高中数学解析几何基本公式与题型

高中数学解析几何基本公式与题型
高中数学解析几何基本公式与题型

高中数学解析几何基本公式与题型

解析几何中的基本公式

1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=

特别地:x //AB 轴, 则=AB 。 y //AB 轴, 则=AB 。 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++

则:2

2

21B

A C C d +-=

注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++

则P 到l 的距离为:2

2

B

A C

By Ax d +++=

4、 直线与圆锥曲线相交的弦长公式:?

?

?=+=0)y ,x (F b

kx y

消y :02

=++c bx ax ,务必注意.0>?

若l 与曲线交于A ),(),,(2211y x B y x

则:2122))(1(x x k AB -+=

5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P

分有向线段AB 所成的比为λ,

则???

????

λ+λ+=λ+λ+=1121

21y y y x x x ,特别地:λ=1时,P

AB 中点且???

????+=+=22

2121y y y x x x

变形后:y

y y y x x x x --=λ--=

λ21

21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα

适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2

11

21tan k k k k +-=

α

若l 1与l 2的夹角为θ,则=

θtan 21211k k k k +-,]2

,0(π

∈θ

注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角=

2

π

。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

7、 (1)倾斜角α,),0(π∈α;

(2)]0[,π∈θθ→

→,,夹角b a ;

(3)直线l 与平面]2

0[π∈ββα,,的夹角;

(4)l 1与l 2的夹角为θ,∈θ]2

0[π,,其中l 1//l 2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,,

8、 直线的倾斜角α与斜率k 的关系

a) 每一条直线都有倾斜角α,但不一定有斜率。 b) 若直线存在斜率k ,而倾斜角为α,则k=tan α。 9、 直线l 1与直线l 2的的平行与垂直

(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2? k 1=k 2

②l 1⊥l 2? k 1k 2=-1 (2)若0:,0:22221111=++=++C y B x A l C y B x A l

若A 1、A 2、B 1、B 2都不为零

① l 1//l 2?

2

1

2121C C B B A A ≠

=; ② l 1⊥l 2? A 1A 2+B 1B 2=0; ③ l 1与l 2相交?

2

1

21B B A A ≠

④ l 1与l 2重合?

2

1

2121C C B B A A =

=; 注意:若A 2或B 2中含有字母,应注意讨论字母=0与≠0的情况。

10、 直线方程的五种形式

名称 方程 注意点

斜截式: y=kx+b 应分①斜率不存在 ②斜率存在

点斜式: )( x x k y y -=- (1)斜率不存在: x x =

(2)斜率存在时为)( x x k y y -=- 两点式: 1

21

121x x x x y y y y --=--

截距式:

1=+b

y

a x 其中l 交x 轴于)0,(a ,

交y 轴于),0(b 当直线l 在坐标轴上,截距相等时应分:

(1)截距=0 设y=kx (2)截距=0≠a 设1=+a

y

a x 即x+y=a

一般式: 0=++C By Ax (其中A 、B 不同时为零) 10、确定圆需三个独立的条件

圆的方程 (1)标准方程: 2

2

2

)()(r b y a x =-+-, 半径圆心,----r b a ),(。 (2)一般方程:02

2

=++++F Ey Dx y x ,()042

2

>-+F E D

,)2

,2(圆心----E

D 2

422F

E D r -+=

11、直线0=++C By Ax 与圆2

2

2

)()(r b y a x =-+-的位置关系有三种

若2

2

B

A C Bb Aa d +++=

,0相离r d

0=???=相切r d 0>???<相交r d 12、两圆位置关系的判定方法

设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21

条公切线外离421??+>r r d 条公切线外切321??+=r r d

条公切线相交22121??+<<-r r d r r 条公切线内切121??-=r r d 无公切线内含??-<<210r r d

外离 外切

相交 内切 内含

13、圆锥曲线定义、标准方程及性质 (一)椭圆

定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。

定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0

标准方程:122

2

2=+b y a x )0(>>b a

定义域:}{a x a x ≤≤-值域:

}{b y b x ≤≤-

长轴长=a 2,短轴长

=2b

焦距:2c

准线方程:c

a x 2

±=

焦半径:

)(21c a x e PF +=,)(2

2x c

a e PF -=,212PF a PF -=,

c

a PF c a +≤≤-1

等(注意涉及焦半径①用点P 坐标表示,②第一定义。)

注意:(1)图中线段的几何特征:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A +=

=等等。顶点

与准线距离、焦点与准线距离分别与c b a ,,有关。

(2)21F PF ?中经常利用余弦定理....、三角形面积公式.......

将有关线段1

PF 、2PF 、2c ,

有关角21PF F ∠结合起来,建立1

PF +2PF 、1

PF ?2PF 等关系

(3)椭圆上的点有时常用到三角换元:?

