城市轨道交通供电系统的应用与简述

合集下载

城市轨道交通供电系统设计原理与应用

城市轨道交通供电系统设计原理与应用

城市轨道交通供电系统设计原理与应用摘要:电力能源供应系统在地铁交通运营之中的作用十分关键,不单单需要为电动列车牵引供给电能,并且还应该为区间、车站等其他建筑场合提供所实际需要的动力照明用电,因此,其必须具备稳定性以及安全性。

不一样的城市轨道交通体系,也需要依据实际状况进行分析研究,依据当地地区所具备的条件以及技术手段发展,来规划设计出更加科学高效的电力能源供给模式,符合实际城市的发展要求。

基于此,下文将对三种不一样的电力能源供给模式以及相关优劣势进行分析,并提出相应参考意见。

关键词:城市轨道交通;供电系统;设计引言在我国社会经济高速发展的背景下,城市化进程速率不断提升,城市之中的人口数量以及机动车数量越发之多,人民群众出行的频次也不断提升,物资信息交互频繁。

当前时期,城市轨道交通已经成为处理城市交通困难问题的最为优异措施,也是城市创设优良公共交通秩序的基础趋势。

城市轨道交通电力能源供给系统,不单单是衡量城市轨道交通运转情况的基础判断根据,也是城市轨道交通稳定合理运转的保障。

站台服务设备以及列成运行都需要一个安全可靠的电力能源供给系统来提供动力能源。

因此,依据实际状况规划最为科学的供电模式,对于城市轨道交通的运行发挥着十分关键的作用。

1、城市轨道交通供电系统三种供电模式1.1集中供电城市轨道沿线规划若干个主变电站,为沿线一切牵引变电站以及降压变电站集中化进行电力能源供给,这就属集中供电模式,其中,主变电站属于外部电力能源供应系统的其中之一,牵引变电站属于牵引供电系统,降压变电站属于照明系统之中。

集中供电模式是将主变电站的一次计量电源引进上部分的高压区110千瓦变电站独立电源。

独立供电系统只向着沿线的牵引变电站以及降压变电站进行电力能源供给,不为居民住户提供生活用电,基本上也不会受到其余负荷造成的限制作用,稳定程度相对较高,维护工作的进行也较为便捷,但是,独立主变电站不单单具备造价较高的特点,还需要配备两台变压器,从而推进电力能源供应的稳定程度,整体成本相对较高。

城市轨道交通供电系统及电力技术分析

城市轨道交通供电系统及电力技术分析

城市轨道交通供电系统及电力技术分析随着城市化进程的加快,城市轨道交通系统已经成为城市中不可或缺的交通方式,其对于城市的发展和居民生活有着重要的作用。

而城市轨道交通的供电系统及电力技术则是其运行的关键,对于保障交通系统的安全、稳定和高效运行至关重要。

本文将对城市轨道交通供电系统及电力技术进行分析。

一、城市轨道交通供电系统城市轨道交通系统的供电系统是指为保证列车正常运行所需的电能供给系统。

目前,城市轨道交通系统的供电方式主要有集中式供电和分散式供电两种。

1.集中式供电集中式供电是通过架空电缆或第三轨供电,将电能从供电站传输到整个轨道线路上的所有列车。

这种供电方式的优点是电能传输损耗小,对环境的影响较小,且可以有效控制电能的分配和管理。

集中式供电也存在着设备投资大、维护成本高、对供电线路和设备的要求高等缺点。

从目前的发展趋势来看,集中式供电较多应用于地铁等城市轨道交通系统,而分散式供电更适用于轻轨、有轨电车等城市轨道交通系统。

不同的供电方式都有着各自的优缺点,选择合适的供电方式需要根据具体的运营环境和需求来进行综合考虑。

二、城市轨道交通电力技术城市轨道交通的电力技术是指为保障供电系统正常运行而涉及的相关技术,主要包括电力传输技术、电能转换技术、电能控制技术等。

1.电力传输技术电力传输技术是指供电系统将电能从供电站传输到轨道线路上的所有列车所采用的传输方式和技术。

目前,城市轨道交通系统的电力传输技术主要有直流传输技术和交流传输技术两种。

直流传输技术是指通过电缆或第三轨将直流电能传输到列车上,而交流传输技术则是通过接触网将交流电能传输到列车上。

两种传输技术各有其适用范围和特点,根据运营环境和需求选择合适的传输技术对于提高供电系统的安全性、稳定性及运行效率至关重要。

2.电能转换技术电能转换技术是指供电系统将电能进行合适的转换,以适应列车不同运行状态和需求的技术。

城市轨道交通系统的电能转换技术主要包括逆变技术、变压技术等。

城市轨道交通供电系统简介及供电方案设计概述

城市轨道交通供电系统简介及供电方案设计概述
城市轨道交通供电系统简介 及供电方案设计概述
目录
供电系统的组成 供电系统的功能 供电方案设计
一、供电系统的组成
城市轨道交通供电系统 由外部输电线路、主变电所 (开闭所)、35kV( 10kV)中压环网、牵引降 压混合变电所和降压变电所 、接触网(轨)、电力监控 系统、杂散电流防护及接地 系统、低压配电及动力照明 系统等部分组成。
三、供电方案设计—主变电所设置方案
主变电所资源共享
以建设规划为基础,针对线网规划进行共享规划。 优先考虑建设年度相近的线路资源共享,如首先考虑建设规划
建设的线路资源共享。 做好时序规划,由先建线路建设。 选址要考虑到建设时序问题,不要选到后建线路的车站或线路
附近,没有电缆通道。
三、供电方案设计—中压环网电压等级
各站降压变电所的供电范围是本车站以及两边的各半个区间。
二、供电系统功能—低压配电和与照明系统功能
动力照明负荷按其用途和重要性分为三级: 一级负荷供电:由降压变电所两段一、二级负荷母线上分别 引一路独立电源,两路电源在供电线路末级用户端电源切换箱处 自动切换。 二级负荷供电:电源从降压变电所或空调通风电控室的一、 二级负荷母线馈出,单电源供电到设备配电箱。 三级负荷供电:由一路来自变电所或空调通风电控室三级负 荷母线的单回路供电。
二、供电系统功能—牵引网功能
架空接触网
北京五号线—上部授流接触轨
二、供电系统功能—电力监控系统功能
对全线的主变电站或开闭所、牵引降压混合变电所、降压变电所、 跟随式降压变电所、牵引网等的主要设备的运行状态进行实时控制、监 视和数据采集,实现供变电设备的自动化调度管理。
整个系统利用显示终端和大屏幕,显示各变电所的运行状态。

