高中数学专题训练(教师版)—函数的奇偶性和周期性
高中数学教师备课必备系列(函数的概念及性质)专题八 函数周期性的结论和习题
一.定义:若为非零常数,对于定义域内的任一,使恒成立则()叫做周期函数,叫做这个函数的一个周期。
二.重要结论、,则是以为周期的周期函数;2、若函数()满足()()(>),则()为周期函数且是它的一个周期。
3、若函数,则是以为周期的周期函数4、()满足() (>),则()为周期函数且是它的一个周期。
、若函数()满足()(>),则()为周期函数且是它的一个周期。
、,则是以为周期的周期函数.、,则是以为周期的周期函数.8、若函数()的图像关于直线(>)都对称,则()为周期函数且()是它的一个周期。
、函数的图象关于两点、都对称,则函数是以为周期的周期函数;、函数的图象关于和直线都对称,则函数是以为周期的周期函数;、若偶函数()的图像关于直线对称,则()为周期函数且是它的一个周期。
、若奇函数()的图像关于直线对称,则()为周期函数且是它的一个周期。
、若函数()满足()()()(>),则()为周期函数是它的一个周期。
、若奇函数()满足()()(∈,≠),则().三、练习题一、选择题. 已知定义在上的奇函数()满足()-(),则()的值为( ).-....已知函数是一个以为最小正周期的奇函数,则()..-..不能确定.(江西)已知函数是上的偶函数,若对于,都有,且当时,,则的值为()..... 函数对于任意实数满足条件,若,则等于( ). . . .. 是定义在上的函数,且,则(). 周期为的奇函数 . 周期为的偶函数. 周期为的奇函数 . 周期为的偶函数.偶函数是以为周期的函数,且当时,,则的值为( ).已知偶函数满足,且当时,,则的值等于 ( ). . . ..设()是定义在上以为周期的函数,()在()内单调递减,且()的图象关于直线对称,则下面正确的结论是()....(安徽)定义在上函数既是奇函数,又是周期函数,是它的一个正周期.若将方程。
高中数学函数周期性和奇偶性基础知识+常用结论+专题训练(含答案)
函数的奇偶性与周期性一、基础知识1.函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f(x)≠0,则奇(偶)函数定义的等价形式如下:(1)f(-x)=f(x)⇔f(-x)-f(x)=0⇔f(-x)f(x)=1⇔f(x)为偶函数;(2)f(-x)=-f(x)⇔f(-x)+f(x)=0⇔f(-x)f(x)=-1⇔f(x)为奇函数.2.函数的周期性(1)周期函数对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期.周期函数定义的实质存在一个非零常数T,使f(x+T)=f(x)为恒等式,即自变量x每增加一个T后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f(x)是奇函数且在x=0处有定义,则一定有f(0)=0;如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论对f(x)定义域内任一自变量x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).(3)若f(x+a)=-1f(x),则T=2a(a>0).3.函数图象的对称性(1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称.(2)若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.(3)若函数y=f(x+b)是奇函数,即f(-x+b)+f(x+b)=0,则函数y=f(x)关于点(b,0)中心对称.考点一函数奇偶性的判断[典例]判断下列函数的奇偶性:(1)f(x)=36-x2|x+3|-3;(2)f(x)=1-x2+x2-1;(3)f(x)=log2(1-x2)|x-2|-2;(4)f(x)2+x,x<0,2-x,x>0.[解](1)由f(x)=36-x2|x+3|-3,-x2≥0,+3|-3≠06≤x≤6,≠0且x≠-6,故函数f(x)的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f(x)为非奇非偶函数.(2)-x2≥0,2-1≥0⇒x2=1⇒x=±1,故函数f(x)的定义域为{-1,1},关于原点对称,且f(x)=0,所以f(-x)=f(x)=-f(x),所以函数f(x)既是奇函数又是偶函数.(3)-x2>0,-2|-2≠0⇒-1<x<0或0<x<1,定义域关于原点对称.此时f(x)=log2(1-x2)|x-2|-2=log2(1-x2)2-x-2=-log2(1-x2)x,故有f(-x)=-log2[1-(-x)2]-x=log2(1-x2)x=-f(x),所以函数f(x)为奇函数.法一:图象法画出函数f(x)2+x,x<0,2-x,x>0的图象如图所示,图象关于y轴对称,故f(x)为偶函数.法二:定义法易知函数f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x>0时,f(x)=x2-x,则当x<0时,-x>0,故f(-x)=x2+x=f(x);当x<0时,f(x)=x2+x,则当x>0时,-x<0,故f(-x)=x2-x=f(x),故原函数是偶函数.法三:f(x)还可以写成f(x)=x2-|x|(x≠0),故f(x)为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是()A.y=B.y=x2+e|x|C.y=x cos x D.y=ln|x|-sin x解析:选B对于选项A,易知y=tan B,设f(x)=x2+e|x|,则f(-x)=(-x)2+e|-x|=x2+e|x|=f(x),所以y=x2+e|x|为偶函数;对于选项C,设f(x)=x cos x,则f(-x)=-x cos(-x)=-x cos x=-f(x),所以y =x cos x为奇函数;对于选项D,设f(x)=ln|x|-sin x,则f(2)=ln2-sin2,f(-2)=ln2-sin(-2)=ln2+sin2≠f(2),所以y=ln|x|-sin x为非奇非偶函数,故选B.2.设函数f(x)=e x-e-x2,则下列结论错误的是()A.|f(x)|是偶函数B.-f(x)是奇函数C.f(x)|f(x)|是奇函数D.f(|x|)f(x)是偶函数解析:选D∵f(x)=e x-e-x 2,则f(-x)=e-x-e x2=-f(x).∴f(x)是奇函数.∵f(|-x|)=f(|x|),∴f(|x|)是偶函数,∴f(|x|)f(x)是奇函数.考点二函数奇偶性的应用[典例](1)(2019·福建三明模拟)函数y=f(x)是R上的奇函数,当x<0时,f(x)=2x,则当x>0时,f(x)=()A.-2x B.2-xC.-2-x D.2x(2)(2018·贵阳摸底考试)已知函数f(x)=a-2e x+1(a∈R)是奇函数,则函数f(x)的值域为()A.(-1,1)B.(-2,2)C.(-3,3)D.(-4,4)[解析](1)当x>0时,-x<0,∵x<0时,f(x)=2x,∴当x>0时,f(-x)=2-x.∵f(x)是R上的奇函数,∴当x>0时,f(x)=-f(-x)=-2-x.(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x +1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x+1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x+1>1,所以0<1e x +1<1,-1<1-2e x+1<1,所以函数f (x )的值域为(-1,1).[答案](1)C(2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=log2(x +2)-1,则f(-6)=()A.2B.4C.-2D.-4解析:选C根据题意得f(-6)=-f(6)=1-log2(6+2)=1-3=-2.2.已知函数f(x)为奇函数,当x>0时,f(x)=x2-x,则当x<0时,函数f(x)的最大值为________.解析:法一:当x<0时,-x>0,所以f(-x)=x2+x.又因为函数f(x)为奇函数,所以f(x)=-f(-x)=-x2-x+14,所以当x<0时,函数f(x)的最大值为14.法二:当x>0时,f(x)=x2-x-14,最小值为-14,因为函数f(x)为奇函数,所以当x<0时,函数f(x)的最大值为1 4 .答案:1 43.(2018·合肥八中模拟)若函数f(x)=x ln(x+a+x2)为偶函数,则a=________.解析:∵f(x)=x ln(x+a+x2)为偶函数,∴f(-x)=f(x),即-x ln(a+x2-x)=x ln(x+a+x2),从而ln[(a+x2)2-x2]=0,即ln a=0,故a=1.答案:1考点三函数的周期性[典例](1)(2018·开封期末)已知定义在R上的函数f(x)满足f(x)=-f(x+2),当x∈(0,2]时,f(x)=2x+log2x,则f(2019)=()A.5 B.12C.2D.-2(2)(2018·江苏高考)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(-2,2]上,f(x)=cosπx2,0<x≤2,x+12|,-2<x≤0,则f(f(15))的值为________.[解析](1)由f(x)=-f(x+2),得f(x+4)=f(x),所以函数f(x)是周期为4的周期函数,所以f(2019)=f(504×4+3)=f(3)=f(1+2)=-f(1)=-(2+0)=-2. (2)由函数f(x)满足f(x+4)=f(x)(x∈R),可知函数f(x)的周期是4,所以f(15)=f(-1)=|-1+12|=12,所以f(f(15))=cosπ4=22.[答案](1)D(2)22[题组训练]1.(2019·山西八校联考)已知f(x)是定义在R上的函数,且满足f(x+2)=-1f(x),当2≤x≤3时,f(x)=x,则________.解析:∵f(x+2)=-1f(x),∴f(x+4)=f(x),∴2≤x≤3时,f(x)=x,答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )x 2-2,-2≤x ≤0,,0<x <1,则________.解析:由题意可得4-2=14,=14.答案:14[课时跟踪检测]A级1.下列函数为奇函数的是()A.f(x)=x3+1B.f(x)=ln1-x1+xC.f(x)=e x D.f(x)=x sin x解析:选B对于A,f(-x)=-x3+1≠-f(x),所以其不是奇函数;对于B,f(-x)=ln1+x1-x=-ln 1-x1+x=-f(x),所以其是奇函数;对于C,f(-x)=e-x≠-f(x),所以其不是奇函数;对于D,f(-x)=-x sin(-x)=x sin x=f(x),所以其不是奇函数.故选B.2.(2019·南昌联考)函数f(x)=9x+13x的图象()A.关于x轴对称B.关于y轴对称C.关于坐标原点对称D.关于直线y=x对称解析:选B因为f(x)=9x+13x=3x+3-x,易知f(x)为偶函数,所以函数f(x)的图象关于y轴对称.3.设函数f(x)是定义在R上的奇函数,且f(x)2(x+1),x≥0,(x),x<0,则f(-7)=()A.3B.-3C.2D.-2解析:选B因为函数f(x)是定义在R上的奇函数,且f(x)2(x+1),x≥0,(x),x<0,所以f(-7)=-f(7)=-log2(7+1)=-3.4.若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=e x,则g(x)=() A.e x-e-x B.12(e x+e-x)C.1 2(e-x-e x)D.12(e x-e-x)解析:选D因为f(x)+g(x)=e x,所以f(-x)+g(-x)=f(x)-g(x)=e-x,所以g(x)=12(e x-e-x).5.设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2-x,则=()A.-14B.-12C.1 4D.1 2解析:选C因为f(x)是定义在R上周期为2的奇函数,所以又当0≤x≤1时,f(x)=x2-x,所以-12=-14,则=14.6.(2019·益阳、湘潭调研)定义在R上的函数f(x),满足f(x+5)=f(x),当x∈(-3,0]时,f(x)=-x-1,当x∈(0,2]时,f(x)=log2x,则f(1)+f(2)+f(3)+…+f(2019)的值等于()A.403B.405C.806D.809解析:选B定义在R上的函数f(x),满足f(x+5)=f(x),即函数f(x)的周期为5.又当x∈(0,2]时,f(x)=log2x,所以f(1)=log21=0,f(2)=log22=1.当x∈(-3,0]时,f(x)=-x-1,所以f(3)=f(-2)=1,f(4)=f(-1)=0,f(5)=f(0)=-1.故f(1)+f(2)+f(3)+…+f(2019)=403×[f(1)+f(2)+f(3)+f(4)+f(5)]+f(2016)+f(2017)+f(2018)+f(2019)=403×1+f(1)+f(2)+f(3)+f(4)=403+0+1+1+0=405.7.已知函数f(x)是偶函数,当x>0时,f(x)=ln x,则f________.解析:由已知可得ln1e2=-2,所以f(-2).又因为f(x)是偶函数,所以f(-2)=f(2)=ln2.答案:ln28.(2019·惠州调研)已知函数f(x)=x+1x-1,f(a)=2,则f(-a)=________.解析:法一:因为f(x)+1=x+1 x,设g(x)=f(x)+1=x+1 x,易判断g(x)=x+1x为奇函数,故g(x)+g(-x)=x+1x-x-1x=0,即f(x)+1+f(-x)+1=0,故f(x)+f(-x)=-2.所以f(a)+f(-a)=-2,故f(-a)=-4.法二:由已知得f(a)=a+1a-1=2,即a+1a=3,所以f(-a)=-a-1a-11=-3-1=-4.答案:-49.(2019·陕西一测)若函数f(x)=ax+b,x∈[a-4,a]的图象关于原点对称,则函数g(x)=bx+ax,x∈[-4,-1]的值域为________.解析:由函数f(x)的图象关于原点对称,可得a-4+a=0,即a=2,则函数f(x)=2x+b,其定义域为[-2,2],所以f(0)=0,所以b=0,所以g(x)=2x,易知g(x)在[-4,-1]上单调递减,故值域为[g(-1),g(-4)],即-2,-12.答案:-2,-1210.设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是____________.解析:当x>0时,lg x>0,所以x>1,当x<0时,由奇函数的对称性得-1<x<0,故填(-1,0)∪(1,+∞).答案:(-1,0)∪(1,+∞)11.f(x)为R上的奇函数,当x>0时,f(x)=-2x2+3x+1,求f(x)的解析式.解:当x<0时,-x>0,则f(-x)=-2(-x)2+3(-x)+1=-2x2-3x+1.由于f(x)是奇函数,故f(x)=-f(-x),所以当x<0时,f(x)=2x2+3x-1.因为f(x)为R上的奇函数,故f(0)=0.综上可得f(x)的解析式为f(x)2x2+3x+1,x>0,,x=0,x2+3x-1,x<0.(1)证明y=f (x )是周期函数,并指出其周期;(2)若f (1)=2,求f (2)+f (3)的值.解:(1)证明:由且f (-x )=-f (x ),知f(3+x )=f 32+f 32-f (-x )=f (x ),所以y =f (x )是周期函数,且T =3是其一个周期.(2)因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.B 级1.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为()A .6B .7C .8D .9解析:选B 因为f (x )是最小正周期为2的周期函数,且0≤x <2时,f (x )=x 3-x =x (x -1)(x +1),所以当0≤x <2时,f (x )=0有两个根,即x 1=0,x 2=1.由周期函数的性质知,当2≤x <4时,f (x )=0有两个根,即x 3=2,x 4=3;当4≤x ≤6时,f (x )=0有三个根,即x 5=4,x 6=5,x 7=6,故f (x )的图象在区间[0,6]上与x 轴的交点个数为7.2.(2019·洛阳统考)若函数f (x )=ln(e x +1)+ax 为偶函数,则实数a =________.解析:法一:(定义法)∵函数f (x )=ln(e x +1)+ax 为偶函数,∴f (-x )=f (x ),即ln(e-x+1)-ax=ln(e x+1)+ax,∴2ax=ln(e-x+1)-ln(e x+1)=ln e-x+1e x+1=ln1e x=-x,∴2a=-1,解得a=-1 2 .法二:(特殊值法)由题意知函数f(x)的定义域为R,由f(x)为偶函数得f(-1)=f(1),∴ln(e-1+1)-a=ln(e1+1)+a,∴2a=ln(e-1+1)-ln(e1+1)=ln e-1+1e+1=ln1e=-1,∴a=-1 2 .答案:-1 23.已知函数f(x)=-x2+2x,x>0,0,x=0,x2+mx,x<0是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.解:(1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x),于是x<0时,f(x)=x2+2x=x2+mx,所以m=2.(2)要使f(x)在[-1,a-2]上单调递增,结合f(x)的图象(如图所示)知a-2>-1,a-2≤1,所以1<a≤3,故实数a的取值范围是(1,3].。
函数奇偶性与周期综合训练含详解
B.当 x 4,5 时, f x 2x 52
C.当 x 2,3 时, f x 单调递减
D.a 的取值范围是 0,
2 2
9.已知 f x 是定义域为 (, ) 的奇函数, f x 1是偶函数,且当 x 0,1 时,
f x x x 2 ,则( )
A. f x 是周期为 2 的函数
五、解答题 20.设 f (x) 是定义在实数集 R 上的奇函数,且对任意实数 x 恒满足 f (x 2) f (x) ,当 x [0, 2]时, f ( x) 2x x2 .
