逐步回归分析法

逐步回归分析法
逐步回归分析法

逐步回归分析

在自变量很多时,其中有的因素可能对应变量的影响不是很大,而且x之间可能不完全相互独立的,可能有种种互作关系。在这种情况下可用逐步回归分析,进行x因子的筛选,这样建立的多元回归模型预测效果会更较好。

逐步回归分析,首先要建立因变量y与自变量x之间的总回归方程,再对总的方程及每—个自变量进行假设检验。当总的方程不显著时,表明该多元回归方程线性关系不成立;

而当某—个自变量对y影响不显著时,应该把它剔除,重新建立不包含该因子的多元回归方程。筛选出有显著影响的因子作为自变量,并建立“最优”回归方程。

回归方程包含的自变量越多,回归平方和越大,剩余的平方和越小,剩余均方也随之较小,预测值的误差也愈小,模拟的效果愈好。但是方程中的变量过多,预报工作量就会越大,其中有些相关性不显著的预报因子会影响预测的效果。因此在多元回归模型中,选择适宜的变量数目尤为重要。

逐步回归在病虫预报中的应用实例:

以陕西省长武地区1984~1995年的烟蚜传毒病情资料、相关虫情和气象资料为例(数据见DATA6.xls),建立蚜传病毒病情指数的逐步回归模型,说明逐步回归分析的具体步骤。影响蚜传病毒病情指数的虫情因子和气象因子一共有21个,通过逐步回归,从中选出对病情指数影响显著的因子,从而建立相应的模型。对1984~1995年的病情指数进行回检,然后对1996~1998年的病情进行预报,再检验预报的效果。

变量说明如下:

y:历年病情指数

x1:前年冬季油菜越冬时的蚜量(头/株) x2:前年冬季极端气温

x3:5月份最高气温

x4:5月份最低气温 x11:5月份均温

x12:5月份降水量

x13:6月份均温

x14:6月份降水量

x15:第一次蚜迁高峰期百株烟草有翅蚜量

x5:3~5月份降水量 x6:4~6月份降水量 x7:3~5月份均温 x8:4~6月份均温 x9:4月份降水量 x10:4月份均温 x16:5月份油菜百株蚜量 x17:7月份降水量

x18:8月份降水量

x19:7月份均温

x20:8月份均温

x21:元月均温

1)准备分析数据

在SPSS数据编辑窗口中,用“File→Open→Data”命令,打开“DATA6.xls”数据文件。数据工作区如下图3-1

显示。

图3-1

2)启动线性回归过程

单击SPSS主菜单的“Analyze”下的“Regression”中“Linear”项,将打开如图3-2所示的线性回归过程窗口。

图3-2 线性回归对话窗口

3) 设置分析变量

设置因变量:将左边变量列表中的“y”变量,选入到“Dependent”因变量显示栏里。

设置自变量:将左边变量列表中的“x1”~“x21”变量,全部选移到

“Independent(S)”自变量栏里。

设置控制变量: 本例子中不使用控制变量,所以不选择任何变量。

选择标签变量: 选择“年份”为标签变量。

选择加权变量: 本例子没有加权变量,因此不作任何设置。

4)回归方式

在“Method”分析方法框中选中“Stepwise”逐步分析方法。该方法是根据“Options”选择对话框中显著性检验(F)的设置,在方程中进入或剔除单个变量,直到所建立的方程中不再含有可加入或可剔除的变量为止。设置后的对话窗口如图3-3。

图3-3

5)设置变量检验水平

在图6-15主对话框里单击“Options”按钮,将打开如图3-4所示的对话框。

图3-4

“Stepping Method Criteria”框里的设置用于逐步回归分析的选择标准。

其中“Use probability of F”选项,提供设置显著性F检验的概率。如果一个变量的F检验概率小于或等于进入“Entry”栏里设置的值,那么这个变量将被选入回归方程中;当回归方程中变量的F值检验概率大于剔除“Removal”栏里设置的值,则该变量将从回归方程中被剔除。由此可见,设置F检验概率时,应使进入值小于剔除值。

“Ues F value” 选项,提供设置显著性F检验的分布值。如果一个变量的F值大于所设置的进入值(Entry),那么这个变量将被选入回归方程中;当回归方程中变量的F值小于设置的剔除值(Removal),则该变量将从回归方程中被剔除。同时,设置F分布值时,应该使进入值大于剔除值。

本例子使用显著性F检验的概率,在进入“Entry”栏里设置为“0.15”,在剔除“Removal”栏里设置为“0.20”(剔除的概率值应比进入的值大),如图6-17所示。

图6-17窗口中的其它设置参照一元回归设置。

6)设置输出统计量

在主对话图3-2窗口中,单击“Statistics”按钮,将打开如图6-18所示的对话框。该对话框用于设置相关参数。其中各项的意义分别为:

图3-5 “Statistics”对话框

①“Regression Coefficients”回归系数选项:

“Estimates”输出回归系数和相关统计量。

“Confidence interval”回归系数的95%置信区间。

“Covariance matrix”回归系数的方差-协方差矩阵。

本例子选择“Estimates”输出回归系数和相关统计量。

②“Residuals”残差选项:

“Durbin-Watson”Durbin-Watson检验。

“Casewise diagnostic”输出满足选择条件的观测量的相关信息。选择该项,下面两项处于可选状态:

“Outliers outside standard deviations”选择标准化残差的绝对值大于输入值的观测量;

“All cases”选择所有观测量。

本例子都不选。

③其它输入选项

“Model fit”输出相关系数、相关系数平方、调整系数、估计标准误、ANOVA表。

“R squared change”输出由于加入和剔除变量而引起的复相关系数平方的变化。

“Descriptives”输出变量矩阵、标准差和相关系数单侧显著性水平矩阵。

“Part and partial correlation”相关系数和偏相关系数。

“Collinearity diagnostics”显示单个变量和共线性分析的公差。

本例子选择“Model fit”项。

7)绘图选项

在主对话框单击“Plots”按钮,将打开如图3-6所示的对话框窗口。该对话框用于设置要绘制的图形的参数。图中的“X”和“Y”框用于选择X轴和Y轴相应的变量。

图3-6“Plots”绘图对话框窗口

左上框中各项的意义分别为:

?“DEPENDNT”因变量。

?“ZPRED”标准化预测值。

?“ZRESID”标准化残差。

?“DRESID”删除残差。

?“ADJPRED”调节预测值。

?“SRESID”学生氏化残差。

?“SDRESID”学生氏化删除残差。

“Standardized Residual Plots”设置各变量的标准化残差图形输出。其中共包含两个选项:

“Histogram”用直方图显示标准化残差。

“Normal probability plots”比较标准化残差与正态残差的分布示意图。

“Produce all partial plot”偏残差图。对每一个自变量生成其残差对因变量残差的散点图。

本例子不作绘图,不选择。

8) 保存分析数据的选项

在主对话框里单击“Save”按钮,将打开如图3-7所示的对话框。

图3-7“Save”对话框

①“Predicted Values”预测值栏选项:

Unstandardized 非标准化预测值。就会在当前数据文件中新添加一个以字符“PRE_”开头命名的变量,存放根据回

归模型拟合的预测值。

Standardized 标准化预测值。

Adjusted 调整后预测值。

S.E. of mean predictions 预测值的标准误。

本例选中“Unstandardized”非标准化预测值。

②“Distances”距离栏选项:

Mahalanobis: 距离。

Cook’s”: Cook距离。

Leverage values: 杠杆值。

③“Prediction Intervals”预测区间选项:

Mean: 区间的中心位置。

Individual: 观测量上限和下限的预测区间。在当前数据文件中新添加一个以字符“LICI_”开头命名的变量,存放

预测区间下限值;以字符“UICI_”开头命名的变量,存放预测区间上限值。

Confidence Interval:置信度。

本例不选。

④“Save to New File”保存为新文件:

选中“Coefficient statistics”项将回归系数保存到指定的文件中。本例不选。

⑤ “Export model information to XML file” 导出统计过程中的回归模型信息到指定文件。本例不选。

⑥“Residuals” 保存残差选项:

“Unstandardized”非标准化残差。

“Standardized”标准化残差。

“Studentized”学生氏化残差。

“Deleted”删除残差。

“Studentized deleted”学生氏化删除残差。

本例不选。

⑦“Influence Statistics” 统计量的影响。

“DfBeta(s)”删除一个特定的观测值所引起的回归系数的变化。

“Standardized DfBeta(s)”标准化的DfBeta值。

“DiFit” 删除一个特定的观测值所引起的预测值的变化。

“Standardized DiFit”标准化的DiFit值。

“Covariance ratio”删除一个观测值后的协方差矩隈的行列式和带有全部观测值的协方差矩阵的行列式的比率。

本例子不保存任何分析变量,不选择。

9)提交执行

在主对话框里单击“OK”,提交执行,结果将显示在输出窗口中。主要结果见表6-10至表6-13。

10) 结果分析

主要结果:

表6-10 是逐步回归每一步进入或剔除回归模型中的变量情况。

表6-11 是逐步回归每一步的回归模型的统计量:R 是相关系数;R Square 相关系数的平方,又称判定系数,判定线性回归的拟合程度:用来说明用自变量解释因变量变异的程度(所占比例);Adjusted R Square 调整后的判定系数;Std. Error of the Estimate 估计标准误差。

表6-12 是逐步回归每一步的回归模型的方差分析,F值为10.930,显著性概率是

0.001,表明回归极显著。

表6-13 是逐步回归每一步的回归方程系数表。

分析:

建立回归模型:

根据多元回归模型:

从6-13中看出,过程一共运行了四步,最后一步以就是表中的第4步的计算结果得知:21个变量中只进入了4个变量x15、x4、x7 和x5。

把表6-13中“非标准化回归系数”栏目中的“B”列数据代入多元回归模型得到预报方程:

预测值的标准差可用剩余标准差估计:

回归方程的显著性检验:

从表6-12方差分析表第4模型中得知:F统计量为622.72,系统自动检验的显著性水平为0.0000(非常小)。

F(0.00001,4,7)值为70.00。因此回归方程相关非常非常显著。

由回归方程式可以看出,在陕西长武烟草蚜传病毒病8月份的病情指数(y)与x4(5月份最低气温)、x15(第一次蚜迁高峰期百株烟草有翅蚜量)呈显著正相关,而与x5(3~5月份降水量)和x7 (3~5月份均温)呈显著负相关。

通过大田调查结果表明,烟草蚜传病毒病发生与蚜虫的迁飞有密切的关系。迁入烟田的有翅蚜有两次高峰期,呈双峰曲线。第一高峰期出现在5月中旬至6月初,此次迁飞的高峰期与大田发病率呈显著正相关。第二高峰期在6月上旬末至6月中旬,此次迁飞高峰期与大田发病率关系不大。5月份的最低气温(x4)和3~5月份均温(x7)通过影响传媒介体蚜虫的活动来影响田间发病。而第一次蚜迁高峰期百株烟草有翅蚜量(x15)是影响烟草蚜传病毒病病情指数(y)的重要因子。3~5月份降水量(x5)通过影响田间蚜虫传病毒病发病植株的症状表现影响大田发病程度。