城市轨道交通供电系统的设计及应用

城市轨道交通供电系统的设计及应用

城市轨道交通供电系统的设计及应用[摘要]城市轨道交通是新型的便捷交通工具,在城市的发展中逐渐成为城市交通中的重要组成部分,轨道交通供电系统是交通运行的重要动力来源,必须得到重视。

鉴于此,本文对城市轨道交通供电系统的设计及应用进行了分析探讨,仅供参考。

[关键词]城市轨道交通;供电系统设计;应用中图分类号:U223.6 文献标识码:A 文章编号:1009-914X(2018)31-0178-01一、城市轨道交通供电系统介绍在城市轨道交通中,供电系统是重要的基础,因而在建设时必须给予充分的重视。

我国经济和交通的繁荣发展,使得我国的供电系统设计方案和施工技术都获得了快速发展,供电系统理论、设计方案等都更加合理,对轨道交通设计也产生了积极的促进作用。

但是当前很多的方法只适合轨道交通供电系统的初步规划和方案设计。

在探索城市轨道交通工程建设的前期准备和深入设计中,结合轨道交通供电系统进行分析,深入了解和归纳供电系统设计方法,力求设计方法更合理,可以很好地完成当前轨道交通供电系统设计的前期准备和设计工作。

二、城市轨道交通供电系统的设计任务现代项目管理理论中关于城市轨道交通的前期建设的程序设计、规划运营等,包含了项目的城市轨道交通网络规划可行性研究,城市轨道交通供电网络设计需要的资金支持以及筹措的方案等。

具体的内容包括:对城市电网以及电源引入进行初步的调查,对供电系统方案进行初步的确定,对供电制式进行方案的初步设计,对车辆选型、供电牵引等进行去顶,估算供电系统的工程建设的投资,将分部分项的工程投资的估算精度加以控制。

最终形成的供电系统的可行性研究报告中,关于供电系统的任务的描述是:确定城市轨道交通供电系统、外部电源、牵引供?方案、等关系;电流腐蚀防护、接地计划等。

关于工程的,是施工范围包含了电缆工程、变电所、牵引变电所、降压变电所、接触网等,关于供电系统的项目投资共算的误差率不能超过10%。

供电系统的前期设计阶段,根据供电系统设计的基本资料,对线路、行车、车辆等基本条件加以筹划。

城市轨道交通的强弱电系统-四电工程

城市轨道交通的强弱电系统-四电工程

城市轨道交通的强弱电系统-四电工程城市轨道交通是一种高效、快速、安全、舒适的现代化交通工具。

为了保证城市轨道交通系统的正常运行,以及为满足未来城市轨道交通网络的扩张和发展,需要进行全面、可靠、安全的强弱电系统设计。

在轨道交通领域中最常用到的又被称为“四电工程”的强弱电系统设计。

下面将从四个方面详细介绍城市轨道交通的强弱电系统-四电工程。

一、供电系统1.供电系统的基本构成城市轨道交通供电系统由电源、送电线路、接触网、变电站、开关站、牵引变压器、道床电气设备等多个部分组成。

2.供电系统的工作原理和特点供电系统是城市轨道交通系统的核心部分,提供高电压直流(或交流)电力来驱动列车行驶。

主要特点是:变压器在交流传输过程中具有较小的电流损耗,能够满足长距离供电要求;交流供电系统具有较好的适应性,可适用于多种场合;直流供电具有升级改造方便等优点。

二、信号与通信系统1.信号与通信系统的基本构成城市轨道交通信号与通信系统主要由列车信号设备、道岔控制、信号机和通讯设备等多个部分组成。

2.信号与通信系统的工作原理和特点信号与通信系统是城市轨道交通系统的另一个关键部分,主要用于列车行驶控制和通讯。

它具有安全性高、精度高、灵活性好、实时性高等特点。

常见的信号方式有区段信号、换位信号、跟踪信号等多种方式。

三、控制系统1.控制系统的基本构成城市轨道交通控制系统包括车辆控制、列车队列控制、信号控制和中央监控等多个部分。

2.控制系统的工作原理和特点控制系统用于对车辆进行运行管理和列车流量智能控制。

它具有灵活性强、反应快捷、控制准确等特点。

控制系统的设计案采用了遥控技术,在现代化设备的基础上,更是加强了机动性和智能化程度,实现了全自动化组织和调度。

四、车辆牵引安全系统1.车辆牵引安全系统的基本构成城市轨道交通车辆牵引安全系统包括牵引变流器、牵引电机、制动系统、速度监控系统等多个部分。

2.车辆牵引安全系统的工作原理和特点车辆牵引安全系统是城市轨道交通系统中最关键的部分,主要用于控制列车的牵引和制动。

城市轨道交通供电系统的设计及应用

城市轨道交通供电系统的设计及应用

城市轨道交通供电系统的设计及应用随着城市发展和人口增加,城市交通拥堵问题日益凸显,城市轨道交通作为一种快速、安全、环保的交通方式得到了广泛的应用和推广。

城市轨道交通供电系统是保障轨道交通正常运行的重要组成部分,其设计和应用对于轨道交通运营和城市交通发展具有重要意义。

首先,供电系统的稳定性和可靠性是设计的重要指标。

轨道交通具有高速、高密度运输的特点,供电系统必须能够满足列车的高速运行和大负荷。

稳定性和可靠性是保障交通安全和运营顺利的关键。

其次,供电系统的安全性和防护性是设计的重要考虑因素。

供电系统涉及高压电力传输,对于乘客和工作人员的安全至关重要,必须采取相应的安全措施来防止电流溢出、短路等电力故障,同时还要考虑到防雷、防电磁干扰等因素。

再次,供电系统的能效和环保性应作为设计的重要目标之一、城市轨道交通是一种低碳、环保的交通方式,供电系统应尽可能减少能源消耗,提高能源利用效率,采用清洁能源,减少污染物排放,为城市减少空气和噪音污染。

另外,供电系统的扩展性和适应性也是设计的关键。

城市轨道交通在运营过程中需求会发生变化,供电系统应具备一定的扩展性和适应性,能够满足新线路、新车辆的接入,同时还要能够适应不同环境和气候条件下的供电需求。

在城市轨道交通供电系统的应用中需要考虑以下几个方面:首先,要根据城市轨道交通线路的规模和客流量确定供电系统的容量和配置。

不同规模的城市轨道交通线路所需的供电系统容量是不同的,需根据实际情况进行合理配置。

其次,要根据供电系统的特点和线路的特点制定相应的供电管理措施。

供电系统的管理不仅仅包括供电设备的安装和维护,还包括对供电系统运行状态的监测和控制,以及对供电系统故障的及时处理和修复。

再次,要加强供电系统的故障预测和预防。

供电系统是轨道交通运营的重要组成部分,任何供电系统的故障都会对轨道交通运营产生严重的影响,因此要做好供电系统故障的预测和预防工作,及时发现和排除潜在故障问题,保障轨道交通的正常运行。

