第七章 lAB VIEW信号分析与处理1

第七章 lAB VIEW信号分析与处理1
第七章 lAB VIEW信号分析与处理1

第六章信号处理与分析

6.1概述

数字信号在我们周围无所不在。因为数字信号具有高保真、低噪声和便于信号处理的优点,所以得到了广泛的应用,例如电话公司使用数字信号传输语音,广播、电视和高保真音响系统也都在逐渐数字化。太空中的卫星将测得数据以数字信号的形式发送到地面接收站。对遥远星球和外部空间拍摄的照片也是采用数字方法处理,去除干扰,获得有用的信息。经济数据、人口普查结果、股票市场价格都可以采用数字信号的形式获得。因为数字信号处理具有这么多优点,在用计算机对模拟信号进行处理之前也常把它们先转换成数字信号。本章将介绍数字信号处理的基本知识,并介绍由上百个数字信号处理和分析的VI构成的LabVIEW分析软件库。

目前,对于实时分析系统,高速浮点运算和数字信号处理已经变得越来越重要。这些系统被广泛应用到生物医学数据处理、语音识别、数字音频和图像处理等各种领域。数据分析的重要性在于,无法从刚刚采集的数据立刻得到有用的信息,如下图所示。必须消除噪音干扰、纠正设备故障而破坏的数据,或者补偿环境影响,如温度和湿度等。

通过分析和处理数字信号,可以从噪声中分离出有用的信息,并用比原始数据更全面的表格显示这些信息。下图显示的是经过处理的数据曲线。

用于测量的虚拟仪器(VI)

用于测量的虚拟仪器(VI)执行的典型的测量任务有:

●计算信号中存在的总的谐波失真。

●决定系统的脉冲响应或传递函数。

●估计系统的动态响应参数,例如上升时间、超调量等等。

●计算信号的幅频特性和相频特性。

●估计信号中含有的交流成分和直流成分。

在过去,这些计算工作需要通过特定的实验工作台来进行,而用于测量的虚拟仪器可以使这些测量工作通过LabVIEW程序语言在台式机上进行。这些用于测量的虚拟仪器是建立在数据采集和数字信号处理的基础之上,有如下的特性:

●输入的时域信号被假定为实数值。

●输出数据中包含大小、相位,并且用合适的单位进行了刻度,可用来直接进行

图形的绘制。

●计算出来的频谱是单边的(single_sided),范围从直流分量到Nyquist频率(二

分之一取样频率)。(即没有负频率出现)

●需要时可以使用窗函数,窗是经过刻度地,因此每个窗提供相同的频谱幅度峰

值,可以精确地限制信号的幅值。

一般情况下,可以将数据采集VI的输出直接连接到测量VI的输入端。测量VI的输出又可以连接到绘图VI以得到可视的显示。

有些测量VI用来进行时域到频域的转换,例如计算幅频特性和相频特性、功率谱、网路的传递函数等等。另一些测量VI可以刻度时域窗和对功率和频率进行估算。

本章我们将介绍测量VI中常用的一些数字信号处理函数。

LabVIEW的流程图编程方法和分析VI库的扩展工具箱使得分析软件的开发变得更加简单。LabVIEW 分析VI通过一些可以互相连接的VI,提供了最先进的数据分析技术。你不必像在普通编程语言中那样关心分析步骤的具体细节,而可以集中注意力解决信号处理与分析方面的问题。LabVIEW 6i版本中,有两个子模板涉及信号处理和数学,分别是Analyze 子模板和Methematics子模板。这里主要涉及前者。

进入Functions模板Analyze》Signal Processing子模板。

其中共有6个分析VI库。其中包括:

①.Signal Generation(信号发生):用于产生数字特性曲线和波形。

②.Time Domain(时域分析):用于进行频域转换、频域分析等。

③.Frequency Domain(频域分析):

④.Measurement(测量函数):用于执行各种测量功能,例如单边FFT、频谱、比例加窗以及泄漏频谱、能量的估算。

⑤.Digital Filters(数字滤波器):用于执行IIR、FIR 和非线性滤波功能。

⑥.Windowing(窗函数):用于对数据加窗。

在后面几节中,你将学习如何使用分析库中的VI创建函数发生器和简单实用的频谱分析仪,如何使用数字滤波器,窗函数的作用以及不同类型窗函数的优点,怎样执行简单的曲线拟合功能,以及其他一些内容。可以在labview\examples\analysis目录中找到一些演示程序。

6.2信号的产生

本节将介绍怎样产生标准频率的信号,以及怎样创建模拟函数发生器。参考例子见examples\analysis\sigxmpl.llb。

你还将学习怎样使用分析库中的信号发生VI产生各种类型的信号。信号产生的应用主要有:

●当无法获得实际信号时,(例如没有DAQ板卡来获得实际信号或者受限制无法访

问实际信号),信号发生功能可以产生模拟信号测试程序。

●产生用于D/A转换的信号

在LabVIEW 6i中提供了波形函数,为制作函数发生器提供了方便。以Waveform>>Waveform Generation中的基本函数发生器(Basic Function Generator.vi)为例,其图标如下:

其功能是建立一个输出波形,该波形类型有:正弦波、三角波、锯齿波和方波。这个VI会记住产生的前一波形的时间标志并且由此点开始使时间标志连续增长。它的输入参数有波形类型、样本数、起始相位、波形频率(单位:Hz)

参数说明:

offset:波形的直流偏移量,缺省值为0.0。数据类型DBL

reset signal:将波形相位重置为相位控制值且将时间标志置为0。缺省值为FALSE.

signal type:产生的波形的类型,缺省值为正弦波。

frequency :波形频率(单位Hz),缺省值为10。

amplitude:波形幅值,也称为峰值电压,缺省值为1.0。

phase:波形的初始相位(单位度)缺省值为0.0.

error in:在该VI运行之前描述错误环境。缺省值为no error. 如果一个错误已经发生,该VI在error out端返回错误代码。该VI仅在无错误时正常运行。错误簇包含如下参数。

status:缺省值为FALSE,发生错误时变为TRUE。

code:错误代码,缺省值为0。

source:在大多数情况下是产生错误的VI或函数的名称,缺省值为一个空串。sampling info:一个包括采样信息的簇。共有Fs和#s 两个参数。

Fs:采样率,单位是样本数/秒,缺省值为1000。

#s:波形的样本数,缺省值为1000。

duty cycle (%):占空比,对方波信号是反映一个周期内高低电平所占的比例,缺省值为50%。signal out:信号输出端

phase out:波形的相位,单位:度。

error out:错误信息。如果error in 指示一个错误,error out 包含同样的错误信息。否则,它描述该VI 引起的错误状态。

使用该VI制作的函数发生器如下,由框图可以看出,其中没有附加任何其他部件。

6.3标准频率

在模拟状态下,信号频率用Hz或者每秒周期数为单位。但是在数字系统中,通常使用数字频率,它是模拟频率和采样频率的比值,表达式如下:

数字频率=模拟频率/采样频率

这种数字频率被称为标准频率,单位是周期数/采样点。

有些信号发生VI使用输入频率控制量f,它的单位和标准频率的单位相同:周期数/每个采样点,范围从0到1,对应实际频率中的0到采样频率fs的全部频率。它还以1.0为周期,从而令标准频率中的1.1与0.1相等。例如某个信号的采样频率是奈奎斯特频率(fs/2),就表示每半个周期采样一次(也就是每个周期采样两次)。与之对应的标准频率是1/2 周期数/采样点,也就是0.5 周期数/采样点。标准频率的倒数1/f表示一个周期内采样的次数。

如果你所使用的VI需要以标准频率作为输入,就必须把频率单位转换为标准单位:周期数/采样点。

6.4数字信号处理

6.4.1FFT变换

信号的时域显示(采样点的幅值)可以通过离散傅立叶变换(DFT)的方法转换为频域显示。为了快速计算DFT,通常采用一种快速傅立叶变换(FFT)的方法。当信号的采样点数是2的幂时,就可以采用这种方法。