??θ=θ

=sin cos b y a x ;

(4)注意题目中椭圆的焦点在x 轴上还是在y 轴上,请补充当焦点在y 轴上时,其

相应的性质。

二、双曲线

(一)定义:Ⅰ若F 1,F 2是两定点,21212F F a PF PF <=-(a 为常数),则动点P 的轨迹是双曲线。

Ⅱ若动点P 到定点F 与定直线l 的距离之比是常数e (e>1),则动点P 的轨迹是双曲线。

(二)图形:

(三)性质

方程:12222=-b y a x )0,0(>>b a 122

22=-b

x a y )0,0(>>b a

定义域:}{a x a x x ≤≥或; 值域为R ; 实轴长=a 2,虚轴长=2b

焦距:2c

准线方程:c

a x 2

±=

焦半径:

)(21c a x e PF +=,)(2

2x c

a e PF -=,a PF PF 221=-;

注意:(1)图中线段的几何特征:=1AF a c BF -=2,=2AF c a BF +=1

顶点到准线的距离:c a a c a a 22+-或;焦点到准线的距离:c

a c c a c 2

2+

-或 两准线间的距离=c

a 2

2

(2)若双曲线方程为12222=-b y a x ?渐近线方程:?=-02222b y a x x a b

y ±=

若渐近线方程为x a b y ±=?0=±b y

a x ?双曲线可设为λ=-22

22

b y a x

若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22

22b

y a x

(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)

(3)特别地当?=时b a 离心率2=

e ?两渐近线互相垂直,分别为y=x ±,

此时双曲线为等轴双曲线,可设为λ=-2

2

y x ;

(4)注意21F PF ?中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将有关

线段1

PF 、2PF 、2

1F F 和角结合起来。

(5)完成当焦点在y 轴上时,标准方程及相应性质。

二、抛物线

(一)定义:到定点F 与定直线l 的距离相等的点的轨迹是抛物线。

即:到定点F 的距离与到定直线l 的距离之比是常数e (e=1)。

(二)图形:

(三)性质:方程:焦参数-->=p p px y ),0(,22;

焦点: )0,2

(

p

,通径p AB 2=; 准线: 2

p

x -=;

焦半径:,2p x CF += 过焦点弦长p x x p

x p x CD ++=+++=21212

2

注意:(1)几何特征:焦点到顶点的距离=2

p

;焦点到准线的距离=p ;通径长=p 2

顶点是焦点向准线所作垂线段中点。

(2)抛物线px y 22

=上的动点可设为

P ),2(2

y p

y

或)2,2(2pt pt P P px y y x 2),(2=其中

解析几何基本题型

【考点透视】 一.直线和圆的方程

1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.

2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系. 3.了解二元一次不等式表示平面区域. 4.了解线性规划的意义,并会简单的应用. 5.了解解析几何的基本思想,了解坐标法.

6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. 二.圆锥曲线方程

1.掌握椭圆的定义、标准方程和椭圆的简单几何性质. 2.掌握双曲线的定义、标准方程和双曲线的简单几何性质. 3.掌握抛物线的定义、标准方程和抛物线的简单几何性质. 4.了解圆锥曲线的初步应用. 【例题解析】 考点1.求参数的值

求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之.

例1.若抛物线22y px =的焦点与椭圆22

162

x y +=的右焦点重合,则p 的值为( )

A .2-

B .2

C .4-

D .4

考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质.

解答过程:椭圆22

162

x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,

故选D.

考点2. 求线段的长

求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之.

例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于

A.3

B.4

C.32

D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用.

解:设直线AB 的方程为y x b =+,由22123

301y x x x b x x y x b

?=-+?++-=?+=-?

=+?,

进而可求出AB 的中点11(,)22M b --

+,又由11

(,)22

M b --+在直线0x y +=上可求出1b =,

∴220x x +-=,由弦长公式可求出2

21114(2)32AB =+-?-=.

故选C

例3.如图,把椭圆2

2

12516

x y +=的长轴

AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部

分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆2

2

12516

x y +=的方程知225, 5.a a =∴=

∴1234567

7277535.2

a PF P F P F P F P F P F P F a ?++++++==?=?= 故填35.

考点3. 曲线的离心率

曲线的离心率是高考题中的热点题型之一,其解法为充分利用: (1)椭圆的离心率e =a

c ∈(0,1) (e 越大则椭圆越扁);

(2) 双曲线的离心率e =a

c ∈(1, +∞) (e 越大则双曲线开口越大).

结合有关知识来解题.

例4.已知双曲线的离心率为2,焦点是(4,0)-,(4,0),则双曲线方程为

A .221412x y -=

B .221124x y -=

C .221106x y -=

D .22

1610

x y -=

考查意图:本题主要考查双曲线的标准方程和双曲线的离心率以及焦点等基本概念. 解答过程: 2,4,c e c a

=== 所以22,12.a b ∴==故选(A).

小结: 对双曲线的标准方程和双曲线的离心率以及焦点等基本概念,要注意认真掌握.尤其对双曲线的焦点位置和双曲线标准方程中分母大小关系要认真体会.

例5.已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( )

A. 2

B.3

32 C. 2 D.4

考查意图: 本题主要考查双曲线的性质和离心率e =a c ∈(1, +∞) 的有关知识的应用能力.

解答过程:依题意可知 3293,322=+=+==b a c a . 考点4.求最大(小)值

求最大(小)值, 是高考题中的热点题型之一.其解法为转化为二次函数问题或利用不等式求最大(小)值:特别是,一些题目还需要应用曲线的几何意义来解答.

例6.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 .

考查意图: 本题主要考查直线与抛物线的位置关系,以及利用不等式求最大(小)值的方法. 解:设过点P (4,0)的直线为()()224,8164,y k x k x x x =-∴-+=

()()12222222

2

122

284160,

8414416232.k x k x k k y y x x k k ∴-++=+??∴+=+=?=+≥ ??

?

故填32.

