内给电子体所以加入DONOR作为补给.而DONOR过量则会减少反应中活化铝的量使得CO、SO等带有孤对电子对的杂质不能完全被消除导致反应活性下降,所以TEAL和DONOR要以一定的比例投用到反应中而却保催化剂的活性.催化剂的载体为活化后的球形MgCl2,主CAT负载在其表面与TEAL、DONOR一起进入到D201中进行链引发过程,进行烷基化后的主CAT和TEAL形成Ti-C活性中心,与DONOR 一起负载在载体上共同研磨就形成了高活性、立构性好的催化剂。丙烯单体就在Ti-C活性中心上进行聚合过程,而DONOR主要确保聚丙烯的分子量分布以及等规度,而由于载体MgCl2为球形则聚合后的丙烯也为球状,即实现无造粒过程。

催化剂制备方法

催化剂制备 共沉淀法 按照Co3O4和CeO2在催化剂中的比例,计算出所需0.5mol/L Ce(NO3)3溶液的体积和Co(NO3)2?6H2O 的质量。将钴、铈的硝酸盐混合溶液与沉淀剂碳酸钠并流滴定。沉淀过程中,始终保持沉淀液的pH 值在8.5~9.5 之间。在室温下搅拌 3 小时。按50mL 蒸馏水/g.cat 的比例用80℃蒸馏水洗涤三次,在80℃下干燥24 小时,一定温度下焙烧5 小时,制得不同比例的钴、铈混合氧化物催化剂。 浸渍法 考察制备方法对催化剂的活性影响时,用到了浸渍法,具体步骤如下:取一定量的0.5mol/L Ce(NO3)3溶液,与沉淀剂碳酸钠并流滴定。沉淀过程中,始终保持沉淀液的pH值在8.5~9.5之间。在室温下搅拌3小时。按50mL蒸馏水/g.cat的比例用80℃蒸馏水洗涤三次,在80℃下干燥24小时,得到CeO2载体的前驱体。按比例取一定量的Co(NO3)2?6H2O,采用等体积浸渍方法将Co(NO3)2溶液浸渍于载体前驱体上,再于室温下放置过夜。一定温度下焙烧5小时,制得Co3O4-CeO2催化剂。 活性 原料气空速为40,000ml/h gcat。原料组成为:1 vol.% O2,1 vol.% CO,50 vol.% H2,N2平衡气;Co3O4-CeO2催化剂的制备方法及钴含量、焙烧温度等制备条件对催化剂的活性有很大影响,本实验范围内的最佳条件为:共沉淀法制备,Co3O4含量为80wt.%,焙烧温度为350℃,采用氧化预处理。

从图4-4 至图4-6 可见,共沉淀法制备的催化剂活性明显好于浸渍法的催化剂。共沉淀法的15wt.%Co3O4-CeO2在175℃时达到100%的CO 转化率,而浸渍法的15wt.%Co3O4-CeO2在200℃实现CO 的完全转化。图4-6 显示浸渍法制得的催化剂选择性略好于共沉淀法,但若对比在相同CO 转化率时的选择性,则可看出制备方法对选择性没有明显的影响 二 催化剂酌制备 溶胶一凝胶法 采用溶胶一凝胶法制备介孔ceO,载体.首先向不断搅拌的十六烷基三甲基溴化铵(CTABr)(36.5g/L)溶液中加人一定量的氨水(20%),直到获得澄清透明的模板剂溶液.将硝酸铈溶液(43.4 g/L)逐滴加入到模板剂溶液中,并在强烈搅拌的情况F使其混合均匀.用氨水将上述溶液的pH值调到11左右。然后搅拌至形成溶胶.将溶胶移入带聚四氟乙烯内衬的不锈钢晶化釜内,100℃晶化5 d,过滤分离出固体产物,用去离子水和乙醇分别洗涤三次,于80℃烘箱中干燥24 h,然后在马弗炉中以5℃/min的速率升温至450℃煅烧4 h,制得介孔Cc02.非介iL CeCh(non—meso—Ce02)载体与介孔CeO:载体制备过程相同,但

