解三角形经典例题及解答

解三角形经典例题及解答
解三角形经典例题及解答

正弦、余弦定理

知识回顾:

1、直角三角形中,角与边的等式关系:在Rt ?ABC 中,设BC =a ,AC =b ,AB =c ,

根据锐角三角函数中正弦函数的定义,有sin a A c

=,sin b B c

=,又s i n 1c C c

==,

从而在直角三角形ABC 中,

sin sin sin a b c

A B C

==

. 2、当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,

有CD =sin sin a B b A =,则sin sin a b A B =,同理可得sin sin c b

C B =

, 从而sin sin a b

A B =

sin c C

=. 3、正弦定理:在一个三角形中,各边和它所对角的 的比相等,即sin sin a b

A B =

sin c C

=. 4、理解定理

(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =; (2)

sin sin a b A B =sin c C =等价于 ,sin sin c b C B

=

,sin a A =sin c C . (3)正弦定理的基本作用为:

①已知三角形的任意两角及其一边可以求其他边,如sin sin b A

a B

=

;b = . ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如sin sin a A B b

=;sin C = .

(4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形. 5、知识拓展

sin sin a b A B =2sin c

R C

==,其中2R 为外接圆直径. 6、勾股定理:

7、余弦定理:三角形中 平方等于 减去 的两倍,即=2a ;

=2b ;=2c 。

8、余弦定理的推论:

=A cos ;=B cos ; =C cos 。

9、在,反之成立;

则中,若,222c b a ABC +

例1、在ABC ?中,已知45A =,60B =,42a =cm ,解三角形.

例2、(1)在△ABC 中,已知1 求cosB.

(2)在△ABC 中,已知a=、B=1500

求b.

(3)在△ABC 中,已知a=8, b=、B=300求c.

例3、在C A a c B b ABC ,,1,60,30和求中,===?

解:∵

21

3

60sin 1sin sin ,sin sin 0=?==∴=b B c C C c B b ∴222=+=c b a

例4、C B b a A c ABC ,,2,45,60和求中,===?

解:23

245sin 6sin sin ,sin sin 0=?==∴=a A

c C C c A a

1360

sin 75sin 6sin sin ,75600

+==

===∴C

B

c b B C 时,当, 例5、 在△ABC 中,求证:

)cos cos (a

A b

B c a b b a -=- 证明:将ac b c a B 2cos 222-+=,bc

a c

b A 2cos 2

22-+=代入右边

得右边22222222

22()222a c b b c a a b c abc abc ab

+-+--=-=

22a b a b

ab b a

-==-=左边,

)cos cos (a

A b

B c a b b a -=- 例6、 在锐角△AB

C 中,求证:C B A C B A cos cos cos sin sin sin ++>++

证明:∵△ABC 是锐角三角形,∴,2

A B π

+>

02

2

A B π

π

>>

->

∴sin sin()2

A B π

>-,即sin cos A B >;同理sin cos B C >;sin cos C A >

∴C B A C B A cos cos cos sin sin sin ++>++

例7、 在△ABC 中,求证:2

cos 2cos 2cos 4sin sin sin C

B A

C B A =++。

证明:∵sin sin sin 2sin cos sin()22A B A B

A B C A B +-++=++ ∴2

cos 2cos 2cos 4sin sin sin C

B A

C B A =++

例8、 在△ABC 中,若0120=+B A ,则求证:

1=+++c

a b c b a 。

证明:要证1=+++c

a b

c b a ,只要证

2221a ac b bc ab bc ac c +++=+++, 即222a b c ab +-= 而∵0120,A B +=∴060C = ∴原式成立。

例9、在△ABC 中,若2

23cos cos 222

C A b

a c +=

,则求证:2a c b += 证明:∵223cos cos 222

C A b

a c +=

∴1cos 1cos 3sin sin sin 222

C A B

A C ++?+?=

即sin sin cos sin sin cos 3sin A A C C C A B +++=

∴sin sin sin()3sin A C A C B +++=

即sin sin 2sin A C B +=,∴2a c b +=

例10、在△ABC 中,若)sin()()sin()(2222B A b a B A b a +-=-+,请判断三角形的形状。

解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A

a b A B b A B B

++===--

∴等腰或直角三角形

例11、中,a b c 、、分别为内角A B C 、、的对边,

且2sin (2)sin (2)sin a A b c B c b C =+++

(Ⅰ)求A 的大小;

(Ⅱ)若sin sin 1B C +=,试判断ABC ?的形状.