回归分析方法

第八章 回归分析方法 当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。本章讨论其中用途非常广泛的一类模型——统计回归模型。回归模型常用来解决预测、控制、生产工艺优化等问题。 变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。回归分析就是处理变量之间的相关关系的一种数学方法。其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据; (2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数; (3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。 应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。运用一般计算语言编程也要占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。MATLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。运用MATLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。在此基础上再介绍在建模过程中如何有效地使用MATLAB 软件。没有学过这部分数学知识的读者可以不深究其数学原理,只要知道回归分析的目的,按照相应方法通过软件显示的图形或计算所得结果表示什么意思,那么,仍然可以学到用回归模型解决实际问题的基本方法。包括:一元线性回归、多元线性回归、非线性回归、逐步回归等方法以及如何利用MATLAB 软件建立初步的数学模型,如何透过输出结果对模型进行分析和改进,回归模型的应用等。 8.1 一元线性回归分析 回归模型可分为线性回归模型和非线性回归模型。非线性回归模型是回归函数关于未知参数具有非线性结构的回归模型。某些非线性回归模型可以化为线性回归模型处理;如果知道函数形式只是要确定其中的参数则是拟合问题,可以使用MATLAB 软件的curvefit 命令或nlinfit 命令拟合得到参数的估计并进行统计分析。本节主要考察线性回归模型。 8.1.1 一元线性回归模型的建立及其MATLAB 实现 其中01ββ,是待定系数,对于不同的,x y 是相互独立的随机变量。 假设对于x 的n 个值i x ,得到 y 的n 个相应的值i y ,确定01ββ,的方法是根据最小二乘准则,要使 取最小值。利用极值必要条件令 01 0,0Q Q ββ??==??,求01ββ,的估计值01??ββ,,从而得到回归直线01 ??y x ββ=+。只不过这个过程可以由软件通过直线拟合完成,而无须进行繁杂的运算。

matlab多元线性回归模型

云南大学数学与统计学实验教学中心 实验报告 一、实验目的 1.熟悉MATLAB的运行环境. 2.学会初步建立数学模型的方法 3.运用回归分析方法来解决问题 二、实验内容 实验一:某公司出口换回成本分析 对经营同一类产品出口业务的公司进行抽样调查,被调查的13家公司,其出口换汇成本与商品流转费用率资料如下表。试分析两个变量之间的关系,并估计某家公司商品流转费用率是6.5%的出口换汇成本. 实验二:某建筑材料公司的销售量因素分析 下表数据是某建筑材料公司去年20个地区的销售量(Y,千方),推销开支、实际帐目数、同类商品

竞争数和地区销售潜力分别是影响建筑材料销售量的因素。1)试建立回归模型,且分析哪些是主要的影响因素。2)建立最优回归模型。 提示:建立一个多元线性回归模型。

三、实验环境 Windows 操作系统; MATLAB 7.0. 四、实验过程 实验一:运用回归分析在MATLAB 里实现 输入:x=[4.20 5.30 7.10 3.70 6.20 3.50 4.80 5.50 4.10 5.00 4.00 3.40 6.90]'; X=[ones(13,1) x]; Y=[1.40 1.20 1.00 1.90 1.30 2.40 1.40 1.60 2.00 1.00 1.60 1.80 1.40]'; plot(x,Y,'*'); [b,bint,r,rint,stats]=regress(Y,X,0.05); 输出: b = 2.6597 -0.2288 bint = 1.8873 3.4322 -0.3820 -0.0757 stats = 0.4958 10.8168 0.0072 0.0903 即==1,0?6597.2?ββ,-0.2288,0?β的置信区间为[1.8873 3.4322],1,?β的置信区间为[-0.3820 -0.0757]; 2r =0.4958, F=10.8168, p=0.0072 因P<0.05, 可知回归模型 y=2.6597-0.2288x 成立. 1 1.5 2 2.5 散点图 估计某家公司商品流转费用率是6.5%的出口换汇成本。将x=6.5代入回归模型中,得到 >> x=6.5; >> y=2.6597-0.2288*x y = 1.1725

回归分析方法及其应用中的例子

3.1.2 虚拟变量的应用 例3.1.2.1:为研究美国住房面积的需求,选用3120户家庭为建模样本,回归模型为: 123log log P Y βββ++logQ= 其中:Q ——3120个样本家庭的年住房面积(平方英尺) 横截面数据 P ——家庭所在地的住房单位价格 Y ——家庭收入 经计算:0.247log 0.96log P Y -+logy=4.17 2 0.371R = ()() () 上式中2β=0.247-的价格弹性系数,3β=0.96的收入弹性系数,均符合经济学的常识,即价格上升,住房需求下降,收入上升,住房需求也上升。 但白人家庭与黑人家庭对住房的需求量是不一样的,引进虚拟变量D : 01i D ?=?? 黑人家庭 白人家庭或其他家庭 模型为:112233log log log log D P D P Y D Y βαβαβα+++++logQ= 例3.1.2.2:某省农业生产资料购买力和农民货币收入数据如下:(单位:十亿元) ①根据上述数据建立一元线性回归方程:

? 1.01610.09357y x =+ 20.8821R = 0.2531y S = 67.3266F = ②带虚拟变量的回归模型,因1979年中国农村政策发生重大变化,引入虚拟变量来反映农村政策的变化。 01i D ?=?? 19791979i i <≥年 年 建立回归方程为: ?0.98550.06920.4945y x D =++ ()() () 20.9498R = 0.1751y S = 75.6895F = 虽然上述两个模型都可通过显着性水平检验,但可明显看出带虚拟变量的回归模型其方差解释系数更高,回归的估计误差(y S )更小,说明模型的拟合程度更高,代表性更好。 3.5.4 岭回归的举例说明 企业为用户提供的服务多种多样,那么在这些服务中哪些因素更为重要,各因素之间的重要性差异到底有多大,这些都是满意度研究需要首先解决的问题。国际上比较流行并被实践所验证,比较科学的方法就是利用回归分析确定客户对不同服务因素的需求程度,具体方法如下: 假设某电信运营商的服务界面包括了A1……Am 共M 个界面,那么各界面对总体服务满意度A 的影响可以通过以A 为因变量,以A1……Am 为自变量的回归分析,得出不同界面服务对总体A 的影响系数,从而确定各服务界面对A 的影响大小。 同样,A1服务界面可能会有A11……A1n 共N 个因素的影响,那么利用上述方法也可以计算出A11……A1n 对A1的不同影响系数,由此确定A1界面中的重要因素。 通过两个层次的分析,我们不仅得出各大服务界面对客户总体满意度影响的大小以及不同服务界面上各因素的影响程度,同时也可综合得出某一界面某一因素对总体满意度的影响大小,由此再结合用户满意度评价、与竞争对手的比较等因素来确定每个界面细分因素在以后工作改进中的轻重缓急、重要性差异等,从而起到事半功倍的作用。 例 3.5.4:对某地移动通信公司的服务满意度研究中,利用回归方法分析各服务界面对总体满意度的影响。 a. 直接进入法 显然,这种方法计算的结果中,C 界面不能通过显着性检验,直接利用分析结果是错误