对于三效催化剂的制备与研究的开题报告

对于三效催化剂的制备与研究的开题报告 对于三效催化剂的制备与研究的开题报告 一、综述: 汽车作为现代社会的交通工具,给人们的工作和生活都带来了极大的便利,但同时也对大气环境造成了严重污染。由于汽车保有量的急剧增加,且我国的汽车检查和维修系统不完善,及汽车尾气污染控制水平低等原因,致使汽车尾气污染日益严重。大量汽车尾气污染物集中在城市,造成城市中汽车污染源的污染分担率明显增加。汽车排出的污染物主要有碳氢化合物、一氧化碳、氮氧化合物、铅、二氧化硫等有害物质。这些污染物危害人类健康,影响动植物的生长;另外氮氧化合物与碳氢化合物在强日光的作用吓,遇到不利于扩散的气候和地理环境时可形成光化学烟雾,造成眼中的二次污染和生态环境的破坏。因此,限制和治理汽车排气污染已迫在眉睫。20世纪80年代中期出现了第三代的Pt/Rh/Pd三金属三效催化剂。该技术充分利用了Pd的耐高温性能和Rh优异的NOx催化净化能力,大大提高了三效催化剂的活性。它的净化原理是:将贵金属三效催化剂制成净化装置后装入汽车内,使催化剂与尾气中的CO、NOX和有机物起氧化还原作用而生成无害物质排出,从而达到消除有害气体的目的。 二、思路及方法: 三效催化剂一般由四部分组成,包括:载体、涂层、活性催化剂、催化剂助剂。三效催化净化法,对一氧化碳、碳氢化合物和氮氧化物都有催化作用。本实验准备制备以γ-Al2O3及其他金属物质或陶瓷为载体,用La和Ce作为催化剂助剂的三效催化剂,并初步研究其催化性能。 三、主要内容:

采用浸渍法、机械混合法、离子交换法等制备三效催化剂 改变不同条件和助剂,改良单钯三效催化剂的性能 探讨改良三效催化剂的催化作用 四、工作计划: 1、2021年12月至2021年2月:查阅相关文献资料,初步确定论文题目; 2、2021年3月:拟定实验方案; 3、2021年4月:进行实验研究; 4、2021年5月:撰写毕业论文,进行毕业答辩。

催化剂制备方法大全

催化剂制备方法简介 1、催化剂制备常规方法 (1)浸渍法 a过量浸渍法 b等量浸渍法(多次浸渍以防止竞争吸附) (2)沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂加到盐溶液为正,反之为倒加) a单组分沉淀法 b多组分共沉淀法 c均匀沉淀法(沉淀剂:尿素) d超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) e浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 f导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝

光沸石、Y型、X型分子筛。 (3)共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬酐的水溶液和少许石墨)然后送入压片机制成圆柱形,在100 o C烘2h即可。 (4)热分解法 硝酸盐、碳酸盐、甲酸盐、草酸盐或乙酸盐。 (5)沥滤法 制备骨架金属催化剂的方法,Raney 镍、铜、钴、铁等。 (6)热熔融法 合成氨催化剂Fe-K2O-Al2O3;用磁铁矿Fe3O4、KNO3和Al2O3高温熔融而得。 (7)电解法 用于甲醇氧化脱氢制甲醛的银催化剂,通常用电解法制备。该法以纯银为阳极和阴极,硝酸银为电解液,在一定电流密度下电解,银粒在阴极析出,经洗涤、干燥和活化后即可使用。

变换催化剂性能和控制工艺指标

QCS― 11 催化剂的技术性能介绍 QCS― 11 是钴钼系一氧化碳耐硫变换催化剂,是我公司专门为高CO、高水气比研究 开发的催化剂。已经在两个壳牌气化工艺一变使用。和QCS-03/QCS-01催化剂相比,耐热温度高、活性稳定性好、孔结构更加合理,另外,颗粒度均匀、装填效果好,能够有效的保证装填均匀、阻力减小。镁-铝-钛三元尖晶石载体及特殊的加工制作工艺是确保QCS-11 催化剂具备上述特性的基础和必备条件。 目前高CO、高水气比工艺包括壳牌炉气化、航天炉气化、GSP 气化等,其中神华宁煤使用GSP是目前CO 和水气比最高的工艺,对催化剂的要求也最高。我公司的QCS 系列催化剂采用镁- 铝-钛三元载体、稀土助剂,其活性稳定性、工况适应性是最好的,在与国外、国内催化剂对比使用过程中得到很多验证,获得中国、美国、德国、日本、印度、南非等国家的专利。 QCS― 11 钴钼系一氧化碳耐硫变换催化剂,适用于以重油、渣油部分氧化法或煤气化法造气的变换工艺,促进含硫气体的变换反应,是一种适应宽温(220℃~550℃)、宽硫 (工艺气硫含量≥0.01% v/v )和高水气比(0.2~2.0)。该催化剂具有机械强度高,结构稳定性好,脱氧能力强等特点,能有效地脱除与吸附原料气中的氧和焦油等杂质或毒物。对高空速,高水气比的适应能力强,稳定性好,操作弹性较大。具有稳定的变换活性,可延长一氧化碳耐硫变换催化剂的使用寿命。 新鲜催化剂活性组份钴、钼以氧化钴、氧化钼的形式存在,使用时应首先进行硫化,使金属氧化物转变为硫化物。可以用含硫工艺气体硫化,也可用硫化剂单独硫化。 QCS― 11 耐硫变换催化剂不含对设备和人体有危害的物质,硫化时也只有少量的水生成并随工艺气排出,对设备无危害。 主要特点为: 耐热温度高、活性稳定性好、孔结构更加合理。颗粒度均匀、装填效果好,能够有效的保证装填均匀、阻力减小。镁-铝-钛三元尖晶石载体及特殊的加工制作工艺是确保QCS-11 催化剂具备独特性能的基础和必备条件。

