回转窑和余热锅炉系统的冶炼及热力学计算

回转窑和余热锅炉系统的冶炼及热力学计算
回转窑和余热锅炉系统的冶炼及热力学计算

回转窑和余热锅炉系统的冶炼及热力学计算朝鲜锌工业集团现有冶炼废渣50万吨左右。物料组成为:Zn9%, 铅

4.9%, 银150g/t.,并且在每天生产中还要排出废渣。通过焙烧收集技术,可以把锌铅通过焙烧的提取,根据现有原料计算可以提出含量50%左右次氧化锌和氧化铅。

1.介绍

-工艺系统

朝鲜端川锌厂历年来锌系统产出的锌废渣一直堆存而未处理,为回收其中锌金属及其它有价金属,决定建设2台Ф3×45m锌废渣回转窑,捕集的氧化锌进行浸出、净液、电解最终获得电锌,由于氧化锌的湿法处理系统需要蒸汽,为此厂方决定在回转窑后增设余热锅炉,回收回转窑烟气中的余热,产出低压蒸汽供电锌生产使用。

-生产能力

回转窑单台日处理原料200吨,配套收集系统、脱硫系统,每天单台可收集50%的次氧化锌30-35吨,两套设备可以完成日处理400吨原料的计划,每天可收集50%的次氧化锌60-70吨。

-工艺介绍

将含锌渣混入无烟粉煤或焦粉,用加料装置进入回转窑内,由于窑内体具有倾斜度和一定的转速,炉料在室内不断运动,配入的还原煤中的碳,在高温作用下,使原料中的Zn还原形成金属锌,在大于1000℃下,锌剧烈挥发成锌蒸汽,并与窑头进入的空气,迅速被氧化成ZnO,氧化锌随烟气一道进入沉降室及余热锅炉。

余热锅炉采用直通式结构,全自然循环,窑尾550℃烟气进入前段膜式水冷壁组成的沉降室,用于冷却和沉降粗烟尘,这部分含氧化锌较低的粉尘可返回配料,后段是带有对流管束的蒸发区,这部分含氧化锌较高的粉尘可直接送入表面冷却器进收集系统,本锅炉设计换热面积约600㎡,出余热锅炉烟气温度为300℃左右,送入表面冷却器,锅炉为支撑式结构。锅炉清灰采用振打和爆破清灰相结合,对膜式水冷壁,设置一部分高效弹性振打机,对流管束采用脉冲爆破清灰,设置打焦孔。锅炉保温采用硅酸铝纤维隔热层,加彩钢板作防护层。

烟气通过表面冷水烟道,被冷却至160℃以下,通过引风机进入布袋收尘室,被布袋捕集的氧化锌粒子落入集尘斗,定期排除包装出售或自用。渣中的锌、铅等被挥发进入烟尘。剩余的融熔状态的高温渣,不断沿窑室头排出。剩余废气通过除硫设备处理后,通过烟囱排入大气中。

沉降室图纸

横断面 纵切面

2. 厂方提出的问题

① 将沉降室的温度提高到650℃以上

其原因为:第一、锌渣中铅含量高(大约6.7%),而在回转窑内铅挥发物主要是PbS,为了PbS 氧化变成PbO,必须将沉降室的温度提高到650℃以上;第二、朝鲜X 厂的回转窑氧化锌生产线的运行经验来看,从回转窑进来的烟气含有未烧好的大量的煤粉,所以提高沉降室的温度,使煤粉充分燃烧因而减少沉降物的杂质含量并改善PbS 的氧化条件。第三、减少返回料量。 ② 在沉降室内鼓吹二次空气,并采取措施随着沉降室温度的变化鼓风量的自动控制

3. 在回转窑内进行的化学反应及成分变化(厂方的想法) 1)回转窑内部各区的功能

① 烘干和预热段(8-10m ,550-600℃)

功能:干燥原料,除去结晶水,加热到反应开始温度。 ② 还原段(15-25m, 1000-1150℃)

功能:猛烈分解硫化物,发生镉(Cd)的升华、硫酸盐的还原、磁铁矿的分解、铁酸盐的还原、锌、铅等金属氧化物的还原。凝聚硫化物形成炉渣③升华段(25-40m, 1100-1300℃)

功能:发生ZnO和FeO的还原、ZnS的分解(利用Fe和Cu)、铅的硫化和升华。

④炉渣形成段(900-1000℃)

功能:结束锌和铅的升华,发生铁等金属氧化物的还原。

2)回转窑内炉料的反应

- 锌

锌在锌渣中以硫酸盐、硫化物、铁酸盐、硅酸盐和铝酸盐的形式存在。在回转窑中这些盐通过以下反应被还原、蒸发和氧化;

ZnO+C=Zn(汽)+CO

ZnO+CO=Zn(汽)+CO2

2CO+O2=2CO2

CO2+C=2CO

2Zn(汽)+O2=2ZnO

除了上述的反应以外,在回转窑的各温度段发生锌化合物的直接还原;

ZnSO4+4C→ZnS+4CO

ZnSO4+3C→ZnO+3CO +1/2S2

通过上述反应产生的部分ZnO与SiO2和Al2O3发生反应,形成硅酸盐和铝酸盐炉渣;

2ZnO+ SiO2→2ZnO SiO2

ZnO+ Al2O3→ZnO Al2O3

铁酸锌在1050℃以上全部还原而分解;

3(ZnOFe2O3)+C=3ZnO+2Fe3O4+CO

Fe2O3+3CO=2Fe+3CO2

如果炉料含有CaO或MgO,铁酸锌的分解反应更加速。

ZnOFe2O3+CaO=CaOFe2O3+ZnO

ZnOFe2O3+MgO=MgOFe2O3+ZnO

硅酸盐、铝酸盐、硫化锌和氧化锌被金属铁还原;

ZnO SiO2+Fe→Zn(汽)+FeO SiO2

ZnO Al2O3+Fe→Zn(汽)+FeO Al2O3

ZnS+Fe→Zn(汽)+FeS

ZnO+Fe→Zn(汽)+FeO

除了上述的反应以外,锌蒸汽通过以下反应形成;

2ZnO+ZnS→3Zn(汽)+SO2

ZnS+ CaO+C= Zn(汽)+CaS+CO

总之,通过上述的反应路径,ZnSO4在回转窑的前1/2区完全分解,并铁酸锌也部分分解,在剩余1/2区铁酸锌和氧化锌完全分解,从而炉渣中锌含量降低到2%以下。

- 铅

铅在锌渣中以硫酸盐形式存在。

PbSO4的还原主要在回转窑的前1/2区进行,通过以下反应,大部分还原成PbS;

PbSO4+2C=PbS+2CO2

PbS在600℃开始挥发,在1000℃以上猛烈挥发。

3PbSO4+ PbS =4PbO+4SO2

PbO在750℃开始挥发,在1000℃以上猛烈挥发。

少量PbS与PbO或PbSO4反应而形成金属铅;

PbSO4+ PbS =Pb(汽)+2SO2

2PbO+ PbS =3Pb(汽)+SO2

金属铅的沸点较高(1700℃以上),在回转窑内不挥发,而阻碍炉料的还原和蒸发过程。所以在处理铅含量较高的锌渣时,必须得增加鼓风量,提高烟气温度。

4.回转窑、氧化沉降室和余热锅炉的热力学计算(厂方计算)

1) 计算条件

窑尾烟气量:20000Nm3/h

窑尾烟气中灰尘量:69.27g/N?

