常见追及与相遇问题类型及其解法
(完整版)追及与相遇问题(含答案)

追及与相遇问题1、追及与相遇的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
2、理清两大关系:时间关系、位移关系。
3、巧用一个条件:两者速度相等;它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
4、三种典型类型(1)同地出发,初速度为零的匀加速直线运动A 追赶同方向的匀速直线运动B①当 B A v v =时,A 、B 距离最大;②当两者位移相等时, A 追上B ,且有B A v v 2=(2)异地出发,匀速直线运动B 追赶前方同方向的初速度为零的匀加速直线运动A判断B A v v =的时刻,A 、B 的位置情况①若B 在A 后面,则B 永远追不上A ,此时AB 距离最小②若AB 在同一处,则B 恰能追上A③若B 在A 前,则B 能追上A ,并相遇两次(3)异地出发,匀减速直线运动A 追赶同方向匀速直线运动B①当B A v v =时,A 恰好追上B ,则A 、B 相遇一次,也是避免相撞刚好追上的临界条件;②当B A v v =时,A 未追上B ,则A 、B 永不相遇,此时两者间有最小距离;③当B A v v >时,A 已追上B ,则A 、B 相遇两次,且之后当两者速度相等时,两者间有最大距离。
5、解追及与相遇问题的思路(1)根据对两物体的运动过程分析,画出物体运动示意图(2)根据两物体的运动性质,(巧用“速度相等”这一条件)分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中(3)由运动示意图找出两物体位移间的关联方程(4)联立方程求解注意:仔细审题,充分挖掘题目中的隐含条件,同时注意t v -图象的应用【典型习题】【例1】在十字路口,汽车以0.5m/s 2的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5m/s 的速度匀速驶过停车线与汽车同方向行驶,求:(1)汽车追上自行车之前,什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?【练习1】一辆值勤的警车停在公路边,当警员发现从他旁边以s m v 80=的速度匀速行驶的货车有违章行为时,决定前去追赶。
常见追及与相遇问题类型及其解法

追及与相遇问题追及问题是运动学中较为综合且有实践意义的一类习题,它往往涉及两个以上物体的运动过程,每个物体的运动规律又不尽相同.对此类问题的求解,除了要透彻理解基本物理概念,熟练运用运动学公式外,还应仔细审题,挖掘题文中隐含着的重要条件,并尽可能地画出草图以帮助分析,确认两个物体运动的位移关系、时间关系和速度关系,在头脑中建立起一幅物体运动关系的图景.借助于v -t 图象来分析和求解往往可使解题过程简捷明了. 知识要点:一、相遇是指两物体分别从相距S 的两地相向运动到同一位置,它的特点是:两物体运动的距离之和等于S ,分析时要注意: (1)、两物体是否同时开始运动,两物体运动至相遇时运动时间可建立某种关系; (2)、两物体各做什么形式的运动; (3)、由两者的时间关系,根据两者的运动形式建立S=S 1+S 2方程; 二、追及问题 (1)、追及问题中两者速度大小与两者距离变化的关系。
若甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离 。
若甲的速度小于乙的速度,则两者之间的距离 。
若一段时间内两者速度相等,则两者之间的距离 。
2、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴ 速度小者匀加速追速度大者,一定能追上,追上前有最大距离的条件:两物体速度 ,即v v =乙甲。
⑵ 匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。
②若甲乙速度相等时,甲的位置在乙的前方,则追上。
③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
⑶ 速度大者匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。
三、分析追及问题的注意点:⑴ 追及物与被追及物的速度恰好相等时临界条件,往往是解决问题的重要条件 ⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
【小学数学】小学数学常考相遇问题、追及问题(附例题、解题思路)

相遇问题【含义】两个运动的物体同时由两地出发相向而行;在途中相遇。
这类应用题叫做相遇问题。
【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式;复杂的题目变通后再利用公式。
例1南京到上海的水路长392千米;同时从两港各开出一艘轮船相对而行;从南京开出的船每小时行28千米;从上海开出的船每小时行21千米;经过几小时两船相遇?解392÷(28+21)=8(小时)答:经过8小时两船相遇。
例2小李和小刘在周长为400米的环形跑道上跑步;小李每秒钟跑5米;小刘每秒钟跑3米;他们从同一地点同时出发;反向而跑;那么;二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈。
因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。
例3甲乙二人同时从两地骑自行车相向而行;甲每小时行15千米;乙每小时行13千米;两人在距中点3千米处相遇;求两地的距离。
解“两人在距中点3千米处相遇”是正确理解本题题意的关键。
从题中可知甲骑得快;乙骑得慢;甲过了中点3千米;乙距中点3千米;就是说甲比乙多走的路程是(3×2)千米;因此;相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。
追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发;或者在不同地点又不是同时出发)作同向运动;在后面的;行进速度要快些;在前面的;行进速度较慢些;在一定时间之内;后面的追上前面的物体。
这类应用题就叫做追及问题。
【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式;复杂的题目变通后利用公式。
高一物理追击与相遇问题