解:(Ⅰ)由已知,根据正弦定理得c b c b c b a )2()2(22+++= 即bc c b a ++=222

由余弦定理得A bc c b a cos 2222-+=

故?=-=120,2

1

cos A A

(Ⅱ)由(Ⅰ)得.sin sin sin sin sin 222C B C B A ++= 又1sin sin =+C B ,得2

1sin sin ==C B 因为?<

所以ABC ?是等腰的钝角三角形。

例12、 在ABC 内接于半径为R 的圆,且,sin )2()sin (sin 222B b a C A R -=- 求△ABC 的面积的最大值。

解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 例13、 ABC 的三边c b a >>且2

,2π

=-=+C A b c a ,求::a b c

解:sin sin 2sin ,2sin

cos 4sin cos

2222

A C A C A C A C

A C

B +-+++== 例14、

C 中,BC=a , AC=b , a, b 是方程02322=+-x x 的两个根,且

2cos(A+B)=1

求(1)角C 的度数 (2)AB 的长度 (3)△ABC 的面积

解:(1)cosC=cos[π-(A+B)]=-cos(A+B)=-2

1

∴C=120?

(2)由题设:???=-=+2

3

2b a b a

∴AB 2=AC 2+BC 2-2AC ?BC ?osC 120cos 222ab b a -+=

ab b a ++=22102)32()(22=-=-+=ab b a 即AB=10 (3)S △ABC =2

3

23221120sin 21sin 21=??== ab C ab

课后小结: 1. 正弦定理:

sin sin a b

A B

=

sin c C = 2. 正弦定理的证明方法:①三角函数的定义,

还有 ②等积法,③外接圆法,④向量法. 3.应用正弦定理解三角形: ①已知两角和一边;

②已知两边和其中一边的对角. 课后练习: 一、选择题

1.在△ABC 中,若0030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-

2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos

C .A tan

D .A tan 1

3.在△ABC 中,角,A B 均为锐角,且,sin cos B A > 则△ABC 的形状是( )

A .直角三角形

B .锐角三角形

C .钝角三角形

D .等腰三角形

4.等腰三角形一腰上的高是3,这条高与底边的夹角为060, 则底边长为( )

A .2

B .

2

3

C .3

D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0015030或

6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .090 B .0120 C .0135 D .0150 二、填空题

1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。 2.在△ABC 中,若=++=A c bc b a 则,222_________。 3.在△ABC 中,若====a C B b 则,135,30,200_________。

4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。 三、解答题

15.在△ABC

中,已知b ,c =1,45B =?,求a ,A ,C .

16.在△ABC 中,a +b =1,A=600,B=450,求a ,b

17.在△ABC

中,ABC S =48ac =,2a c -=,求b .

18.如图,在四边形ABCD 中,AC 平分∠DAB ,∠ABC=600,AC=7,AD=6,

S △ADC =2

3

15,求AB 的长.

19、BC 中,AB =5,AC =3,D 为B C 中点,且AD =4,求B C

解:设BC 边为x,则由D 为BC 中点,可得BD =DC =2

x

在△ADB 中,cos ADB =,2425)2(422

22222x x BD

AD AB BD AD ?

?-+=??-+

在△ADC 中,cos ADC =.2

423)2(422222

22x x

DC

AD AC DC AD ?

?-+=??-+

又∠ADB +∠ADC =180°

∴cos ADB =cos (180°-∠ADC )=-cos ADC

C

∴2

423)2(42425)2(42

22222x x x x ?

?-+-

=??-+ 解得,x=2, 所以,BC 边长为2 一、选择题

1.C 00tan 30,tan 302b

b a

c b c b a

=====-=2.A 0,sin 0A A π<<>

3.C cos sin()sin ,,22A A B A B ππ=->-都是锐角,则,,222

A B A B C πππ

->+<>

4.D 作出图形

5.D 01

2sin ,sin 2sin sin ,sin ,302

b a B B A B A A ====或0150

6.B 设中间角为θ,则22200005871

cos ,60,180601202582

θθ+-=

==-=??为所求 二、填空题

1.12 11sin sin sin cos sin 222

A B A A A ==≤ 2.0

120 22201

cos ,12022

b c a A A bc +-=

=-= 3.26-

00sin 2

15,

,4sin 4sin154sin sin sin 4

a b b A A a A A B B ======? 4. 0120 a ∶b ∶c =sin A ∶sin B ∶sin C =7∶8∶13,

令7,8,13a k b k c k === 22201

cos ,12022

a b c C C ab +-=

=-= 5. 4

,,sin sin sin sin sin sin AC BC AB AC BC AB

B A

C B A C

+===+AC BC + 第二讲 正弦、余弦定理的应用

例1、在某点B 处测得建筑物AE 的顶端A 的仰角为θ,沿BE 方向前进30m ,至点C 处测得顶端A 的仰角为2θ,再继续前进103m 至D 点,测得顶端A 的仰角为4θ,求θ的大小和建筑物AE 的高。 解法一:(用正弦定理求解)由已知可得在?ACD 中, AC=BC=30, AD=DC=103,

∠ADC =180?-4θ,

∴θ

2sin 310=

)

4180sin(30

θ-?