窑尾烟气温度:550℃

每日处理的锌渣量(1台):150t/d

煤炭量(1台): 75t/d

锌渣中Zn含量10%(收得率:90%、15t/d, 562.5kg/)

锌渣中Pb含量6.27%(收得率:95%、9.045t/d, 372.4kg/h)

2) 鼓风量计算

-与煤炭反应的空气量

燃烧1kg煤所需要的空气量:7 N?

煤炭种C含量-73%(1h):2.281t/h

炉渣中未烧的C含量(1h): 0.708t/h

参加反应的C量(1h): 2.281t/h- 0.708t/h=1.573t/h

参加反应的煤量(1h): 1.573/0.73=2.155t/h

与煤炭反应的空气量(1h): 2.155×1000×7=15085N?/h

-形成ZnO灰尘需用的空气量

锌渣中Zn化合物种类和分配

ZnS-100% 还原成金属锌,形成ZnO灰尘。

ZnO-100% 还原成金属锌,形成ZnO灰尘。

ZnOFe2O3-100% 还原成金属锌,形成ZnO灰尘。

ZnO SiO2–不能还原,留在炉渣中。

ZnSO4 -75.37还原成金属锌,形成ZnO灰尘,剩余42.63%转变ZnO SiO2,留在炉渣中。

形成ZnO灰尘需用的氧气量:0.076t/h

空气量:76/0.23=330.4kg/h =256N?/h

-形成PbO灰尘需用的空气量

锌渣中Pb含量是6.27%,主要以PbS状态蒸发,进一步氧化形成PbO。但回转窑内部在还原气氛,PbS的氧化反应难以进行,所以窑尾烟气中铅化合物由40%PbO和60%PbS组成。

锌渣中Pb蒸发率是95%,蒸发量0.372t/h(其中PbS:0.372×0.6=0.223t/h,PbO:0.372×0.4=0.149t/h )

形成PbO灰尘需用的氧气量:0.149×16/207.2=0.0115t/h 11.5kg/h

空气量:11.5/0.23=50 kg/h 38.7N?/h

- 总空气量

计算量:15085+256+38.7=15379.7 N?/h

其他氧化反应需用的空气量15%-15379.7 N?/h×0.15=2306.9 N?/h 出窑烟气中氧含量1.261%-1155N?/h,5%-2375.6N?/h

总鼓风量19000~24000N?/h

3) 回转窑热力学计算

- ZnS

通过以下反应形成锌蒸汽;

100%- ZnS+Fe→Zn(汽)+FeS -25780cal/

为了简化热力学计算,假定100% ZnS

- ZnO

50%- ZnO+C=Zn(汽)+CO -56754cal/mol

50%- ZnO+CO=Zn(汽)+CO2 -15534cal/mol

- ZnOFe2O3

3(ZnOFe2O3)+C=3ZnO+2Fe3O4+CO - 807.88 kcal/mol

- ZnSO4

ZnSO4+4C→ZnS+4CO -89.76 kcal/mol

ZnSO4+3C→ZnO+3CO +1/2S2-77.12 kcal/mol

- PbSO4

PbSO4+2C=PbS+2CO2 -60.1 kcal/mol

4) 反应热计算

(1)发热反应

-煤炭的发热反应

煤炭中C量-1573kg/h

C+O2=CO2+94052 kcal/kmol Q=1232 8650 kcal/h

-Zn的氧化热量

Zn量- 310.6kg/h

2Zn(汽)+O2=2ZnO +1305kcal/kg-Zn Q=405333 kcal/h

-Pb的氧化热量

Pb量- 0.149t/h

2Pb+O2=2PbO+245kcal/kg-Pb Q=36505 kcal/h

总计Q=12770488 kcal/h

(2)吸热反应

ZnO+C=Zn(汽)+CO -56754cal /mol

Zn量- 92.8kg/h Q=80531kcal/h

ZnO+CO=Zn(汽)+CO2 -15534cal/mol

Zn量- 92.8kg/h Q=22042kcal/h

ZnS+Fe→Zn(汽))+FeS -25780cal/mol

Zn量- 195.6kg/h Q=77103kcal/h

3(ZnOFe2O3)+C=3ZnO+2Fe3O4+CO - 807.88 kcal/mol Zn量-119kg/h Q=1470000 kcal/h

ZnSO4+4C→ZnS+4CO-89.76 kcal/mol

Zn量66kg/h Q=90583 kcal/h

ZnSO4+3C→ZnO+3CO +1/2S2-77.12 kcal/mol

Zn量49kg/h Q=57781kcal/h

PbSO4+2C=PbS+2CO2 -60.1 kcal/mol

Pb量372.4 kg/h Q=108018kcal/h

总计Q=1906058 kcal/h

(3)水蒸气的潜热

水蒸气含量15%,1654.4kg/h

蒸发潜热540kcal/kg Q=904770kcal/kg

(4) 烟灰带走的热量

烟气中灰尘量:69.27g/N?,1489kg/h

烟气量21500 N?/h,温度650℃

比热0.2kcal/kg℃,Q=193570kcal/h

(5)烟气带走的热量

在650℃各种气体的比热

烟气的平均比热0.33kcal/N?℃,温度650℃

烟气量21500 N?/h,Q=4611750kcal/h

(6) 炉渣带走的热量

比热0.24 kcal/kg℃

温度900℃

炉渣量5903t/h,Q=1275048 kcal/h

总计

?供热总计Q=12770488 kcal/h

?损失热量

吸热反应热总计Q=1906058 kcal/h

水蒸气潜热Q=904770kcal/kg

烟灰带走的热量Q=193570kcal/h

烟气带走的热量Q= 4611750kcal/h

炉渣带走的热量Q=1275048 kcal/h

为考虑的热量15%Q=1569034 kcal/h

出量总计Q= 10460230kcal/h

损失热量: 供热-出热= 2310258 kcal/h

损失热量等于总热量的18%,回转窑外皮散热的传热系数大约是

q=4600kcal/㎡h(回转窑的外径是3044mm,外皮面积是430㎡)

5) 氧化沉降室和余热锅炉的热力学计算

前提:厂方认为通过沉降室入口进来的烟气含有大量未烧好的煤炭和硫化物,为了煤炭燃烧并将硫化物氧化成氧化物,打算采取两种措施,一方面沉降室的温度提高到650℃,另一方面鼓吹2次空气。

(1) 通过沉降室入口进来的烟气成分

?烟气量21500 N?/h

?烟灰量-1489kg/h

?烟气中水蒸气量1654.4kg/h

?二次空气量1500 N?/h

燃烧C需用的空气量1400 N?/h

氧化PbS需用的空气量60N?/h

?烟气中煤炭量220kg/h

(2) 氧化沉降室的热力学计算

- 供热

?烟气带进来的热量

水蒸气的潜热Q=904770kcal/h

烟灰带进来的热量Q=193570kcal/h

烟气带进来的热量Q=4611750kcal/h

总计Q=5710090kcal/h

?燃烧煤炭

C+O2=CO2+94052 kcal/kmol

Q=94052/12×128=1003211kcal/h

煤炭中含水量15%,220/0.85-220=39kg/h

水蒸气带走的热量Q= 791.6×39=30872kcal/h

有效发热量Q=972339kcal/h

?Pb氧化热

2PbS+3O2=2PbO+2SO2 + 179kcal/kmol-Pb

Q=149×179/207.2×2=64kcal/h

总供热量6682493 kcal/h

- 出热

?烟气带走的热量Q=0.33×23000×650=4933500kcal/h

?升华物带走的热量(1125kg/h)Q=0.2×1125×650=14625kcal/h ?沉淀物带走的热量Q=0.2×184×400=14720kcal/h

?水蒸气的潜热Q=904770kcal/h

?热回收以及损失热量Q=814878kcal/h

供热=出热=6682493 kcal/h

(3) 蒸汽热和损失热量

- 传给水冷壁的热量

?计算条件

在入口烟气的温度650℃

增发水的温度193℃

管道直径和厚度Φ51×4

受热面积200㎡

锅筒断面4.5×5=22.5㎡

烟气量72690?/h

烟气流速0.9m/s

氧化沉降室1的体积4.5m×5m×3.95m=89?

