{word试卷}人教版八年级数学第一学期期末冲刺复习卷

合集下载

人教版八年级上册第一学期数学期末复习卷(含答案).doc

人教版八年级上册第一学期数学期末复习卷(含答案).doc

1八年级数学第一学期期末复习卷考试时间:100分钟 卷面总分:120分 考试形式:闭卷一、选择题(每小题3分,共24分)1.9的算术平方根是 ( )A . 3B .± 3C .3D .±32.下列图形中,是轴对称图形的是 ( )3.下列各点中,在第二象限的是 ( )A .(2,3)B .(-2,3)C .(-2,-3)D .(2,-3)4.以下各组数为边长的三角形中,能组成直角三角形的是 ( )A .1,2,3B .2,3,4C .3,4,5D .4,5,65.如图,△ABC ≌△DEF ,BE =4,AE =1,则DE 的长是 ( )A .5B .4C .3D .2第5题 第6题 第7题 第8题6.一次函数y =kx +b (k ≠0)的图像如图所示,当y >0时,x 的取值范围是 ( )A. x <0B. x >0C. x <2D. x >27.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D 为圆心,大于12CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过点E 作射线OE ,连接CD .则下列说法错误的是 ( ) A .射线OE 是∠AOB 的平分线 B .△COD 是等腰三角形C .C 、D 两点关于OE 所在直线对称 D .O 、E 两点关于CD 所在直线对称8.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P 第2014次碰到长方形的边时,点P 的坐标为 ( ) A .(1,4) B .(5,0) C .(6,4) D .(8,3)二、填空题(每小题值增大而.11.某地地面气温是18℃,如果高度每升高1km ,气温下降6℃,那么气温y (℃)与高度2x (km )之间的函数关系式为 .12.如图,已知AB=DC ,要使△ABC ≌△DCB ,那么应增加的一个条件是 .(增加一个条件即可)13.如图,已知一次函数y=ax+b 和正比例函数y=kx 的图像交于点P ,则根据图像可得二元一次方程组⎩⎨⎧y =ax +b y =kx的解是 .第12题 第13题 第14题 第15题14.如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为 .15.如图,在△ABC 中,AB =AC ,DE 是AB 的中垂线,△BCE 的周长为14,BC =6,则AB 的长为 . 16.若关于x 的方程441-=--x mx x 无解,则m 的值为 . 17.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是 .18.有一数值转换器,原理如图所示,若开始输入x 的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是3,依次继续下去…,第2014次输出的结果是 .三、解答题(本大题共8小题,共66分) 19.(本题8分)计算:(1+16; (2)解分式方程:xx 332=- .20.(本题7分)先化简:114222x x x ⎛⎫-÷⎪-+-⎝⎭,再选取一个你喜欢的数代入求值.21.(本题7分)八年级三班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE 的高度,他们进行了如下操作: (1)测得BD 的长度为25米.(2)根据手中剩余线的长度计算出风筝线BC 的长为65米.第17题第18题(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.22.(本题8分)某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?23.(本题8分)已知;如图,在△ABC中,AB=BC,∠ABC=90度.F为AB延长线上一点,点E 在BC上,BE=BF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC.24.(本题8分)如图,一次函数y=kx+b的图像为直线l1,经过A(0,4)和D(4,0)两点;一次函数y=12x+1的图像为直线l2,与x轴交于点C;两直线l1,l2相交于点B.(1)求k、b的值;(2)求点B的坐标;34(3)求△ABC 的面积.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE =BD +CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC=∠BAC ,试判断△DEF 的形状.26.(本题10分)为增强公民的节约意识,合理利用天然气资源,某市自7月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如下表所示:(1)若甲用户9月份的用气量为60m 3,则应缴费 元; (2)若调价后每月支出的燃气费为y (元),每月的用气量为x (m 3),y 与x 之间的关系如图所示,求a 的值及y 与x 之间的函数关5 系式;(3)在(2)的条件下,若乙用户8、9月份共用气175m 3(9月份用气量低于8月份用气量),共缴费455元,乙用户8、9月份的用气量各是多少?附加题(本题10分)如图,在平面直角坐标系中,已知点A (2,3)、B (6,3),连接AB .如果点P 在直线 y =x -1上,且点P 到直线AB 的距离小于1,那么称点P 是线段AB 的“临近点”. (1)判断点C (72,52)是否是线段AB 的“临近点”,并说明理由;(2)若点Q (m ,n )是线段AB 的 “临近点”,求m 的取值范围.6参考答案二、填空题(每小题3分,共30分)9、1 10、减小 11、y=6x+18 12、∠ABC =∠DCB 或AC=DB13、42x y =-⎧⎨=-⎩14、(3,2) 15、8 16、3 17、10 18、8三、解答题(共66分)19.(本题8分)(1) 解:原式=-3+4 …………………………………2分=1 …………………………… ……4分(2) 解: 2x=3(x-3) 2x=3x-9x=9 ………………………3分检验:x=9是原方程的根 …………………4分20.(本题7分)原式=42])2)(2()2()2)(2()2([-⋅+---+-+x x x x x x x=42)2)(2(4-⋅+-x x x=21+x ………………………………5分取2±≠x 代入求值 ………………………………7分21.(本题7分)解:在R t △CDB 中,由勾股定理得CD 2=BC 2-BD 2=652-252=3600,………………………5分 所以CD=60±(负值舍去) ………………………6分 所以CE=CD+DE=60+1.6=61.6米 ………………………………7分 答:22.(本题8分)设排球的单价为x 元,则篮球的单价为(x +30)元,根据题意,列方程得:x1000=301600+x . ………………………………5分 解之得x =50. ………………………………7分 经检验,x =50是原方程的根.当x =50时,x +30=80.答:排球的单价为50元,则篮球的单价为80元. ………………………………8分 23.(本题8分)证明:在△ABE 和△CBF 中, ∵BE =BF ,∠ABC =∠CBF =90°,AB =BC ,7∴△ABE ≌△CBF (SAS ).∴AE =CF . ………………………………4分24.(本题8分)解:(1)把A (0,4)和D (4,0)代入y =kx +b 得:⎩⎨⎧==+404b b k 解得⎩⎨⎧=-=41b k ………………………………2分 (2)由(1)得y=-x+4,联立⎪⎩⎪⎨⎧+=+-=1214x y x y 解得⎩⎨⎧==22y x 所以B (2,2) …………………5分 所以S △ABC = S △ACD - S △BCD ==⨯⨯-⨯⨯252452 5. ………………………8分 25.(本题10分)证明:(1)∵BD ⊥直线m ,CE ⊥直线m , ∴∠BDA =∠CEA =90°.∵∠BAC =90°,∴∠BAD+∠CAE=90°. ∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD . 又AB =AC ,∴△ADB ≌△CEA .∴AE =BD ,AD =CE ∴DE =AE +AD = BD +CE , ………………………………3分 (2)∵∠BDA =∠BAC =α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α. ∴∠DBA=∠CAE ,∵∠BDA =∠AEC=α,AB =AC ∴△ADB ≌△CEA . ∴AE =BD ,AD =CE∴DE =AE +AD =BD +CE .………………………………6分 (3)由(2)知,△ADB ≌△CEA , BD =AE ,∠DBA =∠CAE∵△ABF 和△ACF 均为等边三角形 ∴∠ABF =∠CAF=60°ABCE D m(图1)(图3)(图2)mABCE8∴∠DBA+∠ABF =∠CAE+∠CAF ∴∠DBF =∠F AE , ∵BF =AF∴△DBF ≌△EAF , ∴DF =EF ,∠BFD =∠AFE∴∠DFE =∠DF A +∠AFE =∠DF A +∠BFD =60°∴△DEF 为等边三角形. ………………………………10分 26.(本题10分)解:(1)由题意,得60×2.5=150(元); ………………………2分 (2)由题意,得a =(325-75×2.5)÷(125-75),a =2.75, ………………………3分 ∴a +0.25=3,设OA 的解析式为y 1=k 1x ,则有 2.5×75=75k 1, ∴k 1=2.5,∴线段OA 的解析式为y 1=2.5x (0≤x ≤75); ………………………4分 设线段AB 的解析式为y 2=k 2x +b ,由图象,得⎩⎨⎧+=+=b k b k 22125325755.187解得⎩⎨⎧-==75.1875.22b k∴线段AB 的解析式为:y 2=2.75x -18.75(75<x ≤125);………………………5分 (385-325)÷3=20,故C (145,385),设射线BC 的解析式为y 3=k 3x +b 1,由图象,得⎩⎨⎧+=+=1313145385125325b k b k 解得⎩⎨⎧-==50313b k ∴射线BC 的解析式为y 3=3x -50(x >125) ………………………6分 (3)设乙用户8月份用气x m 3,则9月份用气(175-x )m 3, 当x >125,175-x ≤75时,3x -50+2.5(175-x )=455, ………………………7分 解得:x =135,175-135=40,符合题意; 当75<x ≤125,175-x ≤75时, 2.75x -18.75+2.5(175-x )=455,解得:x =145,不符合题意,舍去; ………………………8分 当75<x ≤125,75<175-x ≤125时,2.75x -18.75+2.75(175-x )-18.75=455,此方程无解.………………………9分 ∴乙用户8、9月份的用气量各是135m 3,40m 3. ………………………10分附加题9。