。 因为 sin4θ=2sin2θcos2θ

∴ cos2θ=

2

3

,得 2θ=30? ∴ θ=15?,

∴在Rt ?ADE 中,AE=ADsin60?=15

答:所求角θ为15?,建筑物高度为15m

解法二:(设方程来求解)设DE= x ,AE=h 在 Rt ?ACE 中,(103+ x)2 + h 2=302 在 Rt ?ADE 中,x 2+h 2=(103)2 两式相减,得x=53,h=15

∴在 Rt ?ACE 中,tan2θ=

x

h +310=

3

3

∴2θ=30?,θ=15?

答:所求角θ为15?,建筑物高度为15m

解法三:(用倍角公式求解)设建筑物高为AE=8,由题意,得

∠BAC=θ, ∠CAD=2θ,

AC = BC =30m , AD = CD =103m 在Rt ?ACE 中,sin2θ=30x

在Rt ?ADE 中,sin4θ=3

104,

②÷① 得 cos2θ=

2

3

,2θ=30?,θ=15?,AE=ADsin60?=15 答:所求角θ为15?,建筑物高度为15m

例2、某巡逻艇在A 处发现北偏东45?相距9海里的C 处有一艘走私船,正沿南偏东75?的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?

解:如图,设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB=10x, AB=14x,AC=9,

∠ACB=?75+?45=?120

∴(14x) 2= 92+ (10x) 2 -2?9?10xcos ?120 ∴化简得32x 2-30x-27=0,即x=

23,或x=-16

9

(舍去) 所以BC = 10x =15,AB =14x =21,

又因为sin ∠BAC =AB BC ?120sin =21

15

?23=1435

∴∠BAC =3831'?,或∠BAC =14174'?(钝角不合题意,舍去), ∴3831'?+?45=8331'?

答:巡逻艇应该沿北偏东8331'?方向去追,经过1.4小时才追赶上该走私船.

例3、(07宁夏,海南))如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个侧点C 与D .现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB . 解:在BCD △中,πCBD αβ∠=--. 由正弦定理得sin sin BC CD

BDC CBD

=

∠∠. 所以sin sin sin sin()

CD BDC s BC CBD β

αβ∠=

=∠+·.

在 ABC △ 中tan sin tan sin()

s AB BC ACB θβ

αβ=∠=

+·.

例4、(08湖南)在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域.点E 正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45且与点A 相距

海里的位置B ,经过40分钟又测得该船已行驶到点A 北偏东45+θ(其中sin θ

=

26

,090θ<<)且与点A 相距

C .

(I )求该船的行驶速度(单位:海里/小时); (II )若该船不改变航行方向继续行驶.判断

它是否会进入警戒水域,并说明理由. 解: (I )如图,AB

由于090θ<<,所以cos θ

26

= 由余弦定理得

=

3

=/小时). (II )解法一 如图所示,以A 为原点建立平面直角坐

标系,

设点B 、C 的坐标分别是B (x 1,y 2), C (x 1,y 2), BC 与x 轴的交点为D.

由题设有,x 1=y 1=

AB=40,

x 2=AC

cos )30CAD θ∠=-=, y 2=AC

sin )20.CAD θ∠=-= 所以过点B 、C 的直线l 的斜率k =

20

210

=,直线l 的方程为y =2x -40. 又点E (0,-55)到直线l 的距离d

7.=<

所以船会进入警戒水域.

解法二: 如图所示,设直线AE 与BC 的延长线相交于点Q .

在△ABC 中,由余弦定理得,

222

.

从而sin ABC ∠=== 在ABQ ?中,由正弦定理得,

AQ=

sin 40.sin(45)210

AB ABC ABC ∠==-∠ 由于AE =55>40=AQ ,所以点Q 位于点A 和点E 之间,且QE=AE-AQ =15.

过点E 作EP ⊥BC 于点P ,则EP 为点E 到直线BC 的距离.

在Rt QPE ?中,PE =QE ·sin sin sin(45)PQE QE AQC QE ABC ∠=?∠=?-∠

=157.5

?

=< 所以船会进入警戒水域. 课后练习:

1、(07山东)如图,

甲船以每小时海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时,乙船位于甲船的北偏西105?的方向1B 处,此时两船相距20海里.当甲船航行20分钟到达2A 处时,乙船航行到甲船的

北偏西120?方向的2B 处,

此时两船相距, 问乙船每小时航行多少海里?

解:如图,连结12A B

,22A B =12

20

30210260

A A =

?=, 122A A B ?是等边三角形,1121056045B A B ∠=?-?=?,

在121A B B ?中,由余弦定理得

22212111211122

2

2cos 4520220200

B B A B A B A B A B =+-??

=+-??=,

60=

答:乙船每小时航行海里.