考点5 圆锥曲线的基本概念和性质

圆锥曲线第一定义中的限制条件、圆锥曲线第二定义的统一性,都是考试的重点内容,要能够熟练运用;常用的解题技巧要熟记于心. 例7.

在平面直角坐标系xOy 中,已知圆心在第二象限、半径为22的圆C 与直线y =x 相切于坐标

原点O .椭圆9

2

2

2

y a

x +

=1与圆C 的一个交点到椭圆两焦点的距离之和为10.

(1)求圆C 的方程;

(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.

[考查目的]本小题主要考查直线、椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力. [解答过程] (1) 设圆C 的圆心为 (m, n)

则,222,

m n n =-???

?=?? 解得2,2.

m n =-??

=? 所求的圆的方程为 22(2)(2)8x y ++-=

(2) 由已知可得 210a = , 5a =.

椭圆的方程为 22

1259

x y += , 右焦点为 F( 4, 0) ;

假设存在Q 点()

222cos ,222sin θθ-++使QF OF =,

(

)(

)

22

222cos 4222sin 4θθ

-+-++=.

整理得 s i n 3c o s 22θθ=+, 代入 22sin cos 1θθ+=.

得:210cos 122cos 70θθ++= , 122812222cos 110

10

θ-±-±==<-.

因此不存在符合题意的Q 点. 例8.

如图,曲线G 的方程为)0(22≥=y x y .以原点为圆心,以)0(>t t 为半径的圆分别与曲线G 和y 轴的 正半轴相交于 A 与点B . 直线AB 与 x 轴相交于点C .

(Ⅰ)求点 A 的横坐标 a 与点 C 的横坐标c 的关系式;

(Ⅱ)设曲线G 上点D 的横坐标为2+a ,求证:直线CD 的斜率为定值. [考查目的]本小题综合考查平面解析几何知识,主要涉及平面直角坐标素中的 两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系 ,考查运算能力与思维能力,综合分析问题的能力. [解答过程](I )由题意知,).2,(a a A

因为.2,||2

2

t a a t OA =+=所以

由于.2,02a a t t +=>故有 (1)

由点B (0,t ),C (c ,0)的坐标知,直线BC 的方程为.1=+t

y

c x 又因点A 在直线BC 上,故有,12=+t

a c

a

将(1)代入上式,得,1)

2(2=++

a a a c

a 解得 )2(22+++=a a c .

(II )因为))2(22(++a a D ,所以直线CD 的斜率为

1)

2(2)

2(2))2(22(2)2(22)2(2-=+-+=+++-++=-++=

a a a

a a

a c a a k CD ,

所以直线CD 的斜率为定值.

例9.已知椭圆22

22x y E :

1(a b 0)a b

+=>>,AB 是它的一条弦,M(2,1)是弦AB 的中点,若以点M(2,1)为焦点,椭圆E 的右准线为相应准线的双曲线C 和直线AB 交于点N(4,1)-,若椭圆离心率e 和双曲线离心率1e 之间满足1ee 1=,求: (1)椭圆E 的离心率;(2)双曲线C 的方程.

解答过程:(1)设A 、B 坐标分别为1122A(x ,y ),B(x ,y ), 则2

2

1122

x y 1a b +=,22

2222x y 1a b

+=,二式相减得: 2

1212

AB

2

1212y y (x x )b k x x (y y )a

-+==-=-+2MN 22b 1(1)k 1a 24---===--, 所以2222a 2b 2(a c )==-,22a 2c =, 则c 2e a

2

==;

(2)椭圆E 的右准线为22a (2c)x 2c c c

===,双曲线的离心率11

e 2e

==

设P(x,y)是双曲线上任一点,则:

22

(x 2)(y 1)|PM |2|x 2c ||x 2c |

-+-==--,

两端平方且将N(4,1)-代入得:c 1=或c 3=,

当c 1=时,双曲线方程为:22(x 2)(y 1)0---=,不合题意,舍去; 当c 3=时,双曲线方程为:22(x 10)(y 1)32---=,即为所求. 小结:(1)“点差法”是处理弦的中点与斜率问题的常用方法;

(2)求解圆锥曲线时,若有焦点、准线,则通常会用到第二定义. 考点6 利用向量求曲线方程和解决相关问题

利用向量给出题设条件,可以将复杂的题设简单化,便于理解和计算. 典型例题:

例10.双曲线C 与椭圆22

184

x y +=有相同的焦点,直线y =x 3为C 的一条渐近线.

(1)求双曲线C 的方程;

(2)过点P (0,4)的直线l ,交双曲线C 于A,B 两点,交x 轴于Q 点(Q 点与C 的顶点不重合).当12PQ QA QB λλ==

,且3

821-=+λλ时,求Q 点的坐标.

考查意图: 本题考查利用直线、椭圆、双曲线和平面向量等知识综合解题的能力,以及运用数形结合思想,方程和转化的思想解决问题的能力.

解答过程:(Ⅰ)设双曲线方程为22

22

1x y a b

-=,

由椭圆22

184

x y +=,求得两焦点为(2,0),(2,0)-,

∴对于双曲线:2C c =,又3y x =为双曲线C 的一条渐近线 ∴3b a

=

解得 22

1,3a b ==,

∴双曲线C 的方程为2

213

y x -=

(Ⅱ)解法一:

由题意知直线l 的斜率k 存在且不等于零.

设l 的方程:114,(,)y kx A x y =+,22(,)B x y ,则4(,0)Q k

-.

