数列的概念单元测试题 百度文库

数列的概念单元测试题 百度文库
数列的概念单元测试题 百度文库

一、数列的概念选择题

1.若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有1n n a a +=成立,则称数列

{}n a 为周期数列,周期为T .

已知数列{}n a 满足()111,1

0,{1

,01n n n n n

a a a m m a a a +->=>=<≤ ,则下列结论错误的是( ) A .若34a =,则m 可以取3个不同的数; B

.若m =

,则数列{}n a 是周期为3的数列;

C .存在m Q ∈,且2m ≥,数列{}n a 是周期数列;

D .对任意T N *∈且2T ≥,存在1m >,使得{}n a 是周期为T 的数列. 2.

3

,则 ) A .第8项

B .第9项

C .第10项

D .第11项

3.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1

B .3

C .2

D .3-

4.在数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,则下列结论正确的是( )

A .存在正整数0N ,当0n N >时,都有n a n ≤.

B .存在正整数0N ,当0n N >时,都有n a n ≥.

C .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≤.

D .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≥. 5.已知数列{}n a 满足11a =

),2n N n *=

∈≥,且()2cos

3

n n n a b n N π

*=∈,则数列{}n b 的前18项和为( ) A .120

B .174

C .204-

D .

373

2

6.在数列{}n a 中,11a =,11n n a a n +=++,设数列1n a ??

?

???

的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( ) A .()3,+∞ B .[

)3,+∞

C .()2,+∞

D .[)2,+∞

7.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ?∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件

D .既不充分也不必要条件

8.数列{}n a 中,11a =,12n n a a n +=+,则n a =( ) A .2n n 1-+

B .21n +

C .2(1)1n -+

D .2n

9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有

()()()f x f y f x y ?=+,若112

a =

,()()

*

n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( )

A .

1324n S ≤< B .314n S ≤< C .102

n S <≤

D .

1

12

n S ≤< 10.数列1,3,5,7,9,--的一个通项公式为( )

A .21n a n =-

B .()1(21)n

n a n =--

C .()

1

1(21)n n a n +=--

D .()

1

1(21)n n a n +=-+

11.下列命题中错误的是( ) A .()(

)21f n n n N

+

=-∈是数列的一个通项公式

B .数列通项公式是一个函数关系式

C .任何一个数列中的项都可以用通项公式来表示

D .数列中有无穷多项的数列叫作无穷数列 12.数列{}n a 满足12a =,111

1

n n n a a a ++-=+,则2019a =( ) A .3-

B .12-

C .

13

D .2

13.已知数列{}n a 满足11a =,12

2

n n a a n n

+=++,则10a =( ) A .

259

B .

145 C .

3111

D .

176

14.数列1111

,,,

57911

--,…的通项公式可能是n a =( ) A .1(1)32n n --+

B .(1)32

n n -+

C .1(1)23

n n --+

D .(1)23

n

n -+

15.正整数的排列规则如图所示,其中排在第i 行第j 列的数记为,i j a ,例如4,39a =,则

645a ,等于( )

123

456

78910

A .2019

B .2020

C .2021

D .2022

16.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),(

)*

3n n N

≥∈,,此数列在现代物理及化学等领域有着广泛的应用,

若此数列被4整除后的余数构成一个新数列{}n b ,则b 2020=( ) A .3 B .2

C .1

D .0

17.数列1

2,16,112,120

,…的一个通项公式是( ) A .()1

1n a n n =-

B .()1

221n a n n =

-

C .111

n a n n =

-+ D .11n a n

=-

18.已知数列{}n a 满足1N a *

∈,1,2+3,n

n n n n a a a a a +??=???为偶数为奇数

,若{}n a 为周期数列,则1a 的

可能取到的数值有( ) A .4个

B .5个

C .6个

D .无数个

19.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )

A .201920212S F =+

B .201920211S F =-

C .201920202S F =+

D .201920201S F =-

20.数列2345

1,,,,,3579

的一个通项公式n a 是( ) A .

21n

n + B .

23

n

n + C .

23

n

n - D .