2、某一时刻,一架飞机在海面上空C 点处观测到一人在海岸A 点处钓鱼。从C 点处测得A 的俯角为45o ;同一时刻,从A 点处测得飞机在水中影子的俯角为60o 。已知海岸的高度为4米,求此时钓鱼的人和飞机之间的距离(结果保留整数)。

3、人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O 点的正北方向10海里处的A 点有一涉嫌走私船只正以24海里/小时的速度向正东方向航行。为迅速实验检查,巡逻艇调整好航向,以26海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问(1)需要几小时才能追上?(点B 为追上时的位置)(2)确定巡逻艇的追赶方向(精确到01.?)

(如图4) 图4

参考数据:

分析:(1)由图可知?A B O 是直角三角形,于是由勾股定理可求。 (2)利用三角函数的概念即求。 解:设需要t 小时才能追上。 则A B t O B t

==2426, (1)在R t A O B ?中, O B O A A B

222

=+,∴=+()()261024222t t 则t =1(负值舍去)故需要1小时才能追上。

(2)在R t A O B ?中

即巡逻艇沿北偏东6

74.?方向追赶。

解:在中,R t A B C B C A B ?=?

t a n 45

必修五解三角形常考题型非常全面

必修五解三角形常考题型 1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1 在V ABC 中,已知A:B:C=1:2:3,求a :b :c. 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。 解:::1:2:3,A . ,,, 6 3 2 1::sin :sin :sin sin :sin :sin :1 2.6 3 2 2A B C B C A B C a b A B C ππ π π π π π =++=∴= = = ∴=== =Q 而 【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。 例2在ABC 中,已知 ,C=30°,求a+b 的取值范围。 【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。 解:∵C=30°, ,∴由正弦定理得: sin sin sin a b c A B C === ∴ )sin (150°-A ). ∴ )[sinA+sin(150° )·2sin75°·cos(75° -A)= 2 cos(75°-A) ① 当75°-A=0°,即A=75°时,a+b 取得最大值 2 ; ② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°, ∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1, ∴> 2 cos75° = 2 × 4 . 综合①②可得a+b 的取值范围为 ,8+ 考察点2:利用正弦定理判断三角形形状 例3在△ABC 中,2 a ·tanB=2 b ·tanA ,判断三角形ABC 的形状。 【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。

解三角形经典练习试题集锦(附答案)

解三角形 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为0 60,则 底边长为( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .0 60 30或 B .0 060 45或 C .0 060120或 D .0 15030或 6.边长为5,7,8的三角形的最大角与最小角的和是( ) A .0 90 B .0 120 C .0 135 D .0 150 二、填空题 1.在Rt △ABC 中,0 90C =,则B A sin sin 的最大值是 _______________。 2.在△ABC 中,若=++=A c bc b a 则,2 2 2 _________。 3.在△ABC 中,若====a C B b 则,135,30,20 _________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值 是________。 三、解答题 1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么? 2.在△ABC 中,求证: )cos cos (a A b B c a b b a -=- 3.在锐角△ABC 中,求证: C B A C B A cos cos cos sin sin sin ++>++。

解三角形典型例题

1.正弦定理和余弦定理 在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 2.S △ABC =2ab sin C =2bc sin A =2ac sin B =4R =2(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r . 1.在△ABC 中,A >B ?a >b ?sin A >sin B ?cos A c; a-b

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =2 1ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =21ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

正弦定理余弦定理综合应用解三角形经典例题老师

一、知识梳理 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 111 sin sin sin 222ABC S ab C bc A ac B ?= == 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二: ?? ? ??===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三:::sin :sin :sin a b c A B C = 形式四: sin ,sin ,sin 222a b c A B C R R R = == 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2 2 2 2cos a b c bc A =+- 2 2 2 2cos b c a ca B =+- 222 2cos c a b ab C =+-(解三角形的重要工具) 形式二: 222cos 2b c a A bc +-= 222cos 2a c b B ac +-= 222 cos 2a b c C ab +-= 二、方法归纳 (1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b c A B C == ,可求出角C ,再求b 、c . (2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2 -2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C . (4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a b A B = ,求出另一边b 的对角B ,由C =π-(A +B ),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a b A B = 求B 时,可能出一解,两解或无解的情况 a = b sinA 有一解 b >a >b sinA 有两解 a ≥b 有一解 a >b 有一解 三、课堂精讲例题 问题一:利用正弦定理解三角形

三角形的必备知识和典型例题及详解

三角形的必备知识和典型例题及详解 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2+b 2=c 2。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B = c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin === (R 为外接圆半径) 公式的变形:______________________ ______________ _________________ (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角.