1PQ QA λ=

,11144(,4)(,)x y k

k

λ∴--=+.

1111111

14444()44x k k x k k y y λλλλ?

=--??-=+??

∴?????-==-???

11(,)A x y 在双曲线C 上, ∴212

11

11616()10k

λλλ+--=. ∴222211161632160.3

k k λλλ++--=∴2221116(16)32160.3

k k λλ-++-=

同理有:2222216(16)32160.3

k k λλ-++-=

若2160,k -=则直线l 过顶点,不合题意.2160,k ∴-≠

12,λλ∴是二次方程22216(16)32160.3k x x k -++-=的两根.

122328163

k λλ∴+=

=-

-,24k ∴=,此时0,2k ?>∴=±.

∴所求Q 的坐标为(2,0)±.

解法二:由题意知直线l 的斜率k 存在且不等于零 设l 的方程,11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k

-.

1PQ QA λ=

, Q ∴分PA 的比为1λ.

由定比分点坐标公式得

111

11

11111144(1)14401x x k k y y λλλλλλλ??

-==-+??+??→??

+??=-

=??+??

下同解法一

解法三:由题意知直线l 的斜率k 存在且不等于零 设l 的方程:11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k

-.

12PQ QA QB λλ==

, 111222444(,4)(,)(,)x y x y k k k

λλ∴--=+=+.

11224y y λλ∴-==, 114y λ∴=-,22

4y λ=-, 又1283

λλ+=-, 12

1123

y y ∴+=,即12123()2y y y y +=.

将4y kx =+代入2

213

y x -=得222(3)244830k y y k --+-=.

230k -≠ ,否则l 与渐近线平行.

212122224483,33k y y y y k k -∴+==

--.

222

244833233k k k -∴?=?

--.2k ∴=±

(2,0)Q ∴±.

解法四:由题意知直线l 得斜率k 存在且不等于零,设l 的方程:4y kx =+,1122(,),(,)A x y B x y ,则4(,0)Q k

-

1PQ QA λ= ,11144

(,4)(,)x y k k

λ∴--=+.

∴1114

444k kx x k

λ-

==-++.同理

124

4

kx λ=-

+.

1212448

443

kx kx λλ+=-

-=-++.

2121225()80k x x k x x +++=.

(*)

又 22413y kx y x =+??

?-=??

消去y 得2

2

(3)8190k x kx ---=.

当230k -=时,则直线l 与双曲线得渐近线平行,不合题意,230k -≠.

由韦达定理有: 12212283193k x x k x x k ?

+=??-?

?=-?-?

代入(*)式得

24,2k k ==±.

∴所求Q 点的坐标为(2,0)±.

例11.

设动点P 到点A (-l ,0)和B (1,0)的距离分别为d 1和d 2, ∠APB =2θ,且存在常数λ(0<λ<1=,使得d 1d 2 sin 2θ=λ. (1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;

(2)过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围, 使OM ·ON =0,其中点O 为坐标原点.

[考查目的]本小题主要考查直线、双曲线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.

[解答过程]解法1:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-, 2212124()4sin d d d d θ=-+,即2121244sin 212d d d d θλ-=-=-<(常数), 点P 的轨迹C 是以A B ,为焦点,实轴长221a λ=-的双曲线.

方程为:22

11x y λλ

-=-.

(2)设11()M x y ,,22()N x y ,

①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上. 即2111511012λλλλ

λ-±-=?+-=?=-,因为01λ<<,所以512

λ-=.

②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.

由22

11(1)x y y k x λλ

?-=?

-??=-?

得:2222(1)2(1)(1)()0k x k x k λλλλλ??--+---+=??, 由题意知:2

(1)0k λλ??--≠??

,所以21222(1)(1)k x x k λλλ--+=--,2122

(1)()(1)k x x k λλλλ--+=--. 于是:22

21212

2

(1)(1)(1)k y y k x x k

λλλ=--=

--.

因为0=?ON OM ,且M N ,在双曲线右支上,所以

2121222

122212(1)0(1)51210

112310

01x x y y k x x k x x λλλλλλλλλλλλλλλ-?+=?-?=?>-???+-+>???<<+--??????>+->>???-?

. 由①②知,5122

3

λ-<≤.

解法2:(1)同解法1

(2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB λλλλλ=-=?+-=-, 因为01λ<<,所以512

λ-=;

②当12x x ≠

时,002

2222

12111

11

1y x k y x y x MN ?-=????????=--=--λλλ

λλ

λ. 又001

MN BE y k k x ==-.所以22

000(1)y x x λλλ-=-;

由2MON π=∠得2

22002MN x y ??+= ???,由第二定义得2

212()222MN e x x a ??+-??= ????

??? 2

2000111(1)211x x x λλλ

λ??=--=+-- ?--??. 所以222000(1)2(1)(1)y x x λλλλ-=--+-.

于是由22000222000(1),(1)2(1)(1),

y x x y x x λλλλλλλ?-=-??-=--+-??得2

0(1).23x λλ-=-

因为01x >,所以2

(1)123λλ

->-,又01λ<<,

解得:5122

3

λ-<<.由①②知5122

3

λ-<≤.

考点7 利用向量处理圆锥曲线中的最值问题

利用向量的数量积构造出等式或函数关系,再利用函数求最值的方法求最值,要比只利用解析几何知识建立等量关系容易.