21

n

n - 二、多选题

21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:

1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列

数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数

C .202020182022

3a a a =+

D .123a a a +++…20202022a a +=

22.(多选题)已知数列{}n a 中,前n 项和为n S ,且2

3

n n n S a +=,则1n n a a -的值不可能为

( ) A .2

B .5

C .3

D .4

23.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-

B .180S =

C .当0d >时,6140a a +>

D .当0d <时,614a a >

24.设数列{}n a 的前n 项和为*

()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是

( )

A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列

B .若2

n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列

C .若()11n

n S =--,则{}n a 是等比数列

D .若{}n a 是等差数列,则n S ,2n n S S -,*

32()n n S S n N -∈也成等差数列

25.已知数列{}2n

n

a n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6

D .a 1,a 2,a 3可能成等差数列

26.已知等差数列{}n a 的前n 项和为,n S 且15

11

0,20,a a a 则( )

A .80a <

B .当且仅当n = 7时,n S 取得最大值

C .49S S =

D .满足0n S >的n 的最大值为12

27.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的

是( ) A .110S =

B .10n n S S -=(110n ≤≤)

C .当110S >时,5n S S ≥

D .当110S <时,5n S S ≥

28.(多选题)在数列{}n a 中,若22

1n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称

{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )

A .若{}n a 是等差数列,则{}

2

n a 是等方差数列

B .

(){}1n

-是等方差数列

C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列

D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 29.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911

111

a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <

30.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =

C .95S S >

D .67n S S S 与均为的最大值

31.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ?<

B .22

415

4

a a +≥

C .15

11

1a a +> D .1524a a a a ?>?

32.在数列{}n a 中,若22*

1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数

列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列

C .若{}n a 是等方差数列,则{}(

)*

,kn a k N

k ∈为常数)也是等方差数列

D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 33.定义11222n n

n a a a H n

-++

+=

为数列{}n a 的“优值”.已知某数列{}n a 的“优

值”2n

n H =,前n 项和为n S ,则( )

A .数列{}n a 为等差数列

B .数列{}n a 为等比数列

C .

20202023

20202

S = D .2S ,4S ,6S 成等差数列

34.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <

C .80a =

D .n S 的最大值是8

S 或者9S

35.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )

A .2

n S n = B .2

23n S n n =- C .21n a n =- D .35n a n =-

【参考答案】***试卷处理标记,请不要删除

一、数列的概念选择题 1.C 解析:C 【解析】

试题分析:A:当01m <≤时,由34a =得1;125m m =

<≤时,由34a =得54

m =; 2m >时,()2311,,24a m a m =-∈+∞=-= 得6m = ;正确 .

B:

234111,11,1,m a a a =>∴==

==> 所以3T =,正

确.

C :命题较难证明,先考察命题

D .

D :命题的否定为“对任意的T N *∈,且2T ≥,不存在1m >,使得{}n a 是周期为T 的数列”,而由B 显然这个命题是错误的,因此D 正确,从而只有C 是错误. 考点:命题的真假判断与应用.

【名师点睛】本题主要考查周期数列的推导和应用,考查学生的推理能力.此题首先要理解新定义“周期为T 的数列”,然后对A 、B 、C 、D 四个命题一一验证,A 、B 两个命题按照数列的递推公式进行计算即可,命题C 较难证明,但出现在选择题中,考虑到数学选择题中必有一个选项正确,因此我们先研究D 命题,并且在命题D 本身也很难的情况下,采取“正难则反”的方法,考虑命题D 的否定,命题D 的否定由命题B 很容易得出是错误的,从而命题D 是正确的.

2.D

解析:D 【解析】 【分析】

根据根号下的数字规律,可知为等差数列.利用等差数列性质求得通项公式,即可判断为第几项. 【详解】

根据数列中的项,… 由前几项可知,根式下的数列是以5为首项, 4为公差的等差数列 则根式下的数字组成的等差数列通项公式为()51441n a n n =+-?=+

而=

所以4541n =+ 解得11n = 故选:D 【点睛】

本题考查了等差数列通项公式的求法及简单应用,属于基础题.

3.C

解析:C 【分析】

根据数列{}n a 的前两项及递推公式,可求得数列的前几项,判断出数列为周期数列,即可求得

2019a 的值.