解三角形典型例题答案

1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+= sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+= cos 0A =或cos 0B =,得2A π=或2B π= 所以△ABC 是直角三角形。 2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 2 22-+=代入右边 得右边22222222 22()222a c b b c a a b c abc abc ab +-+--=-= 22a b a b ab b a -==-=左边, ∴)cos cos (a A b B c a b b a -=- 3.证明:∵△AB C 是锐角三角形,∴,2A B π+>即022A B ππ>>-> ∴sin sin()2 A B π >-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++ 4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222 A C A C B B +-=, ∴1sin cos 222B A C -==0,22 B π<<∴cos 2B = ∴sin 2sin cos 22244B B B ==?=839 5解:22222222sin()sin cos sin ,sin()cos sin sin a b A B a A B A a b A B b A B B ++===-- cos sin ,sin 2sin 2,222cos sin B A A B A B A B A B π===+=或2 ∴等腰或直角三角形 6解:2sin sin 2sin sin )sin ,R A A R C C b B ?-?=- 222sin sin )sin ,,a A c C b B a c b -=--=-

(完整版)解三角形三类经典题型

解三角形三类经典类型 类型一 类型二 类型三 判断三角形形状 求范围与最值 求值专题 类型一 判断三角形形状 2 2 2 例1已知△ ABC 中,bsinB=csinC,且sin A sin B sin C ,试判断三角形的形状. 解:T bsinB=csinC,由正弦定理得 sin 2 B=sin 2C ,「. sinB=sinC B=C 由sin 2A sin 2 B sin 2C 得a 2 b 2 c 2 三角形为等腰直角三角形. 例2:在厶ABC 中,若E =60 ,2 b=a+c,试判断△ ABC 的形状. 解:T2 b=a+c,由正弦定理得 2sinB=sinA+sinC,由 B=60 得 sinA+sinC= . 3 由三角形内角和定理知 sinA+sin( 120 A )= 3 ,整理得sin(A+ 30 )=1 二A+30 90,即A 60 ,所以三角形为等边三角形 2bc 整理得(a 2 b 2)(a 2 b 2 c 2) 0 ? a 2 b 2或a 2 b 2 c 2 即三角形为等腰三角形或直角三角形 例4:在厶ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA= sin B sinC ,试判断三角形的形状. cosB cosC 解:⑴由三角形内角和定理得 sin(B+C)=2cosBsinC 整理得sinBcosC — cosBsinC=0即sin(B — C)=0 ? B=C 即三角形为等腰三角形 (2)由已知得sinAcosB+sinAcosC=sinB+sinC ,结合正、余弦定理得 例3:在厶ABC 中,已知 tan A tan B 2 ,试判断厶ABC 的形状. b 2 解:法1:由题意得 sin AcosB sin B cos A ■ 2 A sin A ■ 2 - sin B ,化简整理得 sinAcosA=sinBcosB 即 sin2A=sin2B ??? 2A=2B 或 2A+2B=n /? A=B 或 A a 2 a 2 ,2 c b 法2:由已知得sinAcosB sin B cos A 2 a 2 结合正、余弦定理得 b 2 2ac b b 2 2 2 c a a 2 b 2 B i ,?三角形的形状为等腰三角形或直角三角形.

解三角形的必备知识和典型例题及习题

解三角形的必备知识和典型例题及习题一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC中,C=90°,AB=c,AC=b,BC=a。 2 2 2 (1)三边之间的关系: a + b =c 。(勾股定理) (2)锐角之间的关系:A+B=90°; (3)边角之间的关系:(锐角三角函数定义) sin A=cos B=a c ,cos A=sin B= b c ,tan A= a b 。 2.斜三角形中各元素间的关系: 在△ABC中,A、B、C为其内角,a、b、c 分别表示A、B、C的对边。(1)三角形内角和:A+B+C=π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 a sin A b sin B c sin C 2R (R为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 2 2 2 2 2 2 2 2 2 a = b + c -2bc cos A; b =c +a -2ca cos B; c =a +b -2ab cos C。 3 .三角形的面积公式: (1)S =1 2 ah a= 1 2 bh b= 1 2 ch c(h a、h b、h c 分别表示a、b、c 上的高); (2)S =1 2 ab sin C= 1 2 bc sin A= 1 2 ac sin B; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题: 第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题: 第1、已知三边求三角. 第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换 三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

实用文档之解三角形经典练习题集锦(附答案)