烟气滞留时间89?/20?/s =4.5s 氧化沉降室2的体积4.5m×5m×5.05m=114?

烟气滞留时间114?/17?/s= 6.7s

?沉降室传热系数的计算

α1=α辐射+α对流=26.5+4.16=30.66 kcal/㎡h℃

α辐射=26.5kcal/㎡h℃

α对流=4.16kcal/㎡h℃

?沸腾管的传热系数

α2= 1000 kcal/㎡h℃

?空气中传热系数

α3= 8.4+0.06(40-5)=10.5 kcal/㎡h℃

总计

α1=α辐射+α对流=26.5+4.16=30.66 kcal/㎡h℃

α2= 1000 kcal/㎡h℃

α3= 8.4+0.06(40-5)=10.5 kcal/㎡h℃

?平均传热系数K的计算

?烟气给蒸发水的热量

Q=K F △t=10.4×200×(650-193)=950560kcal/h

?从蒸发水向外损失的热量

Q=0.4146×200×(193-5)=15589 kcal/h

?蒸汽生产需用的热量

Q=950560-15589=934971 kcal/h

通过沉降室的热力学计算得到的热回收以及损失热量是Q=814878kcal/h 不够的热量是ΔQ=950560-814878=135682 kcal/h, 所以气体的温度降到20℃

5.厂方提出的沉降室内部砌耐火砖的方案

1)沉降室内部砌耐火砖的时候传热系数的计算

2)砌砖面积

F1= 3.95×4.8=19㎡

F2= 3.95×4.8=19㎡

F3= (5×4.8)-(32×0.785)= 17㎡

F1+F2+F3= 55㎡

3)热力学计算

(1)供热

?烟气带进来的热量

水蒸气的潜热Q=904770kcal/h

烟灰带进来的热量Q=193570kcal/h

烟气带进来的热量Q=4611750kcal/h

总计Q=5710090kcal/h

?燃烧煤炭

C+O2=CO2+94052 kcal/kmol

Q=94052/12×128=1003211kcal/h

煤炭中含水量15%,220/0.85-220=39kg/h

水蒸气带走的热量Q= 791.6×39=30872kcal/h 有效发热量Q=972339kcal/h

?Pb氧化热

2PbS+3O2=2PbO+2SO2 + 179kcal/kmol-Pb

Q=149×179/207.2×2=64kcal/h

总供热量6682493 kcal/h

(2)出热

?烟气带走的热量Q=0.33×23000×650=4933500kcal/h

?升华物带走的热量(1125kg/h)Q=0.2×1125×650=14625kcal/h ?沉淀物带走的热量Q=0.2×184×400=14720kcal/h

?水蒸气的潜热Q=904770kcal/h

?热回收以及损失热量Q=814878kcal/h

供热=出热=6682493 kcal/h

(3)给水冷壁的热量

?Q(墙壁)=2.842×55×(650-193)=71434kcal/h

?Q(顶棚)=10.4×19.5×(650-193)=92680kcal/h

?Q(中隔墙)=10.4×16.5×(650-193)=78421kcal/h

总计:Q(墙壁)+ Q(顶棚)Q(中隔墙)=242535 kcal/h

剩余的热量814878kcal/h-242535 kcal/h=572343 kcal/h

利用剩余的热量将沉降室的温度能提高60~70℃

热力学基础计算题详细版.doc

《热力学基础》计算题 1. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀 至原来的3倍. (普适气体常量R =8.31 1 --??K mol J 1,ln 3=1.0986) (1) 计算这个过程中气体对外所作的功. (2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少? 解:(1) 等温过程气体对外作功为 ??=== 0000333ln d d V V V V RT V V RT V p W 2分 =8.31×298×1.0986 J = 2.72×103 J 2分 (2) 绝热过程气体对外作功为 V V V p V p W V V V V d d 000 03003??-== γγ RT V p 1 311131001--=--=--γγγ γ 2分 =2.20×103 J 2分 2.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、 等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量?E 以及所吸收的热量Q . (2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和). 解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 J Q =W 1+ΔE 1=950 J . 3分 B → C : W 2 =0 ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J . Q 2 =W 2+ΔE 2=-600 J . 2分 C →A : W 3 = p A (V A -V C )=-100 J . 150)(2 3)(3-=-=-=?C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J 3分 (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J 2分 1 2 3 1 2 O V (10-3 m 3) 5 A B C

自然循环热水锅炉水动力计算

自然循环热水锅炉水动力计算例题 A1 锅炉规范 额定供热量Q sup:7.0MW 额定工作压力P: 1.0MPa 回水温度t bac.w:70℃ 供水温度t hot.w:115℃ 锅炉为双锅筒、横置式链条炉,回水进入锅筒后分别进入前墙、后墙、两侧墙和对流管束回路中,两侧水冷壁对称布置,前墙和后墙水冷壁在3.2m标高下覆盖有耐火涂料层,如图A -1所示。 图 A-1 锅炉简图 A2 锅炉结构特性计算 A2.1 前墙回路上升管划分为三个区段,第Ⅰ区段为覆盖有耐火涂料层的水冷壁管,第Ⅱ区段为未覆盖有耐火涂料层的水冷壁管,第Ⅲ区段为炉顶水冷壁(图 A-2) A2.2 后墙回路上升管划分为二个区段,第Ⅰ区段为覆盖有耐火涂料层的水冷壁管,剩下的受热面作为第Ⅱ区段(图A-3)。

A2.3 侧墙水冷壁回路上升管不分段(图A-4) A2.4 对流管束回路不分段,循环高度取为对流管束回路的平均循环高度,并设对 流管束高温区为上升区域(共7排),低温区为下降区(共6排)。对流管束共有347根,相应的上升管区域根数为191根,下降管区域根数为156根(图A-5)。 对流管束总的流通截面积A o 为: A o =347×0.785×0.0442 = 0.5274 m 2 下降管区域流通截面积A dc 为 : A dc =156×0.785×0.0442 = 0.2371 m 2 下降管区域流通截面积与对流管束总的流通截面积比A dc / A o 为: 4500=5274 02371 0=...o dc A A 其值在推荐值(0.44—0.48)的范围内。 图A-2 前墙水冷壁回路 图A-3 后墙水冷壁回路

热力学基础计算题-答案

《热力学基础》计算题答案全 1. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀 至原来的3倍. (普适气体常量R =8.31 1 --??K mol J 1,ln 3=1.0986) (1) 计算这个过程中气体对外所作的功. (2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少? 解:(1) 等温过程气体对外作功为 ??=== 0000333ln d d V V V V RT V V RT V p W 2分 =8.31×298×1.0986 J = 2.72×103 J 2分 (2) 绝热过程气体对外作功为 V V V p V p W V V V V d d 000 03003??-== γγ RT V p 1 311131001--=--=--γγγ γ 2分 =2.20×103 J 2分 2.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、 等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量?E 以及所吸收的热量Q . (2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和). 解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 J Q =W 1+ΔE 1=950 J . 3分 B → C : W 2 =0 ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J . Q 2 =W 2+ΔE 2=-600 J . 2分 C →A : W 3 = p A (V A -V C )=-100 J . 150)(2 3)(3-=-=-=?C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J 3分 (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J 2分 1 2 3 1 2 O V (10-3 m 3) 5 A B C