【精品】初二数学上册期末冲刺试卷(一)人教.含答案

【精品】初二数学上册期末冲刺试卷(一)人教.含答案

期末冲刺试卷(一)一、选择题1.如图所示,∠A,∠1 ,∠2的大小关系是()A.∠2>∠1>∠A B.∠1 >∠2>∠AC.∠A>∠2>∠1 D.∠A>∠1>∠22.下列判断正确的是()A.有两边和其中一边上的对角对应相等的两个三角形全等B.有两边对应相等,且有一个角为30°的两个等腰三角形全等C.有两角和一边对应相等的两个三角形全等D.有一角和一边对应相等的两个直角三角形全等3.下图是一只停泊在平静水面上的小船,它的“倒影”应是下面的A B C D4.下列因式分解正确的是( )A.9 - 6x+x²=b -3)²B.m⁴+1-2m²= (2m²-1)²C.m⁴+16= (m²+4) (m²-4)D. 9m²-1= (9m+1) (9m -1)5.如图所示,∠C=∠D,∠1=∠2,AC与BD相交于E点,则下列结论:①∠D AE=∠CBE;②CE =DE;③△DAE与△CBE全等;④AE -BE,其中正确结论的个数有( )A.1个B.2个C.3个D.4个第5题图第6题图6.如图所示,△DAC和△EBC均是等边三角形,AE,BD分别与CD,CE交于点M,N ,有如下结论:①△ACE≌△DCB;②CM= CN,③AC =DN,其中正确结论的个数有( )A.3个B.2个C.1个D.0个7.如图,正方形ABCD中,∠DAF =20°,AF交对角线BD于E,交CD于E则∠BEC等于( )A.80°B.70°C.65°D.60°8.一个长方体的长、宽、高分别为3x -4,2x,x,那么它的体积为()A.3x³-4x²B.6x²-8x C.X²D.6x³-8x²9.在分式ac ab 109,2)(a b b a --,22y x y x ++,y x y x --22最简分式的个数是( )A.1个 B .2个 C .3个 D .4个10.某工程甲单独做x 天完成,乙单独做比甲慢3天完成,现由甲、乙合作5天后,余 下的工程由甲单独做3天才能全部完成,则下列方程中符合题意的是( )A .1358=-+x xB .135)311(=+⨯++x x xC .1)131(533=+-+-x x xD .13)3(5=+++x x x二、填空题1.如图所示,已知∠1 = 20°,∠2=25°,∠A=55°,则∠BOC 的度数是____.2.已知三角形三边长分别是5,1+2a ,9,则实数a 的取值范围是________.3.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE ⊥AC 于点E ,DF ⊥BC 于点F ,且BC=4,DE=2,则△BCD 的面积是______.4.墙上钉了一根木条,小敏想检验这根木条是否平行,她拿来一个如图所示的测平仪,在这个测平仪中,AB=AC ,BC 边的中点D 处扎了一个重锤,小敏将BC 边与木条重合,观察此时重锤是否通过A 点,如果通过A 点,则说明这根木条是水平的,这是因为_____________.5.下列多项式:①-1 +x ²,②a ²-a-41,③-a ²+ b ²,④-a ²-9b ²,⑤x ²-2xy+2y ²,⑥4x ²-4xy+ y ²,其中能够因式分解的是_______.(填入序号)6.若等腰三角形的周长是12cm ,其中一边长为2cm ,则该等腰三角形的一腰长是____ cm.7.若a+b-3,则2a ²+4ab+2b ²-6的值为_______.8.若分式153-+x x 无意义,当021235=---x m x m 时,m=________.9.若关于x 的方程0552=----x m x x 有增根,则m 的值是_____.10.在平面直角坐标系内,点O 为坐标原点,有两点A (-4,0),B(0,3).若在该坐标平面内有以点P (不与点A ,B ,O 重合)为一个顶点的直角三角形与Rt △ABO 全等,且这个以点P 为顶点的直角三角形与Rt △ABO 有一条公共边,则所有符合条件的三角形个数为_____.三、解答题1.计算:(1)(- 4x-3y²)(3y²-4x);(2) 4(x²+y) (X²-y)-(2x²-y)².2.如图所示,已知点A,点B,点C的坐标分别为(1,1),(4,1),(3,3).(1)求△ABC的面积;(2)画出△ABC关于y轴对称的图形△A’B’C’,并求出点A’,B’,C’的坐标;(3)画出△ABC关于原点对称的图形△A’’B’’C’’,并求出点A’’,B’’,C’’的坐标:(4)分别求出△A’B’C’与△A’’B’’C’’的面积.3.将下图一个正方形和三个长方形拼成一个大长方形,请观察这四个图形的面积与拼成的大长方形的面积之间的关系,(1)根据你发现的规律填空:X²+ px+qx+ pq =x²+(p+g)x+pg=( )×( ).(2)利用(1)的结论将下列多项式分解因式:①X²-7x+10; ②x²+7x+12.4.已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图①,若点O在BC上,求证:AB=AC;(2)如图②,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画图表示.5.某公园有一块长为3x ,宽为2y 的长方形草坪,现计划在草坪内增加4条石子路,如图所示,两条横石子路的宽度均为a ,两条竖石子路的宽度均为b ,问:剩余草坪的面积是多少?6.某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有A ,B 两个制衣车间,A 车间每天加工的数量是B 车间的1.2倍,A ,B 两车间共同完成一半后,A 车间出现故障停产,剩下的全部由B 车间单独完成,结果前后共用20天完成,求A ,B 两车间每天分别能加工多少件.期末冲刺试卷【冲刺一】一、1.B 2.C 3.B 4.A 5.D 6.B 7.C 8.D 9.A 10.B二、1. 100° 2.21323<<a 3.4 4.等腰三角形底边上的高、中线与顶角的平分线相互重合5.①③⑥6.57. 12 8.739.3 10.7三、1.(1)原式=(-4x- 3y ²)(- 4x+3y ²)=(-4x )²-(3y ²)²=16x ²- 9y ⁴;(2)原式=4(x ⁴-y ²)-(4x ⁴-4x ²y+y )=4x ⁴ - 4y ²-4x ⁴ +4x ⁴ y-y ² =-5y ²+ 4x ²y.2.(1) ABC S ∆=3×2÷2=3;(2)图略.点A ’,点B ’,点C ’的坐标分别为(-1,1),(-4,1),(-3,3);(3)图略,点A ’,点B ’,点C ”的坐标分别为(-1,-1),(-4, -1),(-3,-3);(4)△A ’B ’C ’与△A ’’B ’’C ’’的面积均为3.3.(1) x+p x+q(2)①(x-2)(x-5),②(x+3)(x+4).4.(1)过点O分别作OE上AB,OF⊥AC,E,F分别是垂足,由题意知OE= OF, OB= OC,连接OA.∴Rt△OEB≌Rt△OFC (HL),∴BE=CF.在Rt△OAE与Rt△OAF中,OA= OA,OE= OF,∴Rt△OAE≌Rt△OAF (HL),∴AE=AF.∴AE+BE=AF+CF,即AB =AC.(2)过点O分别作OE⊥AB,OF⊥AC,E,P分别是垂足,连接OA.证明与(1)类似.(3)不一定成立(当∠A的平分线所在直线与边BC的垂直平分线重合时,有AB=AC;否则,AB≠AC,如图所示)5.方法一:可用大长方形面积减去两横两竖的石子路的面积,再加上被重复减去的部分,列式为6xy - 4by - 6ax+ 4ab,方法二:可设想将石子路都平移到长方形的靠边处,将9个小矩形组合成“整体”,这个组合起来的长方形长为(3x - 2b),宽为(2y- 2a),所以面积为(3x - 2b).(2y - 2a)= 6xy - 6ax - 4by+ 4ab.6.设B车间每天加工x件,则A车间每天加工1.2x件,由题意知2044002.14400=++xxx,解得x= 320.经检验,知x=320是方程的解.此时A车间每天生产320×1.2= 384(件).答:A车间每天生产384件,B车间每天生产320件.。

2021-2022学年新人教版八年级上学期期末数学复习复习卷(一)(含答案解析)

2021-2022学年新人教版八年级上学期期末数学复习复习卷(一)(含答案解析)

