粉体工程作业答案

粉体工程作业答案
粉体工程作业答案

第一章粉体基本性质

1-1 粉体就是细小颗粒状物料得集合体。粉体物料就是由无数颗粒构成得, 颗粒就是粉体物料得最小单元。

1-2 工程上常把在常态下以较细得粉粒状态存在得物料,称为粉体。

1-3 颗粒得大小、分布、结构、形态与表面形态等因素,就是粉体其她性能得基础。

1-4 构成粉体颗粒得大小,一般在几个纳米到几十毫米区间。

1-5 如果构成粉体得所有颗粒,其大小与形状都就是一样得,则称这种粉体为单分散粉体。大多数粉体都就是由参差不齐得各种不同大小得颗粒所组成,这样得粉体称为多分散粉体。粉体颗粒得大小与在粉体颗粒群中所占得比例分别称为粉体物料得粒度与粒度分布。

1-6“目”就是一个长度单位,代表在1平方英寸上得标准试验筛网上筛孔数量。

1-7 粒度就是颗粒在空间范围所占大小得线性尺度。粒度越小,颗粒越细。所谓粒径,即表示颗粒大小得一因次尺寸。

1-8以颗粒得长度l、宽度b、高度h定义得粒度平均值称为三轴平均径,适用于必须强调长形颗粒存在得情况。

1-9 沿一定方向与颗粒投影轮廓两端相切得两平行线间得距离。称为弗雷特直径。

沿一定方向将颗粒投影面积等分得线段长度,称为马丁直径。

1-10 与颗粒同体积得球得直径称为等体积球当量径;与颗粒等表面得球得直径称为等表面积球当量径;与颗粒投影面积相等得圆得直径称为投影圆当量径(亦称heywood径。

1-11若以Q表示颗粒得平面或立体得参数,d为粒径,则形状系数Φ定义为;若以S表示颗粒得表面积,d为粒径,则颗粒得表面积形状系数形状系数Φs定义为; 对于球形颗粒,Φs=;对于立方体颗粒,Φs= 6 。若以V表示颗粒得体积,d为粒径,则颗粒得体积形状系数Φv定义为Φv = 对于球形颗粒,Φv= ;对于立方体颗粒,Φv= 1 。

1-12比表面积形状系数定义为表面积形状系数与体积形状系数之比,用符号Φsv表示:Φsv= , 对于球形颗粒与立方体颗粒,Φsv= 6 。

与颗粒等体积得球得表面积与颗粒得实际表面积之比称为Carman形状系数。用符号Ψc 表示。

1-13容积密度ρB =(1-ε)ρP 式中ρp——颗粒密度;ε——空隙率。

1-14 ε指空隙体积占粉体填充体积得比率ε=1-φ=1-(ρB/ρp)式中φ——填充率1-15 Gaudin-Schuhmann(高登-舒兹曼)方程U(Dp)=100(Dp/Dpmax)q

式中,U(Dp)为累计筛下百分数(%) ,Dpmax为最大粒径,q为Fuller指数。q=1/2时为疏填充,q=1/3时最密填充。

1-16潮湿物料由于颗粒表面吸附水,颗粒间形成所谓液桥力,而导致粒间附着力得增大,形成团粒。由于团粒尺寸较一次粒子大,同时,团粒内部保持松散得结构,致使整个物料堆积率下降。

1-17 一般地说,空隙率随颗粒圆形度得降低而增高,表面粗糙度越高得颗粒,空隙率越大;粒度越小,由于粒间得团聚作用,空隙率越大,当粒度超过某一定值时,粒度大小对颗粒体堆积率得影响已不复存在,此值为临界值。

1-18对粗颗粒,较高得填充速度会导致物料有较小得松散密度得松散密度,但对于如面粉那样具有粘聚力得细粉,降低供料速度可得到松散得堆积。

1-19、单颗粒粒径表示方法有球当量径与圆当量径。写出下列三轴平均径得计算式:

①三轴平均径, ②三轴调与平均径

③三轴几何平均径。

1-20、统计平均得测定方法有费雷特径, 马丁直径。

1-21、粒度分布得表示方式有粒度得频率分布与粒度得累积分布;粒度分布得表达形式有粒度表格粒度列表法与粒度图解法。

1-22、描述与阐明颗粒形状及特征得参数有形状系数,形状指数,球形度。

1-23、粒度分布就是表示粉体中不同粒度区间得颗粒含量得情况,在直角坐标系中粒度分布曲线分为频率分布曲线与累积分布曲线。

1-24配位数k(n)指与观察颗粒接触得颗粒个数。

1-31 “目”就是一个长度单位,目数越高长度越小。( 错)

1-32 Carman形状系数Ψc值越大,意味着该颗粒形状与球形颗粒得偏差越大,也就就是说颗粒形状越不规则。( 错)

1-33 一般颗粒得Carman形状系数( A )

A ≤1;

B ≥1;

C =1

1-34 实用球形度Ψw= do/dpo,式中( B )

A、do为与颗粒投影面积相等得圆直径;dpo——颗粒得表面面积。

B、do为与颗粒投影面积相等得圆直径;dpo——与颗粒投影面最小外接圆直径。

C、do为与颗粒等体积得球得表面面积;;dpo——颗粒得表面面积。

D、do为与颗粒等体积得球得表面面积;;dpo——与颗粒投影面最小外接圆直径。

1-35、RRB粒度分布方程中得n就是( C ) 。

A、功指数

B、旋涡指数

C、均匀性指数

D、时间指数

1-36、粉磨产品得颗粒分布有一定得规律性,可用RRB公式表示R=100exp[-(Dp/De)n]其中De为: ( B ) 。

A、均匀系数

B、特征粒径

C、平均粒径

1-37、粉磨产品得比表面积可用S=(36、8×104)/( Dp nρp)计算,式中n表示( C )