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题 例子; x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数! function [beta_hat,Y_hat,stats]=regress(X,Y,alpha) % 多元线性回归(Y=Xβ+ε)MATLAB代码 %? % 参数说明 % X:自变量矩阵,列为自变量,行为观测值 % Y:应变量矩阵,同X % alpha:置信度,[0 1]之间的任意数据 % beta_hat:回归系数 % Y_beata:回归目标值,使用Y-Y_hat来观测回归效果 % stats:结构体,具有如下字段 % =[fV,fH],F检验相关参数,检验线性回归方程是否显着 % fV:F分布值,越大越好,线性回归方程越显着 % fH:0或1,0不显着;1显着(好) % =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系 % tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着 % tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用 % =[T,U,Q,R],回归中使用的重要参数 % T:总离差平方和,且满足T=Q+U % U:回归离差平方和 % Q:残差平方和 % R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明 % 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10; % x2=rand(10,1)*10; % Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据 % X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了

多元回归分析matlab剖析

回归分析MATLAB 工具箱 一、多元线性回归 多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y , X ) ①b 表示???? ?? ????????=p b βββ?...??10 ②Y 表示????????????=n Y Y Y Y (2) 1 ③X 表示??? ??? ????? ???=np n n p p x x x x x x x x x X ...1......... .........1 (12) 1 22221 11211 2、求回归系数的点估计和区间估计、并检验回归模型: 命令为:[b, bint,r,rint,stats]=regress(Y ,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差. ③rint 表示置信区间. ④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p. 说明:相关系数2 r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据. x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验. [b,bint,r,rint,stats]=regress(Y ,X) b,bint,stats 得结果:b = bint =

回归分析方法

回归分析方法Newly compiled on November 23, 2020

第八章回归分析方法 当人们对研究对象的内在特性和各因素间的关系有比较充分的认识时,一般用机理分析方法建立数学模型。如果由于客观事物内部规律的复杂性及人们认识程度的限制,无法分析实际对象内在的因果关系,建立合乎机理规律的数学模型,那么通常的办法是搜集大量数据,基于对数据的统计分析去建立模型。本章讨论其中用途非常广泛的一类模型——统计回归模型。回归模型常用来解决预测、控制、生产工艺优化等问题。 变量之间的关系可以分为两类:一类叫确定性关系,也叫函数关系,其特征是:一个变量随着其它变量的确定而确定。另一类关系叫相关关系,变量之间的关系很难用一种精确的方法表示出来。例如,通常人的年龄越大血压越高,但人的年龄和血压之间没有确定的数量关系,人的年龄和血压之间的关系就是相关关系。回归分析就是处理变量之间的相关关系的一种数学方法。其解决问题的大致方法、步骤如下: (1)收集一组包含因变量和自变量的数据; (2)选定因变量和自变量之间的模型,即一个数学式子,利用数据按照最小二乘准则计算模型中的系数; (3)利用统计分析方法对不同的模型进行比较,找出与数据拟合得最好的模型; (4)判断得到的模型是否适合于这组数据; (5)利用模型对因变量作出预测或解释。 应用统计分析特别是多元统计分析方法一般都要处理大量数据,工作量非常大,所以在计算机普及以前,这些方法大都是停留在理论研究上。运用一般计算语言编程也要

占用大量时间,而对于经济管理及社会学等对高级编程语言了解不深的人来说要应用这些统计方法更是不可能。MATLAB 等软件的开发和普及大大减少了对计算机编程的要求,使数据分析方法的广泛应用成为可能。MATLAB 统计工具箱几乎包括了数理统计方面主要的概念、理论、方法和算法。运用MATLAB 统计工具箱,我们可以十分方便地在计算机上进行计算,从而进一步加深理解,同时,其强大的图形功能使得概念、过程和结果可以直观地展现在我们面前。本章内容通常先介绍有关回归分析的数学原理,主要说明建模过程中要做的工作及理由,如模型的假设检验、参数估计等,为了把主要精力集中在应用上,我们略去详细而繁杂的理论。在此基础上再介绍在建模过程中如何有效地使用MATLAB 软件。没有学过这部分数学知识的读者可以不深究其数学原理,只要知道回归分析的目的,按照相应方法通过软件显示的图形或计算所得结果表示什么意思,那么,仍然可以学到用回归模型解决实际问题的基本方法。包括:一元线性回归、多元线性回归、非线性回归、逐步回归等方法以及如何利用MATLAB 软件建立初步的数学模型,如何透过输出结果对模型进行分析和改进,回归模型的应用等。 8.1 一元线性回归分析 回归模型可分为线性回归模型和非线性回归模型。非线性回归模型是回归函数关于未知参数具有非线性结构的回归模型。某些非线性回归模型可以化为线性回归模型处理;如果知道函数形式只是要确定其中的参数则是拟合问题,可以使用MATLAB 软件的curvefit 命令或nlinfit 命令拟合得到参数的估计并进行统计分析。本节主要考察线性回归模型。 一元线性回归模型的建立及其MATLAB 实现 其中01ββ,是待定系数,对于不同的,x y 是相互独立的随机变量。