2021-2022学年新人教版八年级上学期期末数学复习复习卷(一)一、选择题(本大题共10小题,共30.0分)1.已知等腰三角形的两条边长分别为4和8,则它的周长为()A. 16B. 20C. 16或20D. 142.从图中的四张印有汽车品牌标志图案的卡片中任取一张,取出印有汽车品牌标志的图案是轴对称图形的卡片的概率是()A. 14B. 12C. 34D. 13.若2x 2+1与4x 2−2x−5互为相反数,则x为A. −1或B. 1或C. 1或D. 1或4.10.如图,在ΔABC中,∠ABC的平分线与三角形的外角∠ACE的平分线交于点D,则∠A与∠D的关系为A. ∠A+∠D=90°B. ∠A=2∠DC. 2∠A+∠D=180°D. 以上都不对5.若x2+bx+c=(x+5)(x−3),其中b、c为常数,则点P(b,c)关于y轴对称的点的坐标是()A. (−2,−15)B. (2,15)C. (−2,15)D. (2,−15)6.若2x+3y−2=0,则4x×8y+5的值为()A. 2B. 8C. 7D. 97.如图,正方形ABCD和正方形EFGO的边长都是1,正方形EFGO绕点O旋转时,两个正方形重叠部分的面积是()A. 14B. 12C. 13D. 不能确定8.已知x+1x =4,则x2x4+x2+1=()A. 10B. 15C. 110D. 1159.某车间原计划小时生产一批零件,后来每小时多生产件,用了小时不但完成了任务,而且还多生产件.设原计划每小时生产个零件,则所列方程为()A. B.C. D.10.如图,DB=DC,∠BAC=∠BDC=120°,DM⊥AC,E为BA延长线上的点,∠BAC的角平分线交BC于N,∠ABC的外角平分线交CA的延长线于点P,连接PN交AB于K,连接CK,则下列结论正确的是()①∠ABD=∠ACD;②DA平分∠EAC;③当点A在DB左侧运动时,AC+ABAM为定值;④∠CKN=30°A. ①③④B. ②③④C. ①②④D. ①②③二、填空题(本大题共8小题,共24.0分)11.如图,小明从P点出发,沿直线前进5米后向右转α,接着沿直线前进5米,再向右转α,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则α的度数是______.12.因式分解:x2(a−b)+4(b−a)=______.13.由于自然环境的日益恶化,我们赖以生存的空气质量正在悄悄地变化.净化的空气的单位体积质量为0.00124g/cm3,将它用科学记数表示为______g/cm3.14.已知等腰三角形的周长为80,腰长为x,底边长为y.请写出y关于x的函数解析式,并求出定义域______.15.如图所示,已知AB=DC,要得到△ABC≌△DCB,还需加一个条件是______ .(一个即可)16.如图,在面积为4的等边三角形ABC中,AD是BC边上的高,点E、F是AD上的两点,则图中阴影部分的面积是______ .17.如果二次三项式x2+kx+49是一个整式的平方,则k的值是______.18.若关于x的不等式组{6x+4+a>03x2−1≤x2+2有4个整数解,且关于y的分式方程ay−1−21−y=1的解为正数,则满足条件所有整数a的值之和为______三、计算题(本大题共1小题,共6.0分)19.解分式方程(1)xx−1−31−x=3(2)x−3x−2+1=32−x.四、解答题(本大题共7小题,共60.0分)20.在△ABC中,AB=CB,∠ABC=90°,E为CB延长线上一点,点F在AB上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=60°,求∠ACF的度数.21.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(−2,4),B(−2,1),C(−5,2).(1)请画出△ABC关于x轴对称的△A1B1C1.(2)以原点O为位似中心,在第一象限画出△A1B1C1的位似图形△A2B2C2,相似比为1:2.22. 先化简,再求值:(1−1x+1)÷x 2−xx 2−2x+1,其中x =√2−1.23. 2019年1月重庆潮童时装周在重庆渝北举行了八场走秀,云集了八大国内外潮童品牌,不仅为大家带来了一场品牌走秀盛会,更让人们将目光转移到了00后、10后童模群体身上,开启服装新秀潮流某大型商场抓住这次商机购进A 、B 两款新童装进行试销售该商场用6000元购买A 款童装,用9000元购买B 款童装,且每件A 款童装进价与每件B 款童装进价相同,购买A 款童装的数量比B 款童装的数量少20件,若该商场本次以每件A 款童装按进价加价100元进行销售,每件B 款童装按进价加价60%进行销售,全部销售完. (1)求购进A 、B 两款童装各多少件?(2)春节期间该商场按上次进价又购进与上一次一样数量的A 、B 两款童装,并展开了降价促销活动,在促销期间,该商场将每件A 款童装按进价提高(m +10)%进行销售,每件B 款童装按上次售价降低13m%销售.结果全部销售完后销售利润比上次利润少了3040元,求m 的值.24. 如图,在△ABC 中,AB =AC ,AM 平分∠BAC ,交BC 于点M ,D 为AC 上一点,延长AB 到点E ,使CD =BE ,连接DE ,交BC 于点F ,过点D 作DH//AB ,交BC 于点H ,G 是CH 的中点. (1)求证:DF =EF .(2)试判断GH ,HF ,BC 之间的数量关系,并说明理由.25.如图,在△ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AB=16cm,AF=10cm,AC=14cm,动点E以2cm/s的速度从A点向B点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t(s).=______;(1)求:AM=______cm,S△ABDS△ACD(2)求证:在运动过程中,无论t取何值,都有S△AED=2S△DGC;(3)当t取何值时,△DFE与△DMG全等.26.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,−a)(a、b均大于0);(1)连接OD、OC、CD,请判断△OCD的形状为______(不需要证明);(2)连接CO、CB、CA,若CB=1,CO=2,CA=3,求∠OCB的度数;(3)若点E在线段OA上,且AE=2,CE=5,AC=√41,动点P以每秒2个单位的速度从点E出发沿射线EO方向运动,运动时间为t秒,在点P的运动过程中,△APC能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.参考答案及解析1.答案:B解析:解:若4为腰,8为底边,此时4+4=8,不能构成三角形,故4不能为腰;若4为底边,8为腰,此时三角形的三边分别为4,8,8,周长为4+8+8=20,综上三角形的周长为20.故选:B.因为等腰三角形的腰与底边不确定,故以4为底边和腰两种情况考虑:若4为腰,则另外一腰也为4,底边就为8,根据4+4=8,不符合三角形的两边之和大于第三边,即不能构成三角形;若4为底边,腰长为8,符合构成三角形的条件,求出此时三角形的周长即可.此题考查了等腰三角形的性质,以及三条线段构成三角形的条件,利用了分类讨论的数学思想,由等腰三角形的底边与腰长不确定,故分两种情况考虑,同时根据三角形的两边之和大于第三边,舍去不能构成三角形的情况.2.答案:B解析:解:这4个汽车标志中,是轴对称图形的有2个,所以从这4张印有汽车品牌标志图案的卡片中任取一张,是轴对称图形的卡片的概率是24=12,故选:B.根据概率的意义求解即可.本题考查概率公式,轴对称图形,掌握轴对称图形和概率的意义是正确解答的关键.3.答案:B解析:解:根据与互为相反数可以得到+=0化简得:因式分解得:(3x+2)(x−1)=0解得:.故答案为:B.4.答案:B解析:解析:本题考查的是三角形角平分线的定义和三角形外角的性质,属于中等题目,解决问题的关键是根据角平分线的定义及三角形的外角性质可表示出∠A与∠D,从而不难发现两者的数量关系.∵∠ABC的平分线交∠ACE的平分线于点D,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∵∠DCE是△BCD的外角,∴∠D=∠DCE−∠DBE,∵∠ACE是△ABC的外角,∠A=∠ACE−∠ABC=2∠DCE−2∠DBE=2(∠DCE−∠DBE),∴∠A=2∠D.故选B.5.答案:A解析:解:∵x2+bx+c=(x+5)(x−3),∴x2+bx+c=x2+2x−15,∴b=2,c=−15,则点P(2,−15)关于y轴对称的点的坐标是:(−2,−5).故选:A.直接多项式乘法得出b,c的值,再利用关于y轴对称点的性质得出答案.此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.6.答案:D解析:解:原式=22x+23y+5=22x+3y+5,∵2x+3y=2,∴原式=4+5=9,故选:D.根据幂的运算法则即可求出答案.本题考查整式运算,解题的关键是熟练整式的运算法则,本题属于基础题型.7.答案:A解析:本题考查了正方形的性质,旋转的性质,全等三角形的性质和判定等知识,能推出四边形OMBN的面积等于三角形BOC的面积是解此题的关键.根据正方形的性质得出OB=OC,∠OBA=∠OCB=45°,∠BOC=∠EOG=90°,推出∠BON=∠MOC,证出△OBN≌△OCM.解:∵四边形ABCD和四边形OEFG都是正方形,∴OB=OC,∠OBC=∠OCB=45°,∠BOC=∠EOG=90°,∴∠BON+∠BOM=∠MOC+∠BOM=90°∴∠BON=∠MOC.在△OBN与△OCM中,{∠OBN=∠OCM OB=OC∠BON=∠COM,∴△OBN≌△OCM(ASA),∴S△OBN=S△OCM,∴S四边形OMBN =S△OBC=14S正方形ABCD=14×1×1=14.故选:A.8.答案:D 解析:本题主要考查分式的值,条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.由x+1x =4得x2+1x2=14,代入原式=1x2+1+1x2计算可得.解:∵x+1x=4,∴x2+2+1x2=16,则x2+1x2=14,∴原式=1x2+1+1x2=114+1=115,故选:D.9.答案:A解析:10.答案:C解析:解:如图,∵∠BAC=∠BDC=120°,∴A,B,C,D四点共圆,DB=DC,作四边形ABCD的外接圆⊙O,∴∠ABD=∠ACD,故①正确,作DN⊥AE于N.∵DM⊥AC,∴∠DMC=∠DNB=90°,∵∠DCM=∠DBN,DC=DB,∴△DMC≌△DNB(AAS),∴DM=DN,BN=CM,∵DN⊥AE,DM⊥AC,∴DA平分∠EAC,故②正确,∵∠DNA=∠DMA=90°,AD=AD,DN=DM,∴AN=AM,∴AC+AB=BN−AN+AM+CM=2CM,∴AC+ABAM =2CMAM≠定值,故③错误,作KG⊥AP于G,KH⊥AN于H,延长AN,在AN上取一点J,使得KJ=KC.∵∠BAC=120°,AN平分∠BAC,∴∠PAB=∠BAN=60°,∴KG=KH,∵∠KGC=∠KHJ=90°,KJ=KC,KH=KG,∴Rt△KHJ≌Rt△KGC(HL),∴∠HKJ=∠GKC,∴∠CKJ=∠KGH=∠AKG+∠AHK=30°+30°=60°,∵KJ=KC,∴△KJC是等边三角形,∴∠KCJ=∠KJC=∠CKJ=60°,作PT⊥JA交JA的延长线于T,PR⊥CB于R,PW⊥AB于W,KL⊥BC于L.∵BP平分∠ABR,PA平分∠TAB,∴PE=PW,PW=PT,∴PR=PT,∵PR⊥NR,PT⊥NT,∴PN平分∠RNT,∵KH⊥NT,KL⊥NR,∴KL=KH,∵KH=KG,∴KL=KG,∵KL⊥CL,KG⊥CG,∴∠KCG=∠KCL=∠NJK,∵∠KCJ=∠KJC,∴∠NCJ=∠NJC,∴NC=NJ,∵KN=KN,AC=KJ,∴∠NKC=∠NKJ=30°,故④正确.故选:C.①正确.利用圆周角定理证明即可.②正确,构造全等三角形解决问题即可.③错误,作DN⊥AE于N.证明△ADN≌△ADM(HL),推出AN=AM,推出AC+AB=BN−AN+AM+CM=2CM,推出AC+ABAM =2CMAM≠定值.④正确.作KG⊥AP于G,KH⊥AN于H,延长AN,在AN上取一点J,使得KJ=KC.作PT⊥JA交JA的延长线于T,PR⊥CB于R,PW⊥AB于W,KL⊥BC于L.想办法证明△KCJ是等边三角形,证明△KNC≌△KNJ(SSS)即可解决问题.本题属于三角形综合题,考查了圆周角定理,角平分线的性质定理,全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是学会添加辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.11.答案:15°解析:解:向左转的次数120÷5=24(次),则左转的角度是360°÷24=15°.故答案是:15°.根据共走了120米,每前进5米左转一次可求得左转的次数,则已知多边形的边数,再根据外角和计算左转的角度.本题考查了多边形的计算,正确理解多边形的外角和是360°是关键.12.答案:(a−b)(x+2)(x−2)解析:解:x2(a−b)+4(b−a)=(a−b)(x2−4)=(a−b)(x+2)(x−2).故答案为:(a−b)(x+2)(x−2).先提取公因式(a−b),再根据平方差公式进行二次分解即可求得答案.本题考查了提公因式法,公式法分解因式.注意提取公因式后利用平方差公式进行二次分解,注意分解要彻底.13.答案:1.24×10−3解析:解:0.00124g/cm3,将它用科学记数表示为1.24×10−3,故答案为:1.24×10−3.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.答案:y=80−2x(20<x<40)解析:解:由题意得:80=2x+y∴可得:y=80−2x,根据三角形两边之和大于第三边,两边之差小于第三边可得:y<2x,2x<80,∴可得20<x<40,故答案为:y=80−2x(20<x<40).根据周长等于三边之和可得出y和x的关系式,再由三边关系可得出x的取值范围.此题主要考查了等腰三角形的性质,根据实际问题列一次函数关系式,根据题意得出正确等量关系是解题关键.15.答案:AC=DB解析:解:添加条件为:AC=DB.在△ABC和△DCB中,{AB=DC AC=DB BC=CB,∴△ABC≌△DCB(SSS).故答案为:AC=DB.可以添加条件,满足SSS或SAS判定定理.本题考查了全等三角形的判定,解答本题的关键是掌握全等三角形的判定定理.16.答案:2√3解析:解:∵AD是等边三角形的高,∴AD是线段BC的垂直平分线,BD=12BC=12×4=2,∴BE=CE,BF=CF,EF=EF,∴△EBF≌△ECF,∴S阴影=S△ABD,∴AD=AB⋅sin∠ABD=4×√32=2√3,∴S阴影=12BD⋅AD=12×2×2√3=2√3.故答案为:2√3.根据AD是等边三角形的高可知,AD是线段BC的垂直平分线,由线段垂直平分线的性质及三角形全等的判定定理可求出△EBF≌△ECF,故阴影部分的面积等于△ABD的面积,由锐角三角函数的定义可求出AD的长,再由三角形的面积公式即可求解.本题考查的是等边三角形的性质,即等边三角形底边上的高、垂直平分线及顶角的角平分线三线合一.17.答案:±14解析:解:∵二次三项式x2+kx+49是一个整式的平方,∴kx=±2×7x,解得k=±14.故答案为:±14.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.18.答案:27解析:解:原不等式组的解集为−4−a6<x≤3,有4个整数解,所以−2<−4−a6≤−1解得2≤a<8.原分式方程的解为y=a+3,因为原分式方程的解为正数,所以y>0,即a+3>0,解得a>−3,所以2≤a<8.所以满足条件所有整数a的值之和为2+3+4+5+6+7=27.故答案为27.先解不等式组确定a的取值范围,再解分式方程,解为正数从而确定a的取值范围,即可得所有满足条件的整数a的和.本题考查了不等式组的整数解、分式方程,解决本题的关键是根据不等式组的整数解确定a的取值范围.19.答案:解:(1)去分母得:x+3=3x−3,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:x−3+x−2=−3,解得:x=1,经检验x=1是分式方程的解.解析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.答案:证明:(1)在Rt△ABE和Rt△CBF中,∵{AE=CFAB=CB,∴Rt△ABE≌Rt△CBF(HL);解:(2)∵在△ABC中,AB=CB,∠ABC=90°,∴∠ACB=∠CAB=45°,∴∠BAE=∠CAE−∠CAB=15°.又由(1)知,Rt△ABE≌Rt△CBF,∴∠BAE=∠BCF=15°,∴∠ACF=∠ACB−∠BCF=30°,即∠ACF的度数是30°.解析:本题考查了全等三角形的判定与性质,等腰三角形的性质有关知识,(1)在Rt△ABE和Rt△CBF中,由于AB=CB,AE=CF,利用HL可证Rt△ABE≌Rt△CBF;(2)由等腰直角三角形的性质易求∠BAE=∠CAE−∠CAB=15°.利用(1)中全等三角形的对应角相等得到∠BAE=∠BCF=15°,则∠ACF=∠ACB−∠BCF=30°.即∠ACF的度数是30°.21.答案:解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.解析:(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置进而得出答案.本题考查了轴对称变换、位似变换等知识,根据题意得出对应点位置是解题关键.22.答案:解:原式=x+1−1x+1⋅(x−1)2 x(x−1)=x−1x+1,当x=√2−1时,原式=√2−1−1√2−1+1=√2−2√2=1−√2.解析:先把括号内通分和除法运算化为乘法运算,再约分得到原式=x−1x+1,然后把x的值代入计算即可.本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.23.答案:解:(1)设购进A款童装x件,则购进B款童装(x+20)件,依题意,得:6000x =9000x+20,解得:x=40,经检验,x=40是所列分式方程的解,且符合题意,∴x+20=60.答:购进A款童装40件,购进B款童装60件.(2)A、B两款童装的进价为6000÷40=150(元).依题意,得:(150+100)×40+150×(1+60%)×60−150[1+(m+10)%]×40−150×(1+ 60%)(1−13m%)×60=3040,整理,得:12m−360=0,解得:m=30.答:m的值为30.解析:(1)设购进A款童装x件,则购进B款童装(x+20)件,根据单价=总价÷数量结合每件A款童装进价与每件B款童装进价相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出A、B两款童装的进价,再由总价=单价×数量结合第二次全部销售完后销售总额比第一次少了3040元,即可得出关于m的一元一次方程,解之即可得出结论.本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.24.答案:证明:(1)∵AB=AC,∴∠C=∠ABC,∵DH//AB,∴∠DHC=∠ABC,∠DHF=∠EBF,∴DH=DC,∵DC=BE,∴DH=BE,在△DHF和△EBF中,{∠DHF=∠EBF ∠DFH=∠EFB DH=BE,∴△DHF≌△EBF(AAS),∴DF=EF.(2)结论:GH+HF=12BC.理由:∵△DGF≌△EBF,∴FH=BF,∵CG=GH,∴GH+FH=12CH+12BH=12(CH+BH)=12BC.解析:(1)欲证明DF=EF,只要证明△DHF≌△EBF即可.(2)结论:GH+HF=12BC.只要证明FH=FB,由CG=GH,由此即可解决问题.本题考查全等三角形的判定和性质、平行线的性质、等腰三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于基础题,中考常考题型.25.答案:10 87解析:(1)解:∵∠BAD =∠DAC ,DF ⊥AB ,DM ⊥AC ,∴DF =DM ,在Rt △ADF 和Rt △ADM 中,{DF =DM AD =AD, ∴Rt △ADF≌Rt △ADM(HL)∴AM =AF =10cm ,S △ABDS △ACD =12×AB×DF 12×AC×DM =1614=87,故答案为:10;87;(2)证明:由题意得,AE =2t ,CG =t ,则S △AED =12×AE ×DF =t ⋅DF ,S △DGC =12×CG ×DM =12t ⋅DM ,∵DF =DM ,∴S △AED =2S △DGC ;(3)解:∵AM =AF =10,∴CM =14−10=4,当点G 在线段CM 上时,∵DF =DM ,∴FE =MG 时,△DFE≌△DMG ,即10−2t =4−t ,解得,t =6(不合题意),当点G 在线段AM 上时,∵DF =DM ,∴FE =MG 时,△DFE≌△DMG ,即2t −10=t −4,解得,t =6,则当t =6时,△DFE 与△DMG 全等.(1)证明Rt △ADF≌Rt △ADM ,根据全等三角形的性质得到AM =AF =10cm ,根据三角形的面积公式求出S △ABDS △ACD ;(2)分别用t表示出S△AED和2S△DGC,即可证明;(3)分点G在线段CM上、点G在线段AM上两种情况,根据全等三角形的性质列式计算即可.本题考查的是全等三角形的判定和性质、角平分线的性质、三角形的面积计算,掌握角平分线的性质定理、全等三角形的判定定理和性质定理是解题的关键.26.答案:(1)等腰直角三角形;(2)如图2,连接DA.在△OCB与△ODA中,∵{OB=OA∠BOC=∠AOD=90°−∠COA OC=OD,∴△OCB≌△ODA(SAS),∴AD=CB=1,∠OCB=∠ODA.∵OC=OD=2,∴CD=2√2.∵AD2+CD2=1+8=9,AC2=9,∴AD2+CD2=AC2,∴∠ADC=90°,∴∠OCB=∠ODA=90°+45°=135°;(3)△APC能成为等腰三角形,如图3,过点C作CF⊥OA于点F,设EF =x ,则CF 2=CE 2−EF 2=52−x 2=25−x 2, 又∵CF 2=AC 2−AF 2=(√41)2−(2+x)2, ∴25−x 2=(√41)2−(2+x)2,解得:x =3,即EF =3,CF =4,①当AP =PC 时,PC =AP =2+2t , ∵AF =5,∴PF =5−(2+2t)=−2t +3,由PF 2+CF 2=PC 2得(3−2t)2+42=(2+2t)2, 解得t =2120;②当AP =AC 时,2+2t =√41,解得t =√41−22;③当AC =PC 时,AP =2AF ,即2+2t =10, 解得t =4;综上,当t =2120或t =√41−22或t =4时,△APC 是等腰三角形. 解析:解:(1)△OCD 是等腰直角三角形,如图1,过C 点、D 点向x 轴、y 轴作垂线,垂足分别为M 、N .∵C(a,b),D(b,−a)(a、b均大于0),∴OM=ON=a,CM=DN=b,∴△OCM≌△ODN(SAS),∴∠COM=∠DON.∵∠DON+∠MOD=90°,∴∠COM+∠MOD=90°,∵OC=OD=√a2+b2,∴△COD是等腰直角三角形,故答案为:等腰直角三角形;(2)见答案;(3)见答案.(1)过C点、D点向x轴、y轴作垂线,运用勾股定理计算,结合全等可证;(2)连接DA,证△OCB≌△ODA(SAS),可得AD=CB=1,而OC=OD=2,故CD=2√2,根据勾股定理逆定理可证∠ADC=90°,易得∠OCB=∠ODA=135°;(3)作CF⊥OA,设EF=x,由勾股定理得CF2=CE2−EF=25−x2,CF2=AC2−AF2=(√41)2−(2+x)2,从而求出x=3,即可知EF=3,CF=4,再分AP=AC、AP=PC、AC=PC分别计算可得.本题是三角形的综合问题,考查了全等三角形、等腰直角三角形的判定与性质,勾股定理,有一定难度.准确作出辅助线是解题的关键.。