实用文档之"解三角形" 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D . A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则 △ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角 为0 60,则底边长为( ) A .2 B .23 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( ) A .006030或 B .006045或 C .0 060120或 D .0 015030或 6.边长为5,7,8的三角形的最大角与最小角的和是 ( ) A .090 B .0120 C .0135 D .0 150 二、填空题 1.在Rt △ABC 中,0 90C =,则B A sin sin 的最大值是_______________。 2.在△ABC 中,若=++=A c bc b a 则,2 2 2 _________。 3 . 在△ABC 中,若 ====a C B b 则,135,30,20 _________。 4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。 三、解答题 1.在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么? 2.在△ABC 中,求证: )cos cos (a A b B c a b b a -=- 3.在锐角△ABC 中,求 证: C B A C B A cos cos cos sin sin sin ++>++。 4.在△ABC 中,设,3 ,2π =-=+C A b c a 求B sin 的 值。 解三角形 一、选择题 1.在△ABC 中,::1:2:3A B C =,则::a b c 等于 ( ) A .1:2:3 B .3:2:1 C .2 D .2 2.在△ABC 中,若角B 为钝角,则sin sin B A -的值( ) A .大于零 B .小于零 C .等于零 D .不能确定 3.在△ABC 中,若B A 2=,则a 等于( ) A .A b sin 2 B .A b cos 2 C .B b sin 2

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

(完整版)解三角形三类经典题型

解三角形三类经典类型 类型一 判断三角形形状 类型二 求范围与最值 类型三 求值专题 类型一 判断三角形形状 例1:已知△ABC 中,bsinB=csinC,且C B A 2 22sin sin sin +=,试判断三角形的形状. 解:∵bsinB=csinC,由正弦定理得 sin 2B=sin 2 C ,∴ sinB=sinC ∴ B=C 由 C B A 222sin sin sin += 得 2 22c b a += ∴三角形为等腰直角三角形. 例2:在△ABC 中,若B=ο 60,2b=a+c,试判断△ABC 的形状. 解:∵2b=a+c, 由正弦定理得2sinB=sinA+sinC,由B=ο 60得sinA+sinC=3 由三角形内角和定理知sinA+sin(A -ο 120)=3,整理得 sin(A+ο30)=1 ∴A+ο ο ο 60,9030==A 即,所以三角形为等边三角形. 例3:在△ABC 中,已知2 2 tan tan b a B A =,试判断△ABC 的形状. 解:法1:由题意得 B A A B B A 2 2sin sin cos sin cos sin =,化简整理得sinAcosA=sinBcosB 即sin2A=sin2B ∴2A=2B 或2A+2B=π ∴A=B 或2 π = +B A ,∴三角形的形状为等腰三角形或直角三角形. 法2:由已知得22cos sin cos sin b a A B B A =结合正、余弦定理得2 222222222b a bc a c b b a c b c a a =-+? -+? , 整理得0))((2 2 2 2 2 =-+-c b a b a ∴ 2 2222c b a b a =+=或 即三角形为等腰三角形或直角三角形 例4:在△ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA= C B C B cos cos sin sin ++,试判断三角形的形状. 解:(1)由三角形内角和定理得 sin(B+C)=2cosBsinC 整理得sinBcosC -cosBsinC=0即sin(B -C)=0 ∴ B=C 即三角形为等腰三角形. (2)由已知得 sinAcosB+sinAcosC=sinB+sinC ,结合正、余弦定理得

解三角形经典例题及解答

知识回顾: 4、理解定理 (1) 正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即 存在正数 k 使 a ksinA , ________________ , c ksinC ; (2)」 b J 等价于 ______________________ sin A sin B sin C (3) 正弦定理的基本作用为: 正弦、余弦定理 1、直角三角形中,角与边的等式关系:在 Rt ABC 中,设 BC=a ,AG=b , AB=c , 根据锐角三角函数中正弦函数的定义,有 -sin A ,- sin B ,又sinC 1 -,从而在直角三 c c c 角形ABC 中,-?- sin A b sin B c si nC 2、当 ABC 是锐角三角形时,设边 AB 上的高是CD 根据任意角三角函数的定义, 有 CD=asinB bsinA ,则 一- b ,同理可得一 sin A sin B sin C b sin B 从而」- sin A b sin B c sin C 3、正弦定理:在一个三角形中,各边和它所对角的 ____ 的比相等,即旦 sin A b sin B c sin C c b a c sin C sin B ' sin A sin C

① 已知三角形的任意两角及其一边可以求其他边,如 a bsinA ; b sin B ② 已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如 sin A a sin B ; sinC . b (4) 一般地,已知三角形的某些边和角,求其它的边和角的过程叫作 解三角形? 5、知识拓展 6、 勾股定理: ___________________________________ 7、 余弦定理:三角形中 __________ 平方等于 _______________________ 减去 _____________ ______________ 的两倍,即a 2 b 2 8、余弦定理的推论: cosC ____________________________ 。 9、在 ABC 中,若a 2 b 2 c 2,则 ______________________ ,反之成立; 典型例题: a b sin A sin B c si nC 2R ,其中2R 为外接圆直径. c 2 cosA cosB

九年级数学下册《解直角三角形》典型例题(含答案)

《解直角三角形》典型例题 例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ; (2)由a b B =tan ,知 ; (3)由c a B = cos ,知860cos 4cos =?==B a c . 说明 此题还可用其他方法求b 和c . 例 2 在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形. 解法一 ∵ ∴ 设 ,则 由勾股定理,得 ∴ . ∴ . 解法二 133330tan =?=?=b a 说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中, 于D ,若 ,解三 角形ABC .