催化剂的指标及其意义

催化剂的各项指标及其意义 一、化学指标 催化剂的化学组成表示催化剂中的主要成分及杂质的含量,通常包括: Al2O3、Na2O、Fe2O3、、灼烧减量五个主要指标,有时还包括Re2O3。 1、Al2O3含量:催化剂中Al2O3含量表示催化剂中Al2O3的总含量,是催化剂的主要化学成分。 2、Na2O含量:Na2O含量表示催化剂中含有的Na2O杂质含量。在催化裂化过程中,特别是在掺炼钒含量较高的渣油情况下, 3、Fe2O3含量:Fe2O3含量表示催化剂中含有的Fe2O3杂质含量。Fe2O3在高温下会分解并沉积在催化剂上,积累到一定程度就会引起催化剂中毒,其结果一是使催化剂活性降低。 4、SO42-含量:SO42-含量表示催化剂中含有的SO42-杂质含量。SO42-可与具有捕钒作用的金属氧化物(如氧化铝等)反应生成稳定的硫酸盐,从而使其失去捕钒能力。所以,在掺炼渣油的情况下,SO42-的危害性较大。 5、灼烧减量:灼烧减量是指催化剂中所含水份、铵盐及炭粒等挥发组份的含量。生产中控制其减量≤13%。 6、Re2O3含量:Re2O3含量是表示催化剂性能的指标之一。稀土通常来自催化剂中的分子筛,有时在催化剂制造工艺中也引入稀土离子达到改善性能的目的。通常Re2O3含量越高,催化剂活性越高,但焦炭产率也偏高。 对于平衡催化剂,有时还需知道其中的金属含量,如Ni、V、Na等,以便了解催化剂的污染程度。 二、物理性质

物理性质表示催化剂的外形、结构、密度、粒度等性能。通常包括:比表面积、孔体积、表观松密度、磨损指数、筛分组成五个主要项目。下面分别加以简述: 1、比表面积 催化剂的比表面积是内表面积和外表面积的总和。内表面积是指催化剂微孔内部的表面积,外表面积是指催化剂微孔外部的表面积,通常内表面积远远大于外表面积。单位重量的催化剂具有的表面积叫比表面积。 比表面积是衡量催化剂性能好坏的一个重要指标。不同的产品,因载体和制备工艺不同,比表面积与活性没有直接的对应关系。 测定比表面积采用的方法是氮吸附容量法。 2、孔体积 孔体积是描述催化剂孔结构的一个物理量。孔结构不仅影响催化剂的活性、选择性,而且还能影响催化剂的机械强度、寿命及耐热性能等。 孔体积是多孔性催化剂颗粒内微孔的体积总和,单位是毫升/克。孔体积的大小主要与催化剂中的载体密切相关。对同一类催化剂而言,在使用过程中孔体积会减小,而孔直径会变大。 孔体积测量采用的方法是水滴法。 3、磨损指数 一个优良的催化裂化催化剂,除了要具有活性高、选择性好等特点以外,还要具有一定的耐磨损机械强度。机械强度不好的催化剂,不但操作过程中跑损多、增大催化剂用量、污染环境,严重时会破坏催化剂在稀、密相的合理分布,甚至使生产装置无法运转。

催化剂的制备和应用

摘要: 均匀、连续、致密分子筛膜的合成和应用受到广泛关注。利用分子筛膜具有的筛分和催化作用,在传统颗粒催化剂或载体表面包覆分子筛膜形成复合型催化剂,可以实现膜基分离和催化过程的耦合,增加反应物选择性,提高目标产物收率。本文综述了近年来在不同类型颗粒催化剂或载体表面合成分子筛膜的制备方法,描述了分子筛膜包覆型复合催化剂用于不同催化反应体系的研究结果。同时,在归纳和总结已有研究成果基础上展望了分子筛膜包覆型催化剂的研究发展趋势。 关键词: 分子筛膜包覆载体膜催化反应器 Coated with molecular sieve membrane preparation and application of the catalyst Abstract:uniform, continuous, the synthesis and application of dense molecular sieve membrane is widely https://www.360docs.net/doc/7718351698.html,ing molecular sieve membrane is screening and catalysis, in traditional particle catalyst or carrier cladding molecular sieve membrane formation on the surface of composite catalyst, can realize the coupling of membrane separation and catalytic process, increase the selectivity of reactants, improve the target product yield.In recent years was reviewed in this paper in different types of particle catalyst or carrier surface preparation methods of synthesis of molecular sieves membrane, describes the molecular sieve membrane coated type composite catalyst used for the results of different catalytic reaction system.At the same time, on the basis of induction and summary of existing research results discussed coated with molecular sieve membrane research and development trend of catalyst. Keywords:molecular sieve membrane coated carrier membrane catalytic reactor 1引言 分子筛膜具有较高的热稳定性,较好的化学稳定性。耐腐蚀性以及与特种材料的生物相容性,自首次支撑体分子筛膜专利报道至今,沸石分子筛膜的研究及生产已经成为膜科学技术领域的研究热点之一。图1分子筛膜论文和专利发表数量随年份的趋势图。支撑体分子筛膜的使用拓宽了分子筛的应用范围,避免了直接使用分子筛粉末床层带来的高压降及成型时加入粘结剂带来的使用效率降低等问题,使分子筛膜规模化的工业应用成为可能。加上分子筛具有筛分效应,较大的比表面积,可控的客体-吸附质相互作用,使其可用于膜催化和分离。分子筛膜在膜分离、膜催化反应器、化学传感器、电极材料、光电器件、低介电常数材料以及保护层方面均有潜在的应用前景。