例12.设椭圆E 的中心在坐标原点O ,焦点在x 轴上,离心率为33

,过点C(1,0)-的直线

交椭圆E 于A 、B 两点,且CA 2BC =

,求当AOB ?的面积达到最大值时直线和椭圆E 的方

C B

A o

y x

解答过程:因为椭圆的离心率为33

,故可设椭圆方程为222x 3y t(t 0)+=>,直线方程为

my x 1=+,

由222x 3y t my x 1

?+=?=+?得:22(2m 3)y 4my 2t 0+-+-=,设1122A(x ,y ),B(x ,y ), 则122

4m y y 2m 3

+=+…………① 又CA 2BC =

,故1122(x 1,y )2(1x ,y )+=---,即12y 2y =-…………② 由①②得:128m y 2m 3

=

+,2

24m y 2m 3-=+, 则AOB 122

1m

S |y y |6|

|2

2m 3

?=-=+=6632

2|m ||m |

+

, 当23m 2

=,即6m 2

=±时,AOB ?面积取最大值,

此时2122

222t 32m y y 2m 3(2m 3)-==-

++,即t 10=,

所以,直线方程为6x y 102

±+=,椭圆方程为222x 3y 10+=.

小结:利用向量的数量积构造等量关系要比利用圆锥曲线的性质构造等量关系容易. 例13.已知PA (x 5,y)=+

,PB (x 5,y)=- ,且|PA ||PB |6+= , 求|2x 3y 12|--的最大

值和最小值.

解答过程:设P(x,y),A(5,0)-,B(5,0),

因为|PA ||PB |6+=

,且|AB |256=<,

所以,动点P 的轨迹是以A 、B 为焦点,长轴长为6的椭圆, 椭圆方程为2

2

x y 19

4

+=,令x 3cos ,y 2sin =θ=θ,

则|2x 3y 12|--=|62cos()12|4

πθ+-,

当cos()14

πθ+=-时,|2x 3y 12|--取最大值1262+,

当cos()14

πθ+=时,|2x 3y 12|--取最小值1262-.

小结:利用椭圆的参数方程,可以将复杂的代数运算化为简单的三角运算. 考点8 利用向量处理圆锥曲线中的取值范围问题

解析几何中求变量的范围,一般情况下最终都转化成方程是否有解或转化成求函数的值域

例14. 已知椭圆2

212

x y +=的左焦点为F ,O 为坐标原点.

(I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程; (II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,

线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围. 考查意图:本小题主要考查直线、圆、椭圆和不等式等基本知识,考 查平面解析几何的基本方法,考查运算能力和综合解题能力. 解答过程:(I )222,1,1,(1,0),: 2.a b c F l x ==∴=-=-

圆过点O 、F ,

∴圆心M 在直线12

x =-上.

设1(,),2

M t -则圆半径13()(2).22

r =---=

由,OM r =得2213(),2

2

t -+=

解得 2.t =±

∴所求圆的方程为2219

()(2).24

x y ++±

=

(II )设直线AB 的方程为(1)(0),y k x k =+≠ 代入2

21,2

x y +=整理得2222(12)4220.k x k x k +++-=

直线AB 过椭圆的左焦点F ,∴方程有两个不等实根.

记1122(,),(,),A x y B x y AB 中点00(,),N x y

则2

122

4,21

k x x k +=-+ AB ∴的垂直平分线NG 的方程为001().y y x x k

-=--

令0,y =得

222002222211

.2121212421

0,0,2

G G k k k x x ky k k k k k x =+=-+=-=-+++++≠∴-

<<

∴点G 横坐标的取值范围为1(,0).2

-

例15.已知双曲线C :2222x y 1(a 0,b 0)a b

-=>>,B 是右顶点,F 是右焦点,点A 在x 轴正半x

y

l

G

A

B

F O

F

E P D

B

A O

y

x

轴上,且满足|OA |,|OB |,|OF |

成等比数列,过F 作双曲线C 在第一、三象限的渐近线的垂线l ,垂足为P ,

(1)求证:PA OP PA FP ?=?

(2)若l 与双曲线C 的左、右两支分别相交于点D,E ,求双曲线C 的离心率e 的取值范围. 解答过程:(1)因|OA |,|OB |,|OF | 成等比数列,故22

|OB |a |OA |c |OF |

==

,即2a A(,0)c ,

直线l :a y (x c)b

=--,

由2a y (x c)

a a

b b P(,)b

c c y x a ?=--?

???

?=??

, 故:22ab a ab b ab PA (0,),OP (,),FP (,)c c c c c

=-==- ,

则:222a b PA OP PA FP c

?=-=?

,即PA OP PA FP ?=? ;

(或PA (OP FP)PA (PF PO)PA OF 0?-=?-=?=

,即PA OP PA FP ?=? )

(2)由44422

222222222222

a y (x c)a a a c (

b )x 2cx (a b )0b

b b b b x a y a b ?

=--??-+-+=??-=?

, 由42

222124

22

a c (a

b )

b x x 0a b b -+=<-得:4422222b a b

c a a e 2e 2.>?=->?>?> (或由DF DO k k >?a b b a

->-?22222

b c a a e 2e 2=->?>?>)

小结:向量的数量积在构造等量关系中的作用举足轻重,而要运用数量积,必须先恰当地求出各个点的坐标.

例16.已知a (x,0)= ,b (1,y)= ,(a 3b)(a 3b)+⊥-

(1)求点P(x,y)的轨迹C 的方程;

(2)若直线y kx m(m 0)=+≠与曲线C 交于A 、B 两点,D(0,1)-,且|AD ||BD |=, 试求m 的取值范围.