中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三
角形的面积之差最大。
v/ms-1
v-t图像的斜率表示物体的加速度
6 tan 3
t0
t0 2s
当t=2s时两车的距离最大
6
o α t0
汽车
自 行
车 t/s
xm
1 2 6m 6m 2
动态分析随着时间的推移,矩 形面积(自行车的位移)与三角形面
运动。要使两车不相撞,a应满足什么条件?
方法一:公式法 两车恰不相撞的条件是两车速度相同时相遇。
由A、B 速度关系: v1 at v2
由A、B位移关系:v1t
1 2
at 2
v2t
x0
a (v1 v2 )2 (20 10)2 m/s2 0.5m/s2
2x0
2 100
则a 0.5m / s2
第一章 匀变速直线运动
追击和相遇问题
一、几种典型追击问题
v
甲
乙
甲的初速度大于乙的速度 o
t
t0
甲一定能追上乙,v甲=v乙的时刻为甲、乙有
最大距离的时刻。
例1:一辆汽车在十字路口等候绿灯,当绿灯亮时汽 车以3m/s2的加速度开始加速行驶,恰在这时一辆自 行车以6m/s的速度匀速驶来,从后边超过汽车。试 求:汽车从路口开动后,在追上自行车之前经过多长 时间两车相距最远?此时距离是多少?
vt2 v02 2ax0
a vt2 v02 0 102 m / s2 0.5m / s2 2x0 2100
a 0.5m / s2
以B为参照物,公式中的各个量都应是相对于B的物理量. 注意物理量的正负号。
方法四:二次
v2t x0
追及与相遇问题(详解)

追及与相遇问题两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。
因此应分别对两物体进行研究,列出位移方程,然后利用时间关系、速度关系、位移关系求解。
一、追及问题1、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴初速度比较小(包括为零)的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上。
a、追上前,当两者速度相等时有最大距离;b、当两者位移相等时,即后者追上前者。
⑵匀减速运动的物体追赶同向的匀速运动的物体时,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
a、当两者速度相等时,若追者位移仍小于被追者,则永远追不上,此时两者间有最小距离;b、若两者速度相等时,两者的位移也相等,则恰能追上,也是两者避免碰撞的临界条件;c、若两者速度相等时,追者位移大于被追者,说明在两者速度相等前就已经追上;在计算追上的时间时,设其位移相等来计算,计算的结果为两个值,这两个值都有意义。
即两者位移相等时,追者速度仍大于被追者的速度,被追者还有一次追上追者的机会,其间速度相等时两者间距离有一个较大值。
⑶匀速运动的物体甲追赶同向匀加速运动的物体乙,情形跟⑵类似。
匀速运动的物体甲追赶同向匀减速运动的物体乙,情形跟⑴类似;被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
2、分析追及问题的注意点:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。
两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。
⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t 图象的应用。
二、相遇⑴同向运动的两物体的相遇问题即追及问题,分析同上。
追及相遇问题

1.追及问题 “追及”的主要条件是两个物体在追 赶过程中处在同一位置,常见的情形有 三种: (1)初速度为零的匀加速直线运动的 物体甲追赶同方向的匀速运动的物体乙 时,一定能追上,在追上之前两者有最 大距离的条件是两物体的速度相等,即 v甲=v乙.
(2)匀速运动的物体甲追赶同方向做匀
3.相遇问题 (1)相遇的特点:在同一时刻两物 体处于同一位置. (2)相遇的条件:同向运动的物体 追及即相遇;相向运动的物体,各自 发生的位移的绝对值之和等于开始时 两物体之间的距离时即相遇.
类型一 追及相遇问题的求解方法
例1 一小汽车从静止开始以3 m/s2的 加速度行驶,恰有一自行车以6 m/s的 速度从车边匀速驶过.
加速运动的物体乙时,恰好追上或恰好
追不上的临界条件是两物体速度相等,
即v甲=v乙. 判断此种追赶情形能否追上的方法是:
假定在追赶过程中两者在同一位置,比
较此时的速度大小,若v甲>v乙,则能追上; v甲<v乙,则追不上,如果始终追不上,当 两物体速度相等即v甲=v乙时,两物体的 间距最小.
(3)速度大者减速(如匀减速直线运动)追速 度小者(如匀速运动)
(1)汽车从开动后在追上自行车之 前,要经多长时间两者相距最远?最 远距离是多少?
(2)什么时候追上自行车,此时汽 车的速度是多少?
(2)由图知,t=2 s以后,若两车位移相等, 即v-t图象与时间轴所夹的“面积”相等.
由几何关系知,相遇时间为t′=4 s,此 时v汽=2v自=12 m/s.
解析:汽车和自行车运动草图如下:
六、追及和相遇问题 1.追及问题 “追及”的主要条件是两个物体在追 赶过程中处在同一位置,常见的情形有 三种: (1)初速度为零的匀加速直线运动的 物体甲追赶同方向的匀速运动的物体乙 时,一定能追上,在追上之前两者有最 大距离的条件是两物体的速度相等,即 v甲=v乙.
追及和相遇问题