催化剂制备方法大全

催 化 剂 的 制 备 方 法 与 成 型 技 术 总 结 应用化学系1202班 王宏颖 2012080201

催化剂的制备方法与成型技术 一、固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 二、催化剂传统制备方法 1、浸渍法 (1)过量浸渍法 (2)等量浸渍法(多次浸渍以防止竞争吸附) 2、沉淀法(制氧化物或复合氧化物)(注意加料顺序:正加法或倒加法,沉淀剂 加到盐溶液为正,反之为倒加) (1)单组分沉淀法 (2)多组分共沉淀法 (3)均匀沉淀法(沉淀剂:尿素) (4)超均匀沉淀法 (NH4HCO3和NH4OH组成的缓冲溶液pH=9) (5)浸渍沉淀法 浸渍沉淀法是在浸渍法的基础上辅以均匀沉淀法发展起来的,即在浸渍液中预先配入沉淀剂母体,待浸渍单元操作完成后,加热升温使待沉淀组分沉积在载体表面上。此法,可以用来制备比浸渍法分布更加均匀的金属或金属氧化物负载型催化剂。 (6)导晶沉淀法 本法是借晶化导向剂(晶种)引导非晶型沉淀转化为晶型沉淀的快速有效方法。举例:以廉价易得的水玻璃为原料的高硅酸钠型分子筛,包括丝光沸石、Y型、X型分子筛。 3、共混合法 混合法是将一定比例的各组分配成浆料后成型干燥,再经活化处理即可。如合成气制甲醇用的催化剂就是将氧化锌和氧化铬放在一起混合均匀(适当加入铬

催化剂的制备方法及成型

催化剂的制备方法及成型 一催化剂的制备方法 1.1浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。浸渍方法有:①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用;②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作;③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解度不大的情况,也可用来依次浸载若干组分,以回避组分间的竞争吸附;④流化喷洒浸渍法,浸渍溶液直接喷洒到反应器中处在流化状态的载体颗粒上,制备完毕可直接转入使用,无需专用的催化剂制备设备;⑤蒸气相浸渍法,借助浸渍化合物的挥发性,以蒸气相的形式将它负载到载体表面上,但活性组分容易流失,必须在使用过程中随时补充。 1.2沉淀法 用淀剂将可溶性的催化剂组分转化为难溶或不溶化合物,经分离、洗涤、干燥、煅烧、成型或还原等工序,制得成品催化剂。广泛用于高含量的非贵金属、金属氧化物、金属盐催化剂或催化剂载体。沉淀法有: ①共沉淀法,将催化剂所需的两个或两个以上的组分同时沉淀的一种方法。其特点是一次操作可以同时得到几个组分,而且各个组分的分布比较均匀。如果组分之间形成固体溶液,那么分散度更为理想。为了避免各个组分的分步沉淀,各金属盐的浓度、沉淀剂的浓度、介质的pH值及其他条件都须满足各个组分一起沉淀的要求。 ②均匀沉淀法,首先使待沉淀溶液与沉淀剂母体充分混合,造成一个十分均匀的体系,然后调节温度,逐渐提高pH值,或在体系中逐渐生成沉淀剂等,创造形成沉淀的条件,使沉淀缓慢地进行,以制取颗粒十分均匀而比较纯净的固体。例如,在铝盐溶液中加入尿素,混合均匀后加热升温至90~100℃,此时体系中各处的尿素同时水解,放出OH-离子: 于是氢氧化铝沉淀可在整个体系中均匀地形成。 ③超均匀沉淀法,以缓冲剂将两种反应物暂时隔开,然后迅速混合,在瞬间内使整个体系在各处同时形成一个均匀的过饱和溶液,可使沉淀颗粒大小一致,组分分布均匀。苯选择加氢的镍/氧化硅催化剂的制法是:在沉淀槽中,底部装入硅酸钠溶液,中层隔以硝酸钠缓冲剂,上层放置酸化硝酸镍,然后骤然搅拌,静置一段时间,便析出超均匀的沉淀物。 ④浸渍沉淀法,在浸渍法的基础上辅以均匀沉淀法,即在浸渍液中预先配入沉淀剂母体,待浸渍操作完成后加热升温,使待沉淀组分沉积在载体表面上。 混合法多组分催化剂在压片、挤条等成型之前,一般都要经历这一步骤。此法设备简单,操作方便,产品化学组成稳定,可用于制备高含量的多组分催化剂,尤其是混合氧化物催化剂,但此法分散度较低。 混合可在任何两相间进行,可以是液-固混合(湿式混合),也可以是固-固混合(干式混合)。混合的目的:一是促进物料间的均匀分布,提高分散度;二是产生新的物理性质(塑性),便于成型,并提高机械强度。