(1)求证: f (x) 是周期函数; (2)当 x [2, 4] 时,求 f (x) 的解析式; (3)计算: f (0) f (1) f (2) f (2021) .
试卷第 2页,总 3页
17.已知函数 f (x) 是定义在 R 上的奇函数,且 f x 2 f x ,则T ________,当
0 x 1时 f (x) x(x 1) ,则 f 4 f 5 等于________.
18.定义在 R 上的奇函数 f (x) 又是周期为 4 的周期函数,已知在区间[2, 0) (0, 2] 上,
15.设函数 f x 的定义域为 R, f x 1为奇函数, f x 2 为偶函数,当 x 1, 2 时,
f
(x)
ax 2
b
.若
f
0
f
3
6 ,则
f
13 3
_________.
四、双空题 16.已知函数 f (x) 是 R 上的奇函数,并且是周期为 3 的周期函数,若 f (1)=2 ,则 f (2)= ________; f (2019)= ________.
8.已知定义在 R 上的函数 f x 满足 f x f x 0 , f x 2 f x 0 ,且当
高考数学专题《函数的奇偶性、对称性、周期性》填选压轴题及答案
6.(多选题)函数f(x)的定义域为R,且f(x+1)与f(x+2)都为奇函数,则()
A.f(x)为奇函数B.f(x)为周期函数
C.f(x+3)为奇函数D.f(x+4)为偶函数
专题03函数的奇偶性、对称性、周期性
【方法点拨】
1.常见的与周期函数有关的结论如下:
(1)如果f(x+a)=-f(x)(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
(2)如果f(x+a)= (a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
(3)如果f(x+a)+f(x)=c(a≠0),那么f(x)是周期函数,其中的一个周期T=2a.
对于 , 是函数 的一条对称轴,且函数 是周期为4的周期函数,则 是函数 的一条对称轴,
又由函数为奇函数,则直线 是函数 图象的一条对称轴, 正确;
对于 ,函数 在 , 上有7个零点:分别为 , , ,0,2,4,6; 错误;
对于 , 在区间 , 上为增函数且其周期为4,函数 在 , 上为增函数,
又由 为函数 图象的一条对称轴,则函数 在 , 上为减函数, 正确;
2.函数奇偶性、对称性间关系:
(1)若函数y=f(x+a)是偶函数,即f(a+x)=f(a-x)恒成立,则y=f(x)的图象关于直线x=a对称;一般的,若f(a+x)=f(b-x)恒成立,则y=f(x)的图象关于直线x= 对称.
(2)若函数y=f(x+a)是奇函数,即f(-x+a)+f(x+a)=0恒成立,则函数y=f(x)关于点(a,0)中心对称;一般的,若对于R上的任意x都有f(a+x)+f(a-x)=2b恒成立,则y=f(x)的图象关于点(a,b)对称.
高考数学一轮复习专题:第3讲 函数的奇偶性与周期性(教案与同步练习)
1.函数的奇偶性2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【知识拓展】1.函数奇偶性常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=1f(x),则T=2a(a>0).(3)若f(x+a)=-1f(x),则T=2a(a>0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)偶函数图象不一定过原点,奇函数的图象一定过原点.( × )(2)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( √ )(3)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( √ ) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件.( √ ) (5)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.( √ )1.(教材改编)下列函数为偶函数的是( ) A .f (x )=x -1 B .f (x )=x 2+x C .f (x )=2x -2-xD .f (x )=2x +2-x答案 D解析 D 中,f (-x )=2-x +2x =f (x ), ∴f (x )为偶函数.2.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .2 答案 A解析 f (-1)=-f (1)=-(1+1)=-2.3.已知定义在R 上的奇函数f (x )满足f (x +4)=f (x ),则f (8)的值为( ) A .-1 B .0 C .1 D .2 答案 B解析 ∵f (x )为定义在R 上的奇函数,∴f (0)=0, 又f (x +4)=f (x ),∴f (8)=f (0)=0.4.(教材改编)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x (1+x ),则当x <0时,f (x )=________. 答案 x (1-x )解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ). 又f (x )为奇函数,∴f (-x )=-f (x )=(-x )(1-x ), ∴f (x )=x (1-x ).5.(2016·四川)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝⎛⎭⎫-52+f (2)=________. 答案 -2解析 ∵f (x )为定义在R 上的奇函数,∴f (0)=0,又0<x <1时,f (x )=4x , ∴f (12)=124=2,∴f ⎝⎛⎭⎫-52+f (2)=-f ⎝⎛⎭⎫52+f (2)=-f ⎝⎛⎭⎫12+f (0) =-2+0=-2.题型一 判断函数的奇偶性例1 (1)下列函数为奇函数的是( ) A .f (x )=2x -12xB .f (x )=x 3sin xC .f (x )=2cos x +1D .f (x )=x 2+2x答案 A解析 选项A 中,函数f (x )的定义域为R , 又f (-x )=2-x -12-x =12x -2x =-f (x ),∴f (x )为奇函数.(2)判断函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0的奇偶性.解 当x >0时,-x <0,f (x )=-x 2+x , ∴f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ); 当x <0时,-x >0,f (x )=x 2+x , ∴f (-x )=-(-x )2-x =-x 2-x =-(x 2+x )=-f (x ).∴对于x ∈(-∞,0)∪(0,+∞),均有f (-x )=-f (x ). ∴函数f (x )为奇函数.思维升华 (1)利用定义判断函数奇偶性的步骤:(2)分段函数奇偶性的判断,要注意定义域内x 取值的任意性,应分段讨论,讨论时可依据x 的范围取相应的解析式化简,判断f (x )与f (-x )的关系,得出结论,也可以利用图象作判断.(1)(2016·北京海淀区模拟)下列函数中为偶函数的是( )A .y =1xB .y =lg|x |C .y =(x -1)2D .y =2x(2)函数f (x )=log a (2+x ),g (x )=log a (2-x )(a >0且a ≠1),则函数F (x )=f (x )+g (x ),G (x )=f (x )-g (x )的奇偶性是( )A .F (x )是奇函数,G (x )是奇函数B .F (x )是偶函数,G (x )是奇函数C .F (x )是偶函数,G (x )是偶函数D .F (x )是奇函数,G (x )是偶函数 答案 (1)B (2)B解析 (1)选项B 中,函数y =lg|x |的定义域为{x |x ≠0}且lg|-x |=lg|x |, ∴函数y =lg|x |是偶函数.(2)F (x ),G (x )的定义域均为(-2,2), 由已知F (-x )=f (-x )+g (-x ) =log a (2-x )+log a (2+x )=F (x ), G (-x )=f (-x )-g (-x )=log a (2-x )-log a (2+x )=-G (x ), ∴F (x )是偶函数,G (x )是奇函数. 题型二 函数的周期性例2 (1)(2016·宝鸡模拟)已知f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数,且g (x )=f (x -1),则f (2 017)+f (2 019)的值为( ) A .-1 B .1 C .0 D .无法计算(2)已知f (x )是定义在R 上的偶函数,并且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______. 答案 (1)C (2)2.5解析 (1)由题意,得g (-x )=f (-x -1),又∵f (x )是定义在R 上的偶函数,g (x )是定义在R 上的奇函数, ∴g (-x )=-g (x ),f (-x )=f (x ), ∴f (x -1)=-f (x +1),∴f (x )=-f (x +2),∴f (x )=f (x +4), ∴f (x )的周期为4,∴f (2 017)=f (1),f (2 019)=f (3)=f (-1),又∵f (1)=f (-1)=g (0)=0, ∴f (2 017)+f (2 019)=0.(2)由已知,可得f (x +4)=f [(x +2)+2] =-1f (x +2)=-1-1f (x )=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5. ∴f (105.5)=2.5. 引申探究本例(2)中,若将f (x +2)=-1f (x )改为f (x +2)=-f (x ),其他条件不变,求f (105.5)的值. 解 f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), ∴函数的周期为4(下同例题).思维升华 函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 018)=________. 答案 339解析 ∵f (x +6)=f (x ),∴T =6. ∵当-3≤x <-1时,f (x )=-(x +2)2; 当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1, f (4)=f (-2)=0,f (5)=f (-1)=-1, f (6)=f (0)=0,∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+f (3)+…+f (2 015)+f (2 016) =1×2 0166=336.又f (2 017)=f (1)=1,f (2 018)=f (2)=2, ∴f (1)+f (2)+f (3)+…+f (2 018)=339. 题型三 函数性质的综合应用 命题点1 解不等式问题例3 (1)(2017·沈阳质检)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (13)的x 的取值范围是( ) A .(13,23)B .[13,23)C .(12,23)D .[12,23)(2)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为( )A .(-1,4)B .(-2,0)C .(-1,0)D .(-1,2)答案 (1)A (2)A解析 (1)因为f (x )是偶函数,所以其图象关于y 轴对称, 又f (x )在[0,+∞)上单调递增, f (2x -1)<f (13),所以|2x -1|<13,所以13<x <23.(2)∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1,∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4,故选A. 命题点2 求参数问题例4 (1)(2016·北京西城区模拟)函数f (x )=lg(a +21+x)为奇函数,则实数a =________.(2)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫32,则a +3b 的值为________. 答案 (1)-1 (2)-10解析 (1)根据题意得,使得函数有意义的条件为a +21+x>0且1+x ≠0,由奇函数的性质可得f (0)=0. 所以lg(a +2)=0,即a =-1,经检验a =-1满足函数的定义域. (2)因为f (x )是定义在R 上且周期为2的函数, 所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12且f (-1)=f (1), 故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1,即3a +2b =-2.① 由f (-1)=f (1),得-a +1=b +22, 即b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.思维升华 (1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.(2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.(1)若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.(2)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ) A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25) C .f (11)<f (80)<f (-25) D .f (-25)<f (80)<f (11)答案 (1)-32(2)D解析 (1)函数f (x )=ln(e 3x +1)+ax 是偶函数,故f (-x )=f (x ),即ln(e-3x+1)-ax =ln(e 3x +1)+ax ,化简得ln1+e 3x e 3x +e 6x =2ax =ln e 2ax ,即1+e 3x e 3x +e 6x =e2ax ,整理得e 3x +1=e 2ax +3x (e 3x +1),所以2ax +3x =0,解得a =-32. (2)因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3). 由f (x )是定义在R 上的奇函数且满足f (x -4)=-f (x ), 得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数, 所以f (x )在区间[-2,2]上是增函数, 所以f (-1)<f (0)<f (1). 所以f (-25)<f (80)<f (11).2.抽象函数问题考点分析 抽象函数问题在高考中也时常遇到,常常涉及求函数的定义域,由函数的周期性求函数值或判断函数的奇偶性等.一般以选择题或填空题来呈现,有时在解答题中也有所体现.此类题目较为抽象,易失分,应引起足够重视. 一、抽象函数的定义域典例1 已知函数y =f (x )的定义域是[0,8],则函数g (x )=f (x 2-1)2-log 2(x +1)的定义域为________.解析 要使函数有意义, 需使⎩⎪⎨⎪⎧0≤x 2-1≤8,x +1>0,2-log 2(x +1)≠0,即⎩⎪⎨⎪⎧1≤x 2≤9,x >-1,x ≠3,解得1≤x <3,所以函数g (x )的定义域为[1,3). 答案 [1,3)二、抽象函数的函数值典例2 若定义在实数集R 上的偶函数f (x )满足f (x )>0,f (x +2)=1f (x ),对任意x ∈R 恒成立,则f (2 019)等于( )A .4B .3C .2D .1 解析 因为f (x )>0,f (x +2)=1f (x ), 所以f (x +4)=f [(x +2)+2]=1f (x +2)=11f (x )=f (x ), 即函数f (x )的周期是4,所以f (2 019)=f (505×4-1)=f (-1). 