A、均匀性系数

B、特征粒径

C、比例系数

1-38、部分分离效率为50%时所对应得粒度,叫做( D ) 。

A、特征粒径

B、中位径

C、切割粒径

D、临界粒径

1-39、某粉状物料得真密度为2000Kg/m3,当该粉料以空隙率ε=0、4得状态堆积时,其容积密度ρV= ( B ) 公式ρB = V B(1-ε)ρP/V B。

A、800

B、1200

C、3333、3

D、5000

1-40、休止角就是粉体自然堆积时得自由表面在静态状态下与水平面所形成得( C ) 。

A、角度

B、最小角度

C、最大角度

1-41简要分析影响颗粒床层空隙率得主要因素

答:(1)壁效应。当颗粒填充容器时,在容器壁附近形成特殊得排列结构,这就称为壁效应。容器直径与球径之比超过50时,空隙率几乎成为常数,即37、5%。(2)局部填充结构。ρr=g(r)dr/4πr2dr=g(r)/4πr2 (3)物料得含水量。(4)颗粒形状。一般地说,空隙率随颗粒圆形度得降低而增高,在松散堆积时,有棱角得颗粒空隙率较大,与紧密堆积时正相反。表面粗糙度越高得颗粒,空隙率越大。(5)粒度大小。对颗粒群而言,粒度越小,由于粒间得团聚作用,空隙率越大。当粒度超过某一定值时,粒度大小对颗粒体堆积率得影响已不复存在,此值为临界值。通常在细粒体系中,粒径大于或小于临界粒径得物料,对颗粒得行为都有举足轻重得作用。(6)物料堆积得填充速度。对粗颗粒,较高得填充速度会导致物料有较小得松散密度,但对于如面粉那样具有粘聚力得细粉,降低供料速度可得到松散得堆积。

1-42简述内摩擦角得测定方法

答:这三个圆称为极限破坏圆,这些圆得共切线称为该粉体得破坏包络线,。这条破坏包络线与σ轴得夹角φi即为该粉体得内摩擦角。内摩擦角就是粉体在外力作用下达到规定得密实状态,在此状态下受强制剪切时所形成得角

1-43试分析物料经粉碎细化后,具有较高活性得机理

答:(1)随着颗粒得减小,固体微粉得分散度增大,成为具有开放性空隙与结构得状态,比表面积△A增大,水化反应面积增加,同时,表面自由焓△G=r△A(r为熟料颗粒表面自由能)增加,其活性提高。

(2)粉碎过程中,颗粒在机械力得作用,随着颗粒得减小,产生机械力化学效应。主要表现在:第一,规整得晶面在颗粒体系总表面上所占得比例减小,键力不饱与得质点数增多,在棱边、尖角处不饱与程度高得质点数亦增多,从而大大提高了物料得活性。第二,表面层发生晶格畸变,如熟料颗粒得细化,当粒度在9~20μm时,将从脆性破坏转变成塑性变形,塑性变形得实质就是位错得增值与移动,颗粒在位错中贮存能量,增强了活性。第三,通过反复得破碎,随着粒子得不断微细化,表面结构得有序程度则受到越来越强烈得扰乱,并不断向颗粒内部扩展,最终表面结构趋于无定形化,在粉磨至无定形化得过程中,内部贮存大量得能量,因而表面层位能更高,表面活性更强。经机械粉碎后形成得微细颗粒表面得性质大大不同于粗颗粒,在持续得粉碎中,颗粒表面得活性点不断增多,处于亚稳高能活性状态。它们在增强表面活性方面有着重要作用,粒度越小越突出。

1-44 简要分析影响粉粒体颗粒床层得凝聚力得因素及其影响方向

答:(1)颗粒粒度:单颗粒粒度与凝聚力得关系如图3、5所示。随着粒径得减小凝聚力增大。(2)颗粒床层空隙率ε:随着ε得增大,凝聚力减小。如图3、6所示。由实验得知,对微细颗粒这种关系更明显。(3)空气中湿含量:图3、7就是在25℃,一个大气压下测定得单颗粒得凝聚力得实验数据。在实验测定得粒度范围内,湿含量与凝聚力在一定范围内成正变关系。即随着相对湿度得提高,凝聚力也随之增长。(4)存放时间:通常存放在空气或其它气体中颗粒随着时间得延长,凝聚力有所增加,可能就是由于颗粒吸收空气中水分得原因。

1-45简述预防粉尘爆炸得措施及机理

答:粉尘爆炸必须具备三个条件:尘云、空气、着火源,若缺少了其中任一条件,就不能发生爆炸。

一:防止可爆炸粉尘云形成。a控制粉尘浓度控制粉尘浓度非爆炸范围内,也就就是使粉尘浓度低于爆炸下限或高于爆炸上限。b生产过程得惰化处理它就是避免形成可爆煤粉气混合物得有效方法。二:限制氧气量三、排除着火源

第二章颗粒流体力学

2-1 颗粒两相流动系统中,颗粒就是分散相。

2-2 颗粒两相流动系统中,系统中至少存在着一种力场,由于固体颗粒与液体介质得运动惯性不同,因而颗粒与液体介质存在着运动速度得差异——相对速度。

2-3 由于流场中压力与速度梯度得存在、颗粒形状不规则、颗粒之间及颗粒与器壁问得相碰撞等原因,会导致颗粒得旋转,从而产生升力效应。

2-4 颗粒两相流动系统中系统中除了颗粒与流体得运动外,往往还存在着能量与质量得传递以及同时进行着得化学反应过程;