人教版初二数学上学期期末复习测试卷(1)含答案

人教版初二数学上学期期末复习测试卷(1)含答案

初二数学上学期期末复习测试卷(1)(满分:100分时间:90分钟)一、选择题(每题2分,共16分)1.下列四个图形中轴对称图形的个数是( )A.1 B.2 C.3 D.42.如图,已知AD是△ABC的边BC上的高,下列能使△ABD≌△ACD的条件是( )A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°+的结果为3.实数a,b在数轴上的位置如图所示,若a>b a b( )A.2a+b B.-2a+b C.b D.2a-b4.用四舍五入法按要求对0.05049分别取近似值,其中错误的是( ) A.0.1(精确到0.1)B.0.05(精确到千分位)C.0.05(精确到百分位)D.0.050(精确到0.001)5.卞列各式化简结果为无理数的是( )A B.1)0C D6.如图,在△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D.若点E为AC的中点,连接DE,则△CDE的周长为( )A.20 B.12 C.14 D.137.周一的升旗仪式上,同学们看到匀速上升的旗子,下面能反映其高度与时间关系的大致图像是( )8.已知两个变量和y,它们之间的3组对应值如下表所示:则y与之间的函数关系式可能是A.y=B.y=2+1 C.y=2++1 D.3 yx =二、填空题(每题2分,共20分)9.在平面直角坐标系中,点(1,2)位于第_______象限.10.若一个汽车牌在水中的倒影为,则该车牌照号码为_______.11.在平面直角坐标系中,点(-3,4)关于y轴对称的点的坐标是_______.12.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D.若CD =4,则点D到AB的距离为_______.13.如图,已知△ABC是等边三角形,点B,C,D,E在同一直线上.若CG=CD,DF=DE,则∠E=_______.14.一次函数y=-+1的图像不经过第_______象限.15.已知(2a+1)20,则-a2+b2004=_______.16.在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是_______cm2.17.如图,已知函数y=-2和y=-2+1的图像交于点P,根据图像可得方程组221x y x y -=⎧⎨+=⎩的解是_______.18.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用了45min ,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60m/h ,两车的距离y(m)与货车行驶的时间(h)之间的函数图像如图所示.现有以下4个结论: ①快递车从甲地到乙地的速度为100m/h ; ②甲、乙两地之间的距离为120m ; ③图中点B 的坐标为(334,75); ④快递车从乙地返回时的速度为90m/h . 其中正确的是_______.(填序号)三、解答题(共64分)19.(本题6分)计算下列各题.(1)()01232π--+--(2)12-.20.(本题5分)如图,在△ABC 中,∠BAC 的平分线与BC 的垂直平分线PQ 相交于点P ,过点P 分别作PN ⊥LAB ,PM ⊥AC ,垂足分别为点N ,M .求证:BN =CM .21.(本题6分)如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离B0=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?22.(本题5分)如图所示是一个正比例函数与一个一次函数的图像,它们交于点A(4,3),一次函数的图像与y轴交于点B,且OA=OB,求这两个函数的解析式.23.(本题6分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE 并延长交CB的延长线于点F,点G在边BC上,且么GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系,并说明理由.24.(本题5分)小明根据某个一次函数的关系式填写了下面这张表.其中有一格不慎被墨迹遮住了,想想看,该空格里原填的数是多少?说明你的理由.25.(本题8分)一农民带上若千千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆的千克数与他手中持有的钱数(含备用零钱)韵关系如图所示,结合图像回答下列问题:(1)农民自带的零钱是多少?(2)试求降价前y与之间的函数关系式;(3)由表达式你能求出降价前每千克土豆的价格是多少吗?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?26.(本题9分)已知点P是直角三角形ABC斜边AB上一动点(不与A、B重合),分别过点A,B向直线CP作垂线,垂足分别为点E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是_______,QE与QF 的数量关系是_______.(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,(2)中的结论是否成立?请画出图形并给予证明.27.(本题9分)在社会主义新农村建设电,菜乡镇决定对A,B两材之间的公路进行改造,并由甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工队单独完成,直到公路修通.下图是甲、乙两个工程队修公路的长度y(米)与施工时间(天)之间的函数关系图像,请根据图像所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求、出甲、乙两工程队修公路的长度y(米)与施工时间(天)之间的函数关系式.(3)若该工程由甲、乙两工程队一直合作施工,需几天完成?参考答案一、选择题1.C2.A3.C4.B5.C6.C7.D8.B二、填空题9.一10.M17936 11.(3,4) 12.4 13.15°14.三15.3416.4917.11 xy=⎧⎨=-⎩18.①③④三、解答题19.(1)-12(2)原式=120.略21.(1)12m(2)4m22.y=2-523.(1)略(2)EG⊥DF24.-2.25.(1)5元(2)y=0.5+5 (3)0.5元/千克(4)45千克26.(1)AE//BF,QE=QF (2)QE=QF.(3)(2)中结论仍然成立.27.(1)120米(2)y甲=60 (3)9天完成。