多元逐步回归算法

逐步回归分析的基本思想 在实际问题中, 人们总是希望从对因变量y有影响的诸多变量中选择一些变量作为自变量, 应用多元回归分析的方法建立“最优”回归方程以便对因变量y进行预报或控制。所谓“最优”回归方程, 主要是指希望在回归方程中包含所有对因变量y影响显著的自变量而不包含对影响不显著的自变量的回归方程。逐步回归分析正是根据这种原则提出来的一种回归分析方法。它的主要思路是在考虑的全部自变量中按其对y的作用大小, 显著程度大小或者说贡献大小, 由大到小地逐个引入回归方程, 而对那些对作用不显著的变量可能始终不被引人回归方程。另外, 己被引人回归方程的变量在引入新变量后也可能失去重要性, 而需要从回归方程中剔除出去。引人一个变量或者从回归方程中剔除一个变量都称为逐步回归的一步, 每一步都要进行F检验, 以保证在引人新变量前回归方程中只含有对y 影响显著的变量, 而不显著的变量已被剔除。 逐步回归分析的实施过程是每一步都要对已引入回归方程的变量计算其偏回归平方和(即贡献), 然后选一个偏回归平方和最小的变量, 在预先给定的水平下进行显著性检验, 如果显著则该变量不必从回归方程中剔除, 这时方程中其它的几个变量也都不需要剔除(因为其它的几个变量的偏回归平方和都大于最小的一个更不需要剔除)。相反, 如果不显著, 则该变量要剔除, 然后按偏回归平方和由小到大地依次对方程中其它变量进行检验。将对影响不显著的变量全部剔除, 保留的都是显著的。接着再对未引人回归方程中的变量分别计算其偏回归平方和, 并选其中偏回归平方和最大的一个变量, 同样在给定水平下作显著性检验, 如果显著则将该变量引入回归方程, 这一过程一直继续下去, 直到在回归方程中的变量都不能剔除而又无新变量可以引入时为止, 这时逐步回归过程结束。 在供选择的m个自变量中,依各自变量对因变量作用的大小,即偏回归平方和(partial regression sum of squares)的大小,由大到小把自变量依次逐个引入。每引入一个变量,就 ≤时,将该自变量引入回归方程。新变量引入回归方程后,对方对它进行假设检验。当Pα 程中原有的自变量也要进行假设检验,并把贡献最小且退化为不显著的自变量逐个剔出方程。因此逐步回归每一步(引入一个自变量或剔除一个自变量)前后都要进行假设检验,直至既没有自变量能够进入方程,也没有自变量从方程中剔除为止。回归结束,最后所得方程即为所求得的“最优”回归方程。 逐步回归分析的特点:双向筛选,即引入有意义的变量(前进法),剔除无意义变量(后退法) 多元线性回归的应用 1.影响因素分析 2.估计与预测用回归方程进行预测时,应选择 具有较高2 R值的方程。 3.统计控制指利用回归方程进行逆估计,即通 过控制自变量的值使得因变量Y为 给定的一个确切值或者一个波动范 围。此时,要求回归方程的2R值要 大,回归系数的标准误要小。 1.样本含量 应注意样本含量n与自变量个数m的比例。通常,

MATLAB---回归预测模型

MATLAB---回归预测模型 Matlab统计工具箱用命令regress实现多元线性回归,用的方法是最小二乘法,用法是: b=regress(Y,X) [b,bint,r,rint,stats]=regress(Y,X,alpha) Y,X为提供的X和Y数组,alpha为显著性水平(缺省时设定为0.05),b,bint 为回归系数估计值和它们的置信区间,r,rint为残差(向量)及其置信区间,stats是用于检验回归模型的统计量,有四个数值,第一个是R2,第二个是F,第三个是与F对应的概率 p ,p <α拒绝 H0,回归模型成立,第四个是残差的方差 s2 。 残差及其置信区间可以用 rcoplot(r,rint)画图。 例1合金的强度y与其中的碳含量x有比较密切的关系,今从生产中收集了一批数据如下表 1。 先画出散点图如下: x=0.1:0.01:0.18; y=[42,41.5,45.0,45.5,45.0,47.5,49.0,55.0,50.0]; plot(x,y,'+') 可知 y 与 x 大致上为线性关系。

设回归模型为 y =β 0 +β 1 x 用regress 和rcoplot 编程如下: clc,clear x1=[0.1:0.01:0.18]'; y=[42,41.5,45.0,45.5,45.0,47.5,49.0,55.0,50.0]'; x=[ones(9,1),x1]; [b,bint,r,rint,stats]=regress(y,x); b,bint,stats,rcoplot(r,rint) 得到 b =27.4722 137.5000 bint =18.6851 36.2594 75.7755 199.2245 stats =0.7985 27.7469 0.0012 4.0883 即β 0=27.4722 β 1 =137.5000 β0的置信区间是[18.6851,36.2594], β1的置信区间是[75.7755,199.2245]; R2= 0.7985 , F = 27.7469 , p = 0.0012 , s2 =4.0883 。 可知模型(41)成立。 观察命令 rcoplot(r,rint)所画的残差分布,除第 8 个数据外其余残差的置信区间均包含零点第8个点应视为异常点,

matlab与统计回归分析 (1)