【详解】

数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=- 当1n =时,321322a a a =-=-= 当2n =时,432231a a a =-=-=- 当3n =时,543123a a a =-=--=- 当4n =时,()654312a a a =-=---=- 当5n =时,()765231a a a =-=---= 当6n =时,()876123a a a =-=--= 由以上可知,数列{}n a 为周期数列,周期为6T = 而201933663=?+ 所以201932a a == 故选:C 【点睛】

本题考查了数列递推公式的简单应用,周期数列的简单应用,属于基础题.

4.A

解析:A 【分析】

运用数列的单调性和不等式的知识可解决此问题. 【详解】

数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,

121n n n n a a a a +++∴≥--,

设1n n n d a a +=-,则1n n d d +≥,

∴数列{}n d 是递减数列.

对于A ,由11a =,20192019a =,

则201911220182019a a d d d =+++=,

所以1220182018d d d ++

+=,又1232018d d d d ≥≥≥

≥,

所以1122018201820182018d d d d d ≥++

+≥,

故120181d d ≥≥,2018n ∴≥时,1n d ≤,

02019N ?=,2019n >时, 20192019202012019111n n a a d d d n -=+++

≤++++=

即存在正整数0N ,当0n N >时,都有n a n ≤,故A 正确;

结合A ,故B 不正确;

对于C ,当n →+∞,且0n d >时,数列{}n a 为递增数列, 则n a 无最大值,故C 不正确;

对于D ,由数列{}n d 是递减数列,当存在0n d <时,则n a 无最小值,故D 不正确; 故选:A 【点睛】

本题考查了数列的单调性以及不等式,属于基础题.

5.B

解析:B 【分析】

将题干中的等式化简变形得2

11n n a n a n --??

= ???

,利用累乘法可求得数列{}n a 的通项公式,由

此计算出(

)32313k k k b b b k N *

--++∈,进而可得出数列{}n

b 的前18项和.

【详解】

)1,2n a n N n *

--=

∈≥,将此等式变形得2

11n n a n a n --??= ???

由累乘法得2

2

2

3

212

12

11211123n n n a

a a n a a a a a n n

--??????

=??=????= ? ? ?????

??, ()

2cos

3n n n a b n N π*=∈,22cos 3

n n b n π

∴=, ()()222

323134232cos 231cos 29cos 233k k k b b b k k k k k k πππππ--????∴++=--+--+ ? ????

?592

k =-,

因此,数列{}n b 的前18项和为()5

91234566921151742

?+++++-?=?-=. 故选:B. 【点睛】

本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k k b b b --++是解答的关键,考查计算能力,属于中等题.

6.D

解析:D 【分析】

利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】

11n n a a n +=++,11n n a a n +∴-=+且11a =,

由累加法可得

()()()()12132111232

n n n n n a a a a a a a a n -+=+-+-++-=+++

+=

()122211

n a n n n n ∴

==-++,2222

2222222311n S n n n ?

?????∴=-+-+

+-=-< ? ? ?

++?

?????

, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.

故选:D. 【点睛】

本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.

7.A

解析:A 【分析】

根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】

{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,

充分性:

1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,

0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,

10n a +<,则1n n S S +<,不合乎题意;

若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.

所以,“*n N ?∈,1n n S S +>”?“{}n a 为递增数列”;

必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.

所以,“*n N ?∈,1n n S S +>”?/“{}n a 为递增数列”.

因此,“*n N ?∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】

本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.

8.A

解析:A 【分析】

由题意,根据累加法,即可求出结果. 【详解】

因为12n n a a n +=+,所以12n n a a n +-=,

因此212a a -=,324a a -=,436a a -=,…,()121n n a a n --=-, 以上各式相加得:()()()21246.1221..212

n n n a a n n n ??-+-??

-=

+++==+--,

又11a =,所以2

1n a n n =-+.

故选:A. 【点睛】

本题主要考查累加法求数列的通项,属于基础题型.

9.D

解析:D 【分析】

根据题意得出111

2

n n n a a a a +==

,从而可知数列{}n a 为等比数列,确定该等比数列的首项和公比,可计算出n S ,然后利用数列{}n S 的单调性可得出n S 的取值范围. 【详解】

取1x =,(

)y n n N

*

=∈,由题意可得()()()111

112

n n n a

f n f f n a a a +=+=?==

, 11

2n n a a +∴

=,所以,数列{}n a 是以12为首项,以12

为公比的等比数列, 11112211212n n n S ??