催化剂的制备性能评价及使用技术多相催化剂常用哪些

第二章催化剂的制备、性能评价及使用技术 1.多相催化剂常用哪些方法来制备?为什么制备固体催化剂都需要经过热处理,其目的是什么? 多相催化剂常用的制备方法有:(1)天然资源的加工,结构不同,含量不同的硅铝酸盐采用不同的方法和条件加工后能适用于某一特定的催化反应;(2)浸渍法,将载体置于含活性组分的溶液中浸泡,达到平衡后将剩余液体除去,再经干燥、煅烧、活化等步骤即得催化剂。此法要求浸渍溶液中所含活性组分溶解度大、结构稳定、受热后分解为稳定的化合物;(3)滚涂法和喷涂法,滚涂法是将活性组分先放在一个可摇动的容器中,再将载体布于其上,经过一段时间的滚动,活性组分逐渐粘附其上,为了提高滚涂效果,有时也添加一定的粘合剂。喷涂法与滚涂法类似,但活性组分不同载体混在一起,而是用喷枪附于载体上;(4)沉淀法,在含金属盐类的水溶液中,加进沉淀剂,以便生成水合氧化物、碳酸盐的结晶或凝胶。将生成的沉淀物分离、洗涤、干燥后,即得催化剂;(5)共混合法:将活性组分与载体机械混合后,碾压至一定程度,再经挤条成型,最后缎烧活化;(6)沥滤法(骨架催化剂的制备方法),将活性组分金属和非活性金属在高温下做成合金,经过粉碎,再用苛性钠来溶解非活性金属即得;(7)离子交换法: 是在载体上金属离子交换而负载的方法, 合成沸石分子筛一般也是先做成Na型,需经离子交换后方显活性;(8) 均相络合催化别的固载化: 将均相催化剂的活性组分移植于载体上, 活性组分多为过渡金属配合物,载体包括无机载体和有机高分子载体。优点是活性组分的分散性好,而且可根据需要改变金属离子的配体。制备各固体催化剂,无论是浸渍法,沉淀法还是共混合法,有的钝态催化剂经过缎烧就可以转变为活泼态,有的还需要进一步活化。 所以,催化剂在制备好以后,往往还要活化;除了干燥外,还都需要较高温度的热处理-煅烧的目的:1)通过热分解除掉易挥发的组分而保留一定的化学组成,使催化剂具有稳定的催化性能。2)借助固态反应使催化剂得到一定的晶型、晶粒大小、孔隙结构和比表面。3)提高催化剂的机械强度。 2.沉淀法制备催化剂的原理是什么?金属盐和沉淀剂的选择原则是什么? 沉淀法制备催化剂的原理是沉淀反应,金属盐一般首选硝酸盐来提供无机催化剂材料所需的阳离子;金、铂、钯等贵金属不溶于硝酸,但可溶于王水。 沉淀剂的选择原则是:(1)尽可能使用易分解并含易挥发成分的沉淀剂;(2)沉淀便于过滤和洗涤;(3)沉淀剂自身的溶解度要足够大;(4)沉淀物的溶解度应很小;(5)沉淀剂必须无毒,不造成环境污染。

催化剂与催化作用复习资料(很有用的)