一Matlab作方差分析 方差分析是分析试验(或观测)数据的一种统计方法。在工农业生产和科学研究中,经常要分析各种因素及因素之间的交互作用对研究对象某些指标值的影响。在方差分析中,把试验数据的总波动(总变差或总方差)分解为由所考虑因素引起的波动(各因素的变差)和随机因素引起的波动(误差的变差),然后通过分析比较这些变差来推断哪些因素对所考察指标的影响是显著的,哪些是不显著的。 【例1】(单因素方差分析)一位教师想要检查3种不同的教学方法的效果,为此随机地选取水平相当的15位学生。把他们分为3组,每组5人,每一组用一种方法教学,一段时间以后,这位教师给15位学生进行统考,成绩见下表1。问这3种教学方法的效果有没有显著差异。 表1 学生统考成绩表 方法成绩 甲75 62 71 58 73 乙71 85 68 92 90 丙73 79 60 75 81 Matlab中可用函数anova1(…)函数进行单因子方差分析。 调用格式:p=anova1(X) 含义:比较样本m×n的矩阵X中两列或多列数据的均值。其中,每一列表示一个具有m 个相互独立测量的独立样本。 返回:它返回X中所有样本取自同一总体(或者取自均值相等的不同总体)的零假设成立的概率p。

解释:若p值接近0(接近程度有解释这自己设定),则认为零假设可疑并认为至少有一个样本均值与其它样本均值存在显著差异。 Matlab程序: Score=[75 62 71 58 73;81 85 68 92 90;73 79 60 75 81]’; P=anova1(Score) 输出结果:方差分析表和箱形图 ANOVA Table Source SS df MS F Prob>F Columns 604.9333 2 302.4667 4.2561 0.040088 Error 852.8 12 71.0667 Total 1457.7333 14 由于p值小于0.05,拒绝零假设,认为3种教学方法存在显著差异。 例2(双因素方差分析)为了考察4种不同燃料与3种不同型号的推进器对火箭射程(单位:海里)的影响,做了12次试验,得数据如表2所示。 表2 燃料-推进器-射程数据表 推进器1 推进器2 推进器3 燃料1 58.2 56.2 65.3 燃料2 49.1 54.1 51.6 燃料3 60.1 70.9 39.2 燃料4 75.8 58.2 48.7 在Matlab中利用函数anova2函数进行双因素方差分析。 调用格式:p=anova2(X,reps)

回归分析方法总结全面

一、什么是回归分析 回归分析(Regression Analysis)是研究变量之间作用关系的一种统计分析方法,其基本组成是一个(或一组)自变量与一个(或一组)因变量。回归分析研究的目的是通过收集到的样本数据用一定的统计方法探讨自变量对因变量的影响关系,即原因对结果的影响程度。 回归分析是指对具有高度相关关系的现象,根据其相关的形态,建立一个适当的数学模型(函数式),来近似地反映变量之间关系的统计分析方法。利用这种方法建立的数学模型称为回归方程,它实际上是相关现象之间不确定、不规则的数量关系的一般化。 二、回归分析的种类 1.按涉及自变量的多少,可分为一元回归分析和多元回归分析一元回归分析是对一个因变量和一个自变量建立回归方程。多元回归分析是对一个因变量和两个或两个以上的自变量建立回归方程。 2.按回归方程的表现形式不同,可分为线性回归分析和非线性回归分析 若变量之间是线性相关关系,可通过建立直线方程来反映,这种分析叫线性回归分析。 若变量之间是非线性相关关系,可通过建立非线性回归方程来反映,这种分析叫非线性回归分析。 三、回归分析的主要内容 1.建立相关关系的数学表达式。依据现象之间的相关形态,建立适当的数学模型,通过数学模型来反映现象之间的相关关系,从数量上近似地反映变量之间变动的一般规律。 2.依据回归方程进行回归预测。由于回归方程反映了变量之间的一般性关系,因此当自变量发生变化时,可依据回归方程估计出因变量可能发生相应变化的数值。因变量的回归估计值,虽然不是一个必然的对应值(他可能和系统真值存在比较大的差距),但至少可以从一般性角度或平均意义角度反映因变量可能发生的数量变化。

SPSS多元线性回归分析实例操作步骤之欧阳歌谷创编

SPSS 统计分析 欧阳歌谷(2021.02.01) 多元线性回归分析方法操作与分析 实验目的: 引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。 实验变量: 以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。 实验方法:多元线性回归分析法 软件:spss19.0 操作过程: 第一步:导入Excel数据文件 1.open data document——open data——open; 2. Opening excel data source——OK. 第二步: 1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise. 进入如下界面: 2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue. 3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue. 4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals (残差)选项组中的Unstandardized;点击Continue. 5.点击右侧Options,默认,点击Continue.

利用MATLAB进行回归分析及应用

利用MATLAB进行回归分析 一、实验目的: 1.了解回归分析的基本原理,掌握MATLAB实现的方法; 2. 练习用回归分析解决实际问题。 二、实验内容: 题目1 社会学家认为犯罪与收入低、失业及人口规模有关,对20个城市的犯罪率y(每10万人中犯罪的人数)与年收入低于5000美元家庭的百分比1x、失业率2x和人口总数3x(千人)进行了调查,结果如下表。 (1)若1x~3x中至多只许选择2个变量,最好的模型是什么? (2)包含3个自变量的模型比上面的模型好吗?确定最终模型。 (3)对最终模型观察残差,有无异常点,若有,剔除后如何。 理论分析与程序设计: 为了能够有一个较直观的认识,我们可以先分别作出犯罪率y与年收入低于5000美元家庭的百分比1x、失业率2x和人口总数 x(千人)之间关系的散点图,根据大致分布粗略估计各因素造 3 成的影响大小,再通过逐步回归法确定应该选择哪几个自变量作为模型。

编写程序如下: clc; clear all; y=[11.2 13.4 40.7 5.3 24.8 12.7 20.9 35.7 8.7 9.6 14.5 26.9 15.7 36.2 18.1 28.9 14.9 25.8 21.7 25.7]; %犯罪率(人/十万人) x1=[16.5 20.5 26.3 16.5 19.2 16.5 20.2 21.3 17.2 14.3 18.1 23.1 19.1 24.7 18.6 24.9 17.9 22.4 20.2 16.9]; %低收入家庭百分比 x2=[6.2 6.4 9.3 5.3 7.3 5.9 6.4 7.6 4.9 6.4 6.0 7.4 5.8 8.6 6.5 8.3 6.7 8.6 8.4 6.7]; %失业率 x3=[587 643 635 692 1248 643 1964 1531 713 749 7895 762 2793 741 625 854 716 921 595 3353]; %总人口数(千人) figure(1),plot(x1,y,'*'); figure(2),plot(x2,y,'*'); figure(3),plot(x3,y,'*'); X1=[x1',x2',x3']; stepwise(X1,y) 运行结果与结论:

应用回归分析 matlab程序自相关

4.13 表中是某软件公司月销售额数据,其中,x为总公司的月销售额(万元);y为某分公司的月销售额(万元)。 (1)用普通最小二乘法建立x和y的回归方程。 (2)用残差图及DW检验诊断序列的自相关性。 (3)用迭代法处理序列相关,并建立回归方程。 (4)用一阶差分法处理数据,并建立回归方程。 (5)比较以上各方法所建回归方程的优良性。 序号x y 序号x y 1 127.3 20.96 11 148.3 24.54 2 130.0 21.40 12 146.4 24.28 3 132.7 21.96 13 150.2 25.00 4 129.4 21.52 14 153.1 25.64 5 135.0 22.39 15 157.3 26.46 6 137.1 22.76 16 160. 7 26.98 7 141.1 23.48 17 164.2 27.52 8 142.8 23.66 18 165.6 27.78 9 145.5 24.10 19 168.7 28.24 10 145.3 24.01 20 172.0 28.78 (1)aa_size=size(aa,1) >> x=[ones(aa_size,1),aa(:,1)]; >> y=aa(:,2); >> b_est=inv(x'*x)*x'*y; b_est b_est = -1.4348 0.1762 (2) y_est=x*b_est; >> b1=y-y_est; >> plot(b1,'ro') p01=sum(b1(1:(aa_size-1)).*b1(2:(aa_size))); >> p02=sqrt(sum(b1(1:(aa_size-1)).^2)*sum(b1(2:aa_size).^2)); >> p=p01/p02 DW=2*(1-p) DW = 0.6793

统计学多元回归分析方法

多元线性回归分析 在数量分析中,经常会看到变量与变量之间存在着一定的联系。要了解变量之间如何发生相互影响的,就需要利用相关分析和回归分析。回归分析的主要类型:一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析以及逻辑回归分析等。 1.1 回归分析基本概念 相关分析和回归分析都是研究变量间关系的统计学课题。在应用中,两种分析方法经常相互结合和渗透,但它们研究的侧重点和应用面不同。 在回归分析中,变量y称为因变量,处于被解释的特殊地位;而在相关分析中,变量y与变量x处于平等的地位,研究变量y与变量x的密切程度和研究变量x与变量y的密切程度是一样的。 在回归分析中,因变量y是随机变量,自变量x可以是随机变量,也可以是非随机的确定变量;而在相关分析中,变量x和变量y都是随机变量。 相关分析是测定变量之间的关系密切程度,所使用的工具是相关系数;而回归分析则是侧重于考察变量之间的数量变化规律,并通过一定的数学表达式来描述变量之间的关系,进而确定一个或者几个变量的变化对另一个特定变量的影响程度。 具体地说,回归分析主要解决以下几方面的问题。 (1)通过分析大量的样本数据,确定变量之间的数学关系式。

(2)对所确定的数学关系式的可信程度进行各种统计检验,并区分出对某一特定变量影响较为显著的变量和影响不显著的变量。 (3)利用所确定的数学关系式,根据一个或几个变量的值来预测或控制另一个特定变量的取值,并给出这种预测或控制的精确度。 作为处理变量之间关系的一种统计方法和技术,回归分析的基本思想和方法以及“回归(Regression)”名称的由来都要归功于英国统计学F·Galton(1822~1911)。 在实际中,根据变量的个数、变量的类型以及变量之间的相关关系,回归分析通常分为一元线性回归分析、多元线性回归分析、非线性回归分析、曲线估计、时间序列的曲线估计、含虚拟自变量的回归分析和逻辑回归分析等类型。 1.2 多元线性回归 1.2.1 多元线性回归的定义 一元线性回归分析是在排除其他影响因素或假定其他影响因素确定的条件下,分析某一个因素(自变量)是如何影响另一事物(因变量)的过程,所进行的分析是比较理想化的。其实,在现实社会生活中,任何一个事物(因变量)总是受到其他多种事物(多个自变量)的影响。 一元线性回归分析讨论的回归问题只涉及了一个自变量,但在实际问题中,影响因变量的因素往往有多个。例如,商品的需求除了受自身价格的影响外,还要受到消费者收入、其他商品的价格、消费者偏好等因素的影响;影响水果产量的外界因素有平均气温、平均日照