- ???

∴==--,所以,数列{}n S 为单调递增数列,则11n S S ≤<,即

1

12

n S ≤<. 故选:D.

【点睛】

本题考查等比数列前n 项和范围的求解,解题的关键就是判断出数列{}n a 是等比数列,考查推理能力与计算能力,属于中等题.

10.C

解析:C 【分析】

分别观察各项的符号、绝对值即可得出. 【详解】

数列1,-3,5,-7,9,…的一个通项公式()()112n

n a n =--. 故选C . 【点睛】

本题考查了球数列的通项公式的方法,属于基础题.

11.C

解析:C 【分析】

根据通项公式的概念可以判定AB 正确;不难找到一些规律性不强的数列,找不到通项公式,由此判定C 错误,根据无穷数列的概念可以判定D 正确. 【详解】

数列的通项公式的概念:将数列{} n a 的第n 项用一个具体式子(含有参数n )表示出来,称作该数列的通项公式,

故任意一个定义域为正整数集合的或者是其从1开始的一个子集的函数都可以是数列的通项公式,

它是一个函数关系,即对于任意给定的数列,各项的值是由n 唯一确定的,故AB 正确; 并不是所有的数列中的项都可以用一个通项公式来表示,比如所有的质数从小到大排在一起构成的数列,

至今没有发现统一可行的公式表示,圆周率的各位数字构成的数列也没有一个通项公式可以表达,还有很多规律性不强的数列也找不到通项公式,故C 是错误的; 根据无穷数列的概念,可知D 是正确的. 故选:C. 【点睛】

本题考查数列的通项公式的概念和无穷数列的概念,属基础题,数列的通项公式是一种定义在正整数集上的函数,有穷数列与无穷数列是根据数列的项数来分类的.

12.B

解析:B 【分析】

由递推关系,可求出{}n a 的前5项,从而可得出该数列的周期性,进而求出2019a 即可. 【详解】

由1111

n n n a a a ++-=

+,可得111n

n n a a a ++=-,

由12a =,可得23a =-,312

a =-

,41

3a =,52a =,

由15a a =,可知数列{}n a 是周期数列,周期为4, 所以201931

2

a a ==-. 故选:B.

13.B

解析:B 【分析】 由122n n a a n n +=++转化为11

121n n a a n n +??-=- ?+??

,利用叠加法,求得23n

a n =-,即可求解. 【详解】 由122n n a a n n +=+

+,可得121

12(1)1n n a a n n n n +??-==- ?++??

所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+

11111

111222*********n n n n n n ????????

=-+-+-++-+ ? ? ? ?-----??????

??

122113n n ??

=-+=- ???

所以102143105

a =-=. 故选:B. 【点睛】

数列的通项公式的常见求法:

1、对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;

2、对于递推关系式可转化为

1

()n n

a f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式; 3、对于递推关系式形如1

n n a pa q +=+的数列,可采用构造法求解数列的通项公式.

14.D

解析:D 【分析】

根据观察法,即可得出数列的通项公式.

【详解】

因为数列1111

,,,

, (57911)

--可写成 ()()()()234

2322311111,1,1,12,..24.333

-?

-?-?+?+?+?+-?, 所以其通项公式为(1)(1)23213

n

n

n a n n -=-=

++?. 故选:D.

15.C

解析:C 【分析】

根据题目中已知数据,进行归总结,得到一般性结论,即可求得结果. 【详解】

根据题意,第1行第1列的数为1,此时111(11)

112

a ?-=+=,, 第2行第1列的数为2,此时212(21)

122

a ?-=+=,, 第3行第1列的数为4 ,此时313(31)

142

a ?-=

+=,, 据此分析可得:第64行第1列的数为64164(641)

120172

a ?-=+=,,则6452021a =,, 故选:C.