分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手. 解在Rt中,有: ∴ 在Rt中,有 说明(1)应熟练使用三角函数基本关系式的变形,如: (2)平面几何中有关直角三角形的定理也可以结合使用,本例中 “”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值: 所以解直角三角形问题,应开阔思路,运用多种工具. 例4在中,,求. 分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差; (2)不是直角三角形,可构造直角三角形求解.

解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有 ; 在中,,且 , ∴; 于是,有, 则有 说明还可以这样求:

解三角形经典练习题集锦附答案

解三角形 令狐采学 一、选择题 1.在△ABC 中,若0 30,6,90===B a C ,则b c -即是( ) A .1 B .1- C .32 D .32- 2.若A 为△ABC 的内角,则下列函数中一定取正值的是( ) A .A sin B .A cos C .A tan D .A tan 1 3.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝 角三角形 D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底 边的夹角为0 60,则底边长为( ) A .2 B . 2 3 C .3 D .32 5.在△ABC 中,若B a b sin 2=,则A 即是( ) A .006030或 B .006045或 C .0060120或 D .0015030或 6.边长为5,7,8的三角形的最年夜角与最小角的和是( ) A .090 B .0120 C .0135 D .0150 二、填空题 1.在Rt △ABC 中,090C =,则B A sin sin 的最年夜值是_______________。 2 . 在 △ABC 中 , 若 =++=A c bc b a 则,222_________。 3.在△ABC 中 , 若 ====a C B b 则,135,30,200_________。 4.在△ABC 中, 若 sin A ∶sin B ∶sin C =7∶8∶13,则 C =_____________。 5.在△ABC 中,,26-=AB 030C =,则AC BC +的最年夜值是________。 三、解答题 1.在△ABC 中,若,cos cos cos C c B b A a =+则 △A BC 的形状是什么? 2.在△ABC 中,求证:)cos cos (a A b B c a b b a -=- 3.在锐角△ABC 中,求证: C B A C B A cos cos cos sin sin sin ++>++。 4.在△ABC 中,设,3 ,2π =-=+C A b c a 求B sin 的 值。 解三角形 一、选择题 1.在△ABC 中,::1:2:3A B C =,则::a b c 即是 ( ) A .1:2:3 B .3:2:1 C .1:2 D .2 2.在△ABC 中,若角B 为钝角,则sin sin B A -的值( ) A .年夜于零 B .小于零 C .即是零 D .不克不及确定 3.在△ABC 中,若B A 2=,则a 即是( ) A .A b sin 2 B .A b cos 2 C .B b sin 2 D .B b cos 2 4.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( ) A .直角三角形 B .等边三角形 C .不克不 及确定 D .等腰三角形 5.在△ABC 中,若,3))((bc a c b c b a =-+++则A = ()

解三角形三类经典题型教学内容

解三角形三类经典题 型

解三角形三类经典类型 类型一 判断三角形形状 类型二 求范围与最值 类型三 求值专题 类型一 判断三角形形状 例1:已知△ABC 中,bsinB=csinC,且C B A 2 22sin sin sin +=,试判断三角形的形状. 解:∵bsinB=csinC,由正弦定理得 sin 2B=sin 2 C ,∴ sinB=sinC ∴ B=C 由 C B A 222sin sin sin += 得 2 22c b a += ∴三角形为等腰直角三角形. 例2:在△ABC 中,若B=ο 60,2b=a+c,试判断△ABC 的形状. 解:∵2b=a+c, 由正弦定理得2sinB=sinA+sinC,由B=ο 60得sinA+sinC=3 由三角形内角和定理知sinA+sin(A -ο 120)=3,整理得 sin(A+ο30)=1 ∴A+ο οο60,9030==A 即,所以三角形为等边三角形. 例3:在△ABC 中,已知2 2 tan tan b a B A =,试判断△ABC 的形状. 解:法1:由题意得 B A A B B A 2 2sin sin cos sin cos sin =,化简整理得sinAcosA=sinBcosB 即sin2A=sin2B ∴2A=2B 或2A+2B=π ∴A=B 或2 π = +B A ,∴三角形的形状为等腰三角形或直角三角形. 法2:由已知得22cos sin cos sin b a A B B A =结合正、余弦定理得2 222222222b a bc a c b b a c b c a a =-+? -+? , 整理得0))((2 2 2 2 2 =-+-c b a b a ∴ 2 2222c b a b a =+=或 即三角形为等腰三角形或直角三角形 例4:在△ABC 中,(1)已知sinA=2cosBsinC ,试判断三角形的形状; (2)已知sinA= C B C B cos cos sin sin ++,试判断三角形的形状. 解:(1)由三角形内角和定理得 sin(B+C)=2cosBsinC 整理得sinBcosC -cosBsinC=0即sin(B -C)=0 ∴ B=C 即三角形为等腰三角形. (2)由已知得 sinAcosB+sinAcosC=sinB+sinC ,结合正、余弦定理得