FFT的输出都是双边的,它同时显示了正负频率的信息。通过只使用一半FFT输出采样点转换成单边FFT。FFT的采样点之间的频率间隔是fs/N,这里fs是采样频率。

Analyze库中有两个可以进行FFT的VI,分别是Real FFT VI 和Complex FFT VI。

这两个VI之间的区别在于,前者用于计算实数信号的FFT,而后者用于计算复数信号的FFT。它们的输出都是复数。

大多数实际采集的信号都是实数,因此对于多数应用都使用Real FFT VI 。当然也可以通过设置信号的虚部为0,使用Complex FFT VI 。使用Complex FFT VI 的一个实例是信号含有实部和虚部。这种信号通常出现在数据通信中,因为这时需要用复指数调制波形。

计算每个FFT显示的频率分量的能量的方法是对频率分量的幅值平方。高级分析库中Power Spectrum VI可以自动计算能量频谱。Power Spectrum VI的输出单位是Vrms2。但是能量频谱不能提供任何相位信息。

FFT和能量频谱可以用于测量静止或者动态信号的频率信息。FFT提供了信号在整个采样期间的平均频率信息。因此,FFT主要用于固定信号的分析(即信号在采样期间的频率变化不大)或者只需要求取每个频率分量的平均能量。

2.流程图中的Array Size 函数用来根据样本数转换FFT的输出,得到频率分量的正确幅值。

3.把该VI保存为LabVIEW\Activity目录中的FFT_2sided.vi。

4.选择频率(Hz)=10,采样率= 100,样本数= 100。执行该VI。注意这时的时域图和频谱图。因为采样率=样本数= 100 ,所以时域图中的正弦波的周期数与选择的频率相等,即可以显示10个周期。(如果把频率改成5,那么就会显示5个周期)

双边 FFT

5.检查频谱图可以看到有两个波峰,一个位于10Hz,另一个位于90Hz,90Hz处的波峰实际上是10Hz处的波峰的负值。因为图形同时显示了正负频率,所以被称为双边FFT。

6.先后令频率=10、20(Hz),执行该VI。注意每种情况下频谱图中波峰位置的移动。观察频率等于10和20时的时域波形。注意哪种情况下的波形显示更好,并解释原因。

7.因为fs = 100 Hz,所有只能采样频率低于50Hz的信号(奈奎斯特频率=fs/2)。把频率修改为48Hz,可以看到频谱图的波峰位于± 48 Hz。

8.把频率改为52HZ,观察这时产生的图形与第5步产生的图形的区别。因为52大于奈奎斯特频率,所以混频偏差等于|100 – 52| = 48 Hz。

9.把频率改成30和70Hz,执行该VI。观察这两种情况下图形是否相同,并解释原因。单边 FFT

10.按照下图修改流程图。上面已经知道因为FFT含有正负频率的信息,所以可以FFT 具有重复信息。现在这样修改之后只显示一半的FFT采样点(正频率部分)。这样的方法叫做单边FFT。单边FFT只显示正频部分。注意要把正频分量的幅值乘以2才能得到正确的幅值。但是,直流分量保持不变。(若程序中考虑含直流分量的情况,应当增加一个分支或case结构。

11.设置频率(Hz)= 30,采样率= 100,样本数= 100,运行该VI。

12.保存该VI为LabVIEW\Activity目录下的FFT_1sided.vi。

13.把频率改为70Hz,执行该VI,观察这时产生的图形与第9步产生的图形的区别。练习6-1 结束。

6.4.2窗函数

计算机只能处理有限长度的信号,原信号x(t)要以T(采样时间或采样长度)截断,即有限化。有限化也称为加“矩形窗”或“不加窗”。矩形窗将信号突然截断,这在频域造成很宽的附加频率成分,这些附加频率成分在原信号x(t)中其实是不存在的。一般将这一问题称为有限化带来的泄露问题。泄露使得原来集中在f0上的能量分散到全部频率轴上。泄露带来许多问题:如①使频率曲线产生许多“皱纹”(Ripple),较大的皱纹可能与小的共振峰值混淆;②如信号为两幅值一大一小频率很接近的正弦波合成,幅值较小的一个信号可能被淹没。③f0附近曲线过于平缓,无法准确确定f0的值。

为了减少泄露,人们尝试用过渡较为缓慢的、非矩形的窗口函数。常用的窗函数如下表所示。

在实际应用中如何选择窗函数一般说来是要仔细分析信号的特征以及最终你希望达到的目的,并经反复调试。窗函数有利有弊,使用不当还会带来坏处。使用窗函数的原因很多,例如:

?规定测量的持续时间。

?减少频谱泄漏。

?从频率接近的信号中分离出幅值不同的信号。

下面的例子(详见LabVIEW 6i中的Search Examples > Fundamentals

Examples >Analysis Examples > Signal Processing> Windows Examples > Window Comparison)是从频率接近的信号中分离出幅值不同的信号,正弦波1与正弦波2频率较接近,但幅值相差1000倍,相加后产生的信号变换到频域,如果在FFT之前不加窗,则频域

特性中幅值较小的信号被淹没。加Hanning 窗后两个频率成分都被检出。

6.4.3 谐波失真与频谱分析

当一个含有单一频率(比如f 1)的信号x(t)通过一个非线性系统时,系统的输出不仅包含输入信号的频率(f 1),而且包含谐波分量(f 2=2f 1,f 3=3f 1,f 4=4f 1等等),谐波的数量以及它们对应的幅值大小取决于系统的非线性程度。电网中的谐波是一个值得关注的问题。

下面的一个非线性系统的例子是输出y(t)是输入x(t)的立方。假如输入信号:

)cos()(wt t x =

则输出:

)]3cos()[cos(25.0)cos(5.0)(3wt wt wt t x ++=

因此,输出不仅含有基波频率w ,而且还有三次谐波的频率3w 。

谐波失真的总量

为了决定一个系统引入非线性失真的大小,需要得到系统引入的谐波分量的幅值和基波的幅值的关系。谐波失真是谐波分量的幅值和基波幅值的相对量。假如基波的幅值是A 1,而二次谐波的幅值是A 2,三次谐波的幅值是A 3,四次谐波的幅值是A 4。。。。。。N 次谐波的幅值是A N ,总的谐波失真(THD )为:

122322...A A A A N

THD ++=

用百分数表示的谐波失真(%THD )为:

122322...*100%A A A A N THD ++=

LabVIEW 6i提供的谐波分析器与以前的版本有一些变化,下面先介绍它

该VI对输入信号进行完整的谐波分析,包括测定基波和谐波,返回基波频率和所有的谐波幅度电平,以及总的谐波失真度(THD)。其部分参数含义如下:

stop search at Nyquist:如果设置为TRUE (缺省值T),则只包含低于Nyquist 频率(采样频率的一半)的谐波。如果设置为FALSE, 该VI 将继续搜索Nyquist范围之外的频率。signal in:输入信号。

export signals:选择输出到信号指示器的信号。有如下几种选择:

none——对快速计算;

input signal——定时将输入信号反映到输出端;

fundamental signal——在输出端反映基波;

residual signal——在输出端反映除基波之外的剩余信号;

harmonics only——在输出端反映谐波时域信号及其频谱。

highest harmonic:控制最高谐波成分,包括用于谐波分析的基波。例如,对于3次谐波分析,该控制将设置测量基波、2次谐波和3次谐波。.

error in:在该VI运行之前描述错误环境。缺省值为no error. 如果一个错误发生,该VI 在error out端返回错误代码。该VI仅在无错误时正常运行。错误簇包含如下参数。

status:缺省值为FALSE,发生错误时变为TRUE。

code:错误代码,缺省值为0。

source:在大多数情况下是产生错误的VI或函数的名称,缺省值为一个空串。

advanced search :控制频域搜索区域,中心频率及频带宽度。该功能用来确定信号的基波。

approx. fund. freq. (optional)——用来搜索基波的中心频率的估算值。如果设置缺省值为-1.0,,则选择幅值最大的频率成分为基波。

search (+/- % of Fsampl.)——用来搜索基波频率频带宽度,是采样率的百分比。exported signals:包含输出的时域信号及其频谱供选择。

detected fundamental frequency :探测在频域搜索得到的基波。用advanced search 设置频率搜索范围。所有谐波测量为基波的整数倍。