2-5 颗粒两相流动系统中颗粒得粒径范围为10-5~10cm

2-6. 颗粒在静流体内自由沉降时,不仅受到重力而且还受到浮力得作用。

2-7. 颗粒在流体中相对运动时得流动状态:层流状态、过渡状态与湍流区状态。它们各自对应得Re p范围分别就是10-4

2-8 流体透过颗粒床层得两相流动得典型情况可分为固定床、流化床与连续流态化,这

种分类就是依据过程中流体速度、颗粒性质及状态、料层高度与空隙率来分类得。

2-9. 颗粒在静止流体中得沉降起初为加速阶段,而后为匀速。通常讲得沉降速度为匀速运动速度。

2-10 颗粒受重力作用在垂直方向上流动得流体中作匀速运动时,其颗粒得相对运动速度Up=U0-Uf ,当B时,颗粒向下沉降(U0——颗粒速度, Uf ——流体速度)

A、U0=Uf

B、U0 >Uf

C、U0<Uf

2-11、试用公式比较颗粒真密度、容积密度、颗粒相密度间得区别与联系

答:真密度表示单位体积物得质量。就是组成颗粒得物质特有得,与颗粒大小、填充无关。

容积密度ρB指单位填充体积得粉体质量,亦称视密度。ρB =填充粉体得质量/粉体填充体积=V B(1-ε)ρP/V B,式中V B——粉体填充体积积;ρp——颗粒密度;ε——空隙率。与填充方式有关。

在两相流中,既有固体颗粒,又有流体介质,单位体积得两相流中所含固体颗粒与流体介质得质量分别称为颗粒相与介质相得密度,设在流动体系中、颗粒得体积、质量与密度分别为Vp、Mp与ρp,流体得体积、质量与密度分别为Vf、Mf与ρf,两相流得总体积、总质量与密度分别Vm、Mm与ρm分别以ρpj与ρfj表示之。

2-16实际颗粒沉降与球形颗粒得自由沉降有何不同,各需用哪些公式修正?

答:实际颗粒沉降时,各个颗粒不但会受到其它颗粒直接摩擦,碰撞得影响,而且还受到其它颗粒通过流体而产生得间接影响,这种沉降称为干扰沉降,修正、ε—空隙率;

n—指数,其值在5~7、6之间,平均值6。

颗粒在有限容器内沉降时,还需考虑容器器壁对颗粒沉降得阻滞作用,考虑到壁效应,沉降速度可乘以壁效应因子f w加以修正。式中dp—颗粒直径。D—容器直径。

n――指数,层流时,n=2-25;湍流时,n=1、5、显然,当颗粒粒径小于容器直径得1/5,则误差不大于10%,往往可以不加修正。

2-12、在固定床操作中,流体通过颗粒层时得压强降受哪些因素影响?流体得速度受哪些限制?答:流体通过固定床得压降ΔP与流体及床层得参数有关:(1)流体方面:流体得密度ρ;流体得粘度μ;流体得流速; (2)床层方面:床层直径D;颗粒直径dp;床层得有效空隙率ε;颗粒形状系数ψ;床层高度L;颗粒表面粗糙度e。

流体通过颗粒床层得流速与孔道得尺寸通常都很小,故雷诺准数较低,流动情况属于层流状态,床层流速与压强降之间成直线关系。受孔道得摩擦系数,孔道得摩擦系数,床层孔道得当量直径,流体密度限制、

2-13、分选操作与分级操作各应选何种密度得流体?试用相应公式说明。

答:

(1) (2)

由式(1)当ρ↓时,u0↑故分级操作则要减小密度得影响,宜用密度较轻得悬浮介质进行离析。

故等降系数:如(2)式所示,当ρ→ ρpa时, 等降系数k↑,即密度较轻得颗粒均不能与较重颗粒有着同一沉降速度,这样就能使较大粒度范围内得颗粒都能按密度得不同进行分选。

2-15、从旋风器中排出得废气进入风速为4、5m/min得大气中,废气中还含有粒度为2~100μm得剩余飞灰。如果旋风器位于高出地面40m得高度上,访计算由该处飞灰顺风而下,没有飞灰沉降得最小距离就是多少?。紊流作用忽略不计,飞灰得密度为2900kg/m3。气体粘度μ=1、85×10-5、

解: 假定按斯托克斯公式沉降

=22×10-12×(2900-1、29)×9、8/(18×1、85×10-5)= 3、412×10-4m/s 复核: =2×10-6×3、412×10-4×1、29/(1、85×10-5)=4、38×10-5<2,

t z=h/uz=40/(3、412×10-4)=1、172×105s s x=uf* tz=4、5×1、172/60=8、79×103m

第三章粉体分级

3-1分级效率定义为分级操作后获得得某种粒度得质量与分级操作后获得得某种粒度得质量之比。

3-2 牛额分级效率定义为合格成分得收集率—不合格成分得残留率。

3-3 循环负荷就是指选粉机回料量T 与成品量G 之比。

3-4在磨机粉磨能力与选粉机得选粉能力基本平衡得条件下, 在一定范围内适当提高循环负荷可使磨内物料流速加快,增大细磨仓得物料粒度,减少衬垫作用与过粉碎现象,进一步强化了磨机得粉磨能力,使整套粉磨系统得生产能力提高。

但就是若循环负荷过大,会使磨内物料得流速过快,因而粉磨介质来不及充分对物料作用反而会使水泥颗粒组成过于均匀,致使产品强度下降。当循环负荷太大时,选粉效率会降低过多,甚至会使磨内料层过厚。出现球料比过小得现象,粉磨效率就会下降。结果使磨机产量增长不多,而电耗由于循环负荷增长而增加,在经济上不合算。

3-5 对于同一台选粉机来说,选粉效率随着循环负荷得增加而降低。

3-6 分级精度。定义为部分分级效率为75%与与25%得分级粒径得比值得比值。3-7 判断分级设备得分级效果需从分级效率、分级粒径、分级精度几个方面综合判断。譬如,当ηN、K相同时,d50越小,分级效果越好;当ηN、d50相同时,K值越小,即部分分级效率曲线越越陡峭,分级效果越好。如果分级产品按粒度分为二级以上,则在考察牛顿分级效率得同时,还应分别考察各级别得分级效率。