人教版八年级数学第一学期期末冲刺复习卷

人教版八年级数学第一学期期末冲刺复习卷

7.C 解:m4+m3 不能合并,故选项 A 错误; (m4)3=m13,故选项 B 错误; m(m﹣1)=m2﹣m,故选项 C 正确; 2m5÷m3=2m2,故选项 D 错误;
8.C
解: AB AC , C ABC , AB 的垂直平分线 MN 交 AC 于 D 点, AD BD , A ABD , BD 平分 ABC , ABD DBC , C 2A ABC , 设 A x ,则 C ABC 2x , A ABC C 180 , x 2x 2x 180 , x 36o ,即 A 36 .
23.
证明:(1)∵ BAE DAC , ∴ BAC DAE , 在 ABC 和 ADE 中,
AB AD BAC DAE , AC AE
∴△ABC ≌△ADE SAS
∴ C E ;
(2)∵△ABC ≌△ADE ,
∴ B D , 在 ABM 和 △ADN 中,
BAE DAC
10.B
解:过 E 作 EF⊥BC 于 F,
∵CD 是 AB 边上的高,BE 平分∠ABC,交 CD 于点 E,DE=1, ∴DE=EF=1, ∵BC=4,
∴ SABC 1 BC EF 1 41 2
2
2
故选:B
11.五
解:由一个多边形的每个外角都等于 72 ゜,可得:
多边形的边数为: n 360 72 5 ,
最小;
(2)如图 2,已知 AOB 45 ,P 是 AOB 内一点,PO 10 .请在 OA 上找一点 Q , OB 上找一点 R ,使得 PQR 的周长最小,画出图形并求出这个最小值.
22.点点同学在复习《整式的除法》时发现自己的课堂笔记中有一部分被钢笔水弄污
了.具体情况如下:(15x3 y5 ★ 20x3 y2 ) (5x3 y2 ) ▲ 2xy2 4 ,被除式的第