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

高中数学解析几何中的基本公式

解析几何中的基本公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 特别地:x //AB 轴, 则=AB 。 y //AB 轴, 则=AB 。 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 221B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 4、 直线与圆锥曲线相交的弦长公式:?? ?=+=0 )y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比 为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=222 121y y y x x x 变形后:y y y y x x x x --= λ--= λ21 21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 21211k k k k +-,]2 ,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

高中数学解析几何专题之抛物线(汇总解析版)

圆锥曲线第3讲抛物线 【知识要点】 一、抛物线的定义 平面内到某一定点F的距离与它到定直线l(l F?)的距离相等的点的轨迹叫抛物线,这个定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。 注1:在抛物线的定义中,必须强调:定点F不在定直线l上,否则点的轨迹就不是一个抛物线,而是过点F且垂直于直线l的一条直线。 注2:抛物线的定义也可以说成是:平面内到某一定点F的距离与它到定直线l(l F?)的距离之比等于1的点的轨迹叫抛物线。 注3:抛物线的定义指明了抛物线上的点到其焦点的距离与到其准线的距离相等这样一个事实。以后在解决一些相关问题时,这两者可以相互转化,这是利用抛物线的定义解题的关键。 二、抛物线的标准方程 1.抛物线的标准方程 抛物线的标准方程有以下四种: (1) px y2 2= ( > p),其焦点为 )0, 2 ( p F ,准线为2 p x- = ; (2) px y2 2- =(0 > p),其焦点为 )0, 2 ( p F- ,准线为2 p x= ; (3) py x2 2= ( > p),其焦点为 ) 2 ,0( p F ,准线为2 p y- = ; (4) py x2 2- = ( > p),其焦点为 ) 2 ,0( p F- ,准线为2 p y= . 2.抛物线的标准方程的特点

抛物线的标准方程px y 22±=(0>p )或py x 22±=(0>p )的特点在于:等号的一端 是某个变元的完全平方,等号的另一端是另一个变元的一次项,抛物线方程的这个形式与其位置特征相对应:当抛物线的对称轴为x 轴时,抛物线方程中的一次项就是x 的一次项,且一次项x 的符号指明了抛物线的开口方向;当抛物线的对称轴为y 轴时,抛物线方程中的一次项就是y 的一次项,且一次项y 的符号指明了抛物线的开口方向. 三、抛物线的性质 以标准方程 px y 22 =(0>p )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:0≥x ,R y ∈; (2)顶点:坐标原点)0,0(O ; (3)对称性:关于x 轴轴对称,对称轴方程为0=y ; (4)开口方向:向右; (5)焦参数:p ; (6)焦点: )0,2(p F ; (7)准线: 2p x - =; (8)焦准距:p ; (9)离心率:1=e ; (10)焦半径:若 ) ,(00y x P 为抛物线 px y 22=(0>p )上一点,则由抛物线的定义,有20p x PF + =; (11)通径长:p 2. 注1:抛物线的焦准距指的是抛物线的焦点到其相应准线的距离。以抛物线 px y 22=

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

高中数学平面解析几何的知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

高考解析几何中的基本公式(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 解析几何中的基本公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 特别地:x //AB 轴, 则=AB 。 y //AB 轴, 则=AB 。 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 4、 直线与圆锥曲线相交的弦长公式:?? ?=+=0 )y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为 λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=2221 21y y y x x x

变形后:y y y y x x x x --=λ--= λ21 21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 2 1211k k k k +-,]2,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

解析几何中的基本公式

解析几何中的基本公式 解析几何学(analytic geometry )是借助坐标系,用代数方法研究几何对象之间的关系和性质的一门几何学分支,亦叫坐标几何。由法国数学家笛卡儿和费马等人创建,其思想来源可上溯到公元前两千年。 两点间距离:若)y ,x (B ),y ,x (A 2211,则2 12212)()(y y x x AB -+-= 平行线间距离:若0C By Ax :l , 0C By Ax :l 2211=++=++ 则:2221B A C C d +-= 注意点:x ,y 对应项系数应相等。 点到直线的距离:0C By Ax :l ),y ,x (P =++οο 则P 到l 的距离为: 2 2B A C By Ax d +++= οο 直线与圆锥曲线相交的弦长公式:? ? ?=+=0)y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则: 2 122))(1(x x k AB -+= 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=222121y y y x x x 变形后: y y y y x x x x --=λ--= λ21 21或

若直线l1的斜率为k1,直线l2的斜率为k2,则l1到l2的角为),0(,π∈αα 适用范围:k1,k2都存在且k1k2≠-1 , 21121tan k k k k +-= α 若l1与l2的夹角为θ,则=θtan 2 12 11k k k k +-,]2,0(π∈θ 注意:(1)l1到l2的角,指从l1按逆时针方向旋转到l2所成的角,范围),0(π l1到l2的夹角:指 l1、l2相交所成的锐角或直角。 (2)l1⊥l2时,夹角、到角=2π 。 (3)当l1与l2中有一条不存在斜率时,画图,求到角或夹角。 (1)倾斜角α,),0(π∈α; (2)]0[,π∈θθ→ →,,夹角b a ; (3)直线l 与平面 ] 20[π ∈ββα,,的夹角; (4)l1与l2的夹角为θ,∈ θ] 20[π ,,其中l1//l2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l1到l2的角)0(π∈θθ,, 直线的倾斜角α与斜率k 的关系 每一条直线都有倾斜角α,但不一定有斜率。 若直线存在斜率k ,而倾斜角为α,则k=tan α。 直线l1与直线l2的的平行与垂直