因为函数f (x )为偶函数, 所以f (2 019)=f (-1)=f (1).当x =-1时,f (-1+2)=1f (-1),得f (1)=1f (1).即f (1)=1,所以f (2 019)=f (1)=1. 答案 D三、抽象函数的单调性与不等式典例3 设函数f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ).若f (3)=1,且f (a )>f (a -1)+2,求实数a 的取值范围. 规范解答解 因为f (xy )=f (x )+f (y )且f (3)=1, 所以2=2f (3)=f (3)+f (3)=f (9).又f (a )>f (a -1)+2,所以f (a )>f (a -1)+f (9). 再由f (xy )=f (x )+f (y ),可知f (a )>f [9(a -1)],因为f (x )是定义在(0,+∞)上的增函数, 从而有⎩⎪⎨⎪⎧a >0,9(a -1)>0,a >9(a -1),解得1<a <98.故所求实数a 的取值范围是(1,98).1.(2017·石家庄质检)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =1xB .y =|x |-1C .y =lg xD .y =(12)ln x答案 B解析 对于A ,y =1x 为奇函数;对于C ,y =lg x 的定义域为(0,+∞); 对于D ,y =(12)ln x 的定义域为(0,+∞).2.(2016·兰州模拟)已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13 B.13 C .-12 D.12答案 B解析 依题意得f (-x )=f (x ), ∴b =0,又a -1=-2a , ∴a =13,∴a +b =13,故选B.3.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(-2,0)时,f (x )=2x 2,则f (2 019)等于( ) A .-2 B .2 C .-98 D .98 答案 B解析 由f (x +4)=f (x )知,f (x )是周期为4的周期函数, f (2 019)=f (504×4+3)=f (3), 又f (x +4)=f (x ),∴f (3)=f (-1), 由-1∈(-2,0)得f (-1)=2, ∴f (2 019)=2.4.已知f (x )=lg(21-x+a )为奇函数,则使f (x )<0的x 的取值范围是( )A .(-∞,0)B .(-1,0)C .(0,1)D .(-∞,0)∪(1,+∞)答案 B解析 由f (x )+f (-x )=0,即lg(21-x +a )+lg(21+x +a )=lg (2+a )2-a 2x 21-x 2=lg 1=0可得a =-1,所以f (x )=lg1+x 1-x ,解得0<1+x1-x<1,可得-1<x <0. 5.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=⎩⎪⎨⎪⎧cos π6x (0<x ≤8),log 2x (x >8),则f (f (-16))等于( )A .-12B .-32 C.12 D.32答案 C解析 由题意f (-16)=-f (16)=-log 216=-4, 故f (f (-16))=f (-4)=-f (4)=-cos4π6=12. *6.(2016·天津)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是( ) A.⎝⎛⎭⎫-∞,12 B.⎝⎛⎭⎫-∞,12∪⎝⎛⎭⎫32,+∞ C.⎝⎛⎭⎫12,32 D.⎝⎛⎭⎫32,+∞答案 C解析 因为f (x )是定义在R 上的偶函数且在区间(-∞,0)上单调递增,所以f (-x )=f (x )且f (x )在(0,+∞)上单调递减.由f (2|a -1|)>f (-2),f (-2)=f (2)可得2|a -1|<2,即|a -1|<12,所以12<a <32.7.(2016·湖南四校联考)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,g (x ),x <0,若f (x )为奇函数,则g (-14)=________.答案 2解析 g (-14)=f (-14)=-f (14)=-log 214=-log 22-2=2.8.(2016·济南模拟)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1+x ),则f (-52)=________.答案 -32解析 因为f (x )是周期为2的奇函数,所以f (-52)=-f (52)=-f (12)=-[2×12(1+12)]=-32.9.函数f (x )在R 上为奇函数,且当x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案 --x -1解析 ∵f (x )为奇函数,当x >0时,f (x )=x +1, ∴当x <0时,-x >0, f (-x )=-x +1=-f (x ),即x <0时,f (x )=-(-x +1)=--x -1.10.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=2x ,则有:①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数; ③函数f (x )的最大值是1,最小值是0. 其中所有正确命题的序号是________. 答案 ①②解析 在f (x +1)=f (x -1)中,令x -1=t , 则有f (t +2)=f (t ),因此2是函数f (x )的周期,故①正确; 当x ∈[0,1]时,f (x )=2x 是增函数,根据函数的奇偶性知,f (x )在[-1,0]上是减函数,根据函数的周期性知,函数f (x )在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知,f (x )在[0,2]上的最大值f (x )max =f (1)=2,f (x )的最小值f (x )min =f (0)=f (2)=20=1且f (x )是周期为2的周期函数,∴f (x )的最大值是2,最小值是1,故③错误. 11.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ). 于是x <0时,f (x )=x 2+mx =x 2+2x , 所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].12.设f (x )是定义在R 上的奇函数,且对任意实数x 恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2. (1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2 018). (1)证明 ∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ), ∴f (x )是周期为4的周期函数.(2)解 ∵x ∈[2,4],∴-x ∈[-4,-2], ∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2 =-x 2+6x -8,又f (4-x )=f (-x )=-f (x ), ∴-f (x )=-x 2+6x -8, 即f (x )=x 2-6x +8,x ∈[2,4].(3)解 ∵f (0)=0,f (1)=1,f (2)=0,f (3)=-1. 又f (x )是周期为4的周期函数, ∴f (0)+f (1)+f (2)+f (3) =f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0. ∴f (0)+f (1)+f (2)+…+f (2 018) =f (2 016)+f (2 017)+f (2 018) =f (0)+f (1)+f (2)=1.*13.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围. 解 (1)∵对于任意x 1,x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0. (2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1), ∴f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ), ∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数, ∴f (x -1)<2⇔f (|x -1|)<f (16). 又f (x )在(0,+∞)上是增函数,∴0<|x -1|<16,解之得-15<x <17且x ≠1, ∴x 的取值范围是{x |-15<x <17且x ≠1}.第3讲 函数的奇偶性与周期性一、选择题1.设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)等于( ).A .3B .1C .-1D .-3 解析 由f (-0)=-f (0),即f (0)=0.则b =-1,f (x )=2x +2x -1,f (-1)=-f (1)=-3. 答案 D2.已知定义在R 上的奇函数,f (x )满足f (x +2)=-f (x ),则f (6)的值为 ( ).A .-1B .0C .1D .2 解析 (构造法)构造函数f (x )=sin π2x ,则有f (x +2)=sin ⎣⎢⎡⎦⎥⎤π2x +2=-sin π2x =-f (x ),所以f (x )=sin π2x 是一个满足条件的函数,所以f (6)=sin 3π=0,故选B. 答案 B3.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则下列不等式一定成立的是( ).A .f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3B .f (sin 1)<f (cos 1)C .f ⎝ ⎛⎭⎪⎫sin π6<f ⎝ ⎛⎭⎪⎫cos π6D .f (cos 2)>f (sin 2)解析 当x ∈[-1,1]时,x +4∈[3,5],由f (x )=f (x +2)=f (x +4)=2-|x +4-4|=2-|x |, 显然当x ∈[-1,0]时,f (x )为增函数;当x ∈[0,1]时,f (x )为减函数,cos 2π3=-12,sin 2π3=32>12,又f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12>f ⎝ ⎛⎭⎪⎫32,所以f ⎝ ⎛⎭⎪⎫cos 2π3>f ⎝ ⎛⎭⎪⎫sin 2π3.答案 A4.已知函数f (x )=⎩⎨⎧1-2-x ,x ≥0,2x -1,x <0,则该函数是( ).A .偶函数,且单调递增B .偶函数,且单调递减C .奇函数,且单调递增D .奇函数,且单调递减解析 当x >0时,f (-x )=2-x -1=-f (x );当x <0时,f (-x )=1-2-(-x )=1-2x =-f (x ).当x =0时,f (0)=0,故f (x )为奇函数,且f (x )=1-2-x 在[0,+∞)上为增函数,f (x )=2x -1在(-∞,0)上为增函数,又x ≥0时1-2-x ≥0,x <0时2x -1<0,故f (x )为R 上的增函数. 答案 C5.已知f (x )是定义在R 上的周期为2的周期函数,当x ∈[0,1)时,f (x )=4x -1,则f (-5.5)的值为( )A .2B .-1C .-12 D .1解析 f (-5.5)=f (-5.5+6)=f (0.5)=40.5-1=1. 答案 D6.设函数D (x )=⎩⎨⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是( ).A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数D .D (x )不是单调函数解析 显然D (x )不单调,且D (x )的值域为{0,1},因此选项A 、D 正确.若x 是无理数,-x ,x +1是无理数;若x 是有理数,-x ,x +1也是有理数.∴D (-x )=D (x ),D (x +1)=D (x ).则D (x )是偶函数,D (x )为周期函数,B 正确,C 错误. 答案 C 二、填空题7.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.解析 由题意知,函数f (x )=x 2-|x +a |为偶函数,则f (1)=f (-1),∴1-|1+a |=1-|-1+a |,∴a =0. 答案 08.已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.解析 因为y =f (x )+x 2是奇函数,且x =1时,y =2,所以当x =-1时,y =-2,即f (-1)+(-1)2=-2,得f (-1)=-3,所以g (-1)=f (-1)+2=-1. 答案 -19.设奇函数f (x )的定义域为[-5,5],当x ∈[0,5]时,函数y =f (x )的图象如图所示,则使函数值y <0的x 的取值集合为________.解析 由原函数是奇函数,所以y =f (x )在[-5,5]上的图象关于坐标原点对称,由y =f (x )在[0,5]上的图象,得它在[-5,0]上的图象,如图所示.由图象知,使函数值y <0的x 的取值集合为(-2,0)∪(2,5).答案 (-2,0)∪(2,5)10. 设f (x )是偶函数,且当x >0时是单调函数,则满足f (2x )=f ⎝ ⎛⎭⎪⎫x +1x +4的所有x 之和为________. 解析 ∵f (x )是偶函数,f (2x )=f ⎝⎛⎭⎪⎫x +1x +4, ∴f (|2x |)=f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪x +1x +4, 又∵f (x )在(0,+∞)上为单调函数, ∴|2x |=⎪⎪⎪⎪⎪⎪x +1x +4, 即2x =x +1x +4或2x =-x +1x +4,整理得2x 2+7x -1=0或2x 2+9x +1=0,设方程2x 2+7x -1=0的两根为x 1,x 2,方程2x 2+9x +1=0的两根为x 3,x 4. 则(x 1+x 2)+(x 3+x 4)=-72+⎝ ⎛⎭⎪⎫-92=-8.答案 -8 三、解答题11.已知f (x )是定义在R 上的不恒为零的函数,且对任意x ,y ,f (x )都满足f (xy )=yf (x )+xf (y ). (1)求f (1),f (-1)的值;(2)判断函数f(x)的奇偶性.解(1)因为对定义域内任意x,y,f(x)满足f(xy)=yf(x)+xf(y),所以令x=y=1,得f(1)=0,令x=y=-1,得f(-1)=0.(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0得f(-x)=-f(x),所以f(x)是(-∞,+∞)上的奇函数.12.已知函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(1)=-2.(1)求证f(x)是奇函数;(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明令x=y=0,知f(0)=0;再令y=-x,则f(0)=f(x)+f(-x)=0,所以f(x)为奇函数.(2)解任取x1<x2,则x2-x1>0,所以f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)<0,所以f(x)为减函数.而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6.所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.13.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,(1)求证:f(x)是周期函数;(2)当x∈[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.解析(1)证明函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.(2) 当x∈[1,2]时,2-x∈[0,1],又f(x)的图象关于x=1对称,则f(x)=f(2-x)=22-x-1,x∈[1,2].(3) ∵f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1又f(x)是以4为周期的周期函数.∴f(0)+f(1)+f(2)+…+f(2013)=f (2 012)+f (2 013)=f (0)+f (1)=1.14.已知函数f (x )的定义域为R ,且满足f (x +2)=-f (x ). (1)求证:f (x )是周期函数;(2)若f (x )为奇函数,且当0≤x ≤1时,f (x )=12x ,求使f (x )=-12在[0,2 014]上的所有x 的个数.(1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ), ∴f (x )是以4为周期的周期函数. (2)解 当0≤x ≤1时,f (x )=12x , 设-1≤x ≤0,则0≤-x ≤1, ∴f (-x )=12(-x )=-12x .∵f (x )是奇函数,∴f (-x )=-f (x ), ∴-f (x )=-12x ,即f (x )=12x . 故f (x )=12x (-1≤x ≤1). 又设1<x <3,则-1<x -2<1, ∴f (x -2)=12(x -2).又∵f (x )是以4为周期的周期函数∴f (x -2)=f (x +2)=-f (x ),∴-f (x )=12(x -2), ∴f (x )=-12(x -2)(1<x <3). ∴f (x )=⎩⎪⎨⎪⎧12x ,-1≤x ≤1,-12(x -2),1<x <3.由f (x )=-12,解得x =-1. ∵f (x )是以4为周期的周期函数,∴f(x)=-12的所有x=4n-1(n∈Z).令0≤4n-1≤2 014,则14≤n≤2 0154.又∵n∈Z,∴1≤n≤503(n∈Z),∴在[0,2 014]上共有503个x使f(x)=-1 2.。