城市轨道交通双向变流式牵引供电系统的应用

城市轨道交通双向变流式牵引供电系统的应用

城市轨道交通双向变流式牵引供电系统的应用摘要:二极管整流机组通电是以往城市轨道交通牵引中的主要供电来源,但是这种供电方式易于造成资源的不必要浪费,对于实现我国的资源优化配置非常不利。

双向变流器的使用使得供电方式有了更多选择。

城市轨道交通中利用双向变流器和蒸馏机组混合供电的方式,能够提高供电效率,同时也能避免不必要的资源浪费。

本文结合我国城市轨道交通建设的实际,针对双向变流式供电系统展开研究。

关键词:城市轨道交通;双向变流式牵引供电;应用引言:城市轨道交通的建设事关城市经济的发展,也事关我国经济社会的发展。

双向交流式牵引供电系统作为其中的关键技术,包含隔离、故障保护、电能转换等多种功能。

结合我国早期的城市轨道交通建设来看,二极管整流机组最主要的输电方式,但是在传送过程中消耗了大量的制动能量,对我国经济社会的发展非常不利。

对输电系统中的供电系统进行完善和优化成为轨道交通建设中的重点。

1.双向变流器的概述双向变流器本质上就是一个整流器,能够通过电压闭环的相关控制装置,实现能源的双向流动,具有很强的适应性。

这也是其在城市轨道交通中广泛应用的前提,该系统将电压和电流的控制变成一个动态变化的过程,在很大程度上满足了城市轨道交通发展需求,但是在技术层面还有很多有待攻关的难题。

1.双向变流器挂网实施在挂网实施的过程中需要对多项因素进行把握:首先就是相关技术设备的安装和施工,不能影响变电所内设备的正常运转;其次就是采取合适的控制方式,实现整流机组和双向变流器的协调运行;最后就是处理好双向变流器正确操作逻辑和相关的保护问题。

(一)混合供电控制方式整流机组和双向变流器是混合供电控制中的关键。

想要实现这两种电力控制方式的有机统一,需要解决多种问题:首先就要顺应整流机组自然下垂的特性,采取合理的控制模式;其次就是要尽量避免整流电源之间能量环流的产生。

(二)操作保护逻辑操作保护逻辑的关键主要是实现对相关技术设备的有效控制,但是相关显示单元的具体组成较为复杂,包括大量的仪器,指示灯和触摸屏。

城市轨道交通UPS集中供电系统技术与应用

城市轨道交通UPS集中供电系统技术与应用

城市轨道交通UPS集中供电系统技术与应用摘要:在城市轨道交通工程中运用UPS集中供电系统时,相关工作人员需要加强对这一系统的维护以及管理力度,结合UPS集中供电系统的特征以及主要的应用范围提出有效的管理方案和技术维护方案,并且还要加强和现场技术人员之间的沟通以及交流,制定完善的运行维护方案,从而使得城市轨道交通的安全系数和稳定性能够得到有效的增强。

关键词:城市轨道交通;UPS集中供电系统;技术探究在城市轨道交通工程中运用UPS集中供电基础是非常重要的,相关部门需要结合实际情况,充分的发挥UPS集中供电系统的优势,给实际工作起到一个良好的支撑效果,结合城市轨道交通对集中供电系统的要求以及标准,对UPS集中供电系统进行不断的优化以及调整,从而保证城市轨道交通安全系数的提升。

1UPS集中供电系统技术的概述为了使UPS集中供电系统能够提高城市轨道交通运行的稳定性和安全性,相关工作人员在实际工作过程中,需要了解UPS集中供电系统技术的特征和主要的应用范围,从而为后续工作奠定坚实的基础。

自UPS提出以来,在设计和制造方面一直进行了不断的优化,并且融入了智能监控等新兴技术,使得UPS的工作水平能够得到有效的提高,减少UPS系统在使用过程中故障的几率。

我国大型 UPS 的无故障时间已经超过了20万小时,从中可以看出UPS系统的稳定性和可靠性在不断的提高。

UPS系统在应用的过程中包含了发电机组合、蓄电池组、输电线路设备和配电线路设备等,不仅集成化效果是比较好的,并且各个模块之间也可以进行相互的协调以及配合,最大程度地满足实际工作需求和工作要求。

在UPS集中供电系统配置方面,包含了UPS单机,并且工作人员还结合了实际情况制定了不同的工作模式,UPS单机配置的主要作用是能够在较小的空间内节约工程的投资成本,假如在后续运行的过程中出现故障的话,那么会通过不同模式来解决这一问题,具有较高的可靠性。

但是假如相关工作人员选择了错误的解决方法和工作模式的话,不仅会增加整个成本的投入,还会对工作人员的生命安全造成非常严重的危险。

城市轨道交通供电系统及电力技术分析

城市轨道交通供电系统及电力技术分析

城市轨道交通供电系统及电力技术分析一、城市轨道交通供电系统城市轨道交通供电系统通常采用第三轨供电和架空线供电两种方式,其中第三轨供电主要应用于地铁系统,而架空线供电则主要应用于轻轨、有轨电车等系统。