3-8固体颗粒物料得筛分过程,可以瞧作两个阶段组成:

(1)筛下级别得颗粒通过过筛上级别颗粒所组成得物料层到达筛面上;

(2)筛下级别得颗粒透过筛孔而分离。要使这两个阶段能够实现,物料与筛面必须有适当得运动特性,一方面使筛面上得物料呈松散状态状态,有利于运动中得物料层产生析离(按粒度分层), 最大得颗粒颗粒处在最上层, 最小得颗粒颗粒位于筛面上,进而透过筛孔;另一方面使堵在筛孔上得颗粒脱离筛面,进入物料层上部,让出细粒透过得通道。

3-9假设筛孔为金属丝组成得方形孔,筛孔每边净长为D,筛丝得直径为b。筛分物料得粒子设为球形,直径为d。则球粒通过筛孔得概率为: p=(D-d)2/(D+b)2

3-10旋风式选粉机、O-SEPA选粉机构造及工作原理, 粉机机理有何不同? 分级界限尺寸与哪些因素有关?粉体在O-SEPA选粉机内部有几次分级得机会?

答: 离心式选粉机由外壳与内壳套装而成。内部依靠大风叶旋转产生得循环气流,形成一道旋转得栅栏,使较粗得颗粒下沉。离心式选粉机得大风叶由于同含尘气流相接触使磨损较大,风叶间隙较大使空气效率较差,依靠重力很难完全沉降,循环气流返回选粉区时总会带有部分细粉,降低选粉效率。

旋风式选粉机由离心式选粉机改进,设计了一种外部循环气流。取消大风叶,采取专用风机外部鼓风;取消内外壳间得细粉沉降区,采取专用旋风分离器外部回收细粉得形式。

O—Sepa选粉机在分级原理上,与前两代选粉机相比有较大得改进,其分级气流仅在水平面内旋转,而且气流平稳。物料在经过撒料盘与缓冲板充分分散之后垂直下落,从上而下通过整个分级区,可受到多次分级得作用。

由公式可知,分级界限尺寸(即分离最小粒径)与选粉机得直径、气流速度与叶片得导向角度有关。分离最小粒径随设备直径与风速得增大而增大,随叶片角度得增大

而变小。

两次。物料从进料口喂入,经撒料盘离心撒开,在缓冲板得作用下均匀分散后落入环形分级区,与经过导流后得分级气流进行料气混合。在旋转得分级气流作用下,物料中较粗得颗粒被甩向导流叶片,沿分级室下降进入锥形灰斗。再经过由三次风管进入得三次空气得漂洗,将混入粗颗粒中或聚集得细粒分出后,粗颗粒经翻转阀排出。粒径较小得细颗粒随气流进入涡轮分级区,在强制涡流场中再次被分级。较粗得颗粒被甩出,回到环形分级区,合格得细颗粒则随气流一起通过涡轮中部,由细粉出口排出。

3-11圈流粉磨中选粉效率与循环负荷如何影响粉磨产量?

答:在圈流粉磨操作中,在磨机粉磨能力与选粉机得选粉能力基本平衡得条件下,在一定范围内适当提高循环负荷可使磨内物料流速加快,增大细磨仓得物料粒度,减少衬垫作用与过粉碎现象,进一步强化了磨机得粉磨能力,使整套粉磨系统得生产能力提高。但就是若循环负荷过大,会使磨内物料得流速过快,因而粉磨介质来不及充分对物料作用反而会使颗粒组成过于均匀,以致产品强度下降。当循环负荷太大时,选粉效率会降低过多,甚至会使磨内料层过厚。出现球料比过小得现象,粉磨效率就会下降。结果使磨机产量增长不多,而电耗由于循环负荷增长而增加,在经济上不合算。

3-14分析影响物料筛分得因素

答:2、1物料物理性质得影响(1)物料得粒度分布(2)物料得湿度(3)物料含泥量

2、2筛面运动性质及其结构参数得影响(1)筛面运动特性图8、13筛面长度对筛分过程得影响(2)有效筛面面积(3)筛面长度(4)筛孔大小

2、3操作条件得影响(1)加料均匀性(2)料层厚度(3)筛面倾角

3-15 选粉效率与循环负荷如何计算? 选粉效率就是否越高越好?

L=T/G=(c-a)/(a-b)

要提高η,须增加c,减小b、如果选粉效率不适当地提高,而循环负荷却不适当地降低,物料在磨内被磨得相当细之后才能卸出,这时开流粉磨系统所有得垫衬作用与过粉碎现象就严重起来,导致产量降低。

粉体工程习题及答案(解题要点)