解三角形经典例题

解三角形 一、 知识点梳理: 1、正弦定理:在△ABC 中, R C c B b A a 2sin sin sin === 注:①R 表示△ABC 外接圆的半径 ②正弦定理可以变形成各种形式来使用 2、余弦定理:在△ABC 中, A bc c b a cos 2222-+= B ac c a b cos 2222-+= C ab b a c cos 2222-+= 也可以写成第二种形式: bc a c b A 2cos 222-+=,ac b c a B 2cos 222-+=,ab c b a C 2cos 2 22-+= 3、△ABC 的面积公式,B ac A bc C ab S sin 2 1sin 21sin 21=== 二、题组训练: 1、在△ABC 中, a=12,A=060,要使三角形有两解,则对应b 的取值范围为 2、判定下列三角形的形状 在△ABC 中,已知38,4,3===c b a ,请判断△ABC 的形状。 在△ABC 中,已知C B A 222sin sin sin <+,请判断△ABC 的形状。 在△ABC 中,已知bc a A == 2,2 1cos ,请判断△ABC 的形状。 在△ABC 中,已知C B bc B c C b cos cos 2sin sin 2222=+,请判断△ABC 的形状。 在△ABC 中,,sin sin 3)sin sin )(sin sin sin (sin C B A C B C B A =-+++请判断△ABC 的形状。 3、在△ABC 中,已知030,4,5===A b a ,求△ABC 的面积。

解三角形知识点汇总和典型例题(新)

中小学1对1课外辅导专家 文成教育学科辅导教案讲义 授课对象 授课教师 徐老师 授课时间 3月11日 授课题目 解三角形复习总结 课 型 复习课 使用教具 人教版教材 教学目标 熟练掌握三角形六元素之间的关系,会解三角形 教学重点和难 点 灵活解斜三角形 参考教材 人教版必修5第一章 教学流程及授课详案 解三角形的必备知识和典型例题及详解 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。 (1)三边之间的关系:a 2 +b 2 =c 2 。(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B = c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。 (1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a 2= b 2+ c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =2 1 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);

高中数学题型解法归纳《解三角形题型的解法》

【知识要点】 一、直角三角形中各元素间的关系: 在ABC ?中,0 90,,,.C AB c AC b BC a ==== (1)三边之间的关系:222a b c +=(勾股定理) (2)锐角之间的关系:090A B +=; (3)边角之间的关系:(锐角三角函数定义) sin cos a A B c == ,cos sin b A B c ==,tan a A b =. 二、斜三角形中各元素间的关系: 在ABC ?中,A B C 、、为其内角,a b c 、、分别表示A B C 、、的对边. (1)三角形内角和:A B C π=++. (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两 倍. 2222cos a b c bc A =+-; 2222cos b a c ac B =+-; 2222cos c a b ab C =+-. 222 222 222 cosA cosB cosC 222b c a a c b a b c bc ac ab +-+-+-= = = 2222cos a b c ab C +-= 2222cosA c b a bc +-= 2222cosB a c b ac +-= 三、三角形的面积公式: (1)111 222a b c S ah bh ch ?= ==(a b c h h h 、、分别表示a b c 、、的高) ; (2)111sin bcsinA acsin 222S ab C B ?====2 1 四、解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及

解三角形经典例题及解答

正弦、余弦定理 知识回顾: 1、直角三角形中,角与边的等式关系:在Rt ?ABC 中,设BC =a ,AC =b ,AB =c , 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又s i n 1c C c ==, 从而在直角三角形ABC 中, sin sin sin a b c A B C == . 2、当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义, 有CD =sin sin a B b A =,则sin sin a b A B =,同理可得sin sin c b C B = , 从而sin sin a b A B = sin c C =. 3、正弦定理:在一个三角形中,各边和它所对角的 的比相等,即sin sin a b A B = sin c C =. 4、理解定理 (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =; (2) sin sin a b A B =sin c C =等价于 ,sin sin c b C B = ,sin a A =sin c C . (3)正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B = ;b = . ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如sin sin a A B b =;sin C = . (4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形. 5、知识拓展 sin sin a b A B =2sin c R C ==,其中2R 为外接圆直径. 6、勾股定理: 7、余弦定理:三角形中 平方等于 减去 的两倍,即=2a ; =2b ;=2c 。 8、余弦定理的推论: =A cos ;=B cos ; =C cos 。 9、在,反之成立; 则中,若,222c b a ABC +

相关文档
最新文档