例2 在水平直轨道上有两列火车 A和 B相距s, A车在后面 做初速度为 v 0 、加速度大小为 2 a的匀减速直线运动,而 B车 同时做初速度为零、加速度大小为 a 的匀加速直线运动,两 车运动方向相同.要使两车不相撞, A车的初速度 v 0 应满足 什么条件? 【解析】 解法一 取 A 车开始刹车位置处为位移参考 点,有: 1 s A = v0 t - · 2at2 12 2 sB=s+ at 2 在两车恰好要接触而又不相撞的t时刻有: sA=sB,v0-2at=at v0 1 v0 2 v0 2 即v0· -a· ( ) =s+ a· ( ) 3a 2 3a 3a 解得:v0= 6as 故v0< 6as 时,两车不相撞.
2.两辆游戏赛车 a 、 b在两条平行的直车道上行驶. t= 0时 两车都在同一计时线处,此时比赛开始.它们在比赛中的v-t图 象如图所示.关于两车的运动情况, 下列说法正确的是( )
CD
A.两辆车在前10 s内,b车在前,a车在后,距离越来越大 B.a车先追上b车,后b车又追上a车 C . a 车与 b 车间的距离先增大后减小再增大,但 a 车始终 没有追上b车 D . a 车先做匀加速直线运动,后做匀减速直线运动,再做 匀速直线运动,b车做匀速直线运动
3.一步行者以 6.0 m/s 的速度跑去追赶被红灯阻停的公 交车, 在跑到距汽车 25 m 处时, 绿灯亮了, 汽车以 1.0 m/s2 的加速度匀加速启动前进,则 ( )
A.人能追上公共汽车,追赶过程中人跑了 36 m B.人不能追上公共汽车,人、车最近距离为 7 m C .人能追上公共汽车,追上车前人共跑了 43 m D.人不能追上公共汽车,且车开动后,人车距离越来越远
答案:B
4 .一辆值勤的警车停在公路边,当警员发现从他旁边 以 10 m/s 的速度匀速行驶的货车严重超载时,决定前去追 赶.经过5.5 s后警车发动起来,并以2.5 m/s2的加速度做匀加 速运动,但警车的行驶速度必须控制在90 km/h以内.问: (1)警车在追赶货车的过程中,两车间的最大距离是多少? (2)警车发动后要多长时间才能追上货车? 【解析】解法一 (1)警车在追赶货车的过程中,当两车 的速度相等时,它们之间的距离最大.设警车发动后经过 t 1 时间两车的速度相等,则: 10 t 1 = s= 4 s 2 .5 s货=(5.5+4)×10 m=95 m 1 1 s警= at12= ×2.5×42 m=20 m 2 2 所以两车间的最大距离Δs=s货-s警=75 m.
追击相遇问题情形分类详解

追击相遇情形分类1.追及问题追和被追的两物体的速度相等〔同向运动〕是能否追上及两者距离有极值的临界条件。
第一类:速度大者减速〔如匀减速直线运动〕追速度小者〔如匀速运动〕:〔1〕当两者速度相等时,假设追者位移仍小于被追者位移,那么永远追不上,此时两者间有最小距离。
〔2〕假设两者位移相等,且两者速度相等时,那么恰能追上,也是两者防止碰撞的临界条件。
〔3〕假设两者位移相等时,追者速度仍大于被追者的速度,那么被追者还有一次追上追者的时机,其间速度相等时两者间距离有一个最大值。
第二类:速度小者加速〔如初速度为零的匀加速直线运动〕追速度大者〔如匀速运动〕:〔1〕当两者速度相等时有最大距离。
〔2〕假设两者位移相等时,那么追上。
2.相遇问题〔1〕同向运动的两物体追上即相遇。
〔2〕相向运动的物体,当各自发生的位移大小之和等于开场时两物体的距离时即相遇。
3.追及和相遇问题的求解思路在追及和相遇问题中各物体的运动时间、位移、速度等都有一定的关系,这些关系是解决问题的重要依据。
解答此类问题的关键条件是:两物体能否同时到达空间某位置〔两个运动之间的位移和时间关系〕,因此应分别对两物体进展研究,列出位移方程,然后利用时间关系、速度关系、位移关系来处理。
其中速度关系特点是关键,它是两物体间距最大或最小,相遇或不相遇的临界条件。
根本思路是:①分别对两物体研究;②画出运动过程示意图;③列出位移方程;④找出时间关系、速度关系、位移关系;⑤解出结果,必要时进展讨论.(1)追及问题a) 根据追逐的两个物体的运动性质,列出两个物体的位移方程,注意将两物体在运动时间上的关系反映在方程中。
b〕由简单的图示找出两物体位移间的数量关系〔例如追及物体A与被追及物体B开场相距为Δx,当追上时,位移关系为x A=x B+Δx〕。
然后解联立方程得到需要求的物理量。
c〕速度小者加速追速度大者,在两物体速度相等时有最大距离;速度大者减速追速度小者,在两物体速度相等时有最小距离,速度相等往往是解题的关键条件。
追及与相遇问题(20张PPT)