粉体第2章作业题 1、证明:DnL·DLS=DnS2; DnL·DLS·DSV=DnV3 2、求:边长为a的正方形和正三角形片状颗粒的Feret径。 3、求边长为m的正方形片状颗粒的Martin径。 4、求底面直径为10,直径:高度=1:1的圆柱形颗粒的球形度。 5、用安德烈移液管测得某火力发电厂废气除尘装置所收集的二种烟灰的粒度分布情况如下表。 若服从R―R分布,试求:(1)分布特征参数De和n;(2)二种粉体何者更细?何者粒度分布更集中? 第3章粉体的填充与堆积特性作业题 1、将粒度为D1>D2>D3的三级颗粒混合堆积在一起,假定大颗粒的间隙恰被次一级颗粒所充满,各级颗粒的空隙率分别为ε1=0.42,ε2=0.40,ε3=0.36,密度均为2780kg/m3。试求: (1)混合料的空隙率; (2)混合料的容积密度; (3)各级物料的质量配合比。 2、根据下表数据,按最密填充原理确定混凝土中砂子的粒径及各组分的配合比,并计算混凝土混合物的最大表观密度和最小空隙率。(已知:D碎石/D砂=D砂/D水泥) 粒径/mm 空隙率/% 密度/kg/m3 物料名称 碎石D1=32 48 2500 砂子D2 42 2650 水泥D3=0.025 50 3100 3、根据容积密度、填充率和空隙率的定义,说明: (1);(2);(3) 4、某粉体的比重为m,在一定条件下堆积的容积密度为其真密度的60%,试求其堆积空隙率。 5、某粉料100kg,在一定堆积状态下,其表观体积为0.05m3。求:该粉体的堆积密度、填充率和空隙率。(ρP=2800kg/m3) 6、已知:粉料(ρP=2700kg/m3)成球后ε=0.33,并测得料球含水量为13%(以单位质量干粉料计),试求料球的空隙饱和度ψs。 第4章作业题

粉体工程试题-加了几个图

1、中位粒径:D 50,在物料的样品中,把样品个数(或质量)分成相等两部分的颗粒粒径 2、壁效应:在接近固体表面的地方,粉料的随机填充存在局部有序。这种局部有序的现象是壁效应 3、粉碎平衡:当物料粉碎到一定程度时,物料在机械力作用下的粒度减小与已细化的微小颗粒再团聚达到平衡,物料粒度几乎不再变化的时候,称为粉碎平衡 4、摩擦角:由于颗粒间的摩擦力和内聚力而形成的角 5、相对可燃性:在可燃性粉末中加入惰性的非可燃性粉末均匀分散成粉尘云后,用标准点火源点火,使火焰停止传播所需要的惰性粉体最小加入量(%)称为相对可燃性 6、粉碎机械力化学:在固体物料粉碎过程中,设备施加于物料的机械力除了使物料粒度减小、比表面积增大外,还发生机械力与化学能的转化,使材料发生结构变化、物理化学变化。这种在机械力作用下锁诱发的物理、化学变化过程称为粉碎机械力化学。 另答案:研究粉碎过程中伴随的机械力化学效应的学科,应用粉体材料的机械力化学改性制备无机颜料制备纳米金属非晶态金属及合金制备新型材料 7、屈服轨迹:一组粉体样品在同一垂直应力条件下密实,然后在不同的垂直应力下,对每个粉体样品做剪切破坏试验,所得到的粉体破坏包络线称为该粉体的屈服轨迹 8、整体流:物料从料斗出口处全面积的泄出,全部物料都处于运动状态的流动。(料仓内整个粉体层能够大致均匀地下降流动,这种流动型称为整体流。这种流动常发生在带有相当陡峭而光滑的料斗内) 二.简答 1、表征粒度分布特征参数是什么?粉体的填充指标有哪些? 特征参数:中位粒径D 50、最频粒径、标准偏差; 填充指标:容积密度、填充率、空隙率 2、等径球体随机填充的类型有哪些? 1、等径球规则填充; 2、随机或不规则填充:随机密填充、随机倾倒填充、随机疏填充、 随机极疏填充;3、壁效应 3、写出几种实际颗粒的堆积规律(P27) 堆积规律:当仅有重力作用时,容器里实际颗粒的松装密度随着容器直径的减少和颗粒层高度的增加而减小。对于粗颗粒,较高的填充速度导致松装密度较小。但是对于像面粉那样的有粘聚力的细粉末,减慢供料速度可得到松散的堆积。 4、粉体层中液体有几种?各有何特点? 1、粘附液:粘附在粉体物料的表面; 2、楔形液:滞留在颗粒表面的凹穴中或沟槽内;,即在颗粒间的切点乃至接近切点处形成鼓状的自由表面而存在的液体; 3、毛细管上升液:保存在颗粒间的间隙中; 4、浸没液:颗粒浸没的液体 5、粉体的润湿应用的典型实例,写两例。 1、表面涂覆或包裹:用硬脂酸钠改性MgO 粉体,在吸附层中的硬脂酸根离子的亲水基朝向水相,接触角减小,是粉体润湿性增强; 2、热处理:对陶瓷颗粒进行热处理可以提高金属对陶瓷的润湿性。通过热处理可以除去吸附在陶瓷表面的氧,以免金属氧化在界面形成氧化物阻止金属与陶瓷元素相互扩散。对陶瓷颗粒进行预热处理可以消除颗粒表面吸附的杂志和气体,提高润湿性。 6、粉体摩擦角具体包括哪些角度? 1 内摩擦角、 2 安息角、 3 壁面摩擦角和滑动摩擦角、 4 运动角 7、流动与不流动的判据?(P48) 如果颗粒在流动通道内形成的区服强度不是已支撑住流动的堵塞料,那么在流动通道内将产生重力流动。 根据Jenike 公式可以计算得到料仓和料斗中的压力分布,从而得到物料单元体受到的密实最大主应力; 流动函数 FF : 时,FFff ;支撑强度小于破坏强度,故发生流动 c f <1σc f >1σ