无论是第三轨供电还是架空线供电,其基本构成和组成原理大致相同,即由电源、供电装置、接触网或第三轨、车辆等组成。

1. 供电方式第三轨供电是指在轨道旁边或轨道中间铺设一根金属轨,通过轨道供电装置向车辆提供电能。

相比于架空线供电,第三轨供电的优势在于无须建设高架架空线路,不会影响城市景观,但其缺点在于安全性较差、受环境影响大等。

而架空线供电则是指在路轨上方悬挂一根或多根电力导线,通过接触网将电能传输给车辆。

架空线供电的优势在于供电安全性高、可靠性强,但其缺点在于对城市景观影响大、对环境要求高等。

2. 供电装置城市轨道交通供电系统的供电装置通常包括变电设备、开闭所、接触网或第三轨等部分。

变电设备主要用于将城市电网供电的高压交流电转换为适合交通车辆使用的低压直流电,以及对供电系统进行监控和保护。

开闭所则用于控制供电系统的通断,保障其安全、稳定地运行。

接触网或第三轨则用于向行驶中的车辆提供电能。

这些供电装置的设计和运行状态对城市轨道交通系统的安全性和可靠性具有重要影响。

3. 车辆城市轨道交通车辆是供电系统的终端使用者,其接受并利用供电系统提供的电能。

车辆的设计和制造质量,电力系统以及电气设备的性能表现等都与城市轨道交通供电系统的安全、稳定运行密切相关。

二、电力技术城市轨道交通供电系统的高效、稳定运行需要电力技术的支撑,在此我们将从电源技术、供电技术和电力质量技术三个方面对相关技术进行分析。

1. 电源技术城市轨道交通供电系统的电源一般来自城市电网,而城市电网的电能来源多种多样,包括火电、水电、风电、光伏发电等。

电源技术的发展趋势主要包括提高电能利用率、降低对环境的影响、提高系统的可靠性和稳定性等。

还需要考虑城市电网与城市轨道交通供电系统之间的匹配性和互动性,以保障城市轨道交通供电系统能够获得高质量的电能供应。

简述城市轨道交通供电系统的功能

简述城市轨道交通供电系统的功能

简述城市轨道交通供电系统的功能城市轨道交通(UrbanRailTransit,简称 URT)供电系统是城市轨道交通网络中可靠、安全的高效性能的基本保证之一。

它的功能不仅是提供适度的动力,而且还提供环境友好的绿色出行形式、高品质的安全保障体系和可靠的运营状况。

首先,城市轨道交通供电系统需要提供适度的动力。

城市轨道交通运营单位需要提供高品质的电能,以保证轨道交通安全、稳定、高效的运行。

轨道电车运行的动力主要来源于供电系统,并且还要求供电系统能够灵活、方便地提供足够的电能,以满足轨道交通的需求。

其次,城市轨道交通供电系统可以提供更加环境友好的绿色出行形式。

相比传统的汽车出行方式,城市轨道交通供电系统所使用的电能比较环保,它拥有更低的污染和尾气排放,可以有效改善城市环境质量,为社会和环境带来更多的好处。

另外,城市轨道交通供电系统还可以提供高品质的安全保障体系。

城市轨道交通系统的运行是十分重要的,如果出现任何安全问题,可能会对乘客和整个社会造成严重的影响,因此城市轨道交通供电系统必须符合高标准的安全要求,以便在运行过程中能够做到安全稳定。

最后,城市轨道交通供电系统也可以提供可靠的运营状况。

城市轨道交通系统的运营状况可以直接影响其客流量,能够提供安全、可靠的供电服务对提高城市轨道交通的乘客满意度意义重大。

同时,城市轨道交通供电系统也可以配置一些智能自动化设备,实现轨道交通的及时监控,以便及时发现并处理运行中的问题,保证轨道交通的正常运行状况。

综上所述,城市轨道交通供电系统具有提供适度的动力、提供环境友好的绿色出行形式、提供高品质的安全保障体系和提供可靠的运营状况等多种功能,为城市轨道交通提供了可靠、安全、高效的保障和支持,从而改善了城市交通环境,为城市居民带来更加安全、便捷的出行工具。

城市轨道交通供电系统设备及其应用探析

城市轨道交通供电系统设备及其应用探析

城市轨道交通供电系统设备及其应用探析城市轨道交通作为现代城市的重要交通运输方式,其供电系统设备在维持运行和保障安全方面起着至关重要的作用。

本文将对城市轨道交通供电系统设备及其应用进行探析,以期能够更好地了解这一重要领域。

一、城市轨道交通供电系统概述城市轨道交通供电系统是指为城市地铁、轻轨、有轨电车等交通运输设备提供电力供应的系统。

其主要功能是将电能从电力供应系统传输到车辆上,以保证车辆的正常运行和乘客的安全出行。

城市轨道交通供电系统主要由接触网、牵引变电所、供电配电系统等部分组成,对于城市轨道交通的运行和安全至关重要。

1. 接触网城市轨道交通接触网是将电能从供电站传输至车辆的重要设备,主要由接触线、支柱、承力索等组成。

接触线是供电系统的主要组成部分,其材料通常选用钢铝合金,具有良好的导电性能和耐腐蚀性能。

支柱和承力索则用来支撑和固定接触线,保证其在列车行驶过程中稳定地提供电能。

2. 牵引变电所牵引变电所是城市轨道交通供电系统中的核心设备,其主要作用是将电网供电转换为适合轨道交通车辆使用的电能。

牵引变电所通常采用高压输电技术,将高压电能通过变压器变换为适合车辆牵引的中低压电能,以满足城市轨道交通车辆的运行需求。

3. 供电配电系统城市轨道交通供电系统设备在现代城市轨道交通中得到了广泛的应用,并在不断进行技术革新和设备升级以满足运输需求。

现代城市轨道交通供电系统设备应用的主要现状包括以下几个方面:1. 新能源供电技术随着环保理念的逐渐普及和新能源技术的不断进步,城市轨道交通供电系统设备也在向着新能源供电技术的方向发展。

目前,一些城市轨道交通系统已经开始尝试太阳能、风能等新能源技术对供电系统进行补充和支持,以减少对传统能源的依赖,并实现对环境的友好保护。

2. 智能化供电设备随着信息技术的发展,智能化供电设备在城市轨道交通中逐渐得到应用。

智能化供电设备可以通过互联网和传感器等技术实现对供电系统的远程监控和智能调控,以实现对供电系统运行状态的实时监测和优化,减少人为操作的可能失误,提高供电系统的稳定性和安全性。

城市轨道交通供电系统的应用与简述

城市轨道交通供电系统的应用与简述

城市轨道交通供电系统的应用与简述在地铁运营线路中的车站、隧道区间、车辆段、停车场设备设施的运行依赖于电力来驱动工作,如电动列车、照明、环境控制系统、给排水系统、防火系统、通信、信号、自动扶梯等设备。

因此,在地铁运营中的各类设备设施要求,供电系统提供可靠的不间断的动力电源。

供电系统的质量要求:安全、可靠、稳定。

地铁供电系统部门在地铁运营公司内部是一个重要部门,在地铁运营的过程中供电设备一旦发生故障或中断供电将会造成地铁客运的瘫痪,还会危及乘客的生命安全和财产的重大损失。

供电系统设备的正常运行是保障地铁正常运营的重要前提。

地铁的供电系统110 或66KV 的电源取自城市电网,通过城市的电网一次电力系统和地铁电网一次配电供电系统,实现传输以适当的电压等级供给地铁各类设备设施用电。

地铁供电系统主要技术标准:目前国内地铁一般采用主变电站集中供电方式二级电压供电系统,主变电站进户电压110或66kv,然后通过110或66kv主变压器降压至35kv 为全线各牵降混合、降压变电站供电。