高一数学必修一函数奇偶性和周期性基础知识点及提高练习
函数的奇偶性与周期性提高精讲 奇函数 偶函数 定义如果对于函数fx 的定义域内的任意一个x 都有f -x =-fx ,那么函数fx 是奇函数 都有f -x =fx ,那么函数fx 是偶函数 特点 图象关于原点对称 图象关于y 轴对称1.函数fx =0,x ∈R 既是奇函数又是偶函数2.奇偶函数常用结论:1两个偶函数相加所得的和为偶函数.2两个奇函数相加所得的和为奇函数.3一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.4两个偶函数相乘所得的积为偶函数.5两个奇函数相乘所得的积为偶函数.6一个偶函数与一个奇函数相乘所得的积为奇函数.3.周期函数:对于函数y =fx ,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有fx +T =fx ,那么就称函数y =fx 为周期函数,称T 为这个函数的周期.4.周期函数常见结论:1若fx +a =fx -a ,则函数的周期为2a .2若fx +a =-fx ,则函数的周期为2a .3若fx+a =()x f 1a>0,则函数的周期为2a . 4若fx +a =-()x f 1,则函数的周期为2a . 5.对称函数如果函数()y f x =满足()()f a x f b x +=-,则函数()y f x =的图象关于直线2a b x +=对称.练习:1.设fx 是周期为2的奇函数,当0≤x ≤1时,fx =2x 1-x ,则f =________.2.若函数fx =为奇函数,则a =3.已知fx =ax 2+bx 是定义在a -1,2a 上的偶函数,那么a +b 的值是A .-BD .- 难点一奇偶性与不等式1.若函数fx =是奇函数,则使fx >3成立的x 的取值范围为A .-∞,-1B .-1,0C0,1 D .1,+∞难点二求解析式1.若定义在R 上的偶函数fx 和奇函数gx 满足fx +gx =e x ,则gx =A.e x-e-e x+e-x e-x-e x De x-e-x2.若函数fx=x ln x+为偶函数,则a=________.3.已知fx是定义在R上的奇函数,当x>0时,fx=x2-4x,则不等式fx>x的解集用区间表示为________.4.设偶函数fx满足fx=x3-8x≥0,则{x|fx-2>0}=A.{x|x<-2或x>4}B{x|x<0或x>4}C.{x|x<0或x>6} D.{x|x<-2或x>2}难点三奇偶性与周期性综合1.已知fx是定义在R上的偶函数,且对任意x∈R都有fx+4=fx+f2,则f2014等于A0B.3C.4 D.62.已知定义在R上的奇函数fx满足fx+1=-fx,且在0,1上单调递增,记a=f,b=f2,c =f3,则a,b,c的大小关系为A a>b=c B.b>a=c C.b>c>a D.a>c>b3.设fx是定义在R上的以3为周期的奇函数,若f2>1,f2014=,则实数a的取值范围是________.难点四奇偶性、对称性、周期性1.已知函数fx是-∞,+∞上的奇函数,且fx的图象关于x=1对称,当x∈0,1时,fx=2x-1,则f2013+f2014的值为A.-2B.-1C.0 D12.定义在R上的函数fx满足f-x=-fx,fx-2=fx+2,且x∈-1,0时,fx=2x+,则f log220=A-C.1 D.-终极难度定义证明、赋值法、求参数1.定义在R上的函数fx对任意a,b∈R都有fa+b=fa+fb+kk为常数.1判断k为何值时fx为奇函数,并证明;2设k=-1,fx是R上的增函数,且f4=5,若不等式fmx2-2mx+3>3对任意x∈R恒成立,求实数m的取值范围.2.已知函数fx对任意实数x,y恒有fx+y=fx+fy,且当x>0时,fx<0,又f1=-2.1判断fx的奇偶性;2求证:fx是R上的减函数;3求fx在区间-3,3上的值域;4若x∈R,不等式fax2-2fx<fx+4恒成立,求a的取值范围.跟踪练习1.已知函数=-=+-=)(.)(.11lg)(a f b a f x x x f 则若 A .b B .-b C .b 1 D .-b1 2.已知函数)(x f y =在R 是奇函数,且当0≥x 时,x x x f 2)(2-=,求:0<x 时,)(x f 的解析式3.定义在]11[,-上的函数)(x f y =是减函数,且是奇函数,若0)54()1(2>-+--a f a a f ,求实数a 的范围.。
高中 函数的奇偶性与周期性知识点+例题+练习 含答案
正数,那么这个最小正数就叫做f(x)的最小正周期.辨析感悟1.对奇偶函数的认识及应用(1)函数y=x2,x∈(0,+∞)是偶函数.( )(2)偶函数图象不一定过原点,奇函数的图象一定过原点.( )(3)(教材习题改编)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.( )(4)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.( )(5)(2013·山东卷改编)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1x,则f(-1)=-2.( )(6)(2014·菏泽模拟)已知函数y=f(x)是定义在R上的偶函数,且在(-∞,0)上是减函数,若f(a)≥f(2),则实数a的取值范围是[-2,2].( )2.对函数周期性的理解(7)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a >0)的周期函数.( )(8)(2013·湖北卷改编)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]在R上是周期函数.( )[感悟·提升]1.两个防范一是判断函数的奇偶性之前务必先考查函数的定义域是否关于原点对称,若不对称,则该函数一定是非奇非偶函数,如(1);二是若函数f(x)是奇函数,则f(0)不一定存在;若函数f(x)的定义域包含0,则必有f(0)=0,如(2).2.两个结论一是若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称;若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称,如(4).二是若对任意x∈D都有f(x+a)=-f(x),则f(x)是以2a为周期的函数;若对任意x∈D都有f(x+a)=±1f x(f(x)≠0),则f(x)也是以2a为周期的函数,如(7)(8).教学过程【例3】(经典题)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则f(-25),f(11),f(80)的大小顺序为________.规律方法关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.【训练3】设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)+…+f(2 014).教学效果分析。
函数的性质练习(奇偶性、单调性、周期性、对称性)(附答案)
函数的性质练习(奇偶性,单调性,周期性,对称性)1、定义在R 上的奇函数)(x f ,周期为6,那么方程0)(=x f 在区间[6,6-]上的根的个数可能是A.0B.1C.3D.52、f (x )是定义在R 上的以3为周期的偶函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数至少是( )A .1B .4C .3D .23、已知)(x f 是R 上的偶函数,)(x g 是R 上的奇函数,且)(x g =)1(-x f ,那么=)3120(fA.0B.2C. 2-D.2± 4、已知112)(-+=x x x f ,那么=+++++-+-+-)8()6()4()2()0()2()4()6(f f f f f f f f A.14 B.15 C. 16- D.165、已知)(x f 的定义域为R ,若)1()1(+-x f x f 、都为奇函数,则A.)(x f 为偶函数B.)(x f 为奇函数C.)(x f =)2(+x fD.)3(+x f 为奇函数6、定义在R 上的函数)(x f 对任意的实数x 都有)1()1(--=+x f x f ,则下列结论一定成立的是A.)(x f 的周期为4B. )(x f 的周期为6C. )(x f 的图像关于直线1=x 对称D. )(x f 的图像关于点(1 , 0) 对称 7、定义在R 上的函数)(x f 满足:)()(x f x f -=-,)1()1(x f x f -=+,当∈x [1-, 1] 时,3)(x x f =,则=)2013(fA.1-B.0C.1D.28、定义在R 上的函数)(x f 对任意的实数x 都有)2()2(x f x f -=+,并且)1(+x f 为 偶函数. 若3)1(=f ,那么=)101(fA.1B.2C.3D.49、已知f (x )(x ∈R)为奇函数,f (2)=1,f (x +2)=f (x )+f (2),则f (3)等于( )A.12 B .1 C.32 D .2 10、若奇函数f (x )(x ∈R)满足f (3)=1,f (x +3)=f (x )+f (3),则f ⎝⎛⎭⎫32 等于( )A .0B .1 C.12 D .-1211、已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)12、设()f x 为定义在R 上的奇函数,满足()()2f x f x +=-,当01x ≤≤时()f x x =,则 ()7.5f 等于 ( )A .0.5B .0.5-C .1.5D . 1.5-13、设()f x 是定义在R 上的偶函数,且在(-∞,0)上是增函数,则()2f -与()223f a a -+ (a R ∈)的大小关系是 ( )A .()2f -<()223f a a -+B .()2f -≥()223f a a -+C .()2f ->()223f aa -+D .与a 的取值无关14、若函数()f x 为奇函数,且当0x >时,()1f x x =-,则当0x <时,有 ( )A .()f x 0>B .()f x 0<C .()f x ()f x -≤0D .()f x -()f x -0> 15、已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是( )A .a ≤-3B .a ≥-3C .a ≤5D .a ≥317、已知函数()()221,f x x ax b b a b R =-++-+∈对任意实数x 都有()()11f x f x -=+ 成立,若当[]1,1x ∈-时,()0f x >恒成立,则b 的取值范围是 ( ) A .10b -<< B .2b >C .12b b <->或 D .不能确定 18、已知函数()()2223f x x x =+-,那么( )A .()y f x =在区间[]1,1-上是增函数B .()y f x =在区间(],1-∞-上是增函数C .()y f x =在区间[]1,1-上是减函数D .()y f x =在区间(],1-∞-上是减函数19、函数()y f x =在()0,2上是增函数,函数()2y f x =+是偶函数,则下列结论中正确的 是 ( ) A .()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ B .()57122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭ C .()75122f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()75122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭20、设函数()f x 是R 上的奇函数,且当0x >时,()23xf x =-,则()2f -等于( )A .1-B .114C .1D .114-21、设函数)(x f 是R 上的偶函数,且在()+∞,0上是减函数,且12210x x x x >>+,,则 A.)()(21x f x f > B.)()(21x f x f = C.)()(21x f x f < D.不能确定23、已知函数=)(x f ⎩⎨⎧<-≥-0,10,sin x e x x x x ,若)()2(2a f a f >-,则实数a 取值范围是A. (1,-∞-)),2(+∞B. (1,2-)C. (2,1-)D. (2,-∞-)+∞,1( )24、已知)(x f 是定义在R 上的不恒为零的偶函数,且对任意x 都有)()1()1(x f x x xf +=+, 那么)25(f =A .0B .1C .2D .3二、填空题:24、设()y f x =是R 上的减函数,则()3y fx =-的单调递减区间为25、已知()f x 为偶函数,()g x 是奇函数,且()f x ()22g x x x -=+-,则()f x 、()g x 分别为 ; 26、定义在()1,1-上的奇函数()21x mf x x nx +=++,则常数m = ,n = ;28、.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+.(1)求证: ()f x 是奇函数;(2)若(3),(24)f a a f -=试用表示.29、若()f x 是定义在()0,+∞上的增函数,且()()x f f x f y y ⎛⎫=- ⎪⎝⎭⑴求()1f 的值;⑵若()61f =,解不等式()132f x f x ⎛⎫+-< ⎪⎝⎭.30.函数()f x 对于x>0有意义,且满足条件(2)1,()()(),()f f xy f x f y f x ==+是减函数。
2021届新课改高三数学复习:函数的奇偶性与周期性(教师版)
f(x-1)≤f(2x),可得|x-1|≥|2x|,即(x-1)2≥4x2,
1
解得-1≤x≤3.