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

解析几何公式大全

平行线间距离:若l i : Ax By C i 0, 12 : Ax By C20 则:d C i C2I J A2B2 注意点:x, y对应项系数应相等。 点到直线的距离:P(x , y ),I:Ax By C 0 则P到1的距离为: |Ax d By C 解析几何中的基本公式 .A2B2 直线与圆锥曲线相交的弦长公式:y kx b F(x,y) 0 2 消y:ax bx c 0,务必注意0. 若I与曲线交于A(x1, y1), B(x2, y2) 则:AB v'(1 k2)(X2 X i)2 若A(x i, y i), B(X2, y2),P(x,y)。P在直线AB上,且P分有向线段AB所成的比为 i y i y2 i ,特别 地: x =1时,P为AB中点且 y x-i x2 2 y i y2 2 变形后:—i或」 X2 x y2 y 若直线l i的斜率为k i,直线|2的斜率为k2,则l i到|2的角为, (0, ) 适用范围:k i,k2都存在且k i k2 —i , tan k2 k i i k i k2

I i 到I 2的夹角:指 11、 12相交所成的锐角或直角。 (2) l 1 I 2时,夹角、到角=—。 2 (3) 当11与I 2中有一条不存在斜率时,画图,求到角或夹角。 直线的倾斜角 与斜率k 的关系 每一条直线都有倾斜角 ,但不一定有斜率。 若直线存在斜率k ,而倾斜角为 ,则k=tan 。 直线I 1与直线I 2的的平行与垂直 (1)若I 1, I 2均存在斜率且不重合:①I 1//I 2 k 1=k 2 ② I 1 I 2 k 1k 2=— 1 (2)若 I 1 : A 1x B 1 y C 1 0, I 2 : A 2X B 2y C 2 若A 1、A 2、B 1、B 2都不为零 I 1//I 2 △邑 C !; A 2 B 2 C 2 若i i 与12的夹角为,则tan 注意:(1 ) I i 到12的角,指从 k i k 2 1 kk 11按逆时针方向旋转到 I 2所成的 角, (0,) (1) 倾斜角 , (0,); (2) a, b 夹角, [0, ]; (3) 直线I 与平面 的夹角 ,[0,,] (4) I 1与I 2的夹角为 [0,—],其 中 2 (5) 二面角, (0,]; (6) I 1到I 2的角, (0, ) I 1//I 2时夹角 =0; I 1 I 2 A 1A 2+B 1B 2=0;

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

高中数学椭圆常考题目解题方法及练习 2018高三专题复习-解析几何专题(2) 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越

解析几何公式大全

解析几何中的基本公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 4、 直线与圆锥曲线相交的弦长公式:? ? ?=+=0)y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=2221 21y y y x x x 变形后:y y y y x x x x --=λ--= λ21 21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 2 1211k k k k +-,]2,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。

高中数学解析几何题型

解析几何题型 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22 162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =, 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123 301y x x x b x x y x b ?=-+?++-=?+=-? =+?,进而可求出AB 的中点11(,)22M b -- +,又由11 (,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出2 211 14(2)32AB =+-?-=. 例3.如图,把椭圆22 12516 x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆22 12516 x y +=的方程知225, 5.a a =∴= ∴1234567 7277535.2 a PF P F P F P F P F P F P F a ?++++++==?=?= 考点3. 曲线的离心率

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

解析几何公式-大全

解析几何中的基本公式 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 注意点:x ,y 对应项系数应相等。 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 直线与圆锥曲线相交的弦长公式:?? ?=+=0 )y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=222 121y y y x x x 变形后:y y y y x x x x --=λ--= λ21 21或 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α

若l 1与l 2的夹角为θ,则= θtan 2 1211k k k k +-,]2,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。 (1)倾斜角α,),0(π∈α; (2)]0[,π∈θθ→ →,,夹角b a ; (3)直线l 与平面]2 0[π∈ββα,,的夹角; (4)l 1与l 2的夹角为θ,∈θ]2 0[π,,其中l 1//l 2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,, 直线的倾斜角α与斜率k 的关系 每一条直线都有倾斜角α,但不一定有斜率。 若直线存在斜率k ,而倾斜角为α,则k=tan α。 直线l 1与直线l 2的的平行与垂直 (1)若l 1,l 2均存在斜率且不重合:①l 1//l 2? k 1=k 2 ②l 1⊥l 2? k 1k 2=-1 (2)若0:,0:22221111=++=++C y B x A l C y B x A l 若A 1、A 2、B 1、B 2都不为零 l 1//l 2? 2 1 2121C C B B A A ≠ =; l 1⊥l 2? A 1A 2+B 1B 2=0;

高中数学解析几何答题全攻略,2020高考生必看!