粉体材料科学与工程培养方案

粉体材料科学与工程培养方案 一、专业简介 粉体材料科学与工程”专业依托“材料科学与工程”一级国家重点学科建设,设有博士点、博士后科研流动站,是国家特色专业和国家本科质量工程重点建设专业,是首批国家“卓越工程师”专业。本专业涉及金属或化合物粉末的制备、并以此为原料制备先进材料,研究材料成分、制备工艺、组织结构和性能之间相互关系,以满足航空航天、新能源技术、生物技术、微电子、汽车工业、国防军工等领域对关键新材料的迫切需求。本专业培养具有坚实的专业理论基础以及材料科学知识、较强的新材料研发能力和创新能力的粉末冶金技术高级专门人才。 二、培养目标 本专业秉承“厚基础、宽专业、高素质、强能力”的人才标准,培养政治思想正确、具有高度的社会责任感、优良的科学文化素养和创新精神、坚实的专业基础、较强的工程实践和工程创新能力、组织和管理能力以及良好国际化视野的高层次、复合型人才。能在材料科学与工程领域,特别是在粉末冶金基础理论、粉末冶金材料(如难熔金属与硬质合金、磁性材料、摩擦减磨材料、粉末高温合金、特种陶瓷材料、电工电子材料)等研究和制造领域从事科学研究与技术开发、工艺设计、材料加工制备、性能检测和生产经营管理、具有国际竞争力的高级专门人才。学生毕业后可在高等院校、科研院所和高新技术企业等从事教学、科研、生产、新材料与材料制备新技术开发以及相关管理方面的工作。 三、培养要求 1、知识要求 拥有良好的人文与社会知识、学科基础知识、专业基础与专业知识。 ①人文与社会知识:掌握一定的哲学、政治学、法学、社会学、心理学等知识。掌握一定的经济、管理等知识,满足工程应用中管理和交流的需要。 ②外语及计算机知识:掌握一门外国语,能顺利地阅读和翻译专业外文技术资料,有较强的听说读写能力;了解计算机基本原理,掌握一种以上计算机语言,能熟练应用计算机解决本专业问题。 ③学科基础知识:掌握材料科学与工程学科所需的数学、物理、化学等自然科学基础的知识

粉体工程与设备复习题

粉体工程习题 一.选择题(以下各小题均有4或3个备选答案,请圈出唯一正确的答案) 1.R RB 粒度分布方程中的n 是 。 A 、功指数 B 、旋涡指数 C 、均匀性指数 D 、时间指数 2.粒度分析中常采用RR 坐标来绘制粒度分布曲线。该坐标的横坐标为颗粒尺寸,它是以 来分度的。 A 、算术坐标 B 、单对数坐标 C、重对数坐标 D 、粒度倒数的重对数坐标 3.粉磨产品的颗粒分布有一定的规律性,可用RRB 公式表示R=100exp[-(P D /e D )n ]其中 e D 为: 。 A .均匀系数 B.特征粒径 C.平均粒径 4.硅酸盐工厂常用的200目孔筛是指在 上有200个筛孔。 A、一厘料长度 B 、一平方厘料面积 C、一英寸长度 D、一平方英寸面积 5.某一粉体的粒度分布符合正态分布、利用正态概率纸绘其正态曲线,标准偏差σ= 。 A 、D50 B 、D 84。1 —D 50 C 、D84。1— D 15。9 7.破碎机常用粉碎比指标中有平均粉碎比i m 和公称粉碎比i n两种,二者之间的关系 为 。 A、im >i n B 、i m=i n C、i m

啤酒瓶玻璃厂课程设计.doc

温州大学07材料 课程设计任务书 设计题目年产1.5-3万吨啤(白)酒瓶玻璃工厂工艺初步设计本设计工作期限2010.12.13-2010.12.25 指导教师周永强 设计者江丽军

设计的原始资料 一、建厂地址 温州滨海工业园区 二、燃料 重油 三、水电供应及交通运输情况 城市自来水:供水能力100000吨/日 国家电网供电:供电能力300000KVA/日 铁路专用线入厂辅以汽车运输 四、建厂地点气象水文资料 1.气象资料 年平均湿度81%全年主导风向:偏北风年均降水量1385.3毫米 2.建厂地点地下水位高度 3.建厂地点土壤耐压力

年产2.38万吨啤酒瓶玻璃工厂工艺 初步设计指导书 第1章玻璃工厂工艺初步设计说明书内容和要求 1.1总论 (—)建设规模和生产方法 全厂总面积:50000㎡ 办公生活区面积:5000㎡ 后期预留面积:10000㎡ 生产方法:机械吹制法 (二)厂区位置 温州滨海工业园区 (三)概述设计产品的生产发展概况(历史、现状、发展前景)及其在国民经济中的作用和地位 玻璃制品生产在我国历史悠久,但由于种种原因,玻璃工业始终没有发展,在建国初期,我国日用玻璃基本是手工生产,厂家很少,技术落后,谈不上规模,当时全国产量不过一万吨左右,保温瓶不过10万支左右。50年代和60年代,我国日用玻璃处于发展时期,本着自力更生、艰苦奋斗的精神,开始用池炉熔化、机械制瓶,但发展速度较慢。到70年代由于逐步解决了窑炉及成型设备制造技术,使用国内自制的自动或半自动制瓶机,使我国日用玻璃产量由40万吨绯徊的局面发展到百万吨产量。到了80年代,引进和借鉴国外的先进技术和设备,我国日用玻璃行业有了很大的发展。90年代,我国日用玻璃行业随着改革开放的深入发展,企业通过股份制等深层次改革,打破了旧国有体制的束缚,股份制极大调动了职工的积极性,一大批民营、合资、股份制企业相继涌现,加上国外大量先进技术、先进设备的引进及我国玻璃机器制造业的发展,促进了日用玻璃行业的发展,使我国日用玻璃行业进入了高速发展阶段。 特别是在2003年以来日用玻璃产量每年以一百万吨速度递增,据2008年底统计,日用玻璃全国产量已达1446万吨,全国日用玻璃行业企业已达1300家,职人数30多万人,工业总产值784亿元。近几年玻璃瓶罐行业涌现出广东华兴、河北索坤年产量过50万吨的龙头企业。涌现出河北北雄、承德华富、山西大华、宏艺、安徽德力等近百家玻璃器皿出口企业。涌现出北玻仪、山东力诺、重庆正川等拉管企业 改革开放以来,日用玻璃行业的高速发展,中国产业研究院咨询集团认为,主要原因有以下几条:1、人民生活水平的极大提高,促进了我国轻工业的飞速发展,并由此带动了日用玻璃行业的发展。国外市场对玻璃器皿的极大需求及国内啤酒行业的快速发展,使玻璃器皿、瓶罐生产更是突飞猛进。2、改革开放以来,用玻璃行业引进大量国外先进技术、先进设备,国内玻璃机器制造业的高速发展,使日用玻璃生产技术越来越成熟。进入行业的门坎越来越容易,使得民营资本大量涌入。3、玻璃制品的安全、卫生、经济和不污染盛装物等特点是其他包装物无法替代的,可回收使用的环保性得到使用者的认可,市场需求量逐年增加。 展望未来日用玻璃行业的未来,依旧有着很大的发展空间。首先,世界发达国家由于