地铁供电系统各电压等级允许偏差值AC 110kv 合格范围(一3%〜+ 7%),即106.7k v〜117.7kv。

AC 66kv 合格范围(± 5%),即62.7~69.3KVAC35kv 合格范围(± 5%),即(33.25〜36.75)kv 。

AC 400v 合格范围(士7%),即372v〜428v。

DC 1500v 合格范围(一33% 〜+ 20%),即1000v〜1800v。

牵引整流变压器:高压侧额定电压AC35KV 、低压侧AC1220V。

牵引整流器:交流侧额定电压AC1220V、直流侧DC1500V。

牵引接触网:电压波动范围为DC1000V〜DC1800V。

降压动力变电压器:高压侧AC35KV 、低压侧AC0.4KV 。

供电系统设置远动(SCADA )系统:实现全现供电系统集中调度控制管理,并支持综合监控(ISCS)系统的集成。

城市轨道交通供电系统设备及其应用探析

城市轨道交通供电系统设备及其应用探析

城市轨道交通供电系统设备及其应用探析城市轨道交通供电系统是城市轨道交通的重要组成部分,它为城市轨道交通提供了稳定、可靠、高效的电力供应。

城市轨道交通供电系统主要由供电设备、牵引设备和配电设备组成,本文将针对这三种设备进行详细介绍。

一、供电设备城市轨道交通供电系统的供电设备主要包括变电站、架空线缆、绝缘栅、接触网等。

1、变电站变电站是城市轨道交通供电系统的核心设备,其主要功能是将电力从高压电网升压变成适合城市轨道交通使用的低压电力,同时进行定时计量和监控,确保城市轨道交通电力供应的准确性和可靠性。

变电站的选址、设计和建设需要充分考虑城市轨道交通线路的规划和运营需求,以确保供电系统的高效运行和安全稳定。

2、架空线缆架空线缆是城市轨道交通供电系统中贯穿全线的一种供电设备,其主要作用是将变电站输出的电力传递到城市轨道交通的每个区间供电子站。

架空线缆的选用要考虑线路的特点和工程难度,以确保供电系统的连续性和可靠性。

3、绝缘栅绝缘栅是城市轨道交通供电系统中保护设备和人员安全的关键设备。

其主要作用是将零线和接触网隔离,防止电流串通和人身触电事故发生。

绝缘栅的设计和选用要考虑城市轨道交通线路的特点和交通流量,以确保供电系统的安全和可靠性。

4、接触网二、牵引设备1、电动机电动机是城市轨道交通牵引系统的核心设备,其主要作用是转化电能为机械能,带动轨道交通行驶。

电动机的选用要考虑车辆的质量和速度要求,以确保系统的高效和稳定。

2、变频器3、牵引控制器牵引控制器是城市轨道交通供电系统中的重要控制设备,其主要作用是将变频器输出的电流测量并控制在一定范围内,确保城市轨道交通系统的控制和工作状态。

1、配电柜2、高压开关柜总之,城市轨道交通供电系统设备的选用和应用对于城市轨道交通运营的安全和稳定至关重要。

城市轨道交通供电系统的设备和技术应不断更新和改进以满足不断变化的城市轨道交通需求。

城市轨道交通供电系统及电力技术分析

城市轨道交通供电系统及电力技术分析

城市轨道交通供电系统及电力技术分析随着城市发展和人口增长,城市交通问题日益突出。

轨道交通作为城市公共交通的重要组成部分,对于缓解城市交通拥堵、改善环境质量、提高出行效率具有重要意义。

而轨道交通供电系统和电力技术是确保轨道交通安全、高效运行的关键。

本文将从城市轨道交通供电系统和电力技术的角度进行分析,探讨其在城市轨道交通发展中的重要作用和发展趋势。

一、城市轨道交通供电系统概述城市轨道交通供电系统是指为城市地铁、轻轨、有轨电车等轨道交通提供电力的系统,主要包括牵引供电系统和辅助供电系统两部分。

1. 牵引供电系统牵引供电系统是为轨道交通列车提供牵引电力的系统,一般采用直流750V或交流1500V/3000V供电。

其主要包括接触网、供电设备、牵引变流器等组成部分。

接触网是牵引供电系统的核心,通过接触网与列车上的受电弓实现电能传输,为列车提供所需的牵引电力。

供电设备一般包括变电所、配电设备等,用于将电能从电网输送至接触网。

牵引变流器则是将接触网提供的直流或交流电能转换为适合列车牵引用的电能。

二、城市轨道交通电力技术分析城市轨道交通电力技术是保障轨道交通设备安全、高效运行的关键。

随着城市轨道交通的快速发展,相关电力技术也在不断创新和完善,主要体现在以下几个方面。

牵引电力技术是影响轨道交通列车动力性能和运行效率的关键技术。

传统的牵引电力技术主要包括直流牵引和交流牵引两种。

在直流牵引技术中,采用直流电机驱动列车运行,具有良好的启动和加速性能,适用于地铁等短途快速运行的轨道交通系统;在交流牵引技术中,采用交流感应电动机或交流同步电动机驱动列车运行,具有较大的功率范围和较高的效率,适用于城市轨道交通系统中的长途高速运行。

随着磁悬浮技术的不断进步,利用磁悬浮技术实现牵引动力已成为轨道交通发展的新趋势,具有运行速度快、噪音低、能耗低等优势。

供电系统技术是保障轨道交通列车牵引供电的关键技术。

随着轨道交通系统的不断完善和扩建,其供电方式也在不断创新和优化。

城市轨道交通供电系统及电力技术分析

城市轨道交通供电系统及电力技术分析

城市轨道交通供电系统及电力技术分析近年来,随着城市化进程加快和人口流动增加,城市轨道交通成为城市交通发展的重要组成部分。

而轨道交通供电系统是保障轨道交通正常运行的重要保障之一,其电力技术更是支撑轨道交通运行的核心。

本文将从城市轨道交通供电系统和电力技术两个方面进行分析,探讨其在城市交通中的重要性和发展趋势。

一、城市轨道交通供电系统的类型与特点城市轨道交通供电系统主要有集中供电和分散供电两种类型。

集中供电是指由变电站对电能进行集中供应,然后通过接触网供给给轨道车辆;而分散供电是指在轨道线路上设置供电设备,由这些设备向轨道车辆提供电能。

集中供电系统的特点是变电站设置在地面或地下,通过高压输电线将电能传输到轨道线路上的接触网,供给给轨道车辆。

这种方式具有输电距离远、供电距离远、供电线路短、易管理等优点。

而分散供电系统的特点是直接将输电线路接入到轨道线路,通过地下电缆或者导轨向轨道车辆供电,具有供电距离短、供电线路短、结构简单等优点。

城市轨道交通供电系统的特点还包括供电方式多样、电能利用高效、系统安全可靠、维护工作量大等。

供电方式多样指的是根据不同的轨道交通形式和运行要求,可以采用不同的供电方式,包括直流供电、交流供电等;电能利用高效指的是轨道交通供电系统对能源的利用非常高效,能够最大限度地提高电能的利用率;系统安全可靠指的是供电系统需要具备高可靠性和安全性,以保障轨道交通的正常运行;维护工作量大指的是由于轨道交通供电系统工作环境复杂,设备设施繁多,维护工作量较大。