{ ) -2 ≤ x-1 ≤ 2,
又因为定义域为[-2,2],所以 -2 ≤ 2x ≤ 2,
{ ) -1 ≤ x ≤ 3,
1
解得 -1 ≤ x ≤ 1. ∴-1≤x≤3.
3、函数 y=f(x)在[0,2]上单调递增,且函数 f(x+2)是偶函数,则下列结论成立的是( )
1 (3)若 f(x+a)=-f(x),则 T=2a(a>0). 6、函数图象的对称性 (1)若函数 y=f(x+a)是偶函数,即 f(a-x)=f(a+x),则函数 y=f(x)的图象关于直线 x=a 对称. (2)若对于 R 上的任意 x 都有 f(2a-x)=f(x)或 f(-x)=f(2a+x),则 y=f(x)的图象关于直线 x=a 对称. (3)若函数 y=f(x+b)是奇函数,即 f(-x+b)+f(x+b)=0,则函数 y=f(x)关于点(b,0)中心对称.
A. ①③ B. ①④ C. ②③ D. ③④
【答案】A
x 2, x>0,
f (x) 0,x 0,
【解析】 根据偶函数的定义,①③正确,若举例奇函数
x 2, x<0,
由于 f(-2)=f(2),∴②④都错误.故填写①③.
2、(2019·郴州第二次教学质量检测)已知 f(x)是定义在[2b,1-b]上的偶函数,且在[2b,0]上为增函数,则
『高考复习|学与练』
『汇总归纳·备战高考』
高考复习·学与练
精品资源·备战高考
2
高考复习·学与练
第 9 讲:函数的奇偶性与周期性
1、课程标准 1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数图象理解和研究函数的奇偶性. 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.
高三数学专项复习函数的奇偶性与周期性专项练习题答案
高三数学专项复习 函数的奇偶性与周期性一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.定义在R 上的函数f (x )满足:f (x )·f (x +2)=13,f (1)=2,则f (99)=( )A .13B .2C.132D.213解析:由f (x )·f (x +2)=13,知f (x +2)·f (x +4)=13,所以f (x +4)=f (x ),即f (x )是周期函数,周期为4.所以f (99)=f (3+4×24)=f (3)=13f (1)=132. 答案:C2.(2010·郑州)定义在R 上的函数f (x )满足:对于任意α,β∈R ,总有f (α+β)-[f (α)+f (β)]=2010,则下列说法正确的是( )A .f (x )-1是奇函数B .f (x )+1是奇函数C .f (x )-2010是奇函数D .f (x )+2010是奇函数解析:依题意,取α=β=0,得f (0)=-2010;取α=x ,β=-x ,得f (0)-f (x )-f (-x )=2010,f (-x )+2010=-[f (x )-f (0)]=-[f (x )+2010],因此函数f (x )+2010是奇函数,选D.答案:D3.设f (x )是定义在R 上以2为周期的偶函数,已知x ∈(0,1)时,f (x )=log 12(1-x ),则函数f (x )在(1,2)上( )A .是增函数,且f (x )<0B .是增函数,且f (x )>0C .是减函数,且f (x )<0D .是减函数,且f (x )>0解析:由题意得当x ∈(1,2)时,0<2-x <1,0<x -1<1,f (x )=f (-x )=f (2-x )=log 12[1-(2-x )]=log 12(x -1)>0,则可知当x ∈(1,2)时,f (x )是减函数,选D.答案:D4.设f (x )是连续的偶函数,且当x >0时是单调函数,则满足f (x )=f ⎝⎛⎭⎪⎫x +3x +4的所有x 之和为( ) A .-3 B .3C .-8D .8 解析:因为f (x )是连续的偶函数,且x >0时是单调函数,由偶函数的性质可知若f (x )=f ⎝ ⎛⎭⎪⎫x +3x +4,只有两种情况:①x =x +3x +4;②x +x +3x +4=0.由①知x 2+3x -3=0,故两根之和为x 1+x 2=-3.由②知x 2+5x +3=0,故其两根之和为x 3+x 4=-5.因此满足条件的所有x 之和为-8.答案:C5.已知奇函数f (x )在区间[3,7]上是增函数,且最小值为5,那么函数f (x )在区间[-7,-3]上() A .是增函数且最小值为-5B .是增函数且最大值为-5C .是减函数且最小值为-5D .是减函数且最大值为-5解析:∵f (x )为奇函数,∴f (x )的图象关于原点对称.∵f (x )在[3,7]上是增函数,∴f (x )在[-7,-3]上也是增函数.∵f (x )在[3,7]上的最小值为5,∴由图可知函数f (x )在[-7,-3]上有最大值-5.答案:B评析:本题既涉及到函数的奇偶性,又涉及到函数的单调性,还涉及到函数的最值,是一道综合性较强的题目,由于所给的函数没有具体的解析式,因此我们画出函数f (x )在区间[3,7]上的示意图,由图形易得结论.6.(2010·新课标全国)设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}解析:当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8,又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8,∴f (x )=⎩⎪⎨⎪⎧ x 3-8,x ≥0-x 3-8,x <0. ∴f (x -2)=⎩⎪⎨⎪⎧(x -2)3-8,x ≥2-(x -2)3-8,x <2, ⎩⎨⎧ x ≥2(x -2)3-8>0或⎩⎨⎧x <2-(x -2)3-8>0, 解得x >4或x <0.故选B.答案:B二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.(2010·江苏)设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________. 解析:设g (x )=x ,h (x )=e x +a e -x ,因为函数g (x )=x 是奇函数,则由题意知,函数h (x )=e x +a e -x 为奇函数,又函数f (x )的定义域为R ,∴h (0)=0,解得a =-1.答案:-18.已知函数f (x +1)是奇函数,f (x -1)是偶函数,且f (0)=2,则f (4)=________.解析:依题意有f (-x +1)=-f (x +1),f (-x -1)=f (x -1),所以f (4)=f (-(-3)+1)=-f (-2)=-f (-1-1)=-f (0)=-2.答案:-29.(2010·湖北八校)设函数f (x )的定义域、值域分别为A 、B ,且A ∩B 是单元集,下列命题①若A ∩B ={a },则f (a )=a ;②若B 不是单元集,则满足f [f (x )]=f (x )的x 值可能不存在;③若f (x )具有奇偶性,则f (x )可能为偶函数;④若f (x )不是常数函数,则f (x )不可能为周期函数.其中,正确命题的序号为________.解析:如f (x )=x +1,A =[-1,0],B =[0,1]满足A ∩B ={0},但f (0)≠0,且满足f [f (x )]=f (x )的x 可能不存在,①错,②正确;如,f (x )=1,A =R ,B ={1},则f (x )=1,A =R 是偶函数,③正确;如f (x )=x -2k +1,A =[2k -1,2k ],B =[0,1],k ∈Z ,f (x )是周期函数,但不是常数函数,所以④错误.答案:②③10.对于定义在R 上的函数f (x ),有下述四个命题,其中正确命题的序号为________.①若f (x )是奇函数,则f (x -1)的图象关于点A (1,0)对称;②若对x ∈R ,有f (x +1)=f (x -1),则y =f (x )的图象关于直线x =1对称;③若函数f (x -1)的图象关于直线x =1对称,则f (x )为偶函数;④函数y =f (1+x )与函数y =f (1-x )的图象关于直线x =1对称.解析:f (x -1)的图象是由f (x )的图象向右平移一个单位而得到,又f (x )是奇函数,其图象关于原点对称,所以f (x -1)的图象关于点A (1,0)对称,故①正确;由f (x +1)=f (x -1)可知f (x )的周期为2,无法判断其对称轴,故②错误;f (x -1)的图象关于直线x =1对称,则f (x )关于y 轴对称,故f (x )为偶函数,③正确;y =f (1+x )的图象是由y =f (x )的图象向左平移一个单位后得到,y =f (1-x )是由y =f (x )的图象关于y 轴对称后再向右平移一个单位而得到,两者图象关于y 轴对称,故④错误.答案:①③三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数. (1)求a 、b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.分析:(1)由f (0)=0可求得b ,再由特殊值或奇函数定义求得a ;(2)先分析函数f (x )的单调性,根据单调性去掉函数符号f ,然后用判别式解决恒成立问题.解:(1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即b -1a +2=0⇒b =1, 所以f (x )=1-2xa +2x +1, 又由f (1)=-f (-1)知1-2a +4=-1-12a +1⇒a =2. (2)由(1)知f (x )=1-2x2+2x +1=-12+12x +1, 易知f (x )在(-∞,+∞)上为减函数.又因f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2,即对t ∈R 有:3t 2-2t -k >0,从而Δ=4+12k <0⇒k <-13. 12.设函数f (x )的定义域为R ,对于任意的实数x ,y ,都有f (x +y )=f (x )+f (y ),当x >0时,f (x )<0,求证:(1)f (x )为奇函数;(2)f (x )在(-∞,+∞)上是减函数.证明:(1)令x =y =0,得f (0)=f (0)+f (0),∴f (0)=0.再令y =-x ,得f (0)=f (x )+f (-x ),∴f (-x )=-f (x ),∴f (x )为奇函数.(2)设x 1、x 2∈(-∞,+∞)且x 1<x 2,则x 2-x 1>0,∵当x >0时,f (x )<0,∴f (x 2-x 1)<0.又∵对于任意的实数x ,y 都有f (x +y )=f (x )+f (y )且f (x )为奇函数, ∴f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1).∴f (x 2)-f (x 1)<0,∴f (x )在(-∞,+∞)上是减函数.13.设函数f (x )的定义域关于原点对称,且满足①f (x 1-x 2)=f (x 1)f (x 2)+1f (x 2)-f (x 1); ②存在正常数a ,使f (a )=1.求证:(1)f (x )是奇函数;(2)f (x )是周期函数,并且有一个周期为4a .证明:(1)不妨令x =x 1-x 2,则f (-x )=f (x 2-x 1)=f (x 2)f (x 1)+1f (x 1)-f (x 2)=-f (x 1)f (x 2)+1f (x 2)-f (x 1)=-f (x 1-x 2) =-f (x ).∴f (x )是奇函数.(2)要证f (x +4a )=f (x ),可先计算f (x +a ),f (x +2a ),∵f (x +a )=f [x -(-a )]=f (-a )f (x )+1f (-a )-f (x )=-f (a )f (x )+1-f (a )-f (x )=f (x )-1f (x )+1,(f (a )=1).∴f(x+2a)=f[(x+a)+a]=f(x+a)-1f(x+a)+1=f(x)-1f(x)+1-1f(x)-1f(x)+1+1=-1f(x).∴f(x+4a)=f[(x+2a)+2a]=1-f(x+2a)=f(x)故f(x)是以4a为周期的周期函数.。
专题51 高中数学正、余弦函数的周期性与奇偶性(解析版)
专题51 正、余弦函数的周期性与奇偶性知识点一 函数的周期性(1)一般地,对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. (3)记f (x )=sin x ,则由sin(2k π+x )=sin x (k ∈Z),得f (x +2k π)=f (x )(k ∈Z)对于每一个非零常数2k π(k ∈Z)都成立,余弦函数同理也是这样,所以正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它们的周期,最小正周期都为2π.2.正弦函数、余弦函数的周期性和奇偶性(1)定义法:即利用周期函数的定义求解.(2)公式法:对形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(A ,ω,φ是常数,A ≠0,ω≠0)的函数,T =2π|ω|.(3)图象法:即通过观察函数图象求其周期.提醒:y =|A sin(ωx +φ)|(A ≠0,ω≠0)的最小正周期T =π|ω|.2.与三角函数奇偶性有关的结论(1)要使y =A sin(ωx +φ)(Aω≠0)为奇函数,则φ=k π(k ∈Z); (2)要使y =A sin(ωx +φ)(Aω≠0)为偶函数,则φ=k π+π2(k ∈Z);(3)要使y =A cos(ωx +φ)(Aω≠0)为奇函数,则φ=k π+π2(k ∈Z);(4)要使y =A cos(ωx +φ)(Aω≠0)为偶函数,则φ=k π(k ∈Z).题型一 三角函数的周期问题及简单应用1.下列函数中,周期为π2的是( )A .y =sin xB .y =sin2xC .y =cos x2 D .y =cos4x[解析]∵T =π2=2π|ω|,∴|ω|=4,而ω>0,∴ω=42.利用周期函数的定义求下列函数的周期.(1)y =cos 2x ,x ∈R ;(2)y =sin ⎝⎛⎭⎫13x -π4,x ∈R.[解析] (1)因为cos 2(x +π)=cos(2x +2π)=cos 2x ,由周期函数的定义知,y =cos 2x 的周期为π.(2)因为sin ⎣⎡⎦⎤13(x +6π)-π4=sin ⎝⎛⎭⎫13x +2π-π4=sin ⎝⎛⎭⎫13x -π4, 由周期函数的定义知,y =sin ⎝⎛⎭⎫13x -π4的周期为6π. 3.求下列函数的最小正周期.(1)y =sin ⎝⎛⎭⎫2x +π3;(2)f (x )=2sin ⎝⎛⎭⎫x 2-π6;(3)f (x )=cos ⎝⎛⎭⎫-2x +π3;(4)f (x )=|sin x |. [解析] (1)∵sin ⎝⎛⎭⎫2x +π3+2π=sin ⎝⎛⎭⎫2x +π3,∴sin ⎣⎡⎦⎤2(x +π)+π3=sin ⎝⎛⎭⎫2x +π3,∴y =sin ⎝⎛⎭⎫2x +π3的周期是π. (2)解法一:∵2sin ⎝⎛⎭⎫x 2-π6+2π=2sin ⎣⎡⎦⎤12(x +4π)-π6=2sin ⎝⎛⎭⎫x 2-π6,∴f (x +4π)=f (x ), ∴f (x )=2sin ⎝⎛⎭⎫x 2-π6的周期是4π. 