热力学公式汇总

物理化学主要公式及使用条件 第一章 气体的 pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 pV (m/M )RT nRT 或 pV m p (V /n ) RT 式中p , V , T 及n 单位分别为Pa, m 3, K 及mol 。 V m V /n 称为气体的摩尔体 积,其单位为m 3?mol -1。R=8.314510 J mol -1 K 1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 ( 1) 组成 摩尔分数 式中 n A 为混合气体总的物质的 量。 V m ,A 表示在一定T , p 下纯气体A 的摩 A 尔体积。 y A V mA 为在一定T , p 下混合之前各纯组分体积的总和。 A ( 2) 摩尔质量 述各式适用于任意的气体混合物 (3) y B n B /n p B / p V B /V 式中P B 为气体B ,在混合的T , V 条件下,单独存在时所产生的压力,称为 B 的分压力。V B 为B 气体在混合气体的T , p 下,单独存在时所占的体积。 y B (或 x B ) = n B / n A A 体积分数 B y B V m,B / yAV m,A A y B M B m/n M B / n B B B B 式中 m m B 为混合气体的总质量, n B n B 为混合气体总的物质的量。上 M mix B

叮叮小文库3. 道尔顿定律 p B = y B p, p P B B 上式适用于任意气体。对于理想气体 P B n B RT/V 4. 阿马加分体积定律 V B ri B RT/V 此式只适用于理想气体。 第二章热力学第一定律 主要公式及使用条件 1. 热力学第一定律的数学表示式 U Q W 或dU 8Q SW 9Q P amb dV SW' 规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中P amb为环境的压力,W为非体积功。上式适用于封闭体系的一切过程。 2. 焓的定义式 H U pV 3. 焓变 (1)H U (PV) 式中(pV)为pV乘积的增量,只有在恒压下(pV) P(V2v1)在数值上等于体积功。 2 (2)H 1n C p,m dT 此式适用于理想气体单纯pVT变化的一切过程,或真实气体的恒压变温过程,

锅炉耗水量计算

§2 锅炉基本特性的表示 为了区别各类锅炉构造、燃用燃料、燃烧方式、容量大小、参数高低以及运行经济性等特点,经常用到如下参数: 一、锅炉额定出力 锅炉额定出力是指锅炉在额定参数(压力、温度)和保证一定效率下的最大连续出力。对于蒸汽锅炉,叫额定蒸发量,单位为吨/小时;对于热水锅炉,叫额定产热量。单位为MW(老单位为万大卡/小时)。 产热量与蒸发量之间的关系: Q=D(iq-igs)×1000 千焦/小时 式中:D----锅炉蒸发量,吨/小时 iq----蒸汽焓,千焦/公斤 igs----锅炉给水焓,千焦/公斤 对于热水锅炉: Q=G(irs “-irs…)×1000 千焦/小时 式中:G----热水锅炉循环水量,吨/小时 irs “---锅炉出水焓,千焦/公斤 irs …---锅炉进水焓,千焦/公斤 注:1千卡(kcal)=4.1868千焦(KJ) 二、蒸汽(或热水)参数 锅炉产生蒸汽的参数,是指锅炉出口处蒸汽的额定压力(表压)和温度。对生产饱和蒸汽的锅炉来说,一般只标明蒸汽压力;对生产过热蒸汽的锅炉,则需标明压力和过热蒸汽温度;对热水锅炉来说,则需标明出水压力和温度。 工业锅炉的容量、参数,既要满足生产工艺上对蒸汽的要求,又要便于锅炉房的设计,

锅炉配套设备的供应以及锅炉本身的标准化,因而要求有一定的锅炉参数系列。见 GB1921-88《工业蒸汽锅炉参数系列》及GB3166-88《热水锅炉参数系列》GB1921-88《工业蒸汽锅炉参数系列》 额定蒸发量 t/h 额定出口蒸汽压力MPa (表压) 0.4 0.7 1.0 1.25 1.6 2.5 额定出口蒸汽温度℃ 饱和饱和饱和饱和250 350 饱和350 饱和350 400 0.1 ★ 0.2 ★ 0.5 ★★ 1 ★★★ 2 ★★★★ 4 ★★★★★ 6 ★★★★★★★ 8 ★★★★★★★ 10 ★★★★★★★★★ 15 ★★★★★★★★ 20 ★★★★★★★ 35 ★★★★★★ 65 ★★ 本表中的额定蒸发量,对于<6t/h的饱和蒸汽锅炉是20℃给水温度下锅炉额定蒸发量,对

1.加热炉工艺计算软件FRNC5使用入门剖析

1.F RNC-5软件的引进与使用概况 中石化集团公司下属的若干设计院(石化工程公司)从1997年开始引进了多套美国PFR公司的通用加热炉工艺计算软件FRNC-5。此软件在加热炉工艺计算中得到很好的应用,发挥了重大作用。 美国PFR公司全称为PFR工程系统公司(PFR Engineering System,Inc )。公司设在美国洛杉矶,创建于1972年1月,从事热力学系统设计分析和人员培训。该公司的软件产品拥有六十多个用户,遍布六大洲的十五个以上的国家。其中FRNC-5PC软件有二十年以上的使用经验。 本软件可以优化加热炉设计,并可对现有加热炉进行操作分析、加强管理,是一个较为优秀的软件。 2.F RNC-5软件功能与特点 2.1 软件应用范围 本程序可用于炼油、石油化工及热电联合等装置中大多数火焰加热炉及水管锅炉的性能模拟及效率预测。程序采用经过证明了的技术,通过综合迭代,将工艺物流模拟、传热和压力降计算等过程组合在一起。 程序沿物流及烟气流程,逐个管组逐个炉段严格迭代求解,能精确确定加热炉的工艺参数。计算中还指明不利操作状态,如发出炉膛正压、管壁和扩面元件超温、超临界流动以及酸露点腐蚀等警告信息。 程序会算出与显示加热炉的以下工艺参数或不利操作状态: (1)加热炉总热负荷、总热效率,辐射室热负荷 (2)辐射室出口温度(桥墙温度)与烟囱入口处温度 (3)辐射和对流热强度的均值和峰值 (4)辐射段遮蔽段和对流段中所有管组的管壁金属温度和翅片尖端温度的峰值和均值(5)两相流流型及沸腾状态的确定 (6)管内两相流的传热和压降 (7)管外传热和阻力 (8)“阻塞”、“干锅”或“冷端”腐蚀的可能性 2.2 适用的加热炉类型 (1)常减压装置加热炉 (2)铂重整、铂铼重整和强化重整等装置加热炉 (3)重沸炉和过热炉 (4)一氧化碳加热炉和锅炉 (5)脱硫装置原料预热炉 (6)焦化炉和减粘加热炉 (7)润滑油蒸馏和蜡油加热炉

工程热力学的公式大全

5.梅耶公式: R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==- 6.比热比: v p v p v p Mc Mc c c c c = = = ''κ 1-= κκR c v 1 -=κnR c p 外储存能: 1. 宏观动能: 2 2 1mc E k = 2. 重力位能: mgz E p = 式中 g —重力加速度。 系统总储存能: 1.p k E E U E ++= 或mgz mc U E ++=2 21 2.gz c u e ++=22 1 3.U E = 或 u e =(没有宏观运动,并且高度为零) 热力学能变化: 1.dT c du v =,?=?2 1dT c u v 适用于理想气体一切过程或者实际气体定容过程 2.)(12T T c u v -=? 适用于理想气体一切过程或者实际气体定容过程(用定值比热计算) 3.10 20 121 2 2 1 t c t c dt c dt c dt c u t vm t vm t v t v t t v ?-?=-==???? 适用于理想气体一切过程或者实际气体定容过程(用平均比热计算)