• 追及与相遇问题概述 • 追及问题的解决方法 • 相遇问题的解决方法 • 追及与相遇问题的实际应用 • 练习题与解析
目录
Part
01
追及与相遇问题概述
定义与特点
定义
追及与相遇问题是一种常见的数学问题,主要研究两个或多个运动物体在同一直线上或 在不同路径上运动,其中一个物体追赶另一个物体或两者相遇的问题。
01
02
03
确定追及条件
当两物体速度相等时,是 追及的临界条件。
建立数学模型
根据题意,列出两物体的 位移方程,并找出时间关 系。
求解方程
解方程求出两物体的位移 和时间,判断是否追上。
Part
03
相遇问题的解决方法
直线上的相遇问题
确定参考系
选择一个合适的参考系,以便简 化问题。
检验解的合理性
根据实际情况检验解的合理性, 确保答案符合实际情况。
特点
这类问题通常涉及到速度、时间、距离等基本概念,需要运用数学模型和公式进行求解。
问题背景与重要性
问题背景
追及与相遇问题在日常生活和实际工程中有着广泛的应用,如交通、物流、航 天等领域。这类问题的解决有助于提高对物体运动规律的认识,为实际问题的 解决提供理论支持。
重要性
追及与相遇问题在数学教育和科学教育中也占有重要地位,是培养学生逻辑思 维和数学应用能力的重要素材。
行星运动中的追及与相遇
卫星轨道
天体碰撞
人造卫星在地球轨道上运行时,需要 考虑其他卫星或物体的影响,避免追 及和碰撞。
在宇宙中,天体之间的碰撞是相对罕 见的,但仍然需要关注小行星、彗星 等对地球的潜在威胁。
行星探测器
探测器在飞往行星的过程中,需要进 行精确的轨道设计和计算,确保能够 成功追及目标行星。
追及和相遇问题

(4)求解此类问题的方法,除了以上所述根据 追及的主要条件和临界条件解联立方程外,还 有利用二次函数求极值,及应用图象法和相对 运动知识求解.
1、《走向高考》:P15—例证3 2、备考P9例6
3、备考P12例9
4、如图所示,A、B两物体相距 S=7米,A正以VA=4米/秒的速度向 右做匀速直线运动,而物体B此时 A 速度VB=10米/秒,方向向右做匀减 速直线运动,加速度大小a=2米/秒, 从图示位置开始,问经多少时间A 追上B?
3、匀速物体追赶匀加速物体:当追者速 度等于被追赶者速度时恰好追上,只有一 次相遇机会。当第一次追上时追者速度大 于被追者速度,有两次相遇机会。 4、匀速物体追匀减速物体:必能追上且 只有一次相遇机会,注意分析匀减速物体 何时停下来。
二、相遇问题
相遇问题分为追及相遇和相向运动相遇两种情 形,其主要条件是两物体在相遇处的位置坐标 相同.
提醒:遇到匀速运动物体追赶匀减速运动物体的 问题时,特别要注意匀减速的物体何时停下来!
追及问题小结: 1、初速为零的匀加速物体追赶同向匀速物体 时,追上前两者具有最大距离的条件:追赶者 的速度等于被追赶者的速度。 2、匀减速物体追赶同向匀速物体时,恰能追 上或恰好追不上的临界条件是:即将靠近时追 赶者的速度等于被追赶者的速度。
VA
B S
VB
解:设经时间t ,A追上B,由运动学公式列方 程得:
VA t=S+VB t-a t2/2
即:t2-6t-7=0
对吗?
解得 t=7s
正确解法:根据Vt=V0+at得 B停下来的时间tB=VB/a=10/2=5(s), 这段时间B的位移 SB=VtB=VBtB/2=10×5/2=25(m) 由 VAtA=S+SB 得: tA=(S+SB)/VA=(7+25)/4=8(s)
高一物理追及与相遇问题专题多种解法详讲

汽车正以10m/s的速度在平直的公路上前 进,突然发现前方有一辆自行车以4m/s的 速度做同方向的匀速直线运动,汽车立即 关闭油门做加速度大小是6m/s2的匀减速 运动,汽车恰好碰不上自行车,求关闭油 门时汽车离自行车多远?
小结:
A、B同向运动,B在前,开场VA > VB,后来VA < VB, 判断A能否追上B的方法:当两者速度一样时 (1)A的位置在B之前,即A追B; (2)假设在同一位置,即恰追上; (3)假设A在B之后,即A追不上B。假设在以后那么不 可能追及,此时物体间距离最小。
的速度是多大?汽车运动的位移又是多大?
v自T
1 2
aT2T
2v自 a
4ss汽v汽12aaTT2= 12m 24m /s
方法二:图象法
解:画出自行车和汽车的速度-时间图线,自行车的位移s自等于 其图线与时间轴围成的矩形的面积,而汽车的位移s汽那么等于 其图线与时间轴围成的三角形的面积。两车之间的距离那么等 于图中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形 与三角形的面积之差最大。
解析〔1〕假设两车相距最远,那么 V甲=V乙
需满足 即V甲=at1
S甲 =V甲t1=100m
S乙=12at12=50m
△ S =S甲-S乙=50m
t1 =10s
〔2〕假设两车相遇,那么需满足S甲=S乙
V甲t
2
=
1 2
at
2 2
∴t2=20s
[例1]:一辆汽车在十字路口等候绿灯,当绿灯亮时 汽车以3m/s2的加速度开场加速行驶,恰在这时一辆 自行车以6m/s的速度匀速驶来,从后边超过汽车。 试求:汽车从路口开动后,在追上自行车之前经过 多长时间两车相距最远?此时距离是多少?
类型06追及相遇问题的解决方法(解析版)