二、城市轨道交通电力技术的发展趋势随着城市轨道交通的不断发展,城市轨道交通电力技术也在不断创新和进步。

其主要发展趋势包括数字化、智能化、高效化、清洁化等方面。

数字化是指城市轨道交通电力技术将越来越多地引入数字化技术,如数字化变电站、数字化接触网等,以提高供电系统的智能化水平;智能化是指城市轨道交通电力技术将不断引入智能化设备和系统,如智能调度控制系统、智能断路器等,以提高供电系统的自动化水平;高效化是指城市轨道交通电力技术将不断提高电能的利用效率,如通过应用新能源技术、提高能量回收利用率等,以实现供电系统的高效化运行;清洁化是指城市轨道交通电力技术将加大对清洁能源的应用及减少对传统能源的依赖,如采用风能、太阳能等清洁能源,以实现供电系统的清洁化运行。

简述城市轨道交通供电系统的功能

简述城市轨道交通供电系统的功能

简述城市轨道交通供电系统的功能城市轨道交通供电系统是城市轨道交通的核心。

它主要由高压供电、轨道断路器、调度系统和抗干扰技术等组成,其中的高压供电是为轨道交通提供动力的基础。

高压供电系统是城市轨道交通供电系统的核心组成部分,它主要由变电站、变压器、电力线路和控制系统4大部分组成。

变电站是系统的起点,它负责将从发电厂输送的交流电转换成直流供给轨道交通所需要的电力。

变压器将变电站转出的电压调节到轨道交通所需要的电压水平,电力线路则把调压后的电能输送到轨道断路器控制的回路中。

轨道断路器是城市轨道交通供电系统的重要组成部分,一般由接触网、中央操作机构和供电装置组成。

它的功能是控制轨道交通向车站供电和断电,并调节车站、接触网和供电装置之间的电量。

设置轨道断路器可以有效地提高轨道交通系统的可靠性,降低因轨道断路造成的事故率。

调度系统是城市轨道交通供电系统的另一个重要组成部分。

它主要包括调度程序、调度监控、空间断续系统和故障检测系统等。

通过调度系统的完善,可以实现轨道交通的自动控制和调度,提高轨道交通的运行安全和时间可靠性。

此外,抗干扰技术也是城市轨道交通供电系统必不可少的一部分。

抗干扰技术主要包括电磁辐射抑制、光纤光缆抑制、电磁屏蔽以及抗噪声系统等技术。

这些抗干扰技术的实施,可以有效降低外界的电磁干扰对轨道交通的影响,提高轨道交通的稳定性和可靠性。

城市轨道交通供电系统的功能主要有3点:首先,它提供可靠的电力供应,即把发电厂输送的交流电转换成直流供给轨道交通所需要的电力;其次,它可以控制轨道交通向车站供电和断电,保证轨道交通的正常运行;最后,它还可以实现轨道交通的自动控制和调度,提高轨道交通的可靠性。

总而言之,城市轨道交通供电系统是城市轨道交通的核心,是其完善运行的重要保证。

它以其核心构成单元高压供电、轨道断路器、调度系统和抗干扰技术等组成,为城市轨道交通提供可靠的电力供应,控制轨道交通向车站供电和断电,实现轨道交通的自动控制和调度,提高轨道交通的安全性和可靠性。

城市轨道交通供电系统的设备构成及应用

城市轨道交通供电系统的设备构成及应用

城 市轨 道 交通供 电系统的设备构成 及应 用 王博
中心距 离约为 1 0 i 0l 4 ml ,距轨 面高度约 4 0i 。 4 i l m ( )受 流 器 。接 触 压力 : 1 0 1 0 ;额 定 电 2 2~ 8 N
压 :D 7 0 ;额定 电流 :7 0 0 。 C 5 V 0  ̄8 0 A
护模 式符合 城市轨道 交通 供 电系 统的需求 。
2 牵引供 电
牵 引供 电 向城 市轨 道 交 通 电动 车 组 提供 动 力 , 主
要 包 括 上 网 电缆 、接 触 网 ( 三 轨 ) 第 、回 流钢 轨 、回 流
电缆 、 均流 电缆 等 。根 据 车 辆 受 电模 式 不 同 ,牵 引供
电的牵 引 网采 用 了两种 形式 :第 三轨 一 电靴 模式 和架 集
空 接触 网一 电 弓模 式 ,利用 车辆 走 行轨 道 回流 。在城 受 市 轨道 交通 中,第三 轨 集 电靴模 式 的工 作 电压一 般 为 D 5 ,架 空接 触 网一 电 弓模 式 的工 作 电压 一般 为 C7 0 V 受
城市轨道交通
城市轨道交通供 电系统的
设备构成及应用
王博 :中国铁道科学研 究院,工程师,北京,108 01 0
城市轨 道交通 的供 电系 统主要 由交流 部分 、牵 引供 电、动 力照 明、相应 的 自动控 制系统 以及 防止迷流 设施
等 构成 。
1 交流部分
城 市轨道 交通供 电系统 的交流 部分主要 由外 电源 接
图6 架空接触网一 电弓模式 图 受