4.把 ()T f c v =的经验公式代入?=?2 1 dT c u v 积分。 适用于理想气体一切过程或者实际气体定容过程(用真实比热公式计算) 5.∑∑====+++=n i i i n i i n u m U U U U U 1 1 21 由理想气体组成的混合气体的热力学能等于各组成气体热力学能之和,各组成气体热力学能又可表示为单位质量热力学能与其质量的乘积。 6.?-=?2 1pdv q u 适用于任何工质,可逆过程。 7.q u =? 适用于任何工质,可逆定容过程 8.?=?21 pdv u 适用于任何工质,可逆绝热过程。 9.0=?U 适用于闭口系统任何工质绝热、对外不作功的热力过程等热力学能或理想气体定温过程。 10.W Q U -=? 适用于mkg 质量工质,开口、闭口,任何工质,可逆、不可逆过程。 11.w q u -=? 适用于1kg 质量工质,开口、闭口,任何工质,可逆、不可逆过程 12.pdv q du -=δ 适用于微元,任何工质可逆过程 13.pv h u ?-?=? 热力学能的变化等于焓的变化与流动功的差值。 焓的变化: 1.pV U H += 适用于m 千克工质 2.pv u h += 适用于1千克工质 3.()T f RT u h =+= 适用于理想气体 4.dT c dh p =,dT c h p ?=?2 1 适用于理想气体的一切热力过程或者实际气体的定压过程

供热燃气热水锅炉选型方案说明

供热燃气热水锅炉选型方案说明 天水成纪房地产开发公司拟对已建(分路口小区),供热采暖系统进行改造,经对小区现场实地勘察,以及和建设方对采暖问题的相关探讨,现将供热设备选型的基本参数及热力数据提供如下: 一.供热采暖的基本参数 1.供热总面积:70000m2 2.采暖形式均为地板辐射式散热 3.现有供热设备为地源热泵机组 4.单独为20000m2(两栋高层),采用燃气热水锅炉供热的可行性方案。 二.采暖热负荷的概算 采用面积热指标法对采暖热负荷进行计算,按下式进行 Q=q i F×10-3 根据《采暖通风与空气调节设计规范》GBJ19及《城市热力网设计规范》CJJ34,按当地最大热指标取值为75W/m2 的理论计算值。公式中: F—建筑面积(m2) Q—建筑物采暖设计热负荷(KW), q i—建筑物采暖面积热负荷(W/ m2) 1.总热功率:5250KW=5.25MW(取值5.6MW) 2.总耗热量:450×104 Kcal (65Kcal/m2.C0)

3.热源条件:燃气工业热水锅炉 4.供热型式;由锅炉房提供热源通过二次换热系统,为小区楼房输送地暖供热。 三.锅炉房水循环量理论计算值(G) ?t/h G=0.86?K?Q C?[ tg?th] 式中 Q————锅炉额定热功率 K————管网散热损失系数,取1.05 C————管网热水的平均比热容,kJ/Kg?0c tg————热水供水温度550C(地暖) th————热水回水温度450C(地暖) 代入数据计算值为:G=337m3/h 11.小区供热形式为地暖系统,属低温大流量辐射供热,供热锅炉房循环水量比传统散热器采暖系统要大,按照小区楼房分布位置及楼层高度参数,通过二次换热系统采取分区供热型式,能够满足小区整体供热质量和效果。 2.供热系统阻力由沿程压力损失,局部压力损失及设备内阻等因素决定,以输送管道规格及配件等数据计算确定。在循环水泵选型时综合考虑。 3.二次换热机组在循环水泵选型时应综合考虑上述流量,管道系统阻力及扬程的设计参数。 四.燃气热水锅炉选型 1.为保证小区采暖质量,综合考虑地暖系统的实际耗热

多工况脱硝一体化余热锅炉设计

多工况脱硝一体化余热锅炉设计 催化裂化装置余热锅炉设计复杂,适应工况多,环保要求高,其排放的氮氧化物会对环境产生不利影响。在某项目220万吨/年催化裂解装置中,采用了一种多工况脱硝一体化余热锅炉设计。锅炉结构紧凑,对于烟气温度控制准确合理,工况适应性强,保证了脱硝系统在催化装置不同工况下的稳定运行。 标签:催化余热锅炉;SCR;多工况;烟气温度控制 近年来,随着国家绿色发展理念的提出,对炼厂中余热锅炉的排放指标提出了更高的要求。目前,随着国家对环保要求的日趋严格,部分地区更是对国家颁布的《火电厂大气污染排放标准》(GB13223-2011)的排放限值进行升级,余热锅炉增设脱硫脱硝措施已经势在必行。文章只就余热锅炉的脱硝技术进行讨论,介绍了对某石化厂催化裂化装置的余热锅炉的多种工况进行了详细计算,根据计算结果引入了烟气分流的理念,通过调节烟气量控制脱硝装置的入口温度,适应多种生产工况,达到了节能减排的目的。 1 烟气脱硝技术简介[1]及技术选择 烟气脱硝技术是一种在燃料基本燃烧完毕后通过还原剂把烟气中的NOx还原成N2和H2O的一种技术。通用的烟气脱硝技术包括选择性催化还原脱硝技术(SCR)和选择性非催化还原脱硝技术(SNCR)。 1.1 选择性催化还原脱硝技术(SCR) SCR其原理是在一定的温度和催化剂作用下,还原剂有选择地把烟气中的NOx还原为无毒无污染的N2和H2O。SCR脱硝技术是目前世界上应用最多,最为成熟有效的一种烟气脱硝技术,反应温度一般在300~420℃之间,脱硝效率可达90%,催化剂使用寿命一般为3年。 1.2 选择性非催化还原脱硝技术(SNCR) SNCR脱硝技术是把含有HNx基的还原剂(如尿素)喷入炉膛温度为800~1100℃的区域,该还原剂迅速热分解成NH3,并与烟气中的NOx进行反应,生成N2,该方法以炉膛为反应器,可通过对锅炉进行改造实现。SNCR工艺的NOx 脱除效率主要取决于反应温度,NH3与NOx的化学计量比、混合程度、反应时间等,通常设计合理的SNCR工艺能达到30%~70%的脱硝效率。SNCR技术具有一次性投资少,运行成本低等特点。 本项目的余热锅炉,正常工况时,入口高温烟气温度为540℃,经过方案比选,脱硝技术选用SCR工艺。 催化剂是SCR烟气脱硝的核心部件,性能直接影响整体脱硝效果。而烟气

供热计算

六、城市供热工程规划 (一) 城市热负荷计算 1.计算法 ①采暖热负荷计算 Q=q ? A ? 10-3 (6-11) 式中,Q 为采暖热负荷(MW),q 为采暖热指标(W/m 2,取60?67W/m 2 ),A 为采暖建筑 面积(m 2)。 ②通风热负荷计算 Q T =KQn (6-12) 式中,Q T 为通风热负荷(MW) , K 为加热系数(一般取0.3?0.5), Qn 为采暖热负荷(MW)。 ③生活热水热负荷计算 Qw=Kq w F (6-13) 式中,Qw 为生活热水热负荷(W) ,K 为小时变化系数,q w 为平均热水热负荷指标(W/m 2), F 为总用地面积(m 2 )。当住宅无热水供应、仅向公建供应热水时, q w 取2.5?3W/m 2 ;当住 宅供应洗浴用热水时,q w 取15?20W/m 2 。 ④空调冷负荷计算 Qc= q c A10-3 (6-14) 式中,Qc 为空调冷负荷(MW) ,3为修正系数,q c 为冷负荷指标(一般为70?90W/m 2 ), A 为建筑面积(m 2)。对不同建筑而言,3的值不同,详见表 表6-50城市建筑冷负荷指标 6-6。 注:当建筑面积<5000m 2时,取上限;建筑面积 >10000m 2 时,取下限。 ⑤生产工艺热负荷计算 对规划的工厂可采用设计热负荷资料或根据相同企业的实际热负荷资料进行估算。 该项 热负荷通常应由工艺设计人员提供。 ⑥供热总负荷计算 将上述各类负荷的计算结果相加, 进行适当的校核处理后即得供热总负荷, 但总负荷中 的采暖、通风热负荷与空调冷负荷实际上是同一类负荷, 在相加时应取两者中较大的一个进 行计算。 2.概算指标法