THD:总谐波失真度。它定义为谐波RMS之和与基波幅值之比。为了折算为百分数,需要乘以100。

components level:测量谐波幅值的电平(单位伏),是一个数组。该数组索引包括0 (DC), 1 (基波), 2 (2次谐波),... n (n次谐波), 直到最高谐波成分。

measurement info cluster:任何处理期间遭遇的预告

uncertainty备用;

Warning:如果处理期间警告发生为TRUE。

comments :当Warning 为TRUE时的消息内容。

下面是一个谐波分析的例子。由通道0输入一个模拟信号,经DAQ后进行谐波分析,先后分析了两个信号,首先是一个761Hz的正弦信号,第二个信号是一个1000Hz的。分析仅限于不高于5次的谐波。分析结果见两个前面板。对一个实际的正弦信号,谐波失真总量(THD)与基波电平相比,可以忽略。对方波THD就较大了。

谐波分析应用的一个例子

6.3.1数字滤波

模拟滤波器设计是电子设计中最重要的部分之一。尽管很多参考书都提供了简单可靠的模拟滤波器示例,但是滤波器的设计通常还是需要专家来完成,因为这项工作需要较高深的数学知识和对系统与滤波器之间的关系有深入的了解。

现代的数字采样和信号处理技术已经可以取代模拟滤波器,尤其在一些需要灵活性和编程能力的领域中,例如音频、通讯、地球物理和医疗监控技术。

与模拟滤波器相比,数字滤波器具有下列优点:

●可以用软件编程

●稳定性高,可预测

●不会因温度、湿度的影响产生误差,不需要精度组件

●很高的性能价格比

在LabVIEW中可以用数字滤波器控制滤波器顺序、截止频率、脉冲个数和阻带衰减等参数。

本节所涉及到的数字滤波器都符合虚拟仪器的使用方法。它们可以处理所有的设计问题、计算、内存管理,并在内部执行实际的数字滤波功能。这样您无需成为一个数字滤波器或者数字滤波的专家就可以对数据进行处理。

采样理论指出,只要采样频率是信号最高频率的两倍以上就可以根据离散的、等分的样本还原一个时域连续的信号。假设对信号以△t为时间间隔进行采样,并且不丢失任何信息,参数△t是采样间隔。

可以根据采样间隔计算出采样频率

根据上面的公式和采样理论可以知道,信号系统的最高频率可以表示为:

系统所能处理的最高频率是恩奎斯特频率。这同样适用于数字滤波器。例如,如果采样间隔是0.001秒,那么采样频率是

系统所能处理的最高频率是

下面几种滤波操作都基于滤波器设计技术:

●平滑窗口

●无限冲激响应(IIR)或者递归数字滤波器

●有限冲激响应(FIR)或者非递归数字滤波器

●非线性滤波器

很多情况下通带的增益在均值附近稍微发生变化是容许的。通带的这种变化被称为通带波动(passband ripple),也就是实际增益与理想增益之间的差值。在实际使用中阻带衰减(stopband attenuatio n)也不可能无限接近0,您必须指定一个符合需要的衰减值。通带波动和阻带衰减都使用分贝或者dB为单位,定义是:

其中log10表示基值10的对数,而A i(f) and A0(f) 分别是频率在滤波前后的幅值。例如,对于–0.02 dB的通带波动,表达式是:

这表明输入输出的幅值非常接近。

如果阻带衰减为–60 dB ,那么可以得到:

这表明输出幅值是输入幅值的1/1000。

衰减值通常用不带负号的分贝为单位,但是默认为负值。

IIR 和 FIR 滤波器

另外一种滤波器分类方法是根据它们的冲激响应的类型。滤波器对于输入的冲激信号(x[0] = 1 且对于所有I<>0,x[i] = 0)的响应叫做滤波器的冲激响应(impulse response),如下图所示。冲激响应的傅立叶变换被称为滤波器的频率响应(frequency response)。根据滤波器的频率响应可以求出滤波器在不同频率下的输出。换句话说,根据它可以求出滤波器在不同频率时的增益值。对于理想滤波器,通频带的增益应当为1,阻带的增益应当为0。所以,通频带的所有频率都被输出,而阻带的所有频率都不被输出。

如果滤波器的冲激响应在一定时间之后衰减为0,那么这个滤波器被称为有限冲激响应(FIR)滤波器。但是,如果冲激响应一直保持,那么这个滤波器被称为无限冲激响应滤波器(IIR)。冲激响应是否有限(即滤波器是IIR还是FIR)取决于滤波器的输出的计算方法。

IIR滤波器和FIR滤波器之间最基本的差别是,对于IIR滤波器,输出只取决于当前和以前的输入值,而对于FIR滤波器,输出不仅取决于当前和以前的输入值,还取决于以前的输出值。简单地说,FIR滤波器需要使用递归算法。

IIR滤波器的缺点是它的相位响应是非线形的。在不需要相位信息的情况下,例如简单的信号监控,那么IIR滤波器就符合需要。而对于那些需要线形相位响应的情况,应当使用FIR滤波器。但是,IIR滤波器的递归性增大了它的设计与执行的难度。

因为滤波器的初始状态是0(负指数是0),所以在到达稳态之前会出现与滤波器阶数相对应的过渡过程。对于低通和高通滤波器,过渡过程或者延迟的持续时间等于滤波器的阶数。

可以通过启动静止内存消除连续调用中的过渡过程,方法是将VI的init/cont 控制对象设置为 TURE(连续滤波)。

对数字滤波器的详细讨论不是本书的内容,读者可参阅有关数字信号处理的书籍,下面我们具一个简单的例子说明在LabVIEW中如何使用数字滤波器。

练习6-2 使用数字滤波器

目的:使用一个低通数字滤波器对实际采集的方波信号滤波。

1.创建前面板和流程图如下所示。

2.注意流程图。其中使用了一个数字滤波器模块(Functions模板:Analyze)Signal Processing)Filters下的Butterworth Filter.vi)。先介绍一下这个VI。

Butterworth 滤波器

filter type :按下列值指定滤波器类型

0: Lowpass 低通

1: Highpass 高通

2: Bandpass 带通

3: Bandstop 带阻

X:需要滤波的信号序列

sampling freq fs:产生X序列时的采样频率,必须大于0。缺省值是1.0。如果它小于

等于0则输出序列Filtered X 为空并返回一个错误。

high cutoff freq fh:高端截止频率。当滤波器类型为0 (lowpass) 或1 (highpass)时忽略该参数。

low cutoff freq fl:低端截止频率。它必须满足Nyquist 准则,即

0≦f i<0.5f s

如果该条件不满足则输出序列Filtered X 为空并返回一个错误。f i的缺省值是0.125。

order:大于0,缺省值是2。

init/cont:内部状态的初始化控制。当其为FALSE (default), 初态为0,当init/cont 为TRUE, 滤波器初态为上一次调用该VI的最后状态。为了对一个大数据量的序列进行滤波,可以将其分割为较小的块,设置这个状态为FALSE处理第一块数据,然后改设置为TRUE 继续对对其余的数据块滤波。

Filtered X :滤波样本的输出数组。

3.在了解了这个滤波器的功能之后再来看上面的流程图。

这里DAQ部分将一个外部的1KHz的方波采集进来,采样频率是100KHz,采到的方波一方面显示其波形,同时又送到滤波器的入口。滤波器类型设置为Lowpass,其采样频率端直接连接到前面的采样频率控制端,因而也是100KHz。另外,将采样频率除以90后作为低端截止频率,应该也是合理的,滤波器的阶数选为6。这样的一个VI运行结果如前面板所示。