第1、2章复习思考题 1、催化剂是如何定义的? 催化剂是一种能够改变化学反应速度而不能改变反应的热力学平衡位置,且自身不被明显消耗的物质。 2、催化剂在工业上的作用功能或者效果有哪些? 1)使得原来难以在工业上实现的过程得以实现。 2)由过去常常使用的一种原料,可以改变为多种原料。 3)原来无法生产的过程,可以实现生产。 4)原来需要多步完成的,变为一步完成。 5)由原来产品质量低,能耗大,变为生产成本低,质量高 6)由原来转化率低,副产物多,污染严重,变为转化率高,产物单一,污染减少 3、载体具有哪些功能和作用? ①分散作用,增大表面积,分散活性组分;②稳定化作用,防止活性组分熔化或者再结晶;③支撑作用,使催化剂具备一定机械强度,不易破损;④传热和稀释作用,能及时移走热量,提高热稳定性;⑤助催化作用,某些载体能对活性组分发生诱导作用,协助活性组分发生催化作用。 4、代表催化剂性能的重要指标是什么? 催化剂的反应性能是评价催化剂好坏的主要指标,它主要包括催化剂的活性、选择性和稳定性。 (1)催化剂的活性:指催化剂能加快化学反应的反应速度的程度 (2)催化剂的选择性:使反应向生成某一特定产物的方向进行。 (3)催化剂的稳定性:是指在使用条件下,催化剂具有稳定活性的周期 5、多相催化反应的过程步骤可分为哪几步?实质上可分为几步? (1)外扩散—内扩散—化学吸附—表面反应—脱附—内扩散—外扩散 (2)物理过程—化学过程—物理过程 6、吸附是如何定义的? 气体与固体表面接触时,固体表面上气体的浓度高于气相主体浓度的现象。 7、物理吸附与化学吸附的本质不同是什么? 本质:二者不同在于其作用力不同,前者为范德华力,后者为化学键力,因此吸附形成的吸附物种也不同,而且吸附过程也不同等诸多不同。 不同的表现形式为:(后面) 8、为何说Langmuir吸附为理想吸附?基本假设是什么? 模型假设:①吸附表面均匀,各吸附中心能量相同;②吸附分子间无相互作用;③单分子层吸附,吸附分子与吸附中心碰撞进行吸附,一个分子只占据一个吸附中心;④在一定条件下,吸附与脱附可建立动态平衡。 9、催化剂的比表面测定有哪些实验方法? (1)BET法测比表面积 1)测定原理和计算方法 依据BET提出的多层吸附理论以及BET吸附等温曲线进行测定和计算的。利用BET方程进行作图,采用试验采集数据并利用图解法进行计算。 2)实验方法 测定表面积的实验方法通常有,低温氮吸附容量法、重量法和色谱法等,当表面积比较小时,采用氮吸附法。 (2)色谱法测定比表面积 色谱法测定比表面积时载气一般采用He或H2,用N2做吸附质,吸附在液氮温度下进行。 10、何为扩散?催化剂颗粒内部存在几种扩散形式? (1)扩散:分子通过随机运动,从高浓度向低浓度进行传播的现象。 (2)1)普通扩散(分子扩散):分子扩散的阻力来自分子间的碰撞,通常在大孔(孔径大于100nm)或者压力较高的条件下发生的扩散多为分子扩散。 2)微孔扩散(努森扩散Kundsen):微孔扩散的阻力重要来自分子与孔壁的碰撞 3)过渡区扩散:指介于分子扩散与微孔扩散之间的过渡区。 4)构型扩散:在同一孔隙中扩散,由于分子构型不同,而扩散系数相差很大的扩散,称为构型扩散。 5)表面扩散:由于表面上分子的运动而产生的传质过程

催化剂的制备方法与成型技术

\催化剂的制备方法与成型技术 摘要:本文介绍了固体催化剂的组成,催化剂制备的一般方法、催化剂制备的新技术,以及催化剂常用成型技术。 关键词:固体催化剂;制备方法;成型技术 Abstract: this paper introduces the composition of the catalyst, solid catalyst preparation of the general method of preparation, catalyst of new technology, and catalysts used molding technology. Keywords: Solid catalyst; Preparation methods; Molding technology

目录 摘要 (1) 1 固体催化剂的组成: (2) 2 催化剂的一般制备方法 (2) 2.1 浸渍法 (2) 2.2 沉淀法 (3) 2.3 混合法 (4) 2.4 滚涂法 (4) 2.5 离子交换法 (4) 2.6 热熔融法 (4) 2.7锚定法 (5) 2.8 其他方法 (5) 3 催化剂成型技术 (6) 4 小结 (7) 参考文献 (8)