粉体工程课程设计方案任务书(粉体)

合肥学院化学与材料工程系 粉体工程课程设计任务书

胶体磨结构 胶体磨的原理与结构 2. 1. 1工作原理 胶体磨又称分散磨,工作构件由一个固泄的磨体(泄子)和一个髙速旋转的磨体(转子)所组成,两磨体之间有一个可以调节的微小间隙。当物料通过这个间隙时,由于转子的高速旋转(英线速度一般为13?40m/s阿),使附着于转子面上的物料速度最大,而附着于立子而上的物料速度为零。这样产生了急剧的速度梯度,从而使物料受到强烈的剪切、摩擦和湍动,而产生了超微粉碎作用⑶。 由此可知,左转子间的高速相对运动是使胶体磨工作获得物料微细度的主要保证。只有提高转子的线速度,才能达到衣好的加工效果。但高速度运转必然会产生大量的热量,并要求各零件的制造精度相互配合都必须相当立精密,而且还要进行冷却。 2. 1. 2结构组成 如图1所示,胶体磨苴主要构造由磨头部件、底座传动部件、专用电机三部分组成。其中磨头部分的动磨盘与静磨盘是本机的关健部分,所以,根据被处理的物料性质不同选型必须有所区别。但材质均由不锈钢制成。连体式(又称立式)电机根据型号不同需要作特殊设计,在电机凸缘端加装挡水盘,以防渗漏。 2. 1. 3结构特点 相对于压力式均质机,胶体磨首先是一种离心式设备,它的优点是结构简单,设备保养维护方便,适用于较髙粘度物料以及较大颗粒的物料。 ①可在极短时间内实现对悬浮液中的固形物进行超微粉碎,即微粒化,同时兼有混合、搅拌、分散和乳化的作用,成品粒径可达lpm: ②效率和产虽高,大约是球磨机和馄磨机效率的2倍以上; ③可通过调节两磨体间隙,最小可达到lpm—下,达到控制成品粒径的目的: ④结构简单,操作方便,占地而积小。由于世磨盘和转磨盘之间间隙极微小,因此加工精度较高。 它的主要缺点也是由并结构引起的。首先,由于作离心运动,其流量是不恒泄的,对应于不同粘性的物料其流量变化很大。举例来说,同样的设备,在处理粘稠的漆类物料和稀薄的乳类流体时,流量可相差10倍以上;苴次,由于转泄子和物料间高速摩擦,故容易产生较大的热量,使被处理物料变性:第三,表而较易磨损,而磨损后,细化效果会显著下降:此外,国内小型胶体磨往往因功率不足、密封性能差而产生不能长时间连续工作。

济南大学粉体工程期末复习题

一、请说明下列代号的意义(20分,每小题5分): 1、PEJ 900×1200 2、TH400 SH-25.76 3、LS400×25×50―M2 4、4R3216 二、解释概念(20分,每小题5分): 1、闭路粉碎流程 2、牛顿分级效率 3、振动磨的振动强度 4、粉尘比电阻 三、填空题(20分,每小题1分): 1、简摆型颚式破碎机比复摆型的动颚的垂直摆幅。 2、锤式破碎机篦条排列方向应与板方向打击物料。 3、反击式破碎机的板,的破碎比最大。 4、提升式双层隔仓板具有作用。 5、反击式破碎机进口处设有, 其作用是。 6、颚式破碎机的推力板除具有的作用外,还具有作用。 7、双辊式破碎机二辊作转动。 8、球磨机的转速比一般为左右。 9、螺旋式气力输送泵螺旋叶片的螺距向出料端。 10、气环反吹风式袋除尘器为滤式袋除尘器。 11、旋风收尘器的直径越,直筒高度越,收尘效率越高。 12、大型球磨机的传动方式一般为。 13、计量设备中,属于非接触式计量的是。 14、脉冲反吹风袋式收尘器中,粉尘在滤袋的侧被过滤下来。 15、电子皮带秤的称量元件是。 16、螺旋输送机的头、尾端轴承分别为轴承和轴承。 17、压滤机工作时,其过滤时间一般为。 18、空气输送斜槽的输送动力是。 19、带式输送机分别在和处设置清扫装置。

20、电磁振动给料机的给料速度主要取决于和。 四、选择题(20分,每小题5分): 1、静电收尘器的电源为。 A、直流电源; B、交流电源; C、220V电源; D、380V电源 2、斗式提升机输送干燥的流动性较好的物料时,宜采用卸料方式。 A、重力式; B、离心式; C、混合式; D、三种均可 3、阶梯衬板的正确安装形式应是 A、小头先升起; B、大头先升起; C、交替安装; D、三者均可 4、粗碎圆锥式破碎机。 A、外锥正置,内锥倒置; B、外锥倒置,内锥正置; C、二锥均正置; D、二锥均倒置 五、说明题(20分,每小题10分): 1、为什么复摆颚式破碎机比同规格的简摆颚式破碎机的生产能力大? 2、旋风收尘器集灰斗处为什么要锁风?通常有哪些锁风装置?