还需要指出的是原方波不以X轴对称,有直流分量,经这个低通滤波器后,直流分量还应当存在,曲线显示的确如此。

练习6-2 结束。

6.3.2曲线拟合

曲线拟合(curve fitting)技术用于从一组数据中提取曲线参数或者系数,以得到这组数据的函数表达式。

通常,对于每种指定类型的曲线拟合,如果没有特殊说明,都存在两种VI可以使用。一种只返回数据,用于对数据的进一步操作,另一种不仅返回系数,还可以得到对应的拟合曲线和均方差(MSE)。

LabVIEW的分析软件库提供了多种线性和非线性的曲线拟合算法,例如线性拟合、指数拟合、通用多项式拟合、非线性Levenberg-Marquardt 拟合等。

曲线拟合的实际应用很广泛。例如:

●消除测量噪声

●填充丢失的采样点(例如,如果一个或者多个采样点丢失或者记录不正确)

●插值(对采样点之间的数据的估计;例如在采样点之间的时间差距不够大时)

●外推(对采样范围之外的数据进行估计,例如在需要在试验以后或者以后的数值时)

●数据的差分(例如在需要知道采样点之间的偏移时,可以用一个多项式拟合离散数

据,而得到的多项式可能不同)

●数据的合成(例如在需要找出曲线下面的区域,同时又只知道这个曲线的若干个离

散采样点的时候)

●求解某个基于离散数据的对象的速度轨迹(一阶导数)和加速度轨迹(二阶导数)

下面是使用LabVIEW提供的算法得到的三种拟合的例子:线形拟合(左上)、指数拟

合(右上)、多项式拟合(左下)。

一般说来,采集得到的数据大都需要经过适当的处理,其中包括滤波、曲线拟合等。详细内容请参考有关资料。

信号分析与处理答案第二版完整版

信号分析与处理答案第 二版 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第二章习题参考解答 求下列系统的阶跃响应和冲激响应。 (1) 解当激励为时,响应为,即: 由于方程简单,可利用迭代法求解: ,, …, 由此可归纳出的表达式: 利用阶跃响应和冲激响应的关系,可以求得阶跃响应: (2) 解 (a)求冲激响应 ,当时,。 特征方程,解得特征根为。所以: …(2.1.2.1) 通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1): …(2.1.2.2) 可验证满足式(2.1.2.2),所以: (b)求阶跃响应 通解为 特解形式为,,代入原方程有,即 完全解为 通过原方程迭代之,,由此可得 解得,。所以阶跃响应为: (3)

解 (4) 解 当t>0时,原方程变为:。 …(2.1.3.1) …(2.1.3.2) 将(2.1.3.1)、式代入原方程,比较两边的系数得: 阶跃响应: 求下列离散序列的卷积和。 (1) 解用表 格法求 解 (2) 解用表 格法求 解 (3) 和 如题图2.2.3所示 解用表 格法求 解

(4) 解 (5) 解 (6) 解参见右图。 当时: 当时: 当时: 当时: 当时: (7) , 解参见右图: 当时: 当时: 当时: 当时: 当时: (8) ,解参见右图

当时: 当时: 当时: 当时: (9) , 解 (10) , 解 或写作:

求下列连续信号的卷积。 (1) , 解参见右图: 当时: 当时: 当时: 当时: 当时: 当时: (2) 和如图2.3.2所示 解当时: 当时: 当时: 当时: 当时: (3) , 解 (4) , 解 (5) , 解参见右图。当时:当时: 当时:

信号处理第二章知识点

第二章 连续时间傅里叶变换 1 周期信号的频谱分析——傅里叶级数FS (1) 狄义赫利条件:在同一个周期1T 内,间断点的个数有限;极大值和极小值的数目有限; 信号绝对可积∞

信号分析与处理 杨西侠 第2章习题答案

2-1 画出下列各时间函数的波形图,注意它们的区别 1)x 1(t) = sin Ω t ·u(t ) 2)x 2(t) = sin[ Ω ( t – t 0 ) ]·u(t ) 3)x 3(t) = sin Ω t ·u ( t – t 0 ) -1

4)x2(t) = sin[ ( t – t0) ]·u( t – t0) 2-2 已知波形图如图2-76所示,试画出经下列各种运算后的波形图 (1)x ( t-2 ) (2)x ( t+2 )

(3)x (2t) (4)x ( t/2 ) (5)x (-t) (6)x (-t-2)

(7)x ( -t/2-2 ) (8)dx/dt 2-3 应用脉冲函数的抽样特性,求下列表达式的函数值 (1)?+∞ ∞--)(0t t x δ(t) dt = x(-t 0) (2)?+∞ ∞--)(0t t x δ(t) dt = x(t 0) (3)?+∞∞ --)(0t t δ u(t - 20t ) dt = u(2 t ) (4)?+∞ ∞--)(0t t δ u(t – 2t 0) dt = u(-t 0) (5)() ?+∞∞ --+t e t δ(t+2) dt = e 2-2 (6)()?+∞ ∞-+t t sin δ(t-6π ) dt = 6 π + 2 1

(7) ()()[]?+∞ ∞-Ω---dt t t t e t j 0δδ =()?+∞ ∞ -Ω-dt t e t j δ–?+∞∞ -Ω--dt t t e t j )(0δ = 1-0 t j e Ω- = 1 – cos Ωt 0 + jsin Ωt 0 2-4 求下列各函数x 1(t)与x 2(t) 之卷积,x 1(t)* x 2(t) (1) x 1(t) = u(t), x 2(t) = e -at · u(t) ( a>0 ) x 1(t)* x 2(t) =?+∞ ∞---ττττ d t u e u a )()( = ?-t a d e 0 ττ = )1(1at e a -- x 1(t)* x 2(t) =ττδτδτπ d t t u t )]1()1([)]()4 [cos(---+-+Ω?+∞ ∞- = cos[Ω(t+1)+ 4 π ]u(t+1) – cos[Ω(t-1)+ 4 π ]u(t-1) (3) x 1(t) = u(t) – u(t-1) , x 2(t) = u(t) – u(t-2) x 1(t)* x 2(t) = ? +∞ ∞ -+-----τττττd t u t u u u )]1()()][2()([ 当 t <0时,x 1(t)* x 2(t) = 0 当 0

信号分析与处理

信号分析与处理 第一章绪论:测试信号分析与处理的主要内容、应用;信号的分类,信号分析与信号处理、测试信号的描述,信号与系统。 测试技术的目的是信息获取、处理和利用。 测试过程是针对被测对象的特点,利用相应传感器,将被测物理量转变为电信号,然后,按一定的目的对信号进行分析和处理,从而探明被测对象内在规律的过程。 信号分析与处理是测试技术的重要研究内容。 信号分析与处理技术可以分成模拟信号分析与处理和数字信号分析与处理技术。 一切物体运动和状态的变化,都是一种信号,传递不同的信息。 信号常常表示为时间的函数,函数表示和图形表示信号。 信号是信息的载体,但信号不是信息,只有对信号进行分析和处理后,才能从信号中提取信息。 信号可以分为确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;能量信号与功率信号;奇异信号; 周期信号无穷的含义,连续信号、模拟信号、量化信号,抽样信号、数字信号 在频域里进行信号的频谱分析是信号分析中一种最基本的方法:将频率作为信号的自变量,在频域里进行信号的频谱分析; 信号分析是研究信号本身的特征,信号处理是对信号进行某种运算。 信号处理包括时域处理和频域处理。时域处理中最典型的是波形分析,滤波是信号分析中的重要研究内容; 测试信号是指被测对象的运动或状态信息,表示测试信号可以用数学表达式、图形、图表等进行描述。 常用基本信号(函数)复指数信号、抽样函数、单位阶跃函数单位、冲激函数(抽样特性和偶函数)离散序列用图形、数列表示,常见序列单位抽样序列、单位阶跃序列、斜变序列、正弦序列、复指数序列。 系统是指由一些相互联系、相互制约的事物组成的具有某种功能的整体。被测系统和测试系统统称为系统。输入信号和输出信号统称为测试信号。系统分为连续时间系统和离散时间系统。