16.A

解析:A 【分析】

根据条件得出数列{}n b 的周期即可. 【详解】

由题意可知“兔子数列”被4整除后的余数构成一个新数列为:1,1,2,3,1,0,1,1,2,3,1,0,……

则可得到周期为6,所以b 2020=b 4=3, 故选:A

17.C

解析:C 【分析】

根据选项进行逐一验证,可得答案. 【详解】 选项A. ()

1

1n a n n =

-,当1n =时,无意义.所以A 不正确.

选项B. ()1221n a n n =-,当2n =时,()2111

22221126

a =

=≠???-,故B 不正确. 选项C.

11122=-,111162323==-?,1111123434==-?,1111204545==-? 所以11

1

n a n n =

-+满足.故C 正确. 选项D. 11n a n =-,当1n =时, 111

1012

a =-=≠,故D 不正确. 故选:C

18.B

解析:B 【分析】

讨论出当1a 分别取1、2、3、4、6时,数列{}n a 为周期数列,然后说明当19a ≥时,分1a 为正奇数和正偶数两种情况分析出数列{}n a 不是周期数列,即可得解. 【详解】

已知数列{}n a 满足1N a *

∈,1,2

+3,n

n n n n a a a a a +??=???为偶数为奇数

. ①若11a =,则24a =,32a =,41a =,54a =,

,以此类推,可知对任意的

n *∈N ,3n n a a +=,此时,{}n a 为周期数列;

②若12a =,则21a =,34a =,42a =,51a =,

,以此类推,可知对任意的

n *∈N ,3n n a a +=,此时,{}n a 为周期数列;

③若13a =,则26a =,33a =,46a =,

,以此类推,可知对任意的n *∈N ,

2n n a a +=,此时,{}n a 为周期数列;

④若14a =,则22a =,31a =,44a =,52a =,

,以此类推,可知对任意的

n *∈N ,3n n a a +=,此时,{}n a 为周期数列;

⑤若15a =,则28a =,34a =,42a =,51a =,64a =,,以此类推,可知对任意

的2n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列; ⑥若16a =,则23a =,36a =,43a =,

,以此类推,可知对任意的n *∈N ,

2n n a a +=,

此时,{}n a 为周期数列;

⑦若17a =,则210a =,35a =,48a =,54a =,,以此类推,可知对任意的2

n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列;

⑧若18a =,则24a =,32a =,41a =,54a =,,以此类推,可知对任意的2

n ≥且n *∈N ,1n a a <,此时,{}n a 不是周期数列.

下面说明,当19a ≥且1N a *

∈时,数列{}n a 不是周期数列.

(1)当(

34

12,2a ?∈?

且1N a *

∈时,由列举法可知,数列{}n a 不是周期数列; (2)假设当(

()1

12,23,k k a k k N +*?∈≥∈?

且1N a *∈时,数列{}n a 不是周期数列,那么当(

()1

212

,23,k k a k k N ++*

?∈≥∈?

时. 若1a 为正偶数,则(11

22,22

k k a a +?=

∈?,则数列{}n a 从第二项开始不是周期数列,从而可知,数列{}n a 不是周期数列; 若1a 为正奇数,则(

(1

213

2132

3,232,2k k k k a a ++++??=+∈++???且2a 为偶数,

由上可知,数列{}n a 从第二项开始不是周期数列,进而可知数列{}n a 不是周期数列.

综上所述,当19a ≥且1N a *

∈时,数列{}n a 不是周期数列.

因此,若{}n a 为周期数列,则1a 的取值集合为{}1,2,3,4,6. 故选:B. 【点睛】

本题解题的关键是抓住“数列{}n a 为周期数列”进行推导,对于1a 的取值采取列举法以及数学归纳法进行论证,对于这类问题,我们首先应弄清问题的本质,然后根据数列的基本性质以及解决数列问题时常用的方法即可解决.

19.B

解析:B 【分析】

利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=++++

+++,可得

21n n F S +=+,代入2019n =即可求解.

【详解】

由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++

1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=

123211n n n n F F F F F F ---=++++

+++,

所以21n n F S +=+,令2019n =,可得201920211S F =-,

故选:B 【点睛】

关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得

21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.

20.D

解析:D 【分析】

根据数列分子分母的规律求得通项公式. 【详解】

由于数列的分母是奇数列,分子是自然数列,故通项公式为21

n n

a n =-. 故选:D 【点睛】

本小题主要考查根据数列的规律求通项公式,属于基础题.