类型06 追及相遇问题的解决方法知识点一、追及问题的两类情况 (1)知识点二、相遇问题的两类情况 (1)题型01:实际问题中追及相遇问题 (2)题型02:与图像结合的追及相遇问题 (4)知识点一、追及问题的两类情况(1)若后者能追上前者,追上时,两者处于同一位置,且后者速度一定不小于前者速度。
(2)若后者追不上前者,则当后者速度与前者速度相等时,两者相距最近。
知识点二、相遇问题的两类情况(1)同向运动的两物体追及即相遇。
(2)相向运动的物体,当各自发生的位移大小之和等于开始时两物体间的距离时即相遇。
热点题型一实际问题中追及相遇问题1.牢记“一个思维流程”2.掌握“三种分析方法”(1)分析法应用运动学公式,抓住一个条件、两个关系,列出两物体运动的时间、位移、速度及其关系方程,再求解。
(2)极值法设相遇时间为t,根据条件列出方程,得到关于t的一元二次方程,再利用数学求极值的方法求解。
在这里,常用到配方法、判别式法、不等式法等。
(3)图象法在同一坐标系中画出两物体的运动图象。
位移图象的交点表示相遇,速度图象抓住速度相等时的“面积”关系找位移关系。
【典例1】(2021·长春第一中学模拟)汽车A 以v A =4 m/s 的速度向右做匀速直线运动,发现前方相距x 0=7 m 处、以v B =10 m/s 的速度同向运动的汽车B 正开始匀减速刹车直到静止后保持不动,其刹车的加速度大小a =2 m/s 2.从此刻开始计时,求: (1)A 追上B 前,A 、B 间的最远距离是多少? (2)经过多长时间A 恰好追上B? 解题关键——画运动示意图 汽车A 和B 运动的过程如图所示.【答案】 (1)16 m (2)8 s【解析】(1)当A 、B 两汽车速度相等时,两车间的距离最远,即 v =v B -at =v A ,解得t =3 s 此时汽车A 的位移x A =x A t =12 m 汽车B 的位移x B =v B t -12at 2=21 m 故最远距离Δx max =x B +x 0-x A =16 m .(2)汽车B 从开始减速直到静止经历的时间t 1=v Ba =5 s 运动的位移x ′B =v 2B 2a=25 m汽车A 在t 1时间内运动的位移x ′A =v A t 1=20 m 此时相距Δx =x ′B +x 0-x ′A =12 m 汽车A 需再运动的时间t 2=Δxv A=3 s故A 追上B 所用时间t =t 1+t 2=8 s .【变式2】 (一题多解)在水平轨道上有两列火车A 和B 相距s ,A 车在后面做初速度为v 0、加速度大小为2a 的匀减速直线运动,而B 车同时做初速度为零、加速度为a 的匀加速直线运动,两车运动方向相同。
追及和相遇问题的求解方法

追及和相遇问题的求解方法追及和相遇问题的求解方法两个物体在同一直线上运动,往往涉及追及,相遇或避免碰撞等问题,解答此类问题的关键条件是:两物体能否同时达到某位置。
基本思路是:① 分别对两物体进行研究;②画出运动过程示意图;③列出位移方程④找出时间关系,速度关系⑤解出结果,必要时进行讨论。
(1)追及问题:追和被追的两物体的速度相等(同向运动)是能否追上及两者距离有极值的临界条件。
第一类:速度大者减速(如匀减速直线运动)追速度小者(如匀减速直线运动)① 当两者速度相等时,追者位移追者位移仍小于被追者位移,则永远追不上,此时两者之间有最小距离。
② 若两者位移相等,且两者速度相等时,则恰能追上,也是两者避免碰撞的临界条件。
③ 若两者位移相等时,追着速度仍大于被追者的速度,则被追者还有一次追上追者的机会,当速度相等时两者之间距离有一个最大值。
在具体求解时,可以利用速度相等这一条件求解,也可以利用二次函数的知识求解,还可以利用图象等求解。
第二类:速度小者加速(如初速度为零的匀加速直线运动)追速度大者(匀速直线运动)。
① 当两者速度相等时有最大距离。
② 当两者位移相等时,则追上具体的求解方法与第一类相似,即利用速度相等进行分析还可利用二次函数图象和图象图象。
(2)相遇问题①同向运动的两物体追及即相遇。
②相向运动的物体,当各自发生的位移大小之和等于开始时两物体间的距离时相遇追及和相遇问题1,追及,相遇的特征两个物体在同一直线上运动,往往涉及追及,相遇或避免碰撞等问题,解答此类问题的关键条件是:两物体能否同时达到某位置。
两个物体在同一直线上运动情形有三种:同向运动,相向运动和背向运动相向运动和背向运动的区别是尽管两个物体的运动方向相反,但相向运动是两物体间距离减小,而背向运动是两物体间距离增大。
2,解追及,相遇问题的思路(1)根据两物体运动过程的分析,画出两物体运动的示意图。
(2)根据两物体的运动性质,分别列出两物体的位移方程,注意要将两物体运动时间的关系反映在方程中。
追赶相遇问题分类与解答思路