0 引言 催化剂又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。催化作用是指改变化学反应的速度,控制反应方向和产物构成。催化剂具有加快化学反应的速度,但不进入化学反应计量,对反应的选择性,只能加速热力学上可能的反应,且不改变化学平衡的位置的特点。催化剂是催化工艺的灵魂,它决定着催化工艺的水平及其创新程度。因此研究工业催化剂的制备方法以及成型技术具有重要的实际意义。 1 固体催化剂的组成: 固体催化剂主要有活性组分、助剂和载体三部分组成: 1.活性组分:主催化剂,是催化剂中产生活性的部分,没有它催化剂就不能产生催化作用。 2.助剂:本身没有活性或活性很低,少量助剂加到催化剂中,与活性组分产生作用,从而显著改善催化剂的活性和选择性等。 3.载体:载体主要对催化活性组分起机械承载作用,并增加有效催化反应表面、提供适宜的孔结构;提高催化剂的热稳定性和抗毒能力;减少催化剂用量,降低成本。 目前,国内外研究较多的催化剂载体有:SiO2,Al2O3、玻璃纤维网(布)、空心陶瓷球、有机玻璃、光导纤维、天然粘土、泡沫塑料、树脂、活性炭,Y、β、ZSM-5分子筛,SBA-15、MCM-41、LaP04等系列载体。 2 催化剂的一般制备方法 2.1 浸渍法 将含有活性组分(或连同助催化剂组分)的液态(或气态)物质浸载在固态载体表面上。此法的优点为:可使用外形与尺寸合乎要求的载体,省去催化剂成型工序;可选择合适的载体,为催化剂提供所需的宏观结构特性,包括比表面、孔半径、机械强度、导热系数等;负载组分仅仅分布在载体表面上,利用率高,用量少,成本低。广泛用于负载型催化剂的制备,尤其适用于低含量贵金属催化剂。 影响浸渍效果的因素有浸渍溶液本身的性质、载体的结构、浸渍过程的操作条件等。浸渍方法有:①超孔容浸渍法,浸渍溶液体积超过载体微孔能容纳的体积,常在弱吸附的情况下使用;②等孔容浸渍法,浸渍溶液与载体有效微孔容积相等,无多余废液,可省略过滤,便于控制负载量和连续操作;③多次浸渍法,浸渍、干燥、煅烧反复进行多次,直至负载量足够为止,适用于浸载组分的溶解

催化剂及其基本特征

1、催化剂及其基本特征 催化剂是一种物质,它能够改变化学反应的速率,而不改变该反应的标准Gibbs自由焓变化;此过程称为催化作用,涉及催化剂的反应称为催化反应。 催化剂的基本特征 催化剂只能实现热力学可行的反应,不能实现热力学不可能的反应; 催化剂只能改变化学反应的速度,不能改变化学平衡的位置; 催化剂能降低反应的活化能,改变反应的历程; 催化剂对反应具有选择性。 2、催化剂的组成 主催化剂:催化剂的主要活性组分,起催化作用的根本性物质,如合成氨催化剂的铁,催化剂中若没有活性组分存在,那么就不可能有催化作用。 助催化剂:催化剂中具有提高活性组分的催化活性和选择性的组分,以及改善催化剂的耐热性、抗毒性,提高催化剂机械强度和寿命的组分。 催化剂载体:主要是负载催化活性组分的作用,还具有提高催化剂比表面积、提供适宜的孔结构、改善活性组分的分散性、提高催化剂机械强度、提高催化剂稳定性等多种作用 3、催化剂的稳定性 指催化剂的活性和选择性随反应时间的变化,催化剂的性能稳定性情况,通常以寿命表示。催化剂在反应条件下操作,稳定一定活性和选择性水平的时间称为单程寿命;每次性能下降后,经再生又恢复到许可水平的累计时间称为总寿命。催化剂稳定性包括热稳定性,抗毒稳定性,机械稳定性三个方面。 4、物理吸附与化学吸附的主要区别 物理吸附: 指气体物质(分子、离子、原子或聚集体)与表面的物理作用(如色散力、诱导偶极吸引力)而发生的吸附,其吸附剂与吸附质之间主要是分子间力(也称“van der Waals”力)。 化学吸附: 指在气固界面上,气体分子或原子由化学键力(如静电、共价键力)而发生的吸附,因此化学吸附作用力强,涉及到吸附质分子和固体间化学键的形成、电子重排等。 5、何谓B酸和L酸,及其简便的鉴定方法 能够给出质子的都是酸,能够接受质子的都是碱,Br?nsted定义的酸碱称为B酸(B碱),又叫质子酸碱。 能够接受电子对的都是酸,能够给出电子对的都是碱,所以Lewis定义的酸碱称为L酸(L碱),又叫非质子酸碱。 固体酸的类型有B酸和L酸两种,对固体酸类型最有效的区分方法是红外光谱法,它是通过研究NH3或吡啶在固体酸表面上吸附的红外光谱来区分B酸和L酸的。固体酸吸附吡啶的红外吸收谱带见表所示,通过这些谱带很容易的确定固体酸表面的B酸和L酸。

催化剂性能的评价、测试和表征

催化剂性能的评价、测试和表征概述 主要内容 ?活性评价和动力学研究 ?催化剂的宏观物理性质测定 ?催化剂微观性质的测定和表征 工业催化剂性能评价的目的 ①为应用提供依据 ②为开发制备提供判别的标准 ③基础研究的需要 评价内容 ①使用性能 活性,选择性,寿命 ②.宏观性能:比表面积,孔结构,形状与尺寸 ③.微观性能:晶相组成,表面酸碱性 ?工业催化剂的性能要求及其物理化学性质 4