二、多选题 21.AC 【分析】

由该数列的性质,逐项判断即可得解. 【详解】

对于A ,,,,故A 正确;

对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加

解析:AC 【分析】

由该数列的性质,逐项判断即可得解. 【详解】

对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;

对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,

32121,a a a a a ???=+=,

各式相加得()2022202120202021202020192012182a a a a a a a a a ++???+=+++???++, 所以202220202019201811a a a a a a =++???+++,故D 错误. 故选:AC.

【点睛】

关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.

22.BD 【分析】

利用递推关系可得,再利用数列的单调性即可得出答案. 【详解】 解:∵, ∴时,, 化为:,

由于数列单调递减, 可得:时,取得最大值2. ∴的最大值为3. 故选:BD . 【点睛】 本

解析:BD 【分析】

利用递推关系可得12

11

n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵2

3

n n n S a +=

, ∴2n ≥时,1121

33

n n n n n n n a S S a a --++=-=

-, 化为:112

111

n n a n a n n -+==+--, 由于数列21n ??

?

?-??

单调递减, 可得:2n =时,

2

1

n -取得最大值2. ∴1

n n a a -的最大值为3. 故选:BD . 【点睛】

本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.

23.ABC 【分析】

因为是等差数列,由可得,利用通项转化为和即可判断选项A ;利用前项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质即可判断选项C ;由可得且,即可判断选项D ,进而得出正确选项

解析:ABC 【分析】

因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质

961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,

140a <即可判断选项D ,进而得出正确选项.

【详解】

因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:

1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,

对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()

()

11891018181802

2

a a a a S ++=

=

=,故选项B 正确;

对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;

对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,

所以614a a <,故选项D 不正确, 故选:ABC 【点睛】

关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.

24.BCD 【分析】

利用等差等比数列的定义及性质对选项判断得解. 【详解】

选项A: ,得是等差数列,当时不是等比数列,故错; 选项B: ,,得是等差数列,故对; 选项C: ,,当时也成立,是等比数列

解析:BCD 【分析】

利用等差等比数列的定义及性质对选项判断得解. 【详解】

选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:

2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;

选项C: ()11n

n S =--,112(1)(2)n n n n S S a n --∴-==?-≥,当1n =时也成立,

12(1)n n a -∴=?-是等比数列,故对;

选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*

32()n n S S n N -∈是等差数

列,故对; 故选:BCD 【点睛】

熟练运用等差数列的定义、性质、前n 项和公式是解题关键.

25.ACD 【分析】

利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】

因为,,所以a1=3,an =[1+(n-1)d](n+2n).若d =1,则an =n(n+2n);若d =0,则a2=

解析:ACD 【分析】

利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为

1

112a =+,1(1)2

n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得1

5

d =-. 故选ACD

26.ACD 【分析】

由题可得,,,求出可判断A ;利用二次函数的性质可判断B ;求出可判断C ;令,解出即可判断D. 【详解】

设等差数列的公差为,则,解得, ,,且,

对于A ,,故A 正确; 对于B ,的对称

解析:ACD 【分析】

由题可得16a d =-,0d <,21322

n d d S n n =

-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022

n d d

S n n =->,解出即可判断D. 【详解】

设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,

10a >,0d ∴<,且()21113+

222

n n n d d S na d n n -==-, 对于A ,

81+7670a a d d d d ==-+=<,故A 正确;

对于B ,21322n d d S n n =-的对称轴为13

2

n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误;

对于C ,4131648261822d d S d d d =

?-?=-=-,9138191822

d d S d =?-?=-,故49S S =,故C 正确;

对于D ,令213022

n d d

S n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】

方法点睛:由于等差数列()2111+

222n n n d d S na d n a n -?

?==+- ??

?是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.

27.BC 【分析】

设公差d 不为零,由,解得,然后逐项判断. 【详解】 设公差d 不为零, 因为, 所以, 即, 解得, ,故A 错误; ,故B 正确;

若,解得,,故C 正确;D 错误; 故选:BC

解析:BC

相关主题
相关文档
最新文档