解法二:∵ω=12,∴T =2π12=4π.(3)f (x )=cos ⎝⎛⎭⎫-2x +π3=cos ⎝⎛⎭⎫2x -π3. ∵cos ⎝⎛⎭⎫2x -π3+2π=cos ⎣⎡⎦⎤2(x +π)-π3=cos ⎝⎛⎭⎫2x -π3,∴f (x +π)=f (x ),∴T =π. (4)f (x )=|sin x |的图象如图所示.∴周期T =π.4.求下列函数的周期.(1)y =3sin ⎝⎛⎭⎫π2x +3;(2)y =|cos x |;(3)y =3cos ⎝⎛⎭⎫π6-3x ;(4)y =sin ⎝⎛⎭⎫2x -π4. [解析] (1)解法一:y =3sin ⎝⎛⎭⎫π2x +3+2π=3sin ⎣⎡⎦⎤π2(x +4)+3=3sin ⎝⎛⎭⎫π2x +3, 令y =f (x ),则f (x +4)=f (x ),∴y =3sin ⎝⎛⎭⎫π2x +3的周期为4. 解法二:ω=π2,∴T =2πω=2ππ2=4.(2)y =|cos x |的图象如下图所示.∴周期T =π.(3)解法一:y =3cos ⎝⎛⎭⎫π6-3x =3cos ⎝⎛⎭⎫3x -π6. ∵3cos ⎝⎛⎭⎫3x -π6+2π=3cos ⎣⎡⎦⎤3⎝⎛⎭⎫x +2π3-π6=3cos ⎝⎛⎭⎫3x -π6, 令y =f (x ),则f ⎝⎛⎭⎫x +2π3=f (x ),∴y =3cos ⎝⎛⎭⎫π6-3x 的周期为2π3. 解法二:∵|ω|=3,∴T =2π|ω|=2π3.(4)解法一:y =sin ⎝⎛⎭⎫2x -π4=sin ⎝⎛⎭⎫2x -π4+2π=sin ⎣⎡⎦⎤2(x +π)-π4,令y =f (x ),则f (x +π)=f (x ), ∴y =sin ⎝⎛⎭⎫2x -π4的周期为π. 解法二:∵ω=2,∴T =2πω=2π2=π.5.函数y =|cos x |-1的最小正周期为[解析]因为函数y =|cos x |-1的周期同函数y =|cos x |的周期一致,由函数y =|cos x |的图象(略)知其最小正周期为π,所以y =|cos x |-1的最小正周期也为π. 6.函数y =⎪⎪⎪⎪sin x2的最小正周期是 [解析]∵y =sin x2的周期为4π,∴y =⎪⎪⎪⎪sin x 2的周期为2π 7.如图所示的是定义在R 上的四个函数的图象,其中不是周期函数的图象的是( )[解析]观察图象易知,只有D 选项中的图象不是周期函数的图象. 8.设a >0,若函数y =sin(ax +π)的最小正周期是π,则a =________. [解析]由题意知T =2πa=π,所以a =2.9.函数f (x )=sin ⎝⎛⎭⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于[解析] 由已知得2π|ω|=π5,又ω>0,所以2πω=π5,ω=10.10.若函数f (x )=2cos ⎝⎛⎭⎫ωx +π3的最小正周期为T ,且T ∈(1,4),则正整数ω的最大值为________. [解析]T =2πω,1<2πω<4,则π2<ω<2π,∴ω的最大值是6.11.函数y =cos ⎝⎛⎭⎫k 4x +π3(k >0)的最小正周期不大于2,则正整数k 的最小值应是________. [解析] 由题意得2πk 4=8πk ≤2,∴k ≥4π.∴正整数k 的最小值为4π.12.函数y =cos(sin x )的最小正周期是[解析] ∵y =cos[sin(x +π)]=cos(-sin x )=cos(sin x ),∴函数y =cos(sin x )的最小正周期为π.13.函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x +π4+2的最小正周期是________. [解析]∵函数y =sin2x 的最小正周期T =π,∴函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x +π4+2的最小正周期为π2. 14.若函数f (x )的定义域为R ,最小正周期为3π2,且满足f (x )=⎩⎪⎨⎪⎧cos x ,-π2≤x <0sin x ,0≤x <π,则f ⎝⎛⎭⎫-15π4=________. [解析]∵T =3π2,∴f ⎝⎛⎭⎫-15π4=f ⎝⎛⎭⎫-15π4+3π2×3=f ⎝⎛⎭⎫3π4=sin 3π4=22. 15.设函数f (x )=3sin ⎝⎛⎭⎫ωx +π6,ω>0,x ∈R ,且以π2为最小正周期.若f ⎝⎛⎭⎫α4+π12=95,则sin α的值为_____.[解析]因为f (x )的最小正周期为π2,ω>0,所以ω=2ππ2=4.所以f (x )=3sin ⎝⎛⎭⎫4x +π6. 因为f ⎝⎛⎭⎫α4+π12=3sin ⎝⎛⎭⎫α+π3+π6=3cos α=95,所以cos α=35.所以sin α=±1-cos 2α=±45. 16.已知f (n )=sin n π4(n ∈Z),则f (1)+f (2)+…+f (100)=________.[解析]f (1)+f (2)+…+f (8)=0,f (9)+f (10)+…+f (16)=0,依此循环, f (1)+f (2)+…+f (100)=0+f (97)+f (98)+f (99)+f (100)=2+1. 17.设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 019)=[解析]∵f (x )=sin π3x 的周期T =2ππ3=6,∴f (1)+f (2)+f (3)+…+f (2 019)=336[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 017)+f (2 018)+f (2 019)=336sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π+f (336×6+1)+f (336×6+2)+f (336×6+3)=336×0+f (1)+f (2)=sin π3+sin 23π+sin 33π= 3.18.已知f (x )是R 上的奇函数,且f (x +2)=-f (x ).(1)求证:f (x )是以4为周期的函数; (2)当0≤x ≤1时,f (x )=x ,求f (7.5)的值.[解析] (1)证明:f (x +4)=f [(x +2)+2]=-f (x +2)=-[-f (x )]=f (x ),所以f (x )是以4为周期的函数.(2)由(1)可知f (x +4)=f (x ),所以f (7.5)=f (3.5+4)=f (3.5)=f (-0.5+4)=f (-0.5)=-f (0.5)=-0.5. 19.已知f (x )=sin ax (a >0)的最小正周期为12.(1)求a 的值;(2)求f (1)+f (2)+f (3)+…+f (2019). [解析] (1)由2πa =12,得a =π6.(2)∵f (x )=sin π6x 的最小正周期为12,且f (1)+f (2)+…+f (12)=0,所以f (1)+f (2)+f (3)+…+f (2019)=f (1)+f (2)+f (3)+…+f (2017)+f (2018)+f (2019) =0+f (2017)+f (2018)+f (2019)=0+f (1)+f (2)+f (3)=0+sin π6+sin π3+sin π2=3+32.20.已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)此函数是周期函数吗?若是,求其最小正周期.[解析](1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π](k ∈Z ),图象如下:(2)由图象知该函数是周期函数,且周期是2π. 21.已知函数y =12cos x +12|cos x |.(1)画出函数的图象;(2)这个函数是周期函数吗?如果是,求出它的最小正周期.[解析] (1)y =12cos x +12|cos x |=⎩⎨⎧cos x ,x ∈⎝⎛⎦⎤2k π-π2,2k π+π2(k ∈Z )0,x ∈⎝⎛⎦⎤2k π+π2,2k π+3π2(k ∈Z ),函数图象如图所示.(2)由图象知这个函数是周期函数,且最小正周期是2π.22.已知函数f (x )=cos ⎝⎛⎭⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤-π2,π2时,g (x )=f ⎝⎛⎭⎫x2,求关于x 的方程g (x )=32的解集. [解析]当x ∈⎣⎡⎦⎤-π2,π2时,g (x )=f ⎝⎛⎭⎫x 2=cos ⎝⎛⎭⎫x +π3.因为x +π3∈⎣⎡⎦⎤-π6,5π6,所以由g (x )=32解得x +π3=-π6或π6,即x =-π2或-π6.又因为g (x )的最小正周期为π,所以g (x )=32的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π-π2或x =k π-π6,k ∈Z . 题型二 三角函数奇偶性的判断1.判断下列函数的奇偶性:(1)f (x )=sin ⎝⎛⎭⎫-12x +π2;(2)f (x )=lg(1-sin x )-lg(1+sin x ); (3)f (x )=1+sin x -cos 2x 1+sin x;(4)f (x )=x sin ⎝⎛⎭⎫π2+x ;(5)f (x )=2sin ⎝⎛⎭⎫2x +3π2. [解析] (1)显然x ∈R ,f (x )=cos 12x ,∵f (-x )=cos ⎝⎛⎭⎫-12x =cos 12x =f (x ),∴f (x )是偶函数. (2)由⎩⎪⎨⎪⎧1-sin x >0,1+sin x >0,得-1<sin x <1,解得定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R 且x ≠k π+π2,k ∈Z , ∴f (x )的定义域关于原点对称.又∵f (x )=lg(1-sin x )-lg(1+sin x ),∴f (-x )=lg [1-s i n (-x )]-lg [1+s i n (-x )]=lg(1+sin x )-lg(1-sin x )=-f (x ),∴f (x )为奇函数. (3)∵1+sin x ≠0,∴sin x ≠-1,∴x ∈R 且x ≠2k π-π2,k ∈Z.∵定义域不关于原点对称,∴该函数是非奇非偶函数.(4)函数f (x )=x sin ⎝⎛⎭⎫π2+x 的定义域为R.∵f (x )=x sin ⎝⎛⎭⎫π2+x =x cos x , ∴f (-x )=(-x )·cos(-x )=-x cos x =-f (x ),∴f (x )是奇函数. (5)f (x )=2sin ⎝⎛⎭⎫2x +3π2=-2cos2x ,定义域为R. ∵f (-x )=-2cos(-2x )=-2cos2x =f (x ),∴f (x )是偶函数. 2.判断下列函数的奇偶性.(1)f (x )=3cos2x ;(2)f (x )=sin ⎝⎛⎭⎫2x 3+π2+2;(3)f (x )=x ·cos x . [解析] (1)因为x ∈R ,f (-x )=3cos(-2x )=3cos2x =f (x ), 所以f (x )=3cos2x 是偶函数.(2)因为x ∈R ,f (x )=sin ⎝⎛⎭⎫2x 3+π2+2=cos 2x 3+2,所以f (-x )=cos 2(-x )3+2=cos 2x3+2=f (x ), 所以函数f (x )=sin ⎝⎛⎭⎫2x 3+π2+2是偶函数.(3)因为x ∈R ,f (-x )=-x ·cos(-x )=-x ·cos x =-f (x ),所以f (x )=x cos x 是奇函数. 3.判断下列函数的奇偶性.(1)f (x )=sin ⎝⎛⎭⎫3x 4+3π2;(2)f (x )=sin|x |;(3)f (x )=1-cos x +cos x -1. [解析] (1)因为函数的定义域为R ,f (x )=sin ⎝⎛⎭⎫3x 4+3π2=-cos 3x4, 所以f (-x )=-cos ⎝⎛⎭⎫-3x 4=-cos 3x4=f (x ),所以函数f (x )=sin ⎝⎛⎭⎫3x 4+3π2是偶函数. (2)因为函数的定义域为R ,f (-x )=sin|-x |=sin|x |=f (x ),所以函数f (x )=sin|x |是偶函数.(3)由⎩⎪⎨⎪⎧1-cos x ≥0,cos x -1≥0,得cos x =1,所以x =2k π(k ∈Z),此时f (x )=0,故该函数既是奇函数又是偶函数. 4.判断下列函数的奇偶性:(1)f (x )=-2cos 3x ;(2)f (x )=x sin(x +π);(3)f (x )=|sin x |+cos x ;(4)f (x )=cos(2π-x )-x 3·sin x . [解析] (1)f (-x )=-2cos 3(-x )=-2cos 3x =f (x ),x ∈R ,所以f (x )=-2cos 3x 为偶函数.(2)f (x )=x sin(x +π)=-x sin x ,x ∈R ,所以f (-x )=x sin(-x )=-x sin x =f (x ),故函数f (x )为偶函数. (3)函数的定义域为R ,又f (-x )=|sin(-x )|+cos(-x )=|sin x |+cos x =f (x ),所以f (x )是偶函数. (4)函数的定义域为R ,关于原点对称,因为f (x )=cos x -x 3·sin x ,所以f (-x )=cos(-x )-(-x )3·sin(-x )=cos x -x 3·sin x =f (x ),所以f (x )为偶函数.5.判断函数f (x )=lg(sin x +1+sin 2x )的奇偶性.[解析]∵f (-x )=lg[sin(-x )+1+sin 2(-x )]=lg(1+sin 2x -sin x )=lg (1+sin 2x )-sin 2x 1+sin 2x +sin x=lg(sin x +1+sin 2x )-1=-lg(sin x +1+sin 2x )=-f (x ). 又当x ∈R 时,均有sin x +1+sin 2x >0,∴f (x )是奇函数. 6.f (x )=sin x cos x 是________(填“奇”或“偶”)函数.[解析]x ∈R 时,f (-x )=sin(-x )cos(-x )=-sin x cos x =-f (x ),即f (x )是奇函数. 7.函数y =cos ⎝⎛⎭⎫-12x +π2的奇偶性为( ) A .奇函数 B .偶函数 C .非奇非偶函数D .既是奇函数,又是偶函数 [解析]函数的定义域为R ,且y =cos ⎝⎛⎭⎫-12x +π2=sin 12x ,故所给函数是奇函数. 8.函数y =|sin x |(1-sin x )1-sin x的奇偶性为( )A .奇函数B .既是奇函数也是偶函数C .偶函数D .非奇非偶函数[解析]由题意知,当1-sin x ≠0,即sin x ≠1时,y =|sin x |(1-sin x )1-sin x =|sin x |,所以函数的定义域为⎩⎨⎧⎭⎬⎫x |x ≠2k π+π2,k ∈Z ,由于定义域不关于原点对称,所以该函数是非奇非偶函数.9.