粉体工程与设备考试习题

粉体工程与设备考试习题 一、名词解释(每个4分,共20分) 1、粉体:固体颗粒的集合(D小于100微米),颗粒间有适当的作用力,这样的颗粒集合体定义为粉体。 2、空隙率:填充层中粒度与占据的空间体积与包含空间在内的整个填充层表面体积之比。 3、三轴平均径:以颗粒的长度、宽度、高度定义的粒度平均值称为三轴平均径。(算法有三种:算术平均径、几何平均径和调和平均径) 4、粒度分布:是指将颗粒群以一定的粒度分布范围按大小顺序分为若干级别,各级别粒子占颗粒群总量的百分数。 5、松装密度:指在一个填充状态下,包括颗粒间全部空隙在内的整个填充单位体积中的颗粒质量。 二、填空题(每空1分,共30分) 1、粉体中颗粒常见的附着力有范德华引力(分子间引力)、库仑力(电荷异性引力)、毛细管力、磁性力、机械咬合力等。 2、影响颗粒填充的因素有壁效应_、局部填充、形状、粒度大小等。 3、粒度分布对筛分操作影响很大,一般依据颗粒尺寸将颗粒分为易筛颗粒、中间颗粒和难筛颗粒。 4、R.R.B颗粒分布的表达式 R=100exp[-(D/错误!未找到引用源。] 。n值愈大,颗粒分布范围愈窄,颗粒分布愈均匀,反映在R.R.B曲线上是分布线与横坐标的夹角越大。

5、昆虫能在水面上爬行,荷叶上的水滴呈圆球状,这是张力在起作用。 6、粉体拱的类型有:压缩拱、楔性(形)拱、粘结粘附拱、气压平衡拱。 7、统计平均的测定方法有费雷特径,定向等分径,定向最大径,投影圆当量径。 8、写出下列三轴平均径的计算式:①三轴平均径错误!未找到引用源。,②三轴调和平均径 3/(1/l+1/h+1/b) ,③三轴几何平均径错误!未找到引用源。。 三、简答题(每题10分,共50分) 1、平均粒径的表示方法有哪几种? 答:①算术平均粒径 ②几何平均粒径 ③调和平均粒径 ④平均面积径 ⑤平均体积径 ⑥长度平均径 ⑦面积平均径 ⑧体积平均径 2、简述颗粒床层中颗粒的粒度、空隙率、填充率、气流阻力和配位数的关系。 答:颗粒粒度越大,颗粒之间的空隙率就越大,填充率就越小,

粉体材料与工程专业培养计划(草稿)

粉体材料科学与工程专业培养计划 一、培养目标: 本专业培养适应社会主义现代化建设需要,德、智、体、美全面发展,并具有较好的社会科学基础和一定的人文、艺术基础,具有创新精神和实践能力,获得工程师基本训练的高级工程技术专门人才。毕业生具备粉体材料工程领域的基础知识,系统掌握粉体材料科学与工程的基本理论、基本的实验技能和科学创新的研究方法的高级应用型人才。 二、培养规格与要求: 本专业人才应具有以下知识、能力和素质: 1、知识结构要求 工具性知识:外语、计算机及信息技术应用等方面的知识。 人文社会科学知识:哲学、思想道德、政治学、法学、心理学等方面的知识。 自然科学知识:数学、物理学、化学等方面的知识。 工程技术知识:工程图学、机械基础、电工电子学等方面的知识。 经济管理知识:经济学、管理学等方面的知识。 专业知识:了解粉体材料科学与工程领域的一般原理和专业知识;掌握粉体材料合成制备、加工、结构与性能测定及应用等方面的基础知识、基本原理和基本实验技能;熟悉国家关于粉体材料科学与工程研究、开发及相关的产业政策、国内外知识产权等方面的法律法规;了解粉体材料科学与工程专业的理论前沿、应用前景和最新发展动态,以及粉体材料科学与工程产业的发展状况;具有研究、改进粉体材料性能、开发、设计新材料的初步能力。 2、能力结构要求 获取知识的能力:具有良好的自学能力、表达能力、社交能力、计算机及信息技术应用能力。 应用知识能力:具有综合应用知识解决问题能力、综合实验能力、工程实践能力。 创新能力:具有创造性思维能力、创新实验能力、科技开发能力。 3、素质结构要求 思想道德素质:热爱祖国,拥护中国共产党的领导,树立科学的世界观、人生观和价值观;具有责任心和社会责任感;具有法律意识,自觉遵纪守法;热爱本专业、注重职业道德修养;具有诚信意识和团队精神。 文化素质:具有一定的文学艺术修养、人际沟通修养和现代意识。 专业素质:掌握科学思维方法和科学研究方法;具备求实创新意识和严谨的科学素养;具有一定的工程意识和效益意识。 身心素质:具有较好的身体素质和心理素质。 三、主干学科:材料科学与工程,化学工程与技术 四、核心课程: 马克思主义基本原理、高等数学、大学物理、物理实验、大学计算机基础、大学英语、工程图学、电工与电子技术、无机化学、分析化学、有机化学、物理化学、纳米材料科学导论,材料科学基础、材料物理性能、材料研究与测试方法、粉体工程、材料合成与加工工程及热工过程及设备。 五、主要实践性教学环节: 基础实验、专业实验,机械制造(金工)实习、电工电子工艺实习、计算机上机、课程实习、创新设计、认识实习、生产实习、毕业实习、科技方法训练(工程设计训练)、毕业设计(毕业论文)等集中实践周共44周。 六、主要指标: 课内(普通教育和专业教育)总学时2496(其中实验232学时、上机120学时、听力64学时),集中实践环节共44周;普通教育和专业教育总计200学分,综合教育40学分。 七、学制:四年 八、授予学位:工学学士