高中数学解析几何答题全攻略,2020高考生必看! 解析几何由于形式复杂多样,一直是难于解决的问题,很多同学对于解析几何的把握还差很多,很多同学对此知识点提出了相应的问题。对此清华附中数学老师有针对性的回答了同学们的共性问题。下面是对本次答疑情况的汇总,希望对大家学习数学尤其是解析几何部分有所帮助。 1 考试时间分配 问题1:老师我怎么这么短时间内做几道题通解一类题目呢?解析几何也有不少类型题 老师:理解的基础上去做,不要单纯的套公式,做题一定要保证真的会了,而不是只追求数量。如果感觉自己的水平没有提高,那么问问自己错题有没有好好整理,有没有盖住答案重新做过,再做的时候能不能保证很快的就有思路,之前出过的问题有没有及时得到解决?总之刷题不能埋头死刷,要有总结和反思。如果都做到了,考试还是没有好成绩,那么看看是不是考试时过于紧张,这个时候心态也很重要! 问题2:错题也有很多呀,怎么从错题那里去帮助学习数学呀?都抄几遍和看几遍吗?很多呀!该怎么办呢? 老师:对待错题,不要抄也不要只是看,当做新题重新做一遍,有时候一道题我们直接去看答案,总是发现不了问题,我建议把错题的题目直接汇编在一起,不要有答案,每隔一段时间都重新做一下,如果做题的过程很肯定,没有模糊的地方,这道题才可以过。这个过程比做新题更重要。

问题3:老师我数学只有三四十分马上高考该从哪里开始复习分数会提高呢? 老师:简单的题目模块比如复数、集合、线性规划、程序框图、三角函数与解三角形、简单的等差等比数列以及立体几何等,还有导数和圆锥曲线的第一问,找出前几年的高考题,看看都考了哪些简单模块,一个模块练几十道,绝对会有效果的,别放弃,只要努力一定能看到进步! 问题4:三视图怎么想也想不出来!有什么好的办法呀!老师!救救我 老师:平时见到三视图的题目无论问什么,都是去画他的立体图形,训练自己。如果考试时真的想不出来了,那么看看能不能判断出这个图形是什么,比如正视图和侧视图都只有一个最高顶点,那么基本可以判断这是一个椎体,如果是求体积的题目,直接底面积乘以高除以3就可以了,但是这个方法不是所有题目都适用。还有就是如果正视侧视和俯视都和正方形或者等腰直角三角形有关,那么可以画一个正方体,去找这个立体图形的可能性。 2 解析几何如何把握

高中解析几何知识点

解析几何知识点 一、基本内容 (一)直线的方程 1、直线的方程 确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围. 2、两条直线的位置关系 两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠ 外注意到角公式与夹角公式的区别. (2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断. 3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义. (二)圆的方程 (1)圆的方程 1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若

已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化. 2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标 (,)22D E -- 3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;r =条件时, 能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切. 4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系 ①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式 ③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程 条切线,切线弦方程:xx 0+yy 0=r 2. (三)曲线与方程 (1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,

高中数学平面解析几何初步经典例题(供参考)

直线和圆的方程 一、知识导学 1.两点间的距离公式:不论A(x 1,y 1),B(x 2,y 2)在坐标平面上什么位置,都有d=|AB|=221221)()(y y x x -+-,特别地,与坐标轴平行的线段的长|AB|=|x 2-x 1|或|AB|=|y 2-y 1|. 2.定比分点公式:定比分点公式是解决共线三点A(x 1,y 1),B(x 2,y 2),P(x ,y )之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比.这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以 A 为起点, B 为终点,P 为分点,则定比分点公式是???? ?? ?++=++=λ λλλ11212 1y y y x x x .当P 点为AB 的中点时,λ=1,此时中点坐标公式是??? ???? +=+=222121y y y x x x . 3.直线的倾斜角和斜率的关系 (1)每一条直线都有倾斜角,但不一定有斜率. (2)斜率存在的直线,其斜率k 与倾斜角α之间的关系是k =tan α. 4.确定直线方程需要有两个互相独立的条件。直线方程的形式很多,但必须注意各种 5.两条直线的夹角。当两直线的斜率1k ,2k 都存在且1k ·2k ≠ -1时,tan θ= 2 11 21k k k k +-, 当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的

区别. 6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断. (1)斜率存在且不重合的两条直线l 1∶11b x k y +=, l 2∶22b x k y +=,有以下结论: ①l 1∥l 2?1k =2k ,且b1=b2 ②l 1⊥l 2?1k ·2k = -1 (2)对于直线l 1∶0111=++C y B x A ,l 2 ∶0222=++C y B x A ,当A 1,A 2,B 1, B 2都不为零时,有以下结论: ①l 1∥l 2? 21A A =21B B ≠2 1C C ②l 1⊥l 2?A 1A 2+B 1B 2 = 0 ③l 1与l 2相交? 21A A ≠21B B ④l 1与l 2重合? 21A A =21B B =2 1 C C 7.点到直线的距离公式. (1)已知一点P (00,y x )及一条直线l :0=++C By Ax ,则点P 到直线l 的距离 d = 2 2 00| |B A C By Ax +++; (2)两平行直线l 1: 01=++C By Ax , l 2: 02=++C By Ax 之间的距离 d= 2 2 21||B A C C +-. 8.确定圆方程需要有三个互相独立的条件。圆的方程有两种形式,要知道两种形式之间的相互转化及相互联系 (1)圆的标准方程:222)()(r b y a x =-+-,其中(a ,b )是圆心坐标,r 是圆的半径; (2)圆的一般方程:022=++++F Ey Dx y x (F E D 42 2-+>0),圆心坐标 为(-2D ,-2 E ),半径为r =2422 F E D -+.

相关文档
最新文档