若f (x )是R 上的偶函数,当x ≥0时,f (x )=sin x ,则f (x )的解析式是________. [解析]当x <0时,-x >0,f (-x )=sin(-x )=-sin x ,∵f (-x )=f (x ), ∴x <0时,f (x )=-sin x .∴f (x )=sin|x |,x ∈R.10.若f (x )为奇函数,当x >0时,f (x )=cos x -sin x ,当x <0时,f (x )的解析式为________. [解析]f (x )=-cos x -sin x [x <0时,-x >0,f (-x )=cos(-x )-sin(-x )=cos x +sin x ,因为f (x )为奇函数,所以f (x )=-f (-x )=-cos x -sin x ,即x <0时,f (x )=-cos x -sin x . 11.若函数f (x )=sin ⎝⎛⎭⎫12x -φ是偶函数,则φ的一个取值为( ) A .2010π B .-π8 C .-π4D .-π2[解析]当φ=-π2时,f (x )=sin ⎝⎛⎭⎫12x +π2=cos 12x 为偶函数,故选D. 12.函数f (x )=sin(2x +φ)为R 上的奇函数,则φ的值可以是( )A.π4B.π2 C .π D.3π2[解析]要使函数f (x )=sin(2x +φ)为R 上的奇函数,需φ=k π,k ∈Z.故选C. 13.已知函数f (x )=2sin ⎝⎛⎭⎫x +π4+φ是奇函数,则φ的值可以是( ) A .0 B .-π4 C .π2D .π[解析]法一:f (x )=2sin ⎝⎛⎭⎫x +π4+φ为奇函数,则只需π4+φ=k π,k ∈Z ,从而φ=k π-π4,k ∈Z . 显然当k =0时,φ=-π4满足题意.法二:因为f (x )是奇函数,所以f (0)=0,即2sin ⎝⎛⎭⎫π4+φ=0,所以φ+π4=k π(k ∈Z ), 即φ=k π-π4,令k =0,则φ=-π4.14.若0<α<π2,g (x )=sin(2x +π4+α)是偶函数,则α的值为________.[解析]要使g (x )=sin(2x +π4+α)为偶函数,则须π4+α=k π+π2,k ∈Z.所以α=k π+π4,k ∈Z.因为0<α<π2,所以α=π4.15.已知a ∈R ,函数f (x )=sin x -|a |,x ∈R 为奇函数,则a 等于________. [解析]因为f (x )=sin x -|a |,x ∈R 为奇函数,所以f (0)=sin 0-|a |=0,所以a =0. 16.已知f (x )=a sin x +bx 3c cos x,若f (5)=-2,则f (-5)=________.[解析]f (x )=a sin x +bx 3c cos x ,则f (-x )=a sin (-x )+b (-x )3c cos (-x )=-a sin x +bx 3c cos x =-f (x ),所以f (x )是奇函数.所以f (-5)=-f (5)=2.题型三 三角函数的奇偶性与周期性的综合应用1.下列函数中是奇函数,且最小正周期是π的函数是( )A .y =cos|2x |B .y =|sin 2x |C .y =sin ⎝⎛⎭⎫π2+2x D .y =cos ⎝⎛⎭⎫3π2-2x [解析]y =cos|2x |是偶函数,y =|sin 2x |是偶函数,y =sin ⎝⎛⎭⎫π2+2x =cos 2x 是偶函数, y =cos ⎝⎛⎭⎫3π2-2x =-sin 2x 是奇函数,根据公式得其最小正周期T =π. 2.已知函数f (x )=sin ⎝⎛⎭⎫πx -π2-1,则下列命题正确的是( ) A .f (x )是周期为1的奇函数 B .f (x )是周期为2的偶函数C .f (x )是周期为1的非奇非偶函数D .f (x )是周期为2的非奇非偶函数 [解析]∵f (x )=sin ⎝⎛⎭⎫πx -π2-1=-sin ⎝⎛⎭⎫π2-πx -1=-cos(πx )-1 ∴T =2ππ=2,而f (-x )=f (x ),∴f (x )为偶函数.3.函数f (x )=3sin ⎝⎛⎭⎫23x +15π2是( )A .周期为3π的偶函数B .周期为2π的偶函数C .周期为3π的奇函数D .周期为4π3的偶函数[解析]∵f (x )=3sin ⎝⎛⎭⎫23x +6π+π+π2=3sin ⎣⎡⎦⎤π+⎝⎛⎭⎫π2+2x 3=-3sin ⎝⎛⎭⎫π2+23x =-3cos 23x ∴T =2π23=3π,而f (-x )=f (x ),则f (x )为偶函数.4.定义在R 上的函数f (x )既是偶函数,又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎡⎦⎤0,π2时, f (x )=sin x ,则f ⎝⎛⎭⎫5π3等于[解析]f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫5π3-π=f ⎝⎛⎭⎫2π3=f ⎝⎛⎭⎫2π3-π=f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=sin π3=32. 5.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝⎛⎭⎫π4=1,则f ⎝⎛⎭⎫3π4的值为 [解析]由已知得f (x +π)=f (x ),f (-x )=-f (x ),所以f ⎝⎛⎭⎫3π4=f ⎝⎛⎭⎫3π4-π=f ⎝⎛⎭⎫-π4=-f ⎝⎛⎭⎫π4=-1. 6.设定义在R 上的函数f (x )满足f (x )·f (x +2)=13.若f (1)=2,则f (99)=________. [解析]因为f (x )·f (x +2)=13,所以f (x +2)=13f (x ),所以f (x +4)=13f (x +2)=1313f (x )=f (x ), 所以函数f (x )是周期为4的周期函数,所以f (99)=f (3+4×24)=f (3)=13f (1)=132.7.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)= [解析]因为f (x +4)=f (x ),所以函数的周期是4.因为f (x )在R 上是奇函数,且当x ∈(0,2)时,f (x )=2x 2, 所以f (7)=f (7-8)=f (-1)=-f (1)=-2.8.函数f (x )是以4为周期的奇函数,且f (-1)=1,则sin ⎣⎡⎦⎤πf (5)+π2=________. [解析] ∵函数f (x )是以4为周期的奇函数,且f (-1)=1,∴f (5)=f (4+1)=f (1)=-f (-1)=-1,则原式=sin ⎝⎛⎭⎫-π+π2=-sin π2=-1.9.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎡⎦⎤0,π2时, f (x )=sin x ,求f ⎝⎛⎭⎫5π3的值.[解析]∵f (x )的最小正周期是π,∴f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫5π3-2π=f ⎝⎛⎭⎫-π3. ∵f (x )是R 上的偶函数,∴f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=sin π3=32.∴f ⎝⎛⎭⎫5π3=32. 10.设函数f (x )(x ∈R)满足f (-x )=f (x ),f (x +2)=f (x ),则函数y =f (x )的图象是( )[解析]由f (-x )=f (x ),则f (x )是偶函数,图象关于y 轴对称.由f (x +2)=f (x ),则f (x )的周期为2.11.已知f (x )是以π为周期的偶函数,且x ∈⎣⎡⎦⎤0,π2时,f (x )=1-sin x ,当x ∈⎣⎡⎦⎤5π2,3π时,求f (x )的解析式. [解析] x ∈⎣⎡⎦⎤5π2,3π时,3π-x ∈⎣⎡⎦⎤0,π2,因为x ∈⎣⎡⎦⎤0,π2时,f (x )=1-sin x , 所以f (3π-x )=1-sin(3π-x )=1-sin x .又f (x )是以π为周期的偶函数,所以f (3π-x )=f (-x )=f (x ),所以f (x )的解析式为f (x )=1-sin x ,x ∈⎣⎡⎦⎤5π2,3π.12.关于x 的函数f (x )=sin(x +φ)有以下说法:①对任意的φ,f (x )都是非奇非偶函数;②存在φ,使f (x )是偶函数;③存在φ,使f (x )是奇函数; ④对任意的φ,f (x )都不是偶函数.其中错误的是________(填序号).[解析]答案为①④,φ=0时,f (x )=sin x ,是奇函数,φ=π2时,f (x )=cos x 是偶函数. 13.已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )cos x <0的解集是______________________.[解析]∵f (x )是(-3,3)上的奇函数,∴g (x )=f (x )·cos x 是(-3,3)上的奇函数,从而观察图象(略)可知所求不等式的解集为⎝⎛⎭⎫-π2,-1∪(0,1)∪⎝⎛⎭⎫π2,3 14.设函数f (x )=sin ⎝⎛⎭⎫2k +13πx +π4(k ∈N *),若在区间[a ,a +3](a 为实数)上存在有不少于4个且不多于8个不同的x 0,使f (x 0)=12,求k 的值. [解析]∵f (x )在一个周期内有且只有2个不同的x 0,使f (x 0)=12,∴f (x )在区间[a ,a +3]上至少有2个周期,至多有4个周期.而这个区间的长度为3个单位,∴⎩⎪⎨⎪⎧2T ≤3,4T ≥3,即34≤T ≤32,即34≤62k +1≤32,解得32≤k ≤72,因为k ∈N *,∴k =2或k =3.。
北师大文科数学高考总复习教师用书:函数的奇偶性与周期性 含答案
第3讲函数的奇偶性与周期性最新考纲 1.结合具体函数,了解函数奇偶性的含义;2.会运用函数的图像理解和研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.知识梳理1.奇函数、偶函数图像关于原点对称的函数叫作奇函数.图像关于y轴对称的函数叫作偶函数.2.奇(偶)函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(填“相同”、“相反”).(2)在公共定义域内①两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数.②两个偶函数的和函数、积函数是偶函数.③一个奇函数,一个偶函数的积函数是奇函数.(3)若函数f(x)是奇函数且在x=0处有定义,则f(0)=0.3.函数的周期性(1)周期函数:对于函数y=f(x),如果存在非零常数T,对定义域内的任意一个x值,都有f(x+T)=f(x),就把f(x)称为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作f(x)的最小正周期.诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)函数y=x2在x∈(0,+∞)时是偶函数.()(2)若函数f(x)为奇函数,则一定有f(0)=0.()(3)若函数y=f(x+a)是偶函数,则函数y=f(x)的图像关于直线x=a对称.()(4)若函数y=f(x+b)是奇函数,则函数y=f(x)的图像关于点(b,0)中心对称.()解析(1)由于偶函数的定义域关于原点对称,故y=x2在(0,+∞)上不是偶函数,(1)错.(2)由奇函数定义可知,若f(x)为奇函数,其在x=0处有意义时才满足f(0)=0,(2)错.答案 (1)× (2)× (3)√ (4)√2.(2017·西安铁中月考)下列函数为奇函数的是( )A .y =xB .y =e xC .y =cos xD .y =e x -e -x 解析 A ,B 中显然为非奇非偶函数;C 中y =cos x 为偶函数.D 中函数定义域为R ,又f (-x )=e -x -e x =-(e x -e -x )=-f (x ),∴y =e x -e -x 为奇函数. 答案 D3.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13 B.13 C.12 D .-12解析 依题意b =0,且2a =-(a -1),∴a =13,则a +b =13. 答案 B4.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎨⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.解析 ∵f (x )的周期为2,∴f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12,又∵当-1≤x <0时,f (x )=-4x 2+2, ∴f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=-4×⎝ ⎛⎭⎪⎫-122+2=1. 答案 15.(2014·全国Ⅱ卷)偶函数y =f (x )的图像关于直线x =2对称,f (3)=3,则f (-1)=________.解析 ∵f (x )为偶函数,∴f (-1)=f (1). 又f (x )的图像关于直线x =2对称, ∴f (1)=f (3).∴f (-1)=3. 答案 3考点一 函数奇偶性的判断 【例1】 判断下列函数的奇偶性: (1)f (x )=3-x 2+x 2-3;(2)f (x )=lg (1-x 2)|x -2|-2;(3)f (x )=⎩⎨⎧ x 2+x ,x <0,-x 2+x ,x >0.解 (1)由⎩⎨⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3,即函数f (x )的定义域为{-3,3}, 从而f (x )=3-x 2+x 2-3=0. 因此f (-x )=-f (x )且f (-x )=f (x ), ∴函数f (x )既是奇函数又是偶函数.(2)由⎩⎨⎧1-x 2>0,|x -2|≠2,得定义域为(-1,0)∪(0,1),关于原点对称.∴x -2<0,∴|x -2|-2=-x ,∴f (x )=lg (1-x 2)-x .又∵f (-x )=lg[1-(-x )2]x =-lg (1-x 2)x =-f (x ),∴函数f (x )为奇函数.(3)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称. ∵当x <0时,-x >0,则f (-x )=-(-x )2-x =-x 2-x =-f (x ); 当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知:对于定义域内的任意x ,总有f (-x )=-f (x )成立,∴函数f (x )为奇函数. 规律方法 判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域; (2)判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价关系式f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数)是否成立.