人教版八年级上册数学期末考试复习试卷 (2)及答案

人教版八年级上册数学期末考试复习试卷 (2)及答案

人教版八年级上册数学期末考试复习试卷(2)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个手机APP图标中,是轴对称图形的是( )A.B.C.D.2.已知点A坐标为(3,﹣2),点B与点A关于x轴对称,则点B的坐标为( )A.(﹣3,﹣2)B.(﹣3,2)C.(2,﹣3)D.(3,2)3.下列运算正确的是( )A.(2x2)3=6x6B.x6÷x3=x2C.3x2﹣x2=3D.x•x4=x54.若分式有意义,则x的取值范围是( )A.x≠1B.x≠﹣1C.x=1D.x=﹣15.已知图中的两个三角形全等,则∠α的度数是( )A.72°B.60°C.58°D.50°6.若关于x的多项式x2+mx﹣28可因式分解为(x﹣4)(x+7),则m的值为( )A.﹣3B.11C.﹣11D.37.内角和等于外角和的多边形是( )A.三角形B.四边形C.五边形D.六边形8.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为( )A.7cm B.3cm C.7cm或3cm D.8cm9.如图,在△ABC中,AB的垂直平分线交AC于点D,交AB于点E.如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.7cm B.8cm C.9cm D.10cm10.以下说法正确的是( )①一条直角边和斜边上的高对应相等的两个直角三角形全等;②有两条边相等的两个直角三角形全等;③有一边相等的两个等边三角形全等;④两边和其中一边的对角对应相等的两个三角形全等.A.①②B.②④C.①③D.①③④二、填空题(本大题共7小题,每小题4分,共28分)11.因式分解:2a﹣2b= .12.计算:= .13.已知△ABC中,AB=AC,∠A=60°,若BC=5cm,则AC= cm.14.如图是外周边缘为正八边形的木花窗挂件,则这个正八边形的每个内角度数为 .15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,若AB=10,CD=3,则S△ABD = .16.如图,△ABC≌△AED,点D在BC边上.若∠EAB=50°,则∠ADE的度数是 .17.对两实数x,y定义一种新运算⊗,规定x⊗y=,例如:1⊗2=,若a⊗2=1,则a的值为 .三.解答题(共62分)18解方程:.19按照要求完成以下作图,保留作图痕迹,不写作法.(1)尺规作图:请在直线AB上作一点P,使得PC=PD.(2)在直线AB上作一点P′,使得P'C+P'D的值最小.20如图,△ABC中,∠C=2∠DAC,∠B=75°,AD是△ABC的高,求∠BAC的度数.21随着《广州市深化生活垃圾分类处理三年行动计划(2019﹣2021)》的正式印发,广州市全面开启城乡生活垃圾分类全覆盖.为推进垃圾分类行动,某工厂购进甲、乙两种型号智能机器人用来进行垃圾分类,用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元,求甲、乙两种型号机器人每台各多少万元?22如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.23在日历上,我们可以发现其中某些数满足一定的规律,如图是2019年9月份的日历,我们任意选择两组其中所示的四个数(阴影表示),分别将每组数中相对的两数相乘,再相减,得到的结果都是48,例如:8×10﹣2×16=48;19×21﹣13×27=48.请解答:再选择一个类似的部分试一试,看看是否符合这个规律;如果符合,利用整式的运算对这个规律加以证明.24先阅读下列材料:分解因式:(a+b)2﹣2(a+b)+1.解:将“a+b”看成整体,设M=a+b,则原式=M2﹣2M+1=(M﹣1)2,再将M还原,得原式=(a+b﹣1)2.上述解题用到的是“整体思想”,请你仿照上面的方法解答下列问题:(1)分解因式:(a2+2a+2)(a2+2a)+1.(2)化简:.25定义:如果两个等腰三角形的顶角互补,顶角的顶点又是同一个点,而且它们的腰也分别相等,则称这两个三角形互为“顶补等腰三角形”.(1)如图1,若△ABC与△ADE互为“顶补等腰三角形”.∠BAC>90°,AM⊥BC于M,AN⊥ED 于N,求证:DE=2AM;(2)如图2,在四边形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,在四边形ABCD 的内部是否存在点P,使得△PAD与△PBC互为“顶补等腰三角形”?若存在,请给予证明;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.下列四个手机APP图标中,是轴对称图形的是( )A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.已知点A坐标为(3,﹣2),点B与点A关于x轴对称,则点B的坐标为( )A.(﹣3,﹣2)B.(﹣3,2)C.(2,﹣3)D.(3,2)【分析】直接利用关于x轴对称点的性质分析得出答案.【解答】解:∵点A坐标为(3,﹣2),点B与点A关于x轴对称,∴点B的坐标为:(3,2).故选:D.3.下列运算正确的是( )A.(2x2)3=6x6B.x6÷x3=x2C.3x2﹣x2=3D.x•x4=x5【分析】根据幂的乘方和积的乘方,同底数幂的除法、乘法,合并同类项法则分别求出每个式子的值,再进行判断即可.【解答】解:A、结果是8x6,故本选项错误;B、结果是x3,故本选项错误;C、结果是2x2,故本选项错误;D、结果是x5,故本选项正确;故选:D.4.若分式有意义,则x的取值范围是( )A.x≠1B.x≠﹣1C.x=1D.x=﹣1【分析】根据分母不能为零,可得答案.【解答】接:由题意,得x﹣1≠0,解得x≠1,故选:A.5.已知图中的两个三角形全等,则∠α的度数是( )A.72°B.60°C.58°D.50°【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.6.若关于x的多项式x2+mx﹣28可因式分解为(x﹣4)(x+7),则m的值为( )A.﹣3B.11C.﹣11D.3【分析】先根据多项式乘以多项式法则进行计算,再根据已知条件求出m即可.【解答】解:(x﹣4)(x+7)=x2+7x﹣4x﹣28=x2+3x﹣28,∵关于x的多项式x2+mx﹣28可因式分解为(x﹣4)(x+7),∴m=3,故选:D.7.内角和等于外角和的多边形是( )A.三角形B.四边形C.五边形D.六边形【分析】多边形的内角和可以表示成(n﹣2)•180°,外角和是固定的360°,从而可根据外角和等于内角和列方程求解.【解答】解:设所求n边形边数为n,则360°=(n﹣2)•180°,解得n=4.∴外角和等于内角和的多边形是四边形.故选:B.8.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为( )A.7cm B.3cm C.7cm或3cm D.8cm【分析】已知的边可能是腰,也可能是底边,应分两种情况进行讨论.【解答】解:当腰是3cm时,则另两边是3cm,7cm.而3+3<7,不满足三边关系定理,因而应舍去.当底边是3cm时,另两边长是5cm,5cm.则该等腰三角形的底边为3cm.故选:B.9.如图,在△ABC中,AB的垂直平分线交AC于点D,交AB于点E.如果AC=5cm,BC=4cm,那么△DBC的周长是( )A.7cm B.8cm C.9cm D.10cm【分析】由DE是AB的垂直平分线,根据线段垂直平分线的性质,可得AD=BD,又由AC=5cm,BC=4cm,即可求得△DBC的周长.【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∵AC=5cm,BC=4cm,∴△DBC的周长是:BD+CD+BC=AD+CD+BC=AC+BC=5+4=9(cm).故选:C.10.以下说法正确的是( )①一条直角边和斜边上的高对应相等的两个直角三角形全等;②有两条边相等的两个直角三角形全等;③有一边相等的两个等边三角形全等;④两边和其中一边的对角对应相等的两个三角形全等.A.①②B.②④C.①③D.①③④【分析】根据全等三角形的判定方法或者举出反例能证明原命题是错误的,分别判断各命题的正误即可.【解答】解:①一条直角边和斜边上的高对应相等的两个直角三角形全等;根据HL可证得两直角三角形全等,此命题正确;②有两条边相等的两个直角三角形不一定全等;比如一直角三角形的两直角边和另一个直角三角形的一直角边和一斜边相等,则这两个直角三角形并不全等;原命题错误;③有一边相等的两个等边三角形全等,符合SSS定理,此命题正确;④两边和其中一边的对角对应相等的两个三角形不一定全等,根据SSA并不能证明三角形全等;故原命题错误;故选:C.二.填空题(共7小题)11.因式分解:2a﹣2b= 2(a﹣b) .【分析】直接提取公因式2即可分解因式.【解答】解:2a﹣2b=2(a﹣b).故答案为:2(a﹣b).12.计算:= x﹣1 .【分析】根据同分母分式的加减,分母不变,只把分子相加减,计算求解即可.【解答】解:==x﹣1.故答案为:x﹣1.13.已知△ABC中,AB=AC,∠A=60°,若BC=5cm,则AC= 5 cm.【分析】先判定△ABC是等边三角形,再根据BC的长,即可得出AC的长.【解答】解:∵△ABC中,AB=AC,∴△ABC是等腰三角形,又∵∠A=60°,∴△ABC是等边三角形,∵BC=5cm,∴AC=5cm,故答案为:5.14.如图是外周边缘为正八边形的木花窗挂件,则这个正八边形的每个内角度数为 135° .【分析】根据多边形的内角和公式列式计算即可得解.【解答】解:这个正八边形每个内角的度数=×(8﹣2)×180°=135°.故答案为:135°.15.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,若AB=10,CD=3,则S△ABD = 15 .【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=3,∴S△ABD=AB•DE=×10×3=15,故答案为15.16.如图,△ABC≌△AED,点D在BC边上.若∠EAB=50°,则∠ADE的度数是 65° .【分析】根据全等三角形的性质得到∠BAC=∠EAD,∠EDA=∠C,AD=AC,根据等腰三角形的性质、三角形内角和定理求出∠ADE=∠ADC=∠C=65°.【解答】解:∵△ABC≌△AED,∴∠BAC=∠EAD,∠EDA=∠C,AD=AC,∴∠DAC=∠EAB=50°,∴∠ADE=∠ADC=∠C=65°,故答案为:65°.17.对两实数x,y定义一种新运算⊗,规定x⊗y=,例如:1⊗2=,若a⊗2=1,则a的值为 ﹣ .【分析】已知等式利用题中的新定义化简,计算求出解即可得到a的值.【解答】解:根据题中的新定义化简得:=1,去分母得:a2+4a+4=a2+2,解得:a=﹣,检验:当a=﹣时,a2+2≠0,∴分式方程的解为a=﹣.故答案为:﹣.三.解答题18解方程:.【考点】解分式方程.【专题】分式方程及应用;运算能力.【答案】x=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(x+3)=12x,去括号得:3x+9=12x,解得:x=1,检验:当x=1时,2x(x+3)≠0,∴分式方程的解为x=1.19按照要求完成以下作图,保留作图痕迹,不写作法.(1)尺规作图:请在直线AB上作一点P,使得PC=PD.(2)在直线AB上作一点P′,使得P'C+P'D的值最小.【考点】线段垂直平分线的性质;作图—复杂作图;轴对称﹣最短路线问题.【专题】作图题;几何直观.【答案】(1)(2)作图见解析部分.【分析】(1)作线段CD的垂直平分线交AB于点P,点P即为所求作.(2)作点C关于AB的对称点C′,连接DC′交AB于点P′,连接CP′,点P′即为所求作.【解答】解:(1)如图,点P即为所求作.(2)如图,点P′即为所求作.20如图,△ABC中,∠C=2∠DAC,∠B=75°,AD是△ABC的高,求∠BAC的度数.【考点】三角形内角和定理.【专题】三角形;几何直观.【答案】45°.【分析】利用三角形的内角和等于180°和直角三角形的两个锐角互余即可.【解答】解:∵AD⊥BC,∴∠ADB=90°,∴∠C+∠DAC=90°,∵∠B=75°,∴∠BAD=180°﹣∠ADB﹣∠B=180°﹣90°﹣75°=15°,又∵∠C=2∠DAC,∴3∠DAC=90°,∴∠DAC=30°,∴∠BAC=45°.21随着《广州市深化生活垃圾分类处理三年行动计划(2019﹣2021)》的正式印发,广州市全面开启城乡生活垃圾分类全覆盖.为推进垃圾分类行动,某工厂购进甲、乙两种型号智能机器人用来进行垃圾分类,用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元,求甲、乙两种型号机器人每台各多少万元?【考点】分式方程的应用.【专题】分式方程及应用;运算能力;推理能力.【答案】甲型机器人每台60万元,乙型机器人每台80万元.【分析】设甲型机器人每台x万元,则乙型机器人每台(140﹣x)万元,根据“用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同”列出分式方程,解方程即可.【解答】解:设甲型机器人每台x万元,则乙型机器人每台(140﹣x)万元,根据题意得:=,解得:x=60,经检验,x=60是原方程的解,且符合题意,则140﹣x=80,答:甲型机器人每台60万元,乙型机器人每台80万元.22如图,在△ABC中,AB=AC,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,求证:BE=CF.【考点】全等三角形的判定与性质;角平分线的性质.【专题】证明题.【答案】见试题解答内容【分析】欲证明BE=CF,只要证明Rt△BDE≌Rt△CDF即可;【解答】证明:∵AB=AC,AD为∠BAC的平分线∴BD=CD,∵DE⊥AB,DF⊥AC∴DE=DF,在Rt△BDE和Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴BE=CF.23在日历上,我们可以发现其中某些数满足一定的规律,如图是2019年9月份的日历,我们任意选择两组其中所示的四个数(阴影表示),分别将每组数中相对的两数相乘,再相减,得到的结果都是48,例如:8×10﹣2×16=48;19×21﹣13×27=48.请解答:再选择一个类似的部分试一试,看看是否符合这个规律;如果符合,利用整式的运算对这个规律加以证明.【考点】有理数的混合运算;整式的混合运算.【专题】整式;运算能力;推理能力.【答案】10×12﹣4×18=120﹣72=48,证明过程见解答.【分析】根据2019年9月份的日历和题意,可以选择一组数据试一试是否符合规律,然后可以设左边的数字,然后即可表示出其他位置的数字,再对式子化简,即可证明规律成立.【解答】解:选择4,10,12,18,10×12﹣4×18=120﹣72=48,符合这个规律;证明:设左边数字是x,则上边的数字是x﹣6,下边数字是x+8,右边数字是x+2,x(x+2)﹣(x﹣6)(x+8)=x2+2x﹣x2﹣2x+48=48,故x(x+2)﹣(x﹣6)(x+8)=48这一规律成立.24先阅读下列材料:分解因式:(a+b)2﹣2(a+b)+1.解:将“a+b”看成整体,设M=a+b,则原式=M2﹣2M+1=(M﹣1)2,再将M还原,得原式=(a+b﹣1)2.上述解题用到的是“整体思想”,请你仿照上面的方法解答下列问题:(1)分解因式:(a2+2a+2)(a2+2a)+1.(2)化简:.【考点】因式分解﹣运用公式法.【专题】计算题;运算能力.【答案】(1)(a+1)4;(2)n2+3n+1.【分析】(1)运用“整体思想”设a2+2a=M,代入原式运用完全平方式进行因式分解即可;(2)先将原式变形,设n2+3n=M,代入原式运用完全平方分解因式后,再约分即可.【解答】解:(1)设a2+2a=M,原式=(M+2)M+1=M2+2M+1=(M+1)2,将M还原得,原式=(a2+2a+1)2=(a+1)4;(2)设n2+3n=M,原式==,将M还原得,原式=n2+3n+1.25定义:如果两个等腰三角形的顶角互补,顶角的顶点又是同一个点,而且它们的腰也分别相等,则称这两个三角形互为“顶补等腰三角形”.(1)如图1,若△ABC与△ADE互为“顶补等腰三角形”.∠BAC>90°,AM⊥BC于M,AN⊥ED 于N,求证:DE=2AM;(2)如图2,在四边形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,在四边形ABCD 的内部是否存在点P,使得△PAD与△PBC互为“顶补等腰三角形”?若存在,请给予证明;若不存在,请说明理由.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】阅读型;三角形.【答案】见试题解答内容【分析】(1)根据“顶补等腰三角形”的定义,得到边、角之间的关系,进而证得∠B=∠2,再利用AAS证明△ABM≌△DAN即可得证;(2)连接AC,取AC的中点P,连接PB,PD,利用△ADC≌△ABC和直角三角形斜边的中线等腰斜边的一半,证明PA=PB=PC=PD,再根据△PDC≌△PBC,证明顶角互补即可.【解答】(1)证明:∵△ABC与△ADE互为“顶补等腰三角形”,∴AB=AC=AD=AE,∠BAC+∠DAE=180°,∴∠B=∠C,又∵AM⊥BC,AN⊥ED,∴∠3=∠4=90°,∠1=∠2,DE=2DN,∴∠BAC+2∠2=180°,又∵∠BAC+2∠B=180°,∴∠B=∠2,在△ABM和△DAN中,,∴△ABM≌△DAN(AAS),∴AM=DN,∴DE=2AM;(2)存在.证明:如图2,连接AC,取AC的中点P,连接PB,PD,∵AD=AB,CD=BC,AC=AC∴△ADC≌△ABC,∴∠ABC=∠ADC=90°,∵P是AC的中点,∴PB=PA=PC=AC,PD=PA=PC=AC.∴PA=PB=PC=PD,又∵DC=BC,PB=PD,PC=PC,∴△PDC≌△PBC(SSS),∴∠DPC=∠BPC,∵∠APD+∠DPC=180°,∠APD+∠BPC=180°∴△APD与△BPC互为“顶补等腰三角形”.。