《信号分析与处理》备课教案(第二章) (2)

第二章:单输入单输出系统的时域分析 2.1.概述 系统分析的主要任务是解决在给定的激励作用下,系统将产生什么样的响应。即如果系统(这里指“线性时不变LTI系统”,以下相同)是确定的,激励是已知的,则响应一定也是确定的。 系统数学模型的时域描述主要有两种形式:“输入输出描述”与“状态变量描述”,本章只涉及“输入输出描述”,即采用微分或差分方程对系统进行描述。 为了确定一个线性时不变系统在时域中对给定激励的响应,首先要建立描述该系统的微分方程(对于连续系统)或差分方程(对于离散系统),并求出满足给定初始状态的解。这里,解就是系统的响应。 LTI连续/离散系统的时域分析,可以归结为:建立并求解线性微分/差分方程。这也称之为系统时域响应求解的“经典法”。 由于在其分析过程涉及的函数变量均为时间t,故这一方法称之为“时域分析法”。这种方法比较直观,物理概念清楚,是学习各种变换域分析法的基础。 几个重要的概念: 由于对“线性时不变LTI系统”在时域中进行描述的数学模型就是“微分方程/连续系统”和“差分方程/离散系统”,因此这些方程的“解”就是系统的“时域响应”,进而又可以按照“解的形式”分解为“自由响应”和“强制响应”,也可以按照“响应产生的原因”分解为“零输入响应”和“零状态响应”。 1、自由响应

“微分方程/差分方程”的“齐次通解”就是系统的“自由响应/固有响应”,其只取决于系统本身的特性。也就是说,对于同一个系统,在不同的激励作用下,系统“自由响应”的形式是相同的。(但系数仍与“激励形式和系统初始状态”有关) 2、强制响应 “微分方程/差分方程”的“特解”就是系统的“强制响应/受迫响应”,其形式由系统的激励所决定。 3、零输入响应 指激励输入为零时,仅由系统的初始状态所产生的系统响应。 4、零状态响应 指系统的初始状态为零,仅由激励输入所引起的系统响应。 5、全响应 系统全响应 = 自由响应+强制响应 = 零输入响应+零状态响应 2.2.连续系统的时域分析 见书上P24~30,由于该部分内容已在高等数学与电路原理课程中作过较详细的讨论,因此本课程中为“自学内容”。 2.3.离散系统的时域分析 一、差分与差分方程 1、差分 设有序列f(k),则…,f(k+2),f(k+1),…,f(k-1),f(k-2)…等称为f(k)的移位序列。 仿照连续信号的微分运算,如下式所示:

《信号分析与处理》(第二版)-徐科军、黄云志-课后标准答案

《信号分析与处理》(第二版)-徐科军、黄云志-课后答案

————————————————————————————————作者:————————————————————————————————日期:

Chap1. 1.4 ()()()()()()()()()()()() ()()()()()()()121 2 122 12112 2 121 2 2 2y 11102 y 0.5111 y 0.5 1.513y 0 13 013 y 0.5111 0.5 1.513t t t t t x t x t x x t d x x t x x t d t d t t t x x t d t d t t t t t or t t or t t t t t t t τττ ττττ τττττττττττ+∞ -∞ ----=*=-=-≤≤???=≤≤??=-= -=+-<≤=-= -=-++<<=≤-≥≤-≥??=+-<≤??-++<

()()[] ()()()[]()()()∑∞ =? ? ? ???Ω-Ω-+=- =-= =??? ??<≤<≤-=1002212 2 01cos cos cos 1cos 141cos 1cos 1 5 .0202 20 (a)n n n t n n n t n n n t x n n b n n a a T t t T t T t x πππππ πππ 代入公式得: ()() ()()() ()[] ()()[]()()∑∞ =Ω-? ? ? ???Ω-Ω-+=- =-= ==Ω=Ω-=1002222 2 012 212cos 1cos cos 11411cos 11 5.0cos 2 (b)n n n T jn t n n t n n n t x n b n n a a n n X e n X T t x t x πππππππ得到:根据时移性质: ()() ()()()[]()()[]() ∑?∑∞ =-∞ =Ω-+=-=Ω==Ω+=102232 20 2 0201 00 3cos cos 12 21cos 12cos 41 cos 2 (c)n T n n n t n n n t x n n dt t n t x T a a t n a a t x ππ ππ偶对称, 1.12 ()()dt e t x j X t j ?+∞ ∞ -Ω-=Ω频谱密度函数:

《信号分析与处理》(第二版)-徐科军、黄云志-课后答案

Chap1. 1.4 ()()()()()()()()()()()() ()()()()()()()121 2 122 12112 2 121 2 2 2y 11102 y 0.5111 y 0.5 1.513y 0 13 013 y 0.5111 0.5 1.513t t t t t x t x t x x t d x x t x x t d t d t t t x x t d t d t t t t t or t t or t t t t t t t τττ ττττ τττττττττττ+∞ -∞ ----=*=-=-≤≤???=≤≤??=-= -=+-<≤=-= -=-++<<=≤-≥≤-≥??=+-<≤??-++<

()()[] ()()()[]()()()∑∞ =? ? ? ???Ω-Ω-+=- =-= =??? ??<≤<≤-=1002212 2 01cos cos cos 1cos 141cos 1cos 1 5 .0202 20 (a)n n n t n n n t n n n t x n n b n n a a T t t T t T t x πππππ πππ 代入公式得: ()() ()()() ()[] ()()[]()()∑∞ =Ω-? ? ? ???Ω-Ω-+=- =-= ==Ω=Ω-=1002222 2 012 212cos 1cos cos 11411cos 11 5.0cos 2 (b)n n n T jn t n n t n n n t x n b n n a a n n X e n X T t x t x πππππππ得到:根据时移性质: ()() ()()()[]()()[]() ∑?∑∞ =-∞ =Ω-+=-=Ω==Ω+=102232 20 2 0201 00 3cos cos 12 21cos 12cos 41 cos 2 (c)n T n n n t n n n t x n n dt t n t x T a a t n a a t x ππ ππ偶对称, 1.12 ()()dt e t x j X t j ?+∞ ∞ -Ω-=Ω频谱密度函数:

信号分析与处理技术习题册

第一章 时域离散信号与离散系统 1-1 给定信号: ?? ???≤≤-≤≤-+=其它,040,61 4,52)(n n n n x (1) 画出x(n)序列的波形,标上各序列值; (2) 试用延迟的单位脉冲序列及其加权和表示x(n)序列; (3) 令x 1(n)=2x(n-2),试画出x 1(n)波形; (4) 令x 2(n)=2x(n+2),试画出x 2(n)波形; (5) 令x 3(n)=x(2-n),试画出x 3(n)波形。 1-2 有序列如下图所示 请计算x e (n)=[x(n)+x(-n)]/2,并画出波形。 1-3 试判断 (1)∑-∞ ==n m m x n y )()( (2)y(n)=[x(n)]2 (3)) 792sin()()(π π +=n n x n y 是否线性系统,并判断(2)、(3)是否移不变系统。 1-4设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如图所示,要求画出y(n)的波形。 1-5 已知线性移不变系统的输入为x(n)=δ(n)-δ(n-2),系统的单位抽样响应为 h(n)=0.5n R 3(n),试求系统的输出y(n) 1-6 设有一系统,其输入输出关系由以下差分方程确定: y(n)-0.5y(n-1)=x(n)+0.5x(n-1) 设系统是因果性的。利用递推法求系统的单位抽样响应; (1) 由(1)的结果,利用卷积和求输入x(n)=e jwn u(n)的响应。 第二章 时域离散信号与系统的频域分析 2-1 试求如下序列的傅立叶变换:

(1)x 1(n)=R 5(n) (2)x 2(n)=u(n+3)-u(n-4) 2-2 设???==其它 ,01,0,1)(n n x ,将 x(n)以4为周期进行周期延拓,形成周期序列~)(n x ,画出x(n)和~)(n x 的波形,求出~)(n x 的离散傅立叶级数~)(k X 和傅立叶变换。 2-3 设如图所示的序列x(n)的FT 用X(e jw )表示,不直接求出X(e jw ),确定并画出傅立叶变换实部Re[X(e jw )]的时间序列x e (n) 2-4 求序列-2-n u(-n-1)的Z 变换及收敛域: 2-5 已知)(2||5.02523)(211n x z z z z z X 对应的原序列,求收敛<<+--=--- 2-6 分别用长除法、部分分式法求以下X(z)的反变换: 21||,41 1311)(21>-- = --z z z z X 2-7 用Z 变换法解下列差分方程: y(n)-0.9y(n-1)=0.05u(n),y(-1)=1,y(n)=0,n<-1 2-8 研究一个输入为x(n)和输出为y(n)的时域线性离散移不变系统,已知它满足)()1()(310 )1(n x n y n y n y =++--,并已知系统是稳定的,试求其单位抽样响 应。 第三章 离散傅立叶变换(DFT ) 3-1 计算以下序列的N 点DFT ,在变换区间0≤n ≤N-1内,序列的定义为x(n)=sin(w 0n)·R N (n)

基于matlab的信号分析与处理

山东建筑大学 课程设计说明书题目:基于MATLAB的信号分析与处理课程:数字信号处理课程设计 院(部):信息与电气工程学院 专业:通信工程 班级:通信111班 学生姓名: 学号: 指导教师: 完成日期:2014年1月

目录 摘要 (Ⅰ) 1 设计目的和要求 (1) 2 设计原理 (2) 3 设计内容 (3) 3.1 程序源代码 (4) 3.2 调试分析与过程描述 (7) 3.3 结果分析 (12) 总结 (13) 致谢 (14) 参考文献 (15)

摘要 这次是基于MATLAB的信号分析与处理。所谓数字滤波器,就是输入、输出都是数字信号的,通过数值计算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。常用的经典滤波器有低通、高通、带通、带阻。 首先产生一个连续信号,包含低频、中频、高频分量;对其进行采样,得到数字信号;对数字信号进行FFT频谱分析,绘制其频谱图;根据信号频谱分析的结果,分别设计高通、低通、带通滤波器,绘制滤波器的幅频及相频特性;用所设计的滤波器对信号滤波,并绘制出滤波后的频谱图。 关键词:MATLAB; FFT;滤波器;信号产生;频谱分析

1设计目的和要求 产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析,分别设计三种高通,低通,带通滤波器对信号进行滤波处理,观察滤波后信号的频谱。 2设计原理 信号的采样要符合奈奎斯特采样定律,一般为被采信号最高频率的2倍,只有这样,才能保证频域不混叠,也就是采样出来数字信号中包含了被采信号的所有信息,而且没有引入干扰。这就是信号的时域采样。 频谱分析是指对信号进行频域谱的分析,观察其频域的各个分量的功率大小,其理论基础是傅立叶变换,现在一般采用数字的方法,也就是将时域信号数字化后做FFT,可以得到频域的波形。 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。 IIR滤波器的设计原理: IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。 IIR数字滤波器的设计步骤: (1)按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标; (2)根据模拟滤波器技术指标设计为响应的模拟低通滤波器; (3)很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器; (4)如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。 本课程设计设计思想:首先利用MATLAB分别产生低频、中频、高频信号,然后进行叠加得到连续时间信号;对所产生的连续时间信号进行采样,得到数字信号;对信号进行FFT频谱分析,绘制其频谱图;根据信号频谱分析的结果,分别设计高通,低通,带通滤波器,得到滤波器的幅频及相频特性。

信号处理与数据分析第一章作业答案(B).邱天爽.

Answer of Homework 2 1.6 计算下列各式的卷积: (a )()e (),()e (),at bt x t u t h t u t a b --==≠ Answer: (a )通过卷积定义()0()()()d e e d ,0t at b t y t x h t t τττττ∞----∞=-=≥??,因此 ()[(e e )/(b )]()at bt y t a u t --=-- 1.7 计算下列各式的卷积,并画出结果曲线。 (b )21()(2),()(2)2n x n u n h n u n -??=-=+ ??? Answer: 定义信号11()()2n x n u n ??= ??? 和1()()h n u n = ,可以发现1()(2)x n x n =-,1()(2)h n h n =+,因此, 1111()()()(2)(2)(2)(2)k y n x n h n x n h n x k h n k ∞ =-∞=*=-*+=--+∑ 用2m + 代替k 得到: 111011()()()21()22m n n m m y n x m h n m u n +∞=-∞=??????=-==-?? ? ?????????∑∑ 2n 1.9 一因果LTI 系统,其输入输出关系由1()(1)()4 y n y n x n = -+给出,若()(1)x n n δ=-,试求()y n 。 Answer: 由于该系统为一因果系统,因而()0,1y n n =<从而得到 1 1(1)(0)(1)0114 111(2)(1)(2)0444 111(3)(2)(3)0416161()()4 m y y x y y x y y x y m -= +=+==+=+==+=+== 因此, 11()()(1)4 n y n u n -=- 1.12 给定()(2),()e (1)t x t u t h t u t =-=--。试计算卷积()()()y t x t h t =*。 Answer:

数字信号处理第二章习题解答

数字信号处理第2章习题解答 2.1 今对三个正弦信号1()cos(2)a x t t π=,2()cos(6)a x t t π=-,3()cos(10)a x t t π=进行理想采样,采样频率为8s πΩ=,求这三个序列输出序列,比较其结果。画出 1()a x t 、2()a x t 、3()a x t 的波形及采样点位置并解释频谱混淆现象。 解:采样周期为2184 T ππ= = 三个正弦信号采样得到的离散信号分别表示如下: 1()cos(2)cos()42a n x n n π π=?= 2()cos(6)cos()42a n x n n π π=-?=- 3()cos(10)cos()42 a n x n n π π=?= 输出序列只有一个角频率 2 π ,其中1()a x n 和3()a x n 采样序列完全相同,2()a x n 和1()a x n 、3()a x n 采样序列正好反相。 三个正弦信号波形及采样点位置图示如下: t x a 1(t )

t x a 2(t ) t x a 3(t ) 三个正弦信号的频率分别为1Hz 、3Hz 和5Hz ,而采样频率为4Hz ,采样频率大于第一个正弦信号频率的两倍,但是小于后两个正弦信号频率的两倍,因而由第一个信号的采样能够正确恢复模拟信号,而后两个信号的采样不能准确原始的模拟信号,产生频谱混叠现象。

2.3 给定一连续带限信号()a x t 其频谱当f B >时,()a X f 。求以下信号的最低采样频率。 (1)2()a x t (2)(2)a x t (3)()cos(7)a x t Bt π 解:设()a x t 的傅里叶变换为()a X j Ω (1)2 ()a x t 的傅里叶变换为 22()[()]B a a B X j X j d ππ ωωω-?Ω-? 因为22,22B B B B πωππωπ-≤≤-≤Ω-≤ 所以44B B ππ-≤Ω≤ 即2()a x t 带限于2B ,最低采样频率为4B 。 (2)(2)a x t 的傅里叶变换为 1 (/2)2 a X j Ω 2/22B B ππ-≤Ω≤,即44B B ππ-≤Ω≤ 即(2)a x t 带限于2B ,最低采样频率为4B 。 (3)()771 ()cos(7)()2 j Bt j Bt a a x t Bt x t e e πππ-= + 根据傅里叶变换的频移性质,()cos(7)a x t Bt π的傅里叶变换为 []1 ((7)((7)2 a a X j B X j B ππΩ-+Ω+ 它为一个带宽为2B 的带通信号,其通带范围为59 22 B f B ≤≤。 根据带通模拟信+号的采样定理,最小采样频率为1/4 4(1) 4.52 B B ?+=。 补充知识:带通模拟信号的采样定理 设带通模拟信号的频带限制在L f 和H f 之间,其频谱最低频率大于L f ,最高频率小于H f ,信号带宽H L B f f =-。此带通模拟信号所需最小抽样频率s f 等于 21s k f B n ??=+ ??? 式中,B 为信号带宽;n 为商( H f B )的整数部分,1,2,n = ;为商(H f B )的小数部分,01k <<。 2.5 一带通模拟信号如图所示,现用以下采样频率对其采样。 (1)25 Hz (2)50 Hz (3)100 Hz