热力计算汇总表

qwertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwert yuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop asdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfg hjklzxcvbnmqwertyuiopasdfghjk lzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcv bnmqwertyuiopasdfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqwe rtyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuio pasdfghjklzxcvbnmqwertyuiopa sdfghjklzxcvbnmqwertyuiopasdf ghjklzxcvbnmrtyuiopasdfghjklzx WDLZ240/9.8-2 热力计算汇总表 ZB D144-6 武汉锅炉集团动力机械制造有限公司 2011年9月19日

说明 1.本计算按照《锅炉机组热力计算标准》(苏联1937年版)进行。 2.计算中有关数据取自SJ D144-13《锅炉几何尺寸计算书》。 目录 一、锅炉规范 二、锅炉燃料 三、热力计算汇总表

一、锅炉规范 1.锅炉额定蒸发量240t/h 2.额定过热蒸汽压力9.8Mpa 3.额定过热蒸汽温度540℃ 4.锅炉给水温度215℃ 5.冷空气温度20℃ 二、锅炉燃料 1.煤种

常用热力单位换算表

常用热力单位换算表 一、热量单位换算 1、常用热量单位介绍 A、焦耳(J)、千焦(KJ)、吉焦(GJ),工程计算广为采用,国际单位制。热力计算、热计量、热量化验等实际操作中常见,国家标准及图表、线图查询等规范性技术文件中主要表达的单位。但是,其他导出单位及工程习惯相互交织,使得这种单位在今天热力计算中不是很方便。 B、瓦特(W)、千瓦(KW)、兆瓦(MW),工程导出单位,是供热工程常用单位,如热水锅炉热容量:7MW、14MW、29MW、56MW...等,习惯上常说到的10t、20t、40t、80t...等锅炉,相当于同类容量蒸汽锅炉的设计出力.工程上热水锅炉和换热站热计量仪表、暖通供热设计计算、估算、供热指标等,广泛采用。 C、卡(car)、千卡(Kcal)...,已经淘汰的热量单位,但是工程中还在使用,特别是大量的技术书籍,例如煤的标准发热量7000Kcal。 2、基本计算公式 1W=0.86Kcal,1KW=860Kcal,1Kcal=1.163W; 1t饱和蒸汽=0.7MW=700KW=2.5GJ=60万Kcal; 1kg标煤=7000Kcal=29300KJ=29.3MJ=0.0293GJ=8141W=8.141KW; 1GJ=1000MJ;1MJ=1000KJ;1KJ=1000J 1Kcal=4.1868KJ 1W=3.6J(热工当量,不是物理关系,但热力计算常用)

4、制冷机热量换算 1美国冷吨=3024千卡/小时(kcal/h)=3.517千瓦(KW) 1日本冷吨=3320千卡/小时(kcal/h)=3.861千瓦(KW) 1冷吨就是使1吨0℃的水在24小时内变为0℃的冰所需要的制冷量。) 1马力(或1匹马功率)=735.5瓦(W)=0.7355千瓦(KW) 1千卡/小时(kcal/h)=1.163瓦(W) 二、压力单位换算 1、1Mpa=1000Kpa;1Kpa=1000pa 2、1标准大气压=0.1Mp=1标准大气压 1标准大气压=1公斤压力=100Kpa=1bar 1mmHg = 13.6mmH20 = 133.32 Pa(帕) 1mmH20=10Pa(帕) 1KPa=1000Pa=100mmH20(毫米水柱) 1bar=1000mbar 1mbar=0.1kpa=100pa

锅炉供热量计算

新建铁路贵阳至广州客运专线(贵州段)GGTJ-2标段 都匀东制梁场 蒸汽养护锅炉供热量计算 编制: 审核: 审批: 中铁隧道集团有限公司都匀东制梁场 二0一0年十二月

关于梁场蒸汽养护锅炉供热量的计算 1.计算目的 为加快梁场生产速度,加快梁片预制的节奏、缩短施工周期同时保证产品质量以及相关的技术要求,拆模前采用养护罩形式进行蒸汽养护从而需对供热设备进行供热量计算是否满足施工要求。 2、计算依据 箱梁的施工技术要求以及锅炉、蒸养罩、蒸养管道和监测仪器等养护设备的特点。 供热设备—DZL4-1.25-AII型4t燃煤锅炉设计说明书。 3、计算过程 单榀箱梁所用蒸汽量计算如下: W = Q /(I × H) 其中:Q----计算所需总热量(KJ/h) I----在一定压力下蒸汽的含热量(KJ/kg) H----有效利用系数 所需总热量的计算:Q = 3.6×∑ F×K×(Tn – Ta)×ω 其中:F----围护结构的表面积 F = 7.2×5×2+5×34×2+7.2×34=656.8m2 K----围护结构的传热系数,取12.5 Tn取40℃,Ta取6℃,ω取2.6 代入各值得: Q=3.6×656.8×12.5×40×2.6=3073824 KJ/h 在一定压力下蒸汽的含热量(KJ/kg)I取2644 KJ/kg;

有效利用系数H取0.45 所以养护单孔梁需要蒸汽用量: W = Q /(I × H)= 3073824/(2644×0.45)≈2583.5 Kg/h 因制梁场设计生产能力为1孔/天,则需要总蒸汽养护量取1孔/天来考虑即为: W总= 2583.5 Kg/h 即: 梁场配备一台4tDZL4-1.25-AII型锅炉,蒸养时采用蒸养棚罩,蒸养棚罩钢架采用钢结构,满足蒸汽养护要求。

热力学基础计算题

《热力学基础》计算题 1、 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍. (普适气体常量R =8、31 1 --??K mol J 1,ln 3=1、0986) (1) 计算这个过程中气体对外所作的功. (2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又就是多少? 解:(1) 等温过程气体对外作功为 ??=== 0000333ln d d V V V V RT V V RT V p W 2分 =8、31×298×1、0986 J = 2、72×103 J 2分 (2) 绝热过程气体对外作功为 V V V p V p W V V V V d d 000 03003??-== γγ RT V p 1 311131001--=--=--γγγ γ 2分 =2、20×103 J 2分 2、一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等 压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量?E 以及所吸收的热量Q . (2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数与). 解:(1) A →B : ))((211A B A B V V p p W -+==200 J. ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 J Q =W 1+ΔE 1=950 J. 3分 B → C : W 2 =0 ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J. Q 2 =W 2+ΔE 2=-600 J. 2分 C →A : W 3 = p A (V A -V C )=-100 J. 150)(2 3)(3-=-=-=?C C A A C A V V p V p T T C E ν J. Q 3 =W 3+ΔE 3=-250 J 3分 (2) W = W 1 +W 2 +W 3=100 J. Q = Q 1 +Q 2 +Q 3 =100 J 2分 1 2 3 1 2 O V (10-3 m 3) 5 A B C