2022-2023学年人教版数学八年级上学期期末复习训练卷

2022-2023学年人教版数学八年级上学期期末复习训练卷

人教版数学八上期末复习训练卷一、选择题已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A.1B.2C.8D.11下列因式分解正确的是( )A.a(a−b)−b(a−b)=(a−b)(a+b)B.a2−9b2=(a−3b)2C.a2+4ab+4b2=(a+2b)2D.a2−ab+a=a(a−b)如图,在△ABC中,AB=AD=DC,∠B=70∘,则∠BAC的度数为( )A.80∘B.75∘C.70∘D.65∘如图,BD⊥AC,CE⊥AB,垂足分别为D,E,AD=AE.下列方法中,可以直接判断△ADB≌△AEC 的是( )A.SSS B.SAS C.ASA D.AAS若点A(1,3)与点B关于x轴对称,则点B的坐标为( )A.(−1,−3)B.(−1,3)C.(1,−3)D.(3,−1)已知a,b,c是三角形的三边,那么代数式(a−b)2−c2的值( )A.大于零B.小于零C.等于零D.不能确定若xy>0,则∣x∣x+∣y∣∣y+1的值为( )A.−2B.3或−2C.3D.−1或3如图,在△ABC中,∠ABC和∠ACB的外角平分线交于点O,设∠A=m,则∠BOC=( )A.90∘−m B.90∘−m2C.180∘−2m D.180∘−m2如图,在Rt△ABC中,∠C=90∘,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )A.15B.30C.45D.60若计算(x2+ax+5)⋅(−2x)−6x2的结果中不含有x2项,则a的值为( )A.−3B.13C.0D.3二、填空题如果分式x−1x+1有意义,那么x的取值范围是.生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子的直径约为0.0000002cm.这个数量用科学记数法可表示为cm.分解因式:2a2−ab=.(1)已知a+3ba =2,则ba=.(2)已知1a −1b=5,则3a−5ab−3ba−3ab−b=.如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60∘,在y轴上找一点P,使 △PAB 是等腰三角形,则符合条件的 P 点共有个.如图,△ABC 中,AB =AC ,∠BAC =54∘,∠BAC 的平分线与 AB 的垂直平分线交于点 O ,将 ∠C 沿 EF (E 在 BC 上,F 在 AC 上)折叠,点 C 与点 O 恰好重合,则 ∠OEC 为度.关于 x 的方程 x+1x−2−x x+3=x+a(x−2)(x+3) 的解为非正数,则 a 的取值范围为.三、解答题回答下列问题:(1) 计算:(−2)2−(π−1)0+(14)−1. (2) 化简:(a +3)(1−2a )+2a 2.已知 x =16,求 (3x −1)2+(1+3x )(1−3x ) 的值.解方程:x x−3+x+8x (x−3)=1.在如图所示的正方形网格中,每个小正方形的边长为 1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点 A ,C 的坐标分别为 (−4,5),(−1,3).(1) 请在如图所示的网格平面内作出平面直角坐标系;(2) 请作出△ABC关于y轴对称的△AʹBʹCʹ;(3) 写出点Bʹ的坐标.如图1,“惠民一号”玉米试验田是半径为R m的圆去掉宽为1m的出水沟剩下的部分;如图2,“惠民二号”玉米试验田是半径为R m的圆中间去掉半径为1m的圆剩下的部分,两块试验田的玉米都收了450kg.(1) “惠民一号”玉米试验田的单位面积产量是kg/m2,“惠民二号”玉米试验田的单位面积产量是kg/m2,“惠民号”玉米的单位面积产量高;(2) 单位面积产量高的是单位面积产量低的多少倍?学校为创建“书香校园”,购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?如图,BC∥OA,∠B=∠A=110∘,E,F在BC上且满足OE平分∠BOF,2∠AOC=∠FOC.(1) 若平行移动AC,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.(2) 在平行移动AC的过程中,是否存在某种情况,使∠OEB=∠OCA?若存在,求出∠OCA度数;若不存在,说明理由.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:a+3a−1=(a−1)+4a−1=1+4a−1,2a−1a+1=2(a+1)−3a+1=2−3a+1.参考上面的方法,解决下列问题:(1)将aa+1变形为满足以上结果要求的形式:aa+1=.(2)①将3a+2a−1变形为满足以上结果要求的形式:3a+2a−1=.②若3a+2a−1为正整数,且a也为正整数,求a的值.。