追赶相遇问题分类与解答思路追赶、相遇问题是运动学中常见的问题,由于此类问题涉及到两个物体的运动,且运动状态一般不同,许多同学解答起来有一定的难度,其实在弄清两物体运动状态及规律的基础上,恰当地选择解题思路,问题就不难解。
下面分三种情况举例说明。
一. 追赶不相遇若两物体追赶而不相遇,则在某一时刻一定存在最短距离。
因此,解答这类问题要认真分析两物体的运动过程,从速度关系入手解答;也可根据位移关系列式后,由判别式求时间t 在实数范围内无解。
例1. 甲车在公路上正以10m/s 的速度做匀速运动,与此同时甲车后面50m 处乙车做初速度为20m/s ,加速度为52m s /的减速运动,问:两车能否相遇,若不能相遇,其间最短的距离是多少?分析与解:因甲的速度不变,而乙的速度在变。
当v v 乙甲>时,两车距离逐渐减小;当v v 乙甲<时,两车距离逐渐拉大,所以,当v v 乙甲=时,两车距离达到最小;若此时两车不相遇,则两车距离达到最小;若此时两车不相遇,则两车再永远不能相遇。
乙车速度为10m/s 时所用时间t s =--=102052,故2s 内 s v t at m 乙乙=-=2230 而s v t m 甲甲==20因s m m 乙<+2050所以两车不能相遇,最短距离为703040-=m例2. 乙在甲车前10m 处,甲乙同时同向运动,甲做速度为5m/s 的匀速运动,乙做加速度为22m s /,初速为零的匀加速运动,两车能否相遇,若不能相遇,其间最短的距离是多少?分析与解:假设t 秒后甲与乙相遇,则有 vt at =+2210 代入数值整理得t t 25100-+=由于∆=-=-<b ac 2245400,显然t 在实数范围内无解,说明甲无法追上乙,再设t 时刻两者距离为s ,则有 s at vt t t =+-=-+()10251022 二次项系数大于0,并且当t b as =-=225.时,两者距离取得最小值: s m m i n .=375二. 追赶相遇一次这是最常见的相遇问题,一般的解答思路是由两物体运动的时间、位移、速度和加速度的关系列式,如当两物体相遇时,它们的空间位置相同,若同地出发,则位移相同;若同时开始运动,两物体运动时间相等;在追赶问题中相遇不相碰两物体速度相等。
追及问题公式和相遇问题公式解题思路是什么

追及问题公式和相遇问题公式解题思路是什么
追及问题公式和相遇问题公式:追击问题:路程=速度差×追击时间;相遇问题:路程=速度和×相遇时间;相遇问题的关系式是:速度和×相遇时间=路程;路程÷速度和=相遇时间;路程÷相遇时间=速度和。
要注意追及、相遇问题中的“一个条件、两个关系”
追及问题公式和相遇问题公式
追击问题:路程=速度差×追击时间;
相遇问题:路程=速度和×相遇时间;
相遇问题的关系式是:
速度和×相遇时间=路程;
路程÷速度和=相遇时间;
路程÷相遇时间=速度和。
追及、相遇问题的解题思路
一、追及、相遇问题中的“一个条件、两个关系”
(1)一个条件:即两者速度相等,它往往是物体间能够追上、追不上或两者距离最大、最小的临界条件,也是分析判断的切入点.
(2)两个关系:即时间关系和位移关系,这两个关系可通过运动示意图得到.
二、追及问题的大致两种常见情形:
(1)“慢”匀加速追“快”匀速时,两者间距先增大后减小,v相同时相距最远,最终必定相遇反超;
(2)“快”匀减速追“慢”匀速时,两者间距越来越小,v相同时相距最近,若速度相等时间距为零,称为“恰好不相撞”,之后慢慢拉开间距。
(3)若物体A追物体B,开始时两个物体相距x0且vA>vB,有三种常见情景:
(a)A追上B时,必有xA-xB=x0,且vA≥vB。
(b)要使两物体恰好不相撞,两物体同时到达同一位置时速度相同,必有xA-xB=x0,vA=vB。
(c)若使两物体保证不相撞,则要求当vA=vB时,xA-xB<x0,且之后vA≤vB。
追及、相遇问题常见类型及求解方法