回转窑和余热锅炉系统的冶炼及热力学计算

回转窑和余热锅炉系统的冶炼及热力学计算朝鲜锌工业集团现有冶炼废渣50万吨左右。物料组成为:Zn9%, 铅 4.9%, 银150g/t.,并且在每天生产中还要排出废渣。通过焙烧收集技术,可以把锌铅通过焙烧的提取,根据现有原料计算可以提出含量50%左右次氧化锌和氧化铅。 1.介绍 -工艺系统 朝鲜端川锌厂历年来锌系统产出的锌废渣一直堆存而未处理,为回收其中锌金属及其它有价金属,决定建设2台Ф3×45m锌废渣回转窑,捕集的氧化锌进行浸出、净液、电解最终获得电锌,由于氧化锌的湿法处理系统需要蒸汽,为此厂方决定在回转窑后增设余热锅炉,回收回转窑烟气中的余热,产出低压蒸汽供电锌生产使用。 -生产能力 回转窑单台日处理原料200吨,配套收集系统、脱硫系统,每天单台可收集50%的次氧化锌30-35吨,两套设备可以完成日处理400吨原料的计划,每天可收集50%的次氧化锌60-70吨。 -工艺介绍 将含锌渣混入无烟粉煤或焦粉,用加料装置进入回转窑内,由于窑内体具有倾斜度和一定的转速,炉料在室内不断运动,配入的还原煤中的碳,在高温作用下,使原料中的Zn还原形成金属锌,在大于1000℃下,锌剧烈挥发成锌蒸汽,并与窑头进入的空气,迅速被氧化成ZnO,氧化锌随烟气一道进入沉降室及余热锅炉。 余热锅炉采用直通式结构,全自然循环,窑尾550℃烟气进入前段膜式水冷壁组成的沉降室,用于冷却和沉降粗烟尘,这部分含氧化锌较低的粉尘可返回配料,后段是带有对流管束的蒸发区,这部分含氧化锌较高的粉尘可直接送入表面冷却器进收集系统,本锅炉设计换热面积约600㎡,出余热锅炉烟气温度为300℃左右,送入表面冷却器,锅炉为支撑式结构。锅炉清灰采用振打和爆破清灰相结合,对膜式水冷壁,设置一部分高效弹性振打机,对流管束采用脉冲爆破清灰,设置打焦孔。锅炉保温采用硅酸铝纤维隔热层,加彩钢板作防护层。 烟气通过表面冷水烟道,被冷却至160℃以下,通过引风机进入布袋收尘室,被布袋捕集的氧化锌粒子落入集尘斗,定期排除包装出售或自用。渣中的锌、铅等被挥发进入烟尘。剩余的融熔状态的高温渣,不断沿窑室头排出。剩余废气通过除硫设备处理后,通过烟囱排入大气中。

热力学计算例题

热力学计算例题 (P87 2-30) 【例1】 0.5 mol 单原子理想气体,初温为25 ℃,体积为2 dm 3,抵抗恒定外压p 环=101.325 kPa 绝热膨胀,直到内外压力 相等,再在膨胀后的温度下可逆压缩回2 dm 3,求整个过程的Q 、W 、?U 、?H 、?S 、?A 、?G 。 (P84 2-13) 【例2】 如图,一带活塞(无摩擦、无质量)的气缸中有3 mol 的N 2气,气缸底部有一玻璃瓶,内装5 mol 液态水。活塞上的压力恒定为202.650 kPa 。在100 ℃下打碎玻璃瓶,水随即蒸发,求达到平衡时过程的Q 、W 、?U 、?H 。 已知:100 ℃时水的?vap H =40.63 kJ·mol -1,N 2气和H 2O (g )都视为理想气体,液态水的体积可忽略不计。 (P86 2-26) 【例3】 现有25℃的1 mol 的CO (g )与0.5 mol 的O 2(g )反应生成1 mol 的CO 2,若反应在绝热密闭容器中进行,求反应过程的Q 、W 、?U 、?H 。 已知:θM f H ?( CO 2,g ,298.15 K)= 40.63 kJ·mol -1,θ M f H ?( CO , g ,298.15 K)= -110.52 kJ·mol -1,C V , m (CO 2,g )= 46.5 kJ·K -1·mol -1。

(P146 3-7) 【例4】4 mol某理想气体,其C V, m = 2.5R,从600kPa、531.43 K的初态,先恒容加热到708.57 K,再绝热可逆膨胀到500 kPa 的末态。求过程末态的温度,过程的Q、?H、?S。 (P148 3-21) 【例5】1 mol液态水在25℃及其饱和蒸汽压3.167 kPa 下,恒温、恒压蒸发为水蒸汽。求此过程的?H、?S、?A、?G。 已知:100 ℃、101.325 kPa下水的?vap H=40.63 kJ·mol-1,C p, m(H2O,l)= 75.30 J·K-1·mol-1,C p, m(H2O,g)= 33.50 J·K-1·mol-1。假设蒸汽为理想气体,压力对液态性质的影响可忽略不计。 (P148 3-28) 【例6】25 ℃、100 kPa下,金刚石与石墨的标准熵分别为2.38 J·K-1·mol-1和5.74 J·K-1·mol-1,其标准摩尔燃烧焓分别为-395.407 kJ·mol-1和-393.510 kJ·mol-1。计算25 ℃、100 kPa下: C(石墨) → C(金刚石)的?rθ G,并说明在25 ℃、100 kPa下何者更 M 稳定。

热水锅炉参数设计

热水锅炉参数系列 GB 3166-88 本标准适用于生活用、工业用固定式热水锅炉。 1.热水锅炉的基本参数应符舍下表的规定。 ━━━━━━┯━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━│额定出口/进口水温度℃ 额定热功率MW├────────┬─────┬─────┬─────┬───│ 95/70 │ 115/70 │ 130/70 │ 150/90 │180/110 ├────────┴─────┴─────┴─────┴─── │允许工作压力MPa(表压) ──────┼──┬──┬──┬──┬──┬──┬──┬──┬──┬───│0.4 │0.7 │1.0 │0.7 │1.0 │1.0 │1.25│1.25│1.6 │2.5 0.1 │△│││││││││ 0.2 │△│││││││││ 0.35 │△│△││││││││ 0.7 │△│△││△││││││ 1.4 │△│△││△││││││ 2.8 │△│△│△│△│△│△│△│△││ 4.2 ││△│△│△│△│△│△│△││ 7.0 ││△│△│△│△│△│△│△││ 10.5 │││││△││△│△││ 14.0 │││││△││△│△│△│ 29.0 │││││││△│△│△│△ 46.0 │││││││││△│△ 58.0 │││││││││△│△ 116.0 │││││││││△│△ ━━━━━━┷━━┷━━┷━━┷━━┷━━┷━━┷━━┷━━┷━━┷━━━ 附加说明 本标准由中华人民共和国机械工业部提出。 本标准由上海工业锅炉研究所归口和负责起草。 本标准主要起草人田辉鑫 自本标准实施之日起,原国家标准GB3166-82《热水锅炉参数系列》作废。 GB3166-88《热水锅炉参数系列》编制说明 1. GB3166-82《热水锅炉参数系列》是我们工业锅炉行业的基础标准之一,涉及面广,为贯彻国发(1984)28号文《国务院关于在我国统一实行法定计量单位的命令》要求。采用法定计量单位制,故需修定本标准。本标准的修定是按机械工业部1986年标准制、修订计划中86460111项目要求进行的。修订时,根据原标准几年来执行的情况,在原标准的基础上,作了适当的调整和补充。 2. 根据 GB3100—82《国际单位制及其应用》的规定,压力单位应用帕[斯卡],单位符号为Pa,或帕的十进倍数,本标准中采用兆帕(MPa),即 lMPa=106Pa,这样1MPa=10.197kgf /cm2。因为锅炉压力参数要在锅炉铭牌中表示,为使锅炉铭牌不致出现过多的小数,本标准中的压力参数等级定为0.4;0.7;1.0;1.25,1.6;2.5六档,相当于4.079;7.138;10.197; 12.746;16.315;25.493 kgf/cm2,与《工业蒸汽锅炉参数系列》一致。除1.25 MPa压力级比原标准中13 kgf/cm2降低2%以外,其余都比原标准中相应的压力等级提高2%。当该标准实施后,锅炉的强度计算应按此压力参数进行计算。 3. 将原标准中的额定供热量改为额定热功率,单位用 MW表示,不用供热量单位MJ/h