逐步回归分析

逐步回归分析 1、逐步回归分析的主要思路 在实际问题中, 人们总是希望从对因变量有影响的诸多变量中选择一些变量作为自变量, 应用多元回归分析的方法建立“最优”回归方程以便对因变量进行预报或控制。所谓“最优”回归方程, 主要是指希望在回归方程中包含所有对因变量影响显著的自变量而不包含对影响不显著的自变量的回归方程。逐步回归分析正是根据这种原则提出来的一种回归分析方法。它的主要思路是在考虑的全部自变量中按其对的作用大小, 显著程度大小或者说贡献大小, 由大到小地逐个引入回归方程, 而对那些对作用不显著的变量可能始终不被引人回归方程。另外, 己被引人回归方程的变量在引入新变量后也可能失去重要性, 而需要从回归方程中剔除出去。引人一个变量或者从回归方程中剔除一个变量都称为逐步回归的一步, 每一步都要进行检验, 以保证在引人新变量前回归方程中只含有对影响显著的变量, 而不显著的变量 已被剔除。 逐步回归分析的实施过程是每一步都要对已引入回归方程的变量计算其偏回归平方和(即贡献), 然后选一个偏回归平方和最小的变量, 在预先给定的水平下进行显著性检验, 如果显著则该变量不必从回 归方程中剔除, 这时方程中其它的几个变量也都不需要剔除(因为其它的几个变量的偏回归平方和都大于 最小的一个更不需要剔除)。相反, 如果不显著, 则该变量要剔除, 然后按偏回归平方和由小到大地依次对方程中其它变量进行检验。将对影响不显著的变量全部剔除, 保留的都是显著的。接着再对未引人回归方程中的变量分别计算其偏回归平方和, 并选其中偏回归平方和最大的一个变量, 同样在给定水平 下作显著性检验, 如果显著则将该变量引入回归方程, 这一过程一直继续下去, 直到在回归方程中的变量都不能剔除而又无新变量可以引入时为止, 这时逐步回归过程结束。 2、逐步回归分析的主要计算步骤 (1) 确定检验值 在进行逐步回归计算前要确定检验每个变量是否显若的检验水平, 以作为引人或剔除变量的标准。 检验水平要根据具体问题的实际情况来定。一般地, 为使最终的回归方程中包含较多的变量, 水平不宜取得过高, 即显著水平α不宜太小。水平还与自由度有关, 因为在逐步回归过程中, 回归方程中所含的变量的个数不断在变化, 因此方差分析中的剩余自由度也总在变化, 为方便起见常按计算自由度。为原始数据观测组数, 为估计可能选人回归方程的变量个数。例如, 估计可能有2~3个变量选入回归方程, 因此取自由度为15-3-1=11, 查分布表, 当α=0.1, 自由度, 时, 临界值, 并且在引入变量时, 自由度取, , 检验的临界值记, 在剔除

你应该要掌握的7种回归分析方法

. 种回归分析方法7你应该要掌握的标签:机器学习回归分析 2015-08-24 11:29 4749人阅读评论(0) 收藏举报 分类: (5)机器学习 目录(?)[+] :原文:7 Types of Regression Techniques you should know!(译者/帝伟审校/翔宇、周建丁)责编/朱正贵 什么是回归分析? 回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。 回归分析是建模和分析数据的重要工具。在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。我会在接下来的部分详细解释这一点。 我们为什么使用回归分析? 如上所述,回归分析估计了两个或多个变量之间的关系。下面,让我们举一个简单的例子来理解它: 文档Word . 比如说,在当前的经济条件下,你要估计一家公司的销售额增长情况。现在,你有公司最新的数

据,这些数据显示出销售额增长大约是经济增长的2.5倍。那么使用回归分析,我们就可以根据当前和过去的信息来预测未来公司的销售情况。 使用回归分析的好处良多。具体如下: 1.它表明自变量和因变量之间的显著关系; 它表明多个自变量对一个因变量的影响强度2.。 回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。 我们有多少种回归技术? 有各种各样的回归技术用于预测。这些技术主要有三个度量(自变量的个数,因变量的类型以及回归线的形状)。我们将在下面的部分详细讨论它们。 对于那些有创意的人,如果你觉得有必要使用上面这些参数的一个组合,你甚至可以创造出一个没有被使用过的回归模型。但在你开始之前,先了解如下最常用的回归方法: 1. Linear Regression线性回归 它是最为人熟知的建模技术之一。线性回归通常是人们在学习预测模型时首选的技术之一。在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。文档Word . 线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。 用一个方程式来表示它,即Y=a+b*X + e,其中a表示截距,b表示直线的斜率,e是误差项。这个方程可以根据给定的预测变量(s)来预测目标变量的值。

逐步回归分析(教材)

第6节逐步回归分析 逐步回归分析实质上就是建立最优的多元线性回归方程,显然既实用而应用又最广泛。 6.1逐步回归分析概述 1 概念 逐步回归模型是以已知地理数据序列为基础,根据多元回归分析法和求解求逆紧凑变换法及双检验法而建立的能够反映地理要素之间变化关系的最优回归模型。 逐步回归分析是指在多元线性回归分析中,利用求解求逆紧奏变换法和双检验法,来研究和建立最优回归方程的并用于地理分析和地理决策的多元线性回归分析。它实质上就是多元线性回归分析的基础上派生出一种研究和建立最优多元线性回归方程的算法技巧。主要含义如下: 1)逐步回归分析的理论基础是多元线性回归分析法; 2)逐步回归分析的算法技巧是求解求逆紧奏变换法; 3)逐步回归分析的方法技巧是双检验法,即引进和剔除检验法; 4)逐步回归分析的核心任务是建立最优回归方程; 5)逐步回归分析的主要作用是降维。 主要用途:主要用于因果关系分析、聚类分析、区域规划、综合评价等等。 2 最优回归模型

1)概念 最优回归模型是指仅包含对因变量有显著影响的自变量的回归方程。逐步回归分析就是解决如何建立最优回归方程的问题。 2)最优回归模型的含义 最优回归模型的含义有两点: (1)自变量个数 自变量个数要尽可能多,因为通过筛选自变量的办法,选取自变量的个数越多,回归平方和越大,剩余平方和越小,则回归分析效果就越好,这也是提高回归模型分析效果的重要条件。 (2)自变量显著性 自变量对因变量y 有显著影响,建立最优回归模型的目的主要是用于预测和分析,自然要求自变量个数尽可能少,且对因变量y 有显著影响。若自变量个数越多,一方面预测计算量大,另一方面因n 固定,所以 Q S k n Q →--1 增大,即造成剩余标准差增大,故要求自变量个数要适 中。且引入和剔除自变量时都要进行显著性检验,使之达到最优化状态,所以此回归方程又称为优化模型。 3 最优回归模型的选择方法 最优回归模型的选择方法是一种经验性发展方法,主要有以下四种: (1)组合优选法 组合优选法是指从变量组合而建立的所有回归方程中选取最优着。其具体过程是:

相关文档
最新文档