减
追者初 速度小于被 追者初速 度,一定追 不上
速
追 ⑧匀加速 追者初速度大于被追者初速度,可能追上也 可能追不上.若追上,则会有两次相遇;若
没追上,二 者速度相等时有 最小距离
⑨匀减速 除了比较初速度的大 小,还要比较加速度的大小,较为复杂 ,在表中不作讨论
1 供 例
甲、乙两车在一平直道路上
同向运动。其口q图 象
速 追
一定 追上,若 追者初速 度小于 被迫者初 速度,在 追上前二 者速度 相等时有 最大距离 . ⑥匀减速 要注意追上时匀减速运动的物体是否早已经停止运动
追者初 速度小于被追 者速度,肯定 追不上
⑦匀速 追者初速度大于被追者速度,可能追上,也 可能追不上.若追上,则会有两次相遇;若
匀
没追上.一 者速度相等时有 最小距离
影巴士=4×7.5=30 m/s .
9℃例4 甲、乙两车相距s ,同时同向 运动,乙在前面做初速度为零、加速度为a ,的 匀加速直线运动,甲在后面做初速度为口。、加 速度为眈的匀加速直线运动,试讨论两车在 运动过程中相遇次数与加速度的关系.
环:mgan皓僦,
得a=7.5 r ds2,所以巴士做vo=O,a=7.5 m/ s2 的匀加速直线运动.
( 1) 解法一:物理分析法 秽巴士由零逐渐增大,而”眦车是定值,当秽巴士< 秽摩托车时,二者距离增大,当口巴士Ⅻ摩托车时,二者 距离减小,所以当两车速度相等时,相距最
远,有移巴士=at=v摩托车,所以f=鳖=2 s, 口
Zh;石摩托车—菇巴士=铆摩托车t 一- .- - "at 2=15 m. Z
追
追者速 度小于被迫者 初速度,一定 追不上
③匀减 速
一定 追上.若 追者速度 小于被 追者初速 度,在追 上之前二 者速度 相等时有 最大距离 . 要注意追上时匀减速运动的物体是否早已经停止运动
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
追及与相遇问题追及问题是运动学中较为综合且有实践意义的一类习题,它往往涉及两个以上物体的运动过程,每个物体的运动规律又不尽相同.对此类问题的求解,除了要透彻理解基本物理概念,熟练运用运动学公式外,还应仔细审题,挖掘题文中隐含着的重要条件,并尽可能地画出草图以帮助分析,确认两个物体运动的位移关系、时间关系和速度关系,在头脑中建立起一幅物体运动关系的图景.借助于v -t 图象来分析和求解往往可使解题过程简捷明了. 知识要点:一、相遇是指两物体分别从相距S 的两地相向运动到同一位置,它的特点是:两物体运动的距离之和等于S ,分析时要注意: (1)、两物体是否同时开始运动,两物体运动至相遇时运动时间可建立某种关系; (2)、两物体各做什么形式的运动; (3)、由两者的时间关系,根据两者的运动形式建立S=S 1+S 2方程; 二、追及问题 (1)、追及问题中两者速度大小与两者距离变化的关系。
若甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离 。
若甲的速度小于乙的速度,则两者之间的距离 。
若一段时间内两者速度相等,则两者之间的距离 。
2、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴ 速度小者匀加速追速度大者,一定能追上,追上前有最大距离的条件:两物体速度 ,即v v =乙甲。
⑵ 匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。
②若甲乙速度相等时,甲的位置在乙的前方,则追上。
③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
⑶ 速度大者匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。
三、分析追及问题的注意点:⑴ 追及物与被追及物的速度恰好相等时临界条件,往往是解决问题的重要条件 ⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t -图象的应用。
例题分析:1.一车处于静止状态,车后距车S 0=25m 处有一个人,当车以1m/s 2的加速度开始起动时,人 以6m/s 的速度匀速追车,能否追上?若追不上,人车之间最小距离是多少?2.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始行驶,恰好此时一辆自行车以6m/s速度驶来,从后边超越汽车.试求:①汽车从路口开动后,追上自行车之前经过多长时间两车相距最远?最远距离是多少?②经过多长时间汽车追上自行车,此时汽车的速度是多少?3.公共汽车从车站开出以4m/s的速度沿平直公路行驶,2s后一辆摩托车从同一车站开出匀加速追赶,加速度为2m/s2。
试问(1)摩托车出发后,经多少时间追上汽车?(2)摩托车追上汽车时,离出发点多远?(3)摩托车追上汽车前,两者最大距离是多少?4、火车以速度v1匀速行驶,司机发现前方同轨道上相距s处有另一火车沿同方向以速度v2做匀速运动,已知v1>v2司机立即以加速度a紧急刹车,要使两车不相撞,加速度a的大小应满足什么条件?5、某人骑自行车以4m/s的速度匀速前进,某时刻在他前面7m处以10m/s的速度同向行驶的汽车开始关闭发动机,而以2m/s2的加速度减速前进,求:①自行车未追上前,两车的最远距离;②自行车需要多长时间才能追上汽车.6. 某人骑自行车以8m/s的速度匀速前进,某时刻在他前面8m处以10m/s的速度同向行驶的汽车开始关闭发动机,而以2m/s2的加速度减速前进,求:①自行车未追上前,两车的最远距离;②自行车需要多长时间才能追上汽车.课后练习:1、 一列快车正以20m/s 的速度在平直轨道上运动时,发现前方180m 处有一货车正以6m/s速度匀速同向行驶,快车立即制动,快车作匀减速运动,经40s 才停止,问是否发生碰车事故?(会发生碰车事故)2、 同一高度有AB 两球,A 球自由下落5米后,B 球以12米/秒竖直投下,问B 球开始运动后经过多少时间追上A 球。