人教版八年级上期数学期末复习卷.doc

人教版八年级上期数学期末复习卷.doc

【本文档由书林工作坊整理发布,谢谢你的下载和关注!】1八年级数学上期末复习卷班级 座号 姓名 成绩 一、填空:(每小题2分,共24分)1.单项式425y x 的系数是 ,次数是 .2.若函数kx y =,当x =2时,y =3,则当x =-2时,y = . 3.(-3,2)与点Q 关于原点对称,则点Q 在第 象限. 4.请写出一个..图象经过点(1,4)的函数解析式: . 5.因式分解:23123xy x -= .6.某班50名学生在数学测试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有 人.7.在△ABC 中,边AB 、AC 的垂直平分线相交于P 点,则线段PA 、PB 、PC 的大小关系是 .8.等腰三角形的一个角是70°,则其余两角为 . 9.如图,在△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分 线交BC 于点D ,交AB 于点E ,DB =10,则AC = .10.下面四个图形中,从几何图形的性质考虑,哪一个与其它三个不同?请指出这个图形,并简述你的理由.答:图形 ;理由是 .11.方程组⎩⎨⎧=+=-623y x y x 的解是一次函数 与一次函数 图象的交点坐标,该坐标为 . 12.多项式142+x 加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是 .(要求写三个)二、选择:(每小题2分,共16分)【本文档由书林工作坊整理发布,谢谢你的下载和关注!】213.下列运算中,正确的是( ). A .)(6232222b a b a +=⨯ B .12)1(22+-=-a a a C .236a a a =÷D .523)(a a =14.下面运算正确的是( ). A .ab b a 523=+ B .03322=-ba b a C .532523x x x =+D .12322=-y y15.如图是某个地区居民文化程度统计图,下列说法错误的是( ). A .初中文化程度的人最多 B .本科文化程度的人最少C .表示“专科”扇形的圆心角为19°D .高中文化程度的人数占总数的30%16.小亮在镜中看到身后墙上的时钟如图,你认为实际时间最接近八点的是( ). ABCDA B C D17.函数)0(≠+=k b kx y 随自变量x 的增大而增大,图象与x 轴交于(-4,0),则 y >0时,x 的取值范围是( ). A .x >-4B .x >0C .x <-4D .x <018.如图,在边长为a 的正方形(图①)中挖掉一个边长为b 的小正方形(a ﹥b ),把余下的部分拼成一个长方形(图②),通过计算两个阴影部分的面积,验证了一个等式.则这个等式是( ).A .))((22b a b a b a +-=- B .2222)(b ab a b a ++=+C .2222)(b ab a b a +-=- D .222))(2(b ab a b a b a -+=-+【本文档由书林工作坊整理发布,谢谢你的下载和关注!】319.在直角坐标系中,O 为坐标原点,已知点A (1,1),在x 轴上确定 点P ,使△AOP 为等腰三角形,则符合条件的点P 的个数共有( ). A .1个B .2个C .3个D .4个20.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:2222224620,2412,024-=-=-=,因此,4,12,20都是“神秘数”.以下四个数中“神秘数”是( ).A.2006B.2008C.2010D.2012 三、计算:(每小题4分,共8分) 21.因式分解:223242xy y x x -+-; 22.计算:)1(2)2()46(234+--÷-x x x x x .四、(每小题5分,共10分)23.先化简,再求值:y y y x y x y x 2]5))(()2[(42222÷--+-+,其中2-=x ,1=y .24.阅读下列因式分解的过程,再回答所提出的问题:22)1()1()1()1()1(1+++++=+++++x x x x x x x x x x[]32)1()1()1()1(1)1(x x x x x x x +=++=++++=【本文档由书林工作坊整理发布,谢谢你的下载和关注!】4(1)上述分解因式的方法是 ,共应用了 次;(2)若分解20072)1()1()1(1++++++++x x x x x x x ,则需应用上述方法 次, 结果是 ;(3)分解因式n x x x x x x x )1()1()1(12++++++++ (n 为正整数)= . 五、(每小题6分,共24分)25.如图,在△ABC 中,点D 在AB 上,点E 在BC 上,BD =BE . (1)请你再添加一个条件,使得△BEA ≌△BDC ,并给出证明. 你添加的条件是: .(2)根据你添加的条件,再写出图中的一对全等三角形 .(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)26.下图是根据某市2006年12月1日至6日最高气温所绘制的条形统计图. (1)观察统计图,写出两条你从这个统计图中获得的信息; (2)请根据图中提供的数据,绘制折线统计图;(3)如果要反映这六天最高气温的变化,采用条形统计图还是折线统计图更好,为什么?27.如图,在△ABC 中,DE 是AC 的垂直平分线,△ABC【本文档由书林工作坊整理发布,谢谢你的下载和关注!】5与△ABD 的周长分别为18cm 和12cm ,求线段AE 的长.28.如图,△ABC 和△A ′B ′C ′关于直线MN 对称,△A ′B ′C ′和△A ″B ″C ″关于直线EF 对称. (1)画出直线EF ;(2)直线MN 与EF 相交于点O ,试探究∠BOB ″与直线MN 、EF 所夹锐角 的数量关系.五、(8分)29.如图,等腰△ABC 和等腰△ACD 有一条公共边AC ,且顶角∠BAC 和顶角∠CAD 都是45°.将一块三角板中用含45°角的顶点与A 点重合,并将三角板绕A 点按逆时针方向旋转.(1)当三角板旋转到如图①的位置时,三角板的两边与等腰三角形的两底边分别相交于M 、N 两点,求证:AM =AN ;(2)当三角板旋转到如图②的位置时,三角板的两边与等腰三角形两底边的延长线分别相交于M 、N 两点,(1)的结论还成立吗?请简要说明理由.①【本文档由书林工作坊整理发布,谢谢你的下载和关注!】6②六、(10分)30.如图,已知直线421+-=x y 与x 轴交于A 点,与y 轴交于B 点,点M 的坐标为(4,0),点P (x ,y )是第一象限内直线AB 上的动点,连接OP 、MP. 设△OPM 的面积为s .(1)求s 关于x 的函数表达式,并求x 的取值范围;(2)当P 点在什么位置时,图中存在与△OPM 全等的三角形?画出所有符合条件的示意图,并说明全等的理由(不能添加其他字母和其他辅助线); (3)在(2)的条件下,求P 点坐标.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】7参考答案1.5,六次;2.-3; 3.四;4.略;5.)2)(2(3y x y x x -+;6.5;7.PA =PB =PC ; 8.55°、55°或70°、40°; 9.5;10.②,不是轴对称图形; 11.3-=x y ,62+-=x y ,(3,0);12.44,4,4x x x -;13.B ;14.B ;15.C ;16.D ;17.A ;18.A.;19.D ;20.D ;21.2)(2y x x --; 22.25x -; 23.xy 2,-8020;24.略;25.略;26.(1)(2) 略,(3)折线统计图,因为折线统计图能更好表示温度变化情况; 27.3cm ; 28.(1)略(2)α2"=∠BOB ;29.略;30.(1)S =8+-x ,0<x <8(2)当∠BOP =∠MOP 或PM ⊥OA 时,OPM ≌APM .证明略 (3)P 点坐标为(38,38)和(4,2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日 期:人教版八年级数学第一学期期末冲刺复习卷一、单选题1.计算1011001(3)3⎛⎫-⨯ ⎪⎝⎭的结果是( ). A .13 B .13- C .3- D .32.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076用科学记数法表示为( )A .87.610-⨯B .90.7610-⨯C .87.610⨯D .90.7610⨯3.下列四个图形中不是轴对称图形的是( )A .B .C .D .4.小明要从长度分别为5,6,11,16的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是( )A .5,6,11B .5,6,16C .5,11,16D .6,11,165.已知221x kx -+是完全平方式,则k 的值为( )A .1B .1-C .±1D .06.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A .带①去B .带②去C .带③去D .带①或②去 7.下列计算正确的是( )A .m 4+m 3=m 7B .(m 4)3=m 7C .m (m ﹣1)=m 2﹣mD .2m 5÷m 3=m 2 8.如图,在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于D 点.若BD 平分ABC ∠,则A ∠为( )A .32B .30C .36D .729.在ABC 中,若满足下列条件,则一定不是直角三角形的是( )A .ABC ∠=∠+∠B .1123AC B ∠=∠=∠ C .一个外角等于与它相邻的内角D .::2:3:4A B C ∠∠∠=10.如图,在ABC 中,CD 是AB 边上的高,BE 平分ABC ∠,交CD 于点E ,4BC =,1DE =,则BCE 的面积等于( )A .1B .2C .3D .4二、填空题 11.一个多边形的每个外角都等于72゜,则这个多边形的边数为_______________.12.因式分解2ax a -=_________.13.已知分式方程2111a x x =--无解,则a =_________. 14.当x ____________________时,0(41)x -=.15.如图,在直角坐标系中,AD 是Rt △OAB 的角平分线,已知点D 的坐标是(0,-3),AB 的长为12,则△ABD 的面积是_____16.已知等腰三角形的一边长等于11cm ,一边长等于5cm ,它的周长为______.17.如图中,36B ∠=︒,76C ∠=︒,AD 、AF 分别是ABC 的角平分线和高,DAF ∠=________.三、解答题18.先化简,再求代数式222111x x x x x -⎛⎫-÷ ⎪+--⎝⎭的值,其中()101π23x -⎛⎫=+- ⎪⎝⎭. 19.解方程:242111x x x++=--- 20.如图,在直角坐标平面内,已知点()7,0A ,点()2,0B ,点C 是点A 关于直线3x =(即直线上各点的横坐标都为3)的对称点.(1)写出点C 的坐标;(2)如果点P 在y 轴上,过点P 作直线//l x 轴,点A 关于直线l 的对称点是点D ,那么当BCD △的面积等于6时,求点P 的坐标.21.(1)如图1,A ,B 是直线l 同旁的两个定点,请在直线l 上确定一点P ,使得PA PB +最小;(2)如图2,已知45AOB ∠=︒,P 是AOB ∠内一点,10PO =.请在OA 上找一点Q ,OB 上找一点R ,使得PQR 的周长最小,画出图形并求出这个最小值.22.点点同学在复习《整式的除法》时发现自己的课堂笔记中有一部分被钢笔水弄污了.具体情况如下:3532322(1520)(5)24x y x y x y xy --÷-=++★▲,被除式的第二项被钢笔水弄污成★,商的第一项也被钢笔水弄污成▲,请你求出这两处被弄污了的内容★、▲.23.如图AB AD =,AC AE =,BAE DAC ∠=∠.求证:(1)C E ∠=∠;(2)AM AN =.24.西南大学银翔实验中学初2022级举行“迎篮而上,求进不止”的篮球比赛,在某商场购买甲、乙两种不同篮球,购买甲种篮球共花费3000元,购买乙种篮球共花费2100元,购买甲种篮球数量是购买乙种篮球数量的2倍.且购买一个乙种篮球比购买一个甲种篮球多花60元;(1)求购买一个甲种篮球、一个乙种篮球各需多少元?(2)活动结束以后,学校决定再次购买甲、乙两种篮球共50个.恰逢该商场对两种篮球的售价进行调整,甲种篮球售价比第一次购买时提高了10%,乙种篮球售价比第一次购买时降低了10%.如果此次购买甲、乙两种篮球的总费用不超过8730元,那么这所学校最多可购买多少个乙种篮球?25.如图,有两根竹杆AC、BD相距18米,AC=6米,AC⊥AB,DB⊥AB,现有两个动点P、Q同时从B点出发,点P以每秒2米的速度向点D运动,点Q以每秒1米的速度向点A运动,在线段AB上有一点Q.(包括点A和点B)(1)当P、Q两点运动6秒后,CQ与PQ有怎样的关系?(2)当P、Q两点运动t秒后,使以C、A、Q为顶点的三角形与以P、B、Q为顶点的三角形全等,直接写出t的值______.参考答案1.A10110010010010110011111(3)3333333⎛⎫-⨯⨯=⨯⨯= ⎝⎭=⎪ 2.A解:将0.000000076用科学记数法表示为87.610-⨯.3.C解:A 、是轴对称图形,故此选项不符合题意;B 、是轴对称图形,故此选项不符合题意;C 、不是轴对称图形,故此选项符合题意;D 、是轴对称图形,故此选项符合题意;4.D解:长度分别为5,6,11,16的四根小木棒中选出三根摆成一个三角形, ∵全部可能出现的组合是:5,6,11;5,6, 16; 6,11,16∴能构成三角形的情况只有:6,11,165.C∵221x kx -+=()21x ±∴2=2k -±∴=1k ±6.C观察碎成的三块玻璃,带3去可以根据ASA 定理,配一块完全一样的玻璃,7.C解:m 4+m 3不能合并,故选项A 错误;(m 4)3=m 13,故选项B 错误; m (m ﹣1)=m 2﹣m ,故选项C 正确;2m 5÷m 3=2m 2,故选项D 错误;8.C 解:AB AC =,∴C ABC ∠=∠,AB 的垂直平分线MN 交AC 于D 点,∴AD BD =,∴A ABD ∠=∠,BD 平分ABC ∠,∴ABD DBC ∠=∠,∴2C A ABC ∠=∠=∠,设A x ∠=,则2C ABC x ∠=∠=,180A ABC C ∠+∠+∠=,∴22180x x x ++=,∴36x =,即36A ∠=.9.D①由∠A+∠B+∠C=180°,得∠C+∠B=∠A=90°;故一定是直角三角形;②∵由∠A+∠B+∠C=180°,且1123A CB ∠=∠=∠,∴∠B=90°,故一定是直角三角形;③一个外角和它相邻的内角互为补角,则每一个角等于90°,故一定是直角三角形; ④由∠A+∠B+∠C=180°,∠A ∶∠B ∶∠C=2∶3∶4, ∠C=180°49⨯=80°,故一定是锐角三角形,10.B解:过E 作EF ⊥BC 于F ,∵CD 是AB 边上的高,BE 平分∠ABC ,交CD 于点E ,DE=1,∴DE=EF=1,∵BC=4, ∴1141222BC S BC EF A ⨯⨯=⨯⨯== 故选:B11.五解:由一个多边形的每个外角都等于72゜,可得:多边形的边数为:360725n =÷=,故答案为五.12.()()11a x x -+解:原式=()()()2111a x a x x -=-+. 故答案为:()()11a x x -+.13.2或0解:去分母得:x +1=a ,由分式方程无解,得到x =1或x =-1,把x=1代入整式方程得:a=2,把x=-1代入整式方程得:a=0,故答案为:2或0.14.4≠∵()041x-=∴40x-≠∴4x≠15.18解:过点D作DE⊥AB于点E,∵D(0,-3)∴OD=3,∵AD是Rt△OAB的角平分线,OD⊥OA,DE⊥AB,∴DE=OD=3,∴S△ABD=12AB•DE=12×12×3=18.故答案为:18.16.27cm分两种情况:当腰为11时,11+11>5,11-11<5,所以能构成三角形,周长是:11+11+5=27cm;当腰为5时,5+5<11,所以不能构成三角形,故答案为:27cm .17.20︒∵AF 是ABC 的高,∴90AFB ∠=︒,在Rt ABF 中,36B ∠=︒,∴90BAF B ∠=︒-∠9036=︒-︒54=︒.又∵在ABC 中,36B ∠=︒,76C ∠=︒,∴18068BAC B C ∠=︒-∠-∠=︒,又∵AD 平分BAC ∠, ∴11683422BAD CAD BAC ∠=∠=∠=⨯=︒, ∴DAF BAF BAD ∠=∠-∠5434=︒-︒20=︒.18.11x +,15解: 222111x x x x x -⎛⎫-÷⎪+--⎝⎭ =22(1)(2)11x x x x x ---÷-- =1(1)(1)x x x x x -⋅+- =11x +, 将()101π23143x -⎛⎫=+-=+= ⎪⎝⎭代入, 原式=15. 19.x=13解:去分母得,()()()()41211x x x x -++=-+-,去括号整理得,224321x x x ---=-+,即31x =, 解得13x =, 检验:当13x =时,21811099x -=-=-≠, ∴原方程的解为13x =. 20.(1)∵点C 和点A (7,0)关于直线m :x=3对称,∴点C 的坐标为(-1,0);(2)设点P 的纵坐标为n ,则由题意可知,点D 的纵坐标为2n ,∵点B 、C 的坐标分别为(2,0)、(-1,0),∴BC=3,∵S △BCD =12BC·2n =6,即3262⋅=n , ∴解得:2n ,又∵点P 在y 轴上,∴点P 的坐标为:(0,2)或(0,-2).21.解:(1)过点A 作AO l ⊥,并在AO 上截取OA OA '=,连接A B '交l 于点P ,由“两点之间线段最短”可知此时PA PB +最小.故点P 即为所求,如图:(2)作出点P 关于OA 、OB 的对称点P '、P '',连接OP '、OP ''.此时PQR 的周长最小,如图:根据对称性可得出:P OB BOP ''∠=∠,POA AOP '∠=∠,10OP OP OP '''=== ∵45AOB ∠=︒∴90P OP '''∠=︒∴P P '''==∴PQR 的周长最小值为【点睛】本题考查了轴对称最短路线问题、线段的公理、勾股定理等,根据题意能灵活运用知识点是解题的关键.22.4410x y =★;33y =-▲【分析】根据整式的除法运算法则即可求解.【详解】∵3532322(1520)(5)24x y x y x y xy --÷-=++★▲∴232442510xy x y x y =⨯=★, 3532315(5)3x y x y y =÷-=-▲.23.证明:(1)∵BAE DAC ∠=∠,∴BAC DAE ∠=∠,在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC ADE SAS △≌△∴C E ∠=∠;(2)∵ABC ADE △≌△,∴B D ∠=∠,在ABM 和ADN △中,BAE DAC AB ADB D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABM ADN ASA ≌△△,∴AM AN =.24.解:(1)设购买一个甲种篮球需x 元,则购买一个乙种篮球需()60x +元, 根据题意可得:30002100260x x =⨯+, 解得:150x =,经检验得150x =是分式方程的解,∴60210x +=,答:购买一个甲种篮球需150元,则购买一个乙种篮球需210元;(2)调整之后的价格为:甲种篮球()150110165⨯+%=(元),乙种篮球()210110189⨯-%=(元), 设购买m 个乙种篮球,则购买()50m -个甲种篮球,根据题意可得:()165501898730m m -+≤,解得:20m ≤,∴这所学校最多可购买20个乙种篮球.25.(1)CQ ⊥PQ ,证明:当P 、Q 两点运动6秒后,则BQ=6,BP=12,∴AQ=18-6=12,∵AC ⊥AB ,DB ⊥AB ,∴∠CAQ =∠QBP=90︒,在△AQC 和△BPQ 中,12906AQ BP CAQ QBP AC BQ ==⎧⎪∠=∠=︒⎨⎪==⎩,∴△AQC ≌△BPQ(SAS),∴∠AQC =∠BPQ,CQ=PQ∵∠BPQ +∠BQP=90︒,∴∠AQC +∠BQP=90︒,∴CQ ⊥PQ ;综上所述,CQ⊥PQ 且CQ=PQ ;(2)根据题意,BQ=t ,BP=2t ,则AQ=18-t ,当△AQC ≌△BPQ 时,AQ=BP ,即18-t=2t ,解得:t=6;当△AQC ≌△BQP 时,AQ=BQ ,即18-t=t ,解得:t=9;此时所用时间为9秒,AC=BP=18米,不合题意,舍去;综上,出发6秒后,在线段MA 上有一点C ,使△CAP 与△PBQ 全等. 故答案为:6.。

相关文档
最新文档