信号分析与处理答案整理(1)解析

信号分析与处理 1.什么是信息?什么是信号?二者之间的区别与联系是什么?信号是如何分类的? 信息反映了一个物理系统的状态或特性,是自然界、人类社会和人类思维活动中普遍存在的物质和事物的属性。 信号是传载信息的物理量,是信息的表现形式。 信号处理的本质是信息的变换和提取。信息的提取就要借助各种信号获取方法以及信号处理技术。 按照信号随自变量时间的取值特点,信号可分为连续时间信号和离散时间信号: (1、连续时间信号——任意时间都有信号值。2、离散时间信号——在离散的时间点上有信号值。) 按照信号取值随时间变化的特点,信号可以分为确定性信号和随机信号:(1、确定性信号——所有参数都已经确定。 2、随机性信号——在取值时刻以前不可准确预知。) 2.非平稳信号处理方法(列出方法就行) 1.短时傅里叶变换 2.小波变换 3.小波包分析 4.循环平稳信号分析 5经验模式分解和希尔伯特-黄变换。(以及不同特色和功能的小波基函数的应用) 3.信号处理内积的意义,基函数的定义与物理意义。 答:内积的定义: (1)实数序列:),...,,(21n x x x X =,n n R y y y Y ∈=),...,,(21 它们的内积定义是:j n j j y x Y X ∑=>= <1 , (2)复数jy x z +=它的共轭jy x z -=* ,复序列),...,,(21n z z z Z =, n n C w w w W ∈=),...,,(21,它们的内积定义为*=∑>== <)()()(),( 2)(),(L t y t x ∈ 以)(),(t y t x 的互相关函数)(τxy R ,)(t x 的自相关函数)(τxx R 如下: >-=<-=?∞ ∞-*)(),()()()(τττt x t x dt t x t x R xx >-=<-=?∞ ∞ -*)(),()()()(τττt y t x dt t y t x R xy 我们把)(τ-t x 以及)(τ-t y 视为基函数,则内积可以理解为信号)(t x 与“基函数”关

信号分析与处理复习整理

试题形式 填空题—10分/10格/5题 问答题—18分/3题 计算题—72分/6题 考试时间:17周(教秘安排) 第一章 信号分析与处理的基本概念 复习考点(题型:填空/问答) 信号的分类(P3) 信号取值是否确定:确定性信号和随机信号 信号自变量取值是否连续:连续信号和离散信号 信号在某一区间是否重复出现:周期信号和非周期信号 信号的能量或功率是否有限:能量信号和功率信号 周期信号的基本周期计算(P4,参考P5例子) ()()x t x t nT =+ (0,1,2,....n =±± 式中nT 为x(t)的周期,而满足关系式的最小T 值称为信号的基本周期。 信号处理的概念、目的(P5) 概念:要把记录在某种媒体上的信号进行处理,以便抽取有用信息的过程,它是对信号进行提取、变换、分析、综合等处理过程的统称。 目的:去伪存真,特征提取,编码和解码(调制与解调) 系统的性质/线性系统的条件(P11-14) 性质:线性(包括齐次性与叠加性),时不变性,因果性,稳定性 线性系统的条件:同时具有齐次性和叠加性的系统称为线性系统。 对于动态系统满足3个条件:可分解性、零状态线性、零输入线性 第二章 连续时间信号的分析 复习考点(题型:填空/问答/计算) 信号分析的方法 (P22) 信号分析的基本方法是信号的分解,即将任意信号分解成有限个或无限个基本信号的线性组合,通过对构成信号的基本单元的分析达到了解原信号的目的。包括时域方法,频域方法,复频域方法。 信号的频谱分类/P47 思考题2-4 (P30-31) 信号的频谱包括幅度频谱和相位频谱 周期信号的频谱特点:离散普,其相邻谱线的间隔是w1,改变信号的周期将改变信号的频谱的疏密程度,当周期趋于无穷大时,频谱将是连续的。 分类: 带宽定义(P31) 通常把()01/02/f τωπτ≤≤≤≤这段频率范围称为周期矩形脉冲信号的频带宽度,简称带宽,记做B ,1/2/B B ωτπτ==或 计算题:以作业题为主 第三章 连续时间信号处理 复习考点(题型:填空/问答/计算) 线性时不变LTI 系统定义与描述方式(P52/P61)

第二章 信号分析

第二章 信号分析 2.1 信号定义及其分类 在通信、广播、电视或遥控遥测等系统中进行着信息的传递。信息通常用语言、文字、图像和数据形式来表示。为了便于传输和处理,往往讲信息变换为另一形式的变化着的物理量,如光、声、电等,这些形式通称为信号。因此信号的变化即表现为物理量的变化。作为信号的多种物理量中,电信号是最常见和应用广泛的物理量,因为电信号容易产生和控制,并且与非电量之间的转换也比较容易。电信号通常是随时间变化的电压和电流,某些情况下可以是电荷和磁链。 信号的分类一般是按照信号的波形特征来划分的。从信号描述上可以分为确定性信号和不确定性信号(规则性信号和不规则性信号);从信号的幅值上分能量信号和功率信号;从分析域上可以分为时域和频域;确定性信号,可以用明确的数学公式描述的信号, 否则为非确定性信号。能量信号,瞬态信号,能量为有限值的信号。满足条件? ∞ ∞ ∞<-2)(dt t x ;功 率信号,时间持续无限值,研究平均功率更有意义。 规则信号是指按一定规则变化 的、可以用确定的数学函数式或波形进行描述的信号。规则信号根据其变化时有无重复性的特点分为周期性信号和非周期信号;按信号的存在时间是 否为连续的特点又可分为连续时间信号和离散时间信号。通常将输入电路的信号称为激励,而把经过电路传输和处理后的输出信号称为响应。 时域信号,在某一时间范围内有定义,其余为0;频域有限信号:在某一频率范围内有定义,其余频率为0 一、基本信号 1、指数信号(at Ee t f =)() a 为实数

右图为单边指数衰减信号,与单边指数衰减信号相对应的为双边指数衰减信号,其表示式为t a Ee t f -=)(,波形为左右对称。 指数信号的一个重要特征是它对时间的微粉和积分仍然是指数形式 2、复指数信号(指数为复数,可以通过欧拉公式转化为正弦余弦函数) 其表达式为t j Ee t f )()(ωσ+=,可以借助欧拉公式将信号分解为: t jEe t Ee t f t t ωωσσsin cos )(+= σ>0时为增幅振荡,σ=0时为等幅振荡;w 则表示正弦和余弦振荡的角频率。 复数指数在实际中生产出来,但它概况了多种情况,可以用它来描述上述的各种基本信号。Hia 可以利用复制数信号简化很多运算和分析。 正弦信号的拉普拉斯变换式为 2 2]s i n (ωω ω+= s A t A L 3、单位斜变信号 从某一时刻开始随时间正比增长的信号,且变化率为1。其表达 式为: ? ??≥<=)0() 0(0)(t t t t R 其拉普拉斯变换式 2/1)](1[s t t L =? 大型船闸匀速升降时,主拖动系统发出位置信号、数控机床加工斜面时的进给指令,均可看作斜坡作用。 4、单位阶跃信号(简称阶跃信号,电路中常用来测试系统响应的快慢) 其拉普拉斯变化式为 s t /1)](1[L = 其物理意义是,当u(t)作为电路的电源时,相当于该电路在 t =0时刻接入单位直流电源。还有指令的突然转换、负荷的突变均可视为单位阶跃作用。是评价系统动态性能时应用较多的一种典型作用。 阶跃信号可以表示任何矩形脉冲(门信号)。如右图可以表示为: x(t)=u(t-τ)-u(t-3τ)