催化剂测试 ? 催化剂的物理性质的测定 ,包括宏观物理性质(孔容、孔径分布、比表面等)及微观物理 性质(催化剂的晶相、晶格缺陷、微观粒径尺寸等) 几个基本概念 评价(evaluation ),对催化剂的化学性质考察和定量描述; 测试(test ),对工业催化剂物理性质(宏观和微观)的测定; 表征(Characterization ),综合考察催化剂的物理、化学的性质和内在联系,特别是研究活性、 选择性、稳定性的本质原因。 第一节.活性评价和动力学研究 活性测定方法:流动法和静态法,流动法用得最多(一般流动法、流动循环法、催化色谱法) 本质上是对工业催化过程的模拟 流动循环法、催化色谱法多用于反应动力学和反应机理 活性测试的目的 a )由催化剂制造商或用户进行的常规质量控制检验 b )快速筛选大量催化剂,以便为特定的反应确定一个催化剂评价的优劣。 c )更详尽的比较几种催化剂 d )测定在特定催化剂上反应的详尽动力学,包括失活或再生动力学。 e )模拟工业反应条件下催化剂的连续长期运转 活性的表示方法 ? 转化率(X A ) 活性的表示方法 ? 选择性(S) 收率(Y) %100?= 的起始摩尔数 反应物已转化的摩尔数反应物A A X A %100?=摩尔数 已转化的某一反应物的所得目的产物的摩尔数S %100?=起始反应物的摩尔数 生成目的产物的摩尔数Y

催化剂的指标及其意义

催化剂得各项指标及其意义 一、化学指标 催化剂得化学组成表示催化剂中得主要成分及杂质得含量,通常包括:Al2O3、Na2O、Fe2O3、、灼烧减量五个主要指标,有时还包括Re2O3。 ?1、Al2O3含量:催化剂中Al2O3含量表示催化剂中Al2O3得总含量,就是催化剂得主要化学成分. 2、Na2O含量:Na2O含量表示催化剂中含有得Na2O杂质含量。在催化裂化过程中,特别就是在掺炼钒含量较高得渣油情况下, 3、Fe2O3含量:Fe2O3含量表示催化剂中含有得Fe2O3杂质含量。Fe2O 3在高温下会分解并沉积在催化剂上,积累到一定程度就会引起催化剂中毒,其结果一就是使催化剂活性降低. 4、SO42-含量:SO42—含量表示催化剂中含有得SO42-杂质含量。SO42-可与具有捕钒作用得金属氧化物(如氧化铝等)反应生成稳定得硫酸盐,从而使其失去捕钒能力。所以,在掺炼渣油得情况下,SO42—得危害性较大。 5、灼烧减量:灼烧减量就是指催化剂中所含水份、铵盐及炭粒等挥发组份得含量。生产中控制其减量≤13%。 6、Re2O3含量:Re2O3含量就是表示催化剂性能得指标之一。稀土通常来自催化剂中得分子筛,有时在催化剂制造工艺中也引入稀土离子达到改善性能得目得.通常Re2O3含量越高,催化剂活性越高,但焦炭产率也偏高。 对于平衡催化剂,有时还需知道其中得金属含量,如Ni、V、Na等,以便了解催化剂得污染程度。 二、物理性质

物理性质表示催化剂得外形、结构、密度、粒度等性能.通常包括:比表面积、孔体积、表观松密度、磨损指数、筛分组成五个主要项目。下面分别加以简述: 1、比表面积 催化剂得比表面积就是内表面积与外表面积得总与。内表面积就是指催化剂微孔内部得表面积,外表面积就是指催化剂微孔外部得表面积,通常内表面积远远大于外表面积。单位重量得催化剂具有得表面积叫比表面积。 比表面积就是衡量催化剂性能好坏得一个重要指标。不同得产品,因载体与制备工艺不同,比表面积与活性没有直接得对应关系. 测定比表面积采用得方法就是氮吸附容量法。 2、孔体积 孔体积就是描述催化剂孔结构得一个物理量。孔结构不仅影响催化剂得活性、选择性,而且还能影响催化剂得机械强度、寿命及耐热性能等。 孔体积就是多孔性催化剂颗粒内微孔得体积总与,单位就是毫升/克。孔体积得大小主要与催化剂中得载体密切相关.对同一类催化剂而言,在使用过程中孔体积会减小,而孔直径会变大。 孔体积测量采用得方法就是水滴法。 3、磨损指数 一个优良得催化裂化催化剂,除了要具有活性高、选择性好等特点以外,还要具有一定得耐磨损机械强度。机械强度不好得催化剂,不但操作过程中跑损多、增大催化剂用量、污染环境,严重时会破坏催化剂在稀、密相得合理分布,甚至使生产装置无法运转。

相关文档
最新文档