从B 球投下时算起到追上A 球时,AB 下落的高度各为多少?(g=10m/s2)(2.5秒;61.25米)3、 如图所示,A 、B 两物体相距s=7m,物体A 在水平拉力和摩擦力作用下,正以v1=4m/s的速度向右运动,而物体B 此时的速度v2=10m/s,由于摩擦力作用向右匀减速运动,加速度a =-2m/s2,求,物体A 追上B 所用的时间。
(2.67s )v1v24、羚羊从静止开始奔跑,经过50m能加速到最大速度25m/s,并能维持一段较长的时间;猎豹从静止开始奔跑,经过60 m的距离能加速到最大速度30m/s,以后只能维持此速度4.0 s.设猎豹距离羚羊xm时开时攻击,羚羊则在猎豹开始攻击后1.0 s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,求:猎豹要在从最大速度减速前追到羚羊,x值应在什么范围?解析:先分析羚羊和猎豹各自从静止匀加速达到最大速度所用的时间,再分析猎豹追上羚羊前,两者所发生的位移之差的最大值,即可求x的范围。
设猎豹从静止开始匀加速奔跑60m达到最大速度用时间t2,则1112tvs=,svst4306022111=⨯==羚羊从静止开始匀加速奔跑50m达到最大速度用时间t1,则2222tvs=,svst4255022222=⨯==猎豹要在从最大速度减速前追到羚羊,则猎豹减速前的匀速运动时间最多4s,而羚羊最多匀速3s而被追上,此x值为最大值,即x=S豹-S羊=[(60+30×4)-(50+25×3)]=55m,所以应取x<55m。
5、高为h的电梯正以加速度a匀加速上升,忽然天花板上一颗螺钉脱落.螺钉落到电梯底板上所用的时间是多少?解析:此题为追及类问题,依题意画出反映这一过程的示意图,如图2— 27所示.这样至少不会误认为螺钉作自由落体运动,实际上螺钉作竖直上抛运动.从示意图还可以看出,电梯与螺钉的位移关系:S梯一S钉= h 式中S梯=vt十½at2,S钉=vt-½gt2可得t=()agh+/2错误:学生把相遇过程示意图画成如下图,则会出现S梯+S钉= h式中S梯=v0t十½at2,S钉=v0t-½gt2这样得到v0t十½at2+v0t-½gt2=h,即½(a-g)t2+2v0t-h=0由于未知v0,无法解得结果。
判别方法是对上述方程分析,应该是对任何时间t,都能相遇,即上式中的Δ=4v02+2(a-g)h≥0也就是v0≥()2/h ga-,这就对a与g关系有了限制,而事实上不应有这样的限制的。
、a参考答案: 1、S 人-S 车=S 0 ∴ v 人t-at 2/2=S0 即t 2-12t+50=0 Δ=b 2-4ac=122-4×50=-56<0 ∴ 方程无解.人追不上车 当v 人=v 车=at 时,人车距离最小 t=6/1=6sΔS min =S 0+S 车-S 人=25+1×62/2-6×6=7m 2、1.解一:速度关系,位移关系自汽v at v == t=2s)(62321262122m at t v s =⨯⨯-⨯=-=∆自解二:极值法 (1)2223621t t at t v s -=-=∆自 由二次函数的极值条件可知s t 2)2/3(26=-⨯-=时,s ∆最大)(6223262m s m =⨯-⨯=∆(2)汽车追上自行车时,二车位移相等2''21at v t =s t v t 43622'=⨯== s m at v /1243''=⨯==解三:用相对运动求解选匀速运动的自行车位参照物,则从运动开始到相距最远,这段时间内,起初相对此参照物的各个物理量为初速 s m v v v /6600-=-=-=自汽初 末速 066=-=-=自汽末v v v t加速度 2/303s m a a a =-=-=自汽∴相距最远 m a v v s t 632)6(022202-=⨯--=-=(负号表示汽车落后) 解四:图象求解(1) s av t 236===自 m at v s t 62321262122=⨯⨯-⨯=-=∆(2) s t t 42'==s m v v /122'==自3、解:开始一段时间内汽车的速度大,摩托车的速度小,汽车和摩托车的距离逐渐增大,当摩托车的速度大于汽车的速度后,汽车和摩托车的距离逐渐减小,直到追上,显然,在上述过程中,摩托车的速度等于汽车速度时,它们间的距离最大。
(1)摩托车追上汽车时,两者位移相等,即v(t+2)=21at 2解得摩托车追上汽车经历的时间为t=5.46s (2)摩托车追上汽车时通过的位移为s=21at 2=29.9m (3)摩托车追上汽车前,两车速度相等时相距最远,即v=at /t /=av=2s最大距离为△s=v(t /+2)-21at /2=12m 小结:求解追及问题要注意明确三个关系:时间关系、位移关系、速度关系,这是我们求解列方程的依据,涉及临界问题时要抓住临界条件。
4、解法一:由分析运动过程入手 后车刹车后虽做匀减速运动,但在速度减小到和v2相等之前,两车的距离将逐渐减小;当后车速度减小到小于前车速度,两车距离将逐渐增大。
可见,当两车速度相等时,两车距离最近。
若后车减速的加速度过小,则会出现后车速度减为和前车速度相等即追上前车,发生撞车事故;若后车加速度过大,则会出现后车速度减为和前车速度相等时仍为追上前车,若后车加速度大小为某一值时,恰能使两车速度相等时后车追上前车,这是两车不相撞的临界条件,其实对应的加速度即为两车不相撞的临界最小加速度。
综合以上分析可知,两车恰不相撞时应满足下列方程:v 1t-21a 0t 2= v 2t+s v t -a 0t=v 2联立上式可解得:a 0=s v v 2)(212- 所以不 a ≥sv v 2)(212-时时两车即不会相撞。
解法二:要使两车不相撞,其位移关系应为v 1t-21at 2≤s+ v 2t即21at 2+(v 2-v 1)t+s ≥0对于位移s 和时间t,上面不等式都成立的条件为 △=(v 2-v 1)2-2as ≤0由此得a ≥sv v 2)(212-解法三:以前车为参考系,刹车后后车相对于前车做初速度v0=v1-v2、加速度为a 的匀减速直线运动,当后车相对前车的速度为零时,若相对位移s/≤s 时,则不会相撞。