信号分析与处理(第二版)徐科军、黄云志课后答案

1.4 1.8 1.12 1.22 ()()()()()()()()()()()()()()()()()()()()()()()()2)cos()cos(cos cos cos cos 1lim cos cos cos cos 1lim cos cos cos cos 1lim 22 2121 2222222112122 222222211112122211122 222111ττττθτθθτθθτθτθθττΩ+Ω=-ΩΩ+-ΩΩ=+-Ω+Ω++-Ω+Ω=+-Ω++-Ω+Ω++Ω=-=????--∞→--∞→-∞→+∞ ∞-* A A dt t A t A t t A T dt t A t A t t A T dt t A t A t A t A T dt t x t x R T T T T T T T T T

2.7 (1)左移 (2)右移 (3)先翻转再右移 (4)先翻转再左移 (5)压缩 2.10 ()()()()()∑+∞-∞=-*= *=k k n h k R n h n R n y Chap3. 3.1 ()()()()()0n k k k n k k n h k x n h n x n y -+∞-∞=-+∞-∞=?= -*= *=∑∑βα 3.2见书P109-112 (1)()()0ωω-j e X (2)()ωd e dX j jw (3)()jw e X - (4)()jw e X -* (5)()jw k j e X e ω- (6) ()()jw jw e X e X --21**π(7)()()() jw jw e X e X --21*- 3.8 注y(1)=0,y(1)=1, y(2)=3…… 3.11 3.14 见书P118 通常待分析的信号是连续信号,为了能应用离散傅立叶变换需要对连续时间信号进行采样,若m s f f 2≤,采样信号的频谱中周期延拓分量互相重叠,这就是混叠现象。解决混叠问题的唯一方法是保证采样频率足够高,使得m s f f 2≥。 泄漏现象是由数据截断造成的,改善泄漏可以增加采样点数N 或采用其它形式的截断函数,另外泄漏也会引起混叠。

信号分析与处理(第二版)徐科军黄云志课后答案

Chap1. ()()()()()()()()()()()() ()()()()()()()121 2 122 12112 2 121 2 2 2y 11102 y 0.5111 y 0.5 1.513y 0 13 013 y 0.5111 0.5 1.513t t t t t x t x t x x t d x x t x x t d t d t t t x x t d t d t t t t t or t t or t t t t t t t τττ ττττ τττττττττττ+∞ -∞ ----=*=-=-≤≤???=≤≤??=-= -=+-<≤=-= -=-++<<=≤-≥≤-≥??=+-<≤??-++<

()()[] ()()()[]()()()∑∞ =? ? ? ???Ω-Ω-+=- =-= =??? ??<≤<≤-=1002212 2 01cos cos cos 1cos 141cos 1cos 1 5 .0202 20 (a)n n n t n n n t n n n t x n n b n n a a T t t T t T t x πππππ πππ 代入公式得: ()() ()()() ()[] ()()[]()()∑∞ =Ω-? ? ? ???Ω-Ω-+=- =-= ==Ω=Ω-=1002222 2 012 212cos 1cos cos 11411cos 11 5.0cos 2 (b)n n n T jn t n n t n n n t x n b n n a a n n X e n X T t x t x πππππππ得到:根据时移性质: ()() ()()()[]()()[]() ∑?∑∞ =-∞ =Ω-+=-=Ω==Ω+=102232 20 2 0201 00 3cos cos 12 21cos 12cos 41 cos 2 (c)n T n n n t n n n t x n n dt t n t x T a a t n a a t x ππ ππ偶对称, ()()dt e t x j X t j ?+∞ ∞ -Ω-=Ω频谱密度函数:

浅谈信号分析与处理方法及应用论文

浅谈信号分析与处理方法及应用论文 作者:魏旺 摘要 今天的人们正生活在分享着信息学科与技术日新月异发展带来的各种成果之中。信息科学与技术的研究对象是信息传输、处理和控制等。信息科学与技术的基础是信号、系统和信号分析与处理的理论与方法。“信号分析与处理”这门课程正是近几年来在适应信息学科迅速发展、相应基础理论教学要求不断更新的情况下,形成的一门新课程。它整合了“信号与系统分析”和“数字信号处理”两门课程体系彼此存在的内存联系,注重了与“自动控制理论”的分工,从电子信息学科的基本任务出发,以信号分析为基础,系统分析为桥梁,处理技术为手段,设计系统为目的,实现原理、方法和应用三结合,把系统分析与设计系统服从于信号交换与处理的需要,从根本上改变了传统的以系统分析为主、信号处理为辅的状况,加强了两门课程之间的联系。 随着信息技术的不断发展和信息技术应用领域的不断扩展,这门课程已经从电子信息工程类专业的专业基础课程扩展成电子信息、自动控制、电子技术、电气工程、计算机技术、生物医学工程等众多电类专业的专业基础课程,甚至在很多非电专业中也设置了这门课程。而其内容也从单一的电系统分析扩展到许多非电系统分析。虽然各个专业开设这门课程时的侧重点会有所不同,应用背景也有差异,但是,本课程所提练的信号与系统的分析与处理的基本理论与基本方法是通用的。 关键词:信号系统与处理信号分析电子信息

第一章、信号系统的线性分析 数字信号处理是一个新的学科领域,它通过计算机或专用处理设备,用数字方式去处理数字或符号所表示的序列,以得到更符合人们要求的信号形式。 传统的超声波检测用手工进行,操作人员凭借经验对探伤仪上显示的波形进行评定,有一定的主观性,缺乏对信号本身的解剖,无法从根本上求证信号与被测对象之间的必然联系。为了能准确地提取出蕴涵于超声波信号中的信息,我们可以利用数字信号处理技术,从时域方面建立超声波信号的有限参数模型,从而将含在大量数据中的信息浓缩在有限个参数上。模型不仅可用于对信号的内在变化规律性与统计特性的描述,还可用于对过程的预测、控制,或对设备的工况监测、故障诊断等等,它比一个具体的时间序列或按数据所估计的特征量,更具有代表性。 信号可定义为一个承载信息的函数,通常表示为时间,的函数。对于幅度和时间都取连续值的信号称为模拟信号或时域连续信号;对于幅度值取连续值,而时间耿离散值的信号成为时域离散信号;而对于幅度和时问均为离散值的信号称为数字信号。我们所研究的超声回波信号就属于幅度和时间均为离散值的信号,亦称为超声回波的数字信号。 数字信号处理是一个新的学科领域,它是把数字或符号表示的序列,通过计算机或专用处理设备,用数字方式去处理这些序列,以达到更符合人们要求的信号形式。例如对信号的滤波、信号有用分量的提取和增强、无用分量的削弱以及对信号某些特征参数的估计。总之,凡是用数字方式对信号进行滤波、变换、增强、压缩、估计、识别等都是数字信号处理的研究对象。 时域信号到频域信号的转换是进行超声波频谱分析的基础。频谱分析是对信号在频率域内进行分析,分析的结果是以频率为坐标的相关物理量的谱线或曲线。以模拟信号的数字化处理系统为例,此系统先把模拟信号变换为数字信号,然后用数字技术进行处理,最后再还原成模拟信号。 由于数字信号处理的直接对象是数字信号,处理的方式是数值运算方式,使它相对模拟信号处理具有许多优点,归纳起来有以下几点: (1)灵活性 数字信号处理系统的性能取决于系统参数,这些参数存储在存储器中,很容易改变,因此系统的性能容易改变,甚至通过参数的改变,系统变成了另外完全不同的系统。灵活性还表现在数字系统可以分时复用,用一套数字系统分时处理

相关文档
最新文档