式 安全 性 高,特 别 是在 突发 事件 情况 下 ,架 空接触 网一 受 电弓模 式可 以方便城 市轨道 交通运 营部 门紧 急疏散 乘

城市轨道交通-供电系统

城市轨道交通-供电系统

不间断电源(UPS)
作用
不间断电源是城市轨道交通供电系统中的重要设备,主要负责在市电中断或异常情况下, 为轨道交通车辆提供不间断的电力供应。
组成
不间断电源通常由整流器、逆变器和蓄电池等组成。
工作原理
不间断电源在市电正常时将市电整流成直流电,然后逆变成交流电供给轨道交通车辆;在 市电中断或异常情况下,蓄电池将为车辆提供电力供应,确保车辆正常运行。
供电设备的维护保养
定期维护
制定维护计划,定期对供电设备进行清洁、检查和保养。
预防性维护
根据设备磨损规律和运行状态,进行预防性维护,延长设备使用 寿命。
维修记录与档案管理
建立设备维修档案,记录维修过程和结果,为后续维护提供参考。
供电系统的故障处理与应急预案
故障诊断与定位
快速诊断供电系统故障,准确定位故障点,为抢修提供支持。
配电网
将电能从变电所分配给各个车 站、车辆段等用电负荷。
供电方式及其特点
01
集中供电
由城市电网建设专用变电站,通过输电线路将电能输送到轨道交通沿线
的牵引变电所。该方式具有便于管理和维护、可靠性高的优点,但需要
建设专用变电站和输电线路,投资较大。
02
分散供电
在轨道交通沿线建设多个小型变电站,直接向牵引变电所和车站供电。
使用的低压电。
类型
变压器通常分为油浸式变压器和 干式变压器两种类型。
工作原理
变压器通过电磁感应原理,将输 入的高压电转换成低压电输出, 以满足城市轨道交通车辆的用电
需求。
高压开关柜
作用
高压开关柜是城市轨道交通供电系统中的重要设 备,主要负责控制和保护高压电的输配。
组成
高压开关柜通常由断路器、隔离开关、电流互感 器等组成。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

城市轨道交通供电系统的应用与简述在地铁运营线路中的车站、隧道区间、车辆段、停车场设备设施的运行依赖于电力来驱动工作,如电动列车、照明、环境控制系统、给排水系统、防火系统、通信、信号、自动扶梯等设备。

因此,在地铁运营中的各类设备设施要求,供电系统提供可靠的不间断的动力电源。

供电系统的质量要求:安全、可靠、稳定。

地铁供电系统部门在地铁运营公司内部是一个重要部门,在地铁运营的过程中供电设备一旦发生故障或中断供电将会造成地铁客运的瘫痪,还会危及乘客的生命安全和财产的重大损失。

供电系统设备的正常运行是保障地铁正常运营的重要前提。

地铁的供电系统110或66KV的电源取自城市电网,通过城市的电网一次电力系统和地铁电网一次配电供电系统,实现传输以适当的电压等级供给地铁各类设备设施用电。

地铁供电系统主要技术标准:目前国内地铁一般采用主变电站集中供电方式二级电压供电系统,主变电站进户电压110或66kv,然后通过110或66kv主变压器降压至35kv为全线各牵降混合、降压变电站供电。

地铁供电系统各电压等级允许偏差值AC 110kv合格范围(-3%~+7%),即106.7kv~117.7kv。

AC 66kv合格范围(±5%),即62.7~69.3KVAC35kv合格范围(±5%),即(33.25~36.75)kv 。

AC 400v合格范围(±7%),即372v~428v。

DC 1500v合格范围(-33%~+20%),即1000v~1800v。

牵引整流变压器:高压侧额定电压AC35KV、低压侧AC1220V。

牵引整流器:交流侧额定电压AC1220V、直流侧DC1500V。

牵引接触网:电压波动范围为DC1000V~DC1800V。

降压动力变电压器:高压侧AC35KV、低压侧AC0.4KV。

供电系统设置远动(SCADA)系统:实现全现供电系统集中调度控制管理,并支持综合监控(ISCS)系统的集成。

设置杂散电流防护系统:包括杂散电流防堵阻措施、杂散电流收集系统、杂散电流监测系统。

接地系统:110KV不系统接地:35KV为小电阻接地系统:低压0.4/0.23KV采用TN-S制接地系统:1500V直流不接地系统:地面建筑物防雷按照相关国家规范要求进行。

供电系统构成与功能:系统构成:供电系统设备组成部分:110KV主变电站、35KV供电环网电缆网络、牵降混合变电站、降压变电站,牵引接触网系统、动力照明供配电供电系统、电力监控系统(SCADA)、杂散电流防护系统。

功能:主变电站:从城市电力网中引入110或66KV电源经主变压器降压至35KV,再经35KV馈出配电柜输出至全线各变电站。

35KV供电环网电缆网络:将主变电站的35KV电源,通过馈出配电柜的环网电缆网络,分配到各牵降混合变电站及降压变电站。

牵引变电站及降压变电站:牵降混合变电站将35KV经整流变压器降压,再经整流器整流供电客车使用的直流1500v用电电源:降压变电站将35KV经电力变压器降压至0.4/0.23kv,供车站、区间动力及照明设备用电电源。

低压配电系统:通过降压变电站的低压配电系统开关柜0.4/0.24kv分路抽屉开并供给车站、区间动力照明用电电源。

电力监控系统(SCADA):在控制中心与站控层(各变电站中央信号屏)网络联结,通过电力调度终端服务设备(控制中心)、通道、执行端(供电单体设备),对整个供电系统主要电气设备进行遥控、遥信、遥测、遥调。

杂散电流腐蚀防护系统:减少因直流牵引供电引起的经回流轨泄漏的电流(杂散电流)及减少杂散电流的扩散,避免杂散电流对附近结构钢筋、金属管件的电腐蚀,并对杂散电流进行监测。

地铁供电一次系统示意图如图所示;F1、F2、地铁城市电网110或66KV进户电缆,B1、B2地铁主变压器,B3、B4地铁牵引整流变压器,B5、B6地铁降变压器,R1、R2整流器,地铁L1、L2、主变35KV一/二段母线,L3、L4、牵降混变或降压变35KV 一/二段母线,5L、L6降压变400V一/二段母线。

地铁供电不同与一般工业和民用,根据地铁的重要性一定为一类用电负荷单位。

地铁主变电站设置两路110或66KV进户电源,而且两路110或66KV进户电源来自该城市电网中不同变电站,且互相独立、互不干扰的电源。

对于这两路110或66KV电源称为双电源供电方式,当任何一路电源发生故障或中断供电时,另一路电源保障地铁全部负荷用电的需求,使地铁各变电所始终能不间断地获得三相交流电,满足地铁车站动力、照明设用电的需要,保障地铁电动列车能正常运营。