热力学公式

电熔镁砂热回收热量引用计算公式说明 本课题主要研究熔坨高温回收利用,众所周知,物体能量传递主要以热传导、对流换热、辐射三种方式进行传递。本课题主要涉及到熔坨自身热传导,气体对物体表面对流换热传导过程。物体能量主要是以物体温度作为表征,其中还有化学能、汽化热能等其它不以温度为表征的能量。在本课题能量传递过程中共涉及到熔坨非稳态导热过程,空气与熔坨间的对流放热过程,热空气与矿石原料对流换热过程和矿石原料加热过程, 一、在热工过程热平衡计算中应用了热力学第一定律(即能量 守恒定律),其表达式根据能量守恒定律得知,熔坨的放 出热量等于空气的得热;热空气放热等于矿石原料的热量 (其中含有矿石原料的分解热),并考虑到系统的热损失。 二、在热量传递过程采用熔坨非稳态热传导(熔坨自身传热) 放热和矿石原料非稳态传到加热计算;空气与熔坨和热空 气加热矿石原料的对流换热计算公式(即牛顿冷却或加热 公式)。 三、任何物质在高于绝对零度的温度下,必然具有热能,其能 量值与物质的比热容、物质质量、物质所具有的温度有关。 据此计算熔坨的总能量,整个放热期间终了时刻的能量。 整个吸热过程终了时刻物质所具有的热能(含化学分解热 能)。根据能量传递过程中的热量计算工序所要求的矿石 原料加热量 四、根据应用能量守恒定律、非稳态传导和对流换热过程的计 算得知。该项目可回收熔坨加工过程中的热能。 本课题采用热力学公式如下: 一、热力学第一定律(能量守恒定律) 基本表达式 Q=⊿U+AW (Kcal) Q-----------热量(Kcal)吸热取正值,反之取负值 ⊿U--------系统的内能变化(Kcal) A-----------功热当量1/427(Kcal /kgf*m) W------------物体的膨胀功 kgf*m 二、物体具有的能量 根据任何高于绝对零度物体下所具有的能量得到如下公式: 1、公式Q=Cp*M*T 或 Q=Cp*ρ*V*T (KJ) 该计算公式表征任何高于绝对零度物体下所具有的能量。

加热炉热力计算软件

加热炉热力计算软件 黄绍岩  赵国勇 赵峰 李慧峰(中原油田设计院) 黄绍华(中国石化天然气分公司工程建设管理处) 摘要:中原油田原油为高凝点石蜡基原油,在油田油气集输过程中,水套加热炉就成为不可缺少的关键设备。加热炉的设计核心主要体现在其热力计算方面,所以利用计算机先进技术,采用可视化编程语言开发加热炉计算软件,改变以往的手工计算方法,大幅度提高计算精度和设计质量,缩短设计周期,提高加热炉设计水平,就成为摆在设计人员面前的一个头等大事。软件采用石油行业通用标准《火筒式加热炉热力与阻力计算方法(S Y /T 0535-94)》为数学模型进行计算,计算结果准确可靠。 关键词:热力计算;加热炉;软件 中原油田原油为高凝点石蜡基原油,在油田油气集输过程中,水套加热炉就成为不可缺少的关键设备。加热炉的设计核心主要体现在其热力计算方面,所以利用计算机先进技术,采用可视化编程语言开发加热炉计算软件,改变以往的手工计算方法,大幅度提高计算精度和设计质量,缩短设计周期,提高加热炉设计水平,就成为摆在设计人员面前的一个头等大事。 1 软件的研制开发 加热炉热力计算软件程序的编制从一开始就选定Visual C ++610语言,采用此语言最主要的好处是可以进行ARX 编程,直接对AutoCAD 进行开发,这样就可以利用计算结果生成图形,为以后软件的升级创造有利条件。加热炉热力计算软件流程 图见图1。 本软件的最终用户是从事加热炉设计工作及有关的设计部门,要求用户具有基本的计算机操作知识,并掌握加热炉的结构和计算原理,对加热炉热力计算有所了解。 图1 软件流程图 在安全保密方面,为了保护软件开发人员的知识(4)35kV 变电所绝大多数主变容量都是5000~10000kVA ,所以采用封闭基础储油很 合适。 (5)事故油还可回收利用,以8000kVA 变压器为例,含油3142t ,若回收,价值可观。 封闭基础储油与卵石间隙储油经济性对比如下(以8000kVA 变压器为例): 封闭基础储油使用卵石413m 3,卵石间隙储油需要60m 3,节省5517m 3/台;事故发生后,事故油回收可按90%计:储油基础可回收约3t ,而卵石间隙储油不能回收。 变压器封闭基础储油方法在大庆采油二厂聚南二十三注水变电站等工程中得到应用,效果理想。 (栏目主持 张秀丽) 5 油气田地面工程第27卷第1期(200811)

热力学 习题 答案

第9章热力学基础 一. 基本要求 1. 理解平衡态、准静态过程的概念。 2. 掌握内能、功和热量的概念。 3. 掌握热力学第一定律,能熟练地分析、计算理想气体在各等值过程中及绝热过程中的功、热量和内能的改变量。 4. 掌握循环及卡诺循环的概念,能熟练地计算循环及卡诺循环的效率。 5. 了解可逆过程与不可逆过程的概念。 6. 解热力学第二定律的两种表述,了解两种表述的等价性。 7. 理解熵的概念,了解热力学第二定律的统计意义及无序性。 二. 内容提要 1. 内能功热量 内能从热力学观点来看,内能是系统的态函数,它由系统的态参量单值决定。对于理想气体,其内能E仅为温度T的函数,即 当温度变化ΔT时,内能的变化 功热学中的功与力学中的功在概念上没有差别,但热学中的作功过程必有系统边界

的移动。在热学中,功是过程量,在过程初、末状态相同的情况下,过程不同,系统作的 功A 也不相同。 系统膨胀作功的一般算式为 在p —V 图上,系统对外作的功与过程曲线下方的面积等值。 热量 热量是系统在热传递过程中传递能量的量度。热量也是过程量,其大小不仅与 过程、的初、末状态有关,而且也与系统所经历的过程有关。 2. 热力学第一定律 系统从外界吸收的热量,一部分用于增加内能,一部分用于对外 作功,即 热力学第一定律的微分式为 3. 热力学第一定律的应用——几种过程的A 、Q 、ΔE 的计算公式 (1)等体过程 体积不变的过程,其特征是体积V =常量;其过程方程为 在等体过程中,系统不对外作功,即0=V A 。等体过程中系统吸收的热量与系统内 能的增量相等,即 (2) 等压过程 压强不变的过程,其特点是压强p =常量;过程方程为 在等压过程中,系统对外做的功 系统吸收的热量 )(12 T T C M M Q P mol P -=

相关文档
最新文档