在地铁的供电系统中,按其用电的用途不同可分为两类,电客车辆牵引供电系统和低压设备供电系统。

地铁在采用集中式供电方式时,主变电站设置的主变压器容量,依该主变压器承担供电范围的负荷所确定。

牵引变电所设置的整流变压器及整流器容量,按地铁列车的远期编组及行车密度的负荷所确定。

降压变电所设置的动力变压器容量,根据车站动力照明装接容量所确定。

地铁牵引供电系统示意图如下图所示;图;牵引供电系统示意图1、整流器组2、馈出电缆3、接触网4、电动车辆5、钢轨。

6、回流线。

7、电分段。

其各部分的功能简述如下;整流器组;提供电动车辆牵引电源。

直流馈出电缆;从地铁牵引变电所向接触网输送1500V直流牵引电源。

接触网;哈地铁采用悬挂方式触接网,通过地铁的电动车辆上的受电弓受流后向电动车辆牵引设备提供电源。

回流线;用于地铁电动车辆运行时产生的牵引电流返回牵引变电所。

电分段;便于停电检修保养和减少线损,将接触轨分成多段拱电分区。

轨道电路;地铁电动车辆运行时,电动车辆利用轨道作为牵引电流回流的电路。

地铁电动车辆牵引供电系统采用的是国际电工委员会(IEC)标准。

牵引电压为直流1500V,其允许波动范围为1000~1800V,IEC 牵引电压标准参见下表。

地铁动力照明供电系统示意图;主变电所地铁主变电所地铁降压配电供电系统;由35KV降压变压器和400V开关配电柜组成,主要用于提供地铁车站各类设施设备的用电,如;风机、水泵、照明、信号、通信、电梯、空调、自动售检票系统、防灾报警设施等。

下面我们将各部分的功能简述如下;车站配电室;配电室的功能是起到电能分配的作用。

降压变电所通过配电室,将三相400V交流电和220V交流电分别供给各动力照明等用电设施,并对车站及其两侧区间动力和照明等设施配电。

配电线路;配电室与各用电设施之间连接的导线称之为配电线路。

在动力照明配电供电系统中,地铁的降压变电所一般按每个车站设置一个,有牵引变电所的车站可以将降压变电所设置在牵引变电所中,构成牵引、降压混合变电所,这样可以节约建造降压变电所的资金和占地面积,又可以节约大量的人力和物力,在管理上又便于科学管理。

地铁车站及区间照明电源是采用400V/220V系统供电。

正常时工作照明、事故照明均有交流电供电,当400V/220V交流电源失电期间,事故照明自动切换为蓄电池供电,确保事故时必要的紧急照明。

地铁变电站是地铁供电系统的最重要组成部分,他是接受电能和分配电能并改变电压的枢纽。

一般是在地铁沿线车站设置内或附近,有地上和地下二种设置。

地铁变电站在防火方面都有一定的要求,其防火措施主要从变电站土建的结构与选择的建筑材料以及变电所的电气设备本身等方面来考虑。

同时;装设自动消防报警装置、防火墙、防火门和有效的灭火系统等。

地铁变电站可根据电压等级的不同、用途的不同可分为三种基本类型;110KV主变电站、35KV牵降混合变电站、35KV降压变电站。

变电站是由各种不同用途的电气设备,按一定的电气主结线连接而构成的分别简述如下;变压器;变压器是一种改变电压的静止电器设备,担负着升高或降低电压,并进行电力的输送、分配的作用。

变压器是电力系统中最重要的电器设备之一。

地铁供电系统主变电站采用三相有载调压油浸式变压器,牵引变压器、降压动力变压器采用干式变压器。

110或66KV主变压器的接线组别是星形~三角形接法,一次线圈中心点接有避雷器和接地闸刀,避雷器是防止雷击而设,接地闸刀是为了开关分合闸时,防止110或66KV变压器操作过电压。

分裂移相式牵引变压器的接线组别是三角形~三角形~星形接法,降压变压器均采用三角形~星形接法。

断路器;高压断路器又叫高压开关,它具有切断负载电流和故障短路电流,是地铁供电系统中的关键设备之一。

它可以根据正常供电需要接通或断开输电线路及设备,对供电系统中的输电线路及设备起控制作用;同时,还可以在输电线路及设备发生故障或短路时,在继电保护装置的配合下,切断故障输电线路及设备防止事故的扩大,保证输电线路及设备非故障部分正常供电,对供电系统中输电线路及设备起保护作用。

当断路器分合输电线路电流时,触头之间就会产生电弧,输电线路中的电流越大,形成的电弧越强。

如不能及时将电弧熄灭,不仅无法切断电路,还可能烧毁断路器,甚至发生爆炸,造成事故。

因此,灭弧性能是断路器基本的性能,是评价断路器的重要指标。

根据灭弧介质不同,断路器可分为油断路器,高压空气断路器,真空断路器,六氟化硫(SF66)断路器等。

六氟化硫(SF6)))断路器是利用六氟化硫气体作绝缘和灭弧介质的断路器。

六氟化硫气体在常温下是无色、无臭、无毒、不燃烧、化学性能比较稳定,它具有较好的灭弧和绝缘性能,常被用在10KV以上的高压设备上。

真空断路器是利用不宜游离而且绝缘强度很高的真空空间作为灭弧介质的开关电器。

真空断路器主要有真空灭弧室(既真空管),支持框架和操作部分所组成,真空灭弧室是真空断路器的主要元件,密封着所有灭弧元件。

1500V直流开关(断路器);1500V直流开关又称直流快速开关,直流快速开关的作用是控制接触网系统的运行状态,接触网故障时能迅速切断故障点,确保接触网非故障线路正常运行。

隔离开关;隔离开关是一种没有灭弧装置的高压电器,一般与断路器(开关)配合使用,它不能切断负荷电流和短路电流,可在无负荷电流时接通和断开电路,也可接通和断开2A以下的电气线路,及2A 以下的空载变压器。

断开时能起到隔离电压电源的作用,使检修电器部分与带电部分可靠隔离,检修的电器部分与电源部分有一个明显的断开点。

对检修、运行、操作提供方便和安全。

停电时应先断开断路器,后拉隔离开关;送电时应;先合隔离开关,后合断路器。

隔离闸刀有户内式和户外式两种,户内式有;单极和三极隔离闸刀,我们上海地铁供电系统采用的是户内式三极隔离闸刀。

母线;母线是一种汇总和分配电能的导电线。

在室外用软母线或电缆,室内用硬母线(铝排或铜排)。

母线一般用颜色标记,在三相交流系统;A相-黄色,B相-绿色,C相-红色;在直流系统中;正极-红色,负极-蓝色,零线及地线-黑色。

电压互感器;电压互感器又称压变,它的结构、原理、接线和工作特点都与电力变压器相同,主要区别在于电压互感器的容量很小,是电气测量,控制和保护回路用的变压器。

相关文档
最新文档