【训练1】 (1)(2017·佛山质检)下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =x +sin 2x B .y =x 2-cos xC.y=2x+12x D.y=x2+sin x(2)(2014·全国Ⅰ卷)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数解析(1)对于A,定义域为R,f(-x)=-x+sin 2(-x)=-(x+sin 2x)=-f(x),为奇函数;对于B,定义域为R,f(-x)=(-x)2-cos(-x)=x2-cos x=f(x),为偶函数;对于C,定义域为R,f(-x)=2-x+12-x=2x+12x=f(x),为偶函数;y=x2+sin x既不是偶函数也不是奇函数,故选D.(2)依题意得对任意x∈R,都有f(-x)=-f(x),g(-x)=g(x),因此,f(-x)g(-x)=-f(x)g(x)=-[f(x)·g(x)],f(x)g(x)是奇函数,A错;|f(-x)|·g(-x)=|-f(x)|·g(x)=|f(x)|g(x),|f(x)|g(x)是偶函数,B错;f(-x)|g(-x)|=-f(x)|g(x)|=-[f(x)|g(x)|],f(x)|g(x)|是奇函数,C正确;|f(-x)·g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,|f(x)g(x)|是偶函数,D错.答案(1)D(2)C考点二函数奇偶性的应用【例2】(1)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)等于()A.-3 B.-1 C.1 D.3(2)(2015·全国Ⅰ卷)若函数f(x)=x ln(x+a+x2)为偶函数,则a=________.解析(1)因为f(x)是偶函数,g(x)是奇函数,所以f(1)+g(1)=f(-1)-g(-1)=(-1)3+(-1)2+1=1.(2)f(x)为偶函数,则ln(x+a+x2)为奇函数,所以ln(x+a+x2)+ln(-x+a+x2)=0,则ln(a+x2-x2)=0,∴a=1.答案(1)C(2)1规律方法(1)已知函数的奇偶性求参数,一般采用待定系数法求解,根据f(x)±f(x)=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(2)已知函数的奇偶性求函数值或解析式,首先抓住在已知区间上的解析式,将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式或函数值.【训练2】 (1)(2015·山东卷)若函数f (x )=2x +12x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)(2)已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则f (x )=________. 解析 (1)易知f (-x )=2-x +12-x -a =2x +11-a 2x ,由f (-x )=-f (x ),得2x +11-a 2x =-2x +12x -a,即1-a 2x =-2x +a ,化简得a (1+2x )=1+2x ,所以a =1, f (x )=2x +12x -1,由f (x )>3,得0<x <1.(2)∵f (x )是定义在R 上的奇函数,∴f (0)=0. 又当x <0时,-x >0,∴f (-x )=x 2+4x . 又f (x )为奇函数,∴f (-x )=-f (x ), 则f (x )=-x 2-4x (x <0),∴f (x )=⎩⎨⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.答案 (1)C(2)⎩⎨⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.考点三 函数的周期性及其应用【例3】 (2016·四川卷)若函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (2)=________.解析 ∵f (x )是定义在R 上的奇函数, ∴f (0)=0,又f (x )在R 上的周期为2, ∴f (2)=f (0)=0.又f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-412=-2,∴f ⎝ ⎛⎭⎪⎫-52+f (2)=-2. 答案 -2规律方法 (1)根据函数的周期性和奇偶性求给定区间上的函数值或解析式时,应根据周期性或奇偶性,由待求区间转化到已知区间.(2)若f (x +a )=-f (x )(a 是常数,且a ≠0),则2a 为函数f (x )的一个周期. 【训练3】 已知f (x )是定义在R 上的偶函数,且f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=______.解析 f (x +4)=f [(x +2)+2]=-1f (x +2)=f (x ).故函数的周期为4.∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5). ∵2≤2.5≤3,由题意,得f (2.5)=2.5.∴f (105.5)=2.5. 答案 2.5考点四 函数性质的综合运用【例4】 (1)(2016·山东卷)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f (6)=( )A .-2B .-1C .0D .2(2)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log a )≤2f (1),则a 的取值范围是( )A .[1,2] B.⎝ ⎛⎦⎥⎤0,12 C.⎣⎢⎡⎦⎥⎤12,2 D .(0,2]解析 (1)当x >12时,由f (x +12)=f (x -12), 得f (x )=f (x +1),∴f (6)=f (1),又由题意知f (1)=-f (-1),且f (-1)=(-1)3-1=-2. 因此f (6)=-f (-1)=2.(2)由y=f(x)为偶函数,且f(log2a)+f(log a)≤2f(1).∴f(log2a)+f(-log2a)≤2f(1)⇒f(log2a)≤f(1),又f(log2a)=f(|log2a|)且f(x)在[0,+∞)上递增,∴|log2a|≤1⇔-1≤log2a≤1.解得12≤a≤2.答案(1)D(2)C规律方法(1)函数单调性与奇偶性的综合.注意函数单调性及奇偶性的定义以及奇、偶函数图像的对称性.(2)周期性与奇偶性的综合.此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.【训练4】(1)已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且g(x)=f(x-1),则f(2 017)+f(2 019)的值为()A.-1 B.1 C.0 D.2(2)设函数f(x)=(x+1)2+sin xx2+1的最大值为M,最小值为m.则M+m=________.解析(1)由题意,得g(-x)=f(-x-1),又∵f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,∴g(-x)=-g(x),f(-x)=f(x),∴f(x-1)=-f(x+1),即f(x-1)+f(x+1)=0.∴f(2 017)+f(2 019)=f(2 018-1)+f(2 018+1)=0.(2)f(x)=x2+2x+1+sin xx2+1=1+2x+sin xx2+1,令g(x)=2x+sin xx2+1,则g(-x)=-g(x),∴g(x)为奇函数,由奇函数图像的对称性知g(x)max+g(x)min=0,故M+m=2.答案(1)C(2)2[思想方法]1.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.利用函数奇偶性可以解决以下问题:(1)求函数值;(2)求解析式;(3)求函数解析式中参数的值;(4)画函数图像,确定函数单调性.3.在解决具体问题时,要注意结论“若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期”的应用.[易错防范]1.f(0)=0既不是f(x)是奇函数的充分条件,也不是必要条件.2.函数f(x)满足的关系f(a+x)=f(b-x)表明的是函数图像的对称性,函数f(x)满足的关系f(a+x)=f(b+x)(a≠b)表明的是函数的周期性,在使用这两个关系时不要混淆.基础巩固题组(建议用时:40分钟)一、选择题1.(2017·肇庆三模)在函数y=x cos x,y=e x+x2,y=lg x2-2,y=x sin x中,偶函数的个数是()A.3 B.2 C.1 D.0解析y=x cos x为奇函数,y=e x+x2为非奇非偶函数,y=lg x2-2与y=x sin x为偶函数.答案 B2.(2015·湖南卷)设函数f(x)=ln(1+x)-ln(1-x),则f(x)是()A.奇函数,且在(0,1)内是增函数B.奇函数,且在(0,1)内是减函数C.偶函数,且在(0,1)内是增函数D.偶函数,且在(0,1)内是减函数解析 易知f (x )的定义域为(-1,1),且f (-x )=ln(1-x )-ln(1+x )=-f (x ),则y =f (x )为奇函数,又y =ln(1+x )与y =-ln(1-x )在(0,1)上是增函数, 所以f (x )=ln(1+x )-ln(1-x )在(0,1)上是增函数. 答案 A3.已知函数f (x )=x ⎝ ⎛⎭⎪⎫e x -1e x ,若f (x 1)<f (x 2),则( )A .x 1>x 2B .x 1+x 2=0C .x 1<x 2D .x 21<x 22解析 ∵f (-x )=-x ⎝ ⎛⎭⎪⎫1e x -e x =f (x ).∴f (x )在R 上为偶函数, f ′(x )=e x-1e x +x ⎝ ⎛⎭⎪⎫e x +1e x ,∴x >0时,f ′(x )>0,∴f (x )在[0,+∞)上为增函数, 由f (x 1)<f (x 2),得f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,∴x 21<x 22.答案 D4.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于( )A .4B .3C .2D .1解析 由已知得f (-1)=-f (1),g (-1)=g (1),则有⎩⎨⎧-f (1)+g (1)=2,f (1)+g (1)=4,解得g (1)=3.答案 B5.(2017·西安一模)奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .-1D .-2 解析 ∵f (x +1)为偶函数,∴f (-x +1)=f (x +1),则f (-x )=f (x +2),又y =f (x )为奇函数,则f (-x )=-f (x )=f (x +2),且f (0)=0. 从而f (x +4)=-f (x +2)=f (x ),y =f (x )的周期为4.∴f (4)+f (5)=f (0)+f (1)=0+2=2. 答案 A 二、填空题6.若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________. 解析 由于f (-x )=f (x ),∴ln(e -3x +1)-ax =ln(e 3x +1)+ax , 化简得2ax +3x =0(x ∈R ),则2a +3=0, ∴a =-32. 答案 -327.(2017·合肥质检)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎨⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=________.解析 由于函数f (x )是周期为4的奇函数,所以f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=f ⎝ ⎛⎭⎪⎫2×4-34+f ⎝ ⎛⎭⎪⎫2×4-76=f ⎝ ⎛⎭⎪⎫-34+f ⎝ ⎛⎭⎪⎫-76=-f ⎝ ⎛⎭⎪⎫34-f ⎝ ⎛⎭⎪⎫76=-316+sin π6=516. 答案 5168.定义在R 上的奇函数y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,则满足f (x )>0的x 的集合为________.解析 由奇函数y =f (x )在(0,+∞)上递增,且f ⎝ ⎛⎭⎪⎫12=0,得函数y =f (x )在(-∞,0)上递增,且f ⎝ ⎛⎭⎪⎫-12=0,∴f (x )>0时,x >12或-12<x <0. 答案⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <0或x >12 三、解答题9.设f (x )是定义域为R 的周期函数,最小正周期为2,且f (1+x )=f (1-x ),当-1≤x ≤0时,f (x )=-x .(1)判定f (x )的奇偶性;(2)试求出函数f (x )在区间[-1,2]上的表达式.解 (1)∵f (1+x )=f (1-x ),∴f (-x )=f (2+x ).又f (x +2)=f (x ),∴f (-x )=f (x ).又f (x )的定义域为R ,∴f (x )是偶函数.(2)当x ∈[0,1]时,-x ∈[-1,0],则f (x )=f (-x )=x ;进而当1≤x ≤2时,-1≤x -2≤0,f (x )=f (x -2)=-(x -2)=-x +2.故f (x )=⎩⎨⎧ -x ,x ∈[-1,0],x ,x ∈(0,1),-x +2,x ∈[1,2].10.已知函数f (x )=⎩⎨⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值; (2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图像知⎩⎨⎧a -2>-1,a -2≤1,所以1<a ≤3, 故实数a 的取值范围是(1,3].能力提升题组(建议用时:20分钟)11.(2017·南昌一模)已知f(x)是定义在R上的以3为周期的偶函数,若f(1)<1,f(5)=2a-3 a+1,则实数a的取值范围为()A.(-1,4) B.(-2,0)C.(-1,0) D.(-1,2)解析∵f(x)是定义在R上的周期为3的偶函数,∴f(5)=f(5-6)=f(-1)=f(1),∵f(1)<1,f(5)=2a-3a+1,∴2a-3a+1<1,即a-4a+1<0,解得-1<a<4.答案 A12.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图像关于x=1对称,且f(0)=2,则f(2 015)+f(2 016)=()A.0 B.2 C.3 D.4解析y=f(x-1)的图像关于x=1对称,则函数y=f(x)的图像关于x=0对称,即函数f(x)是偶函数,令x=-1,则f(-1+2)-f(-1)=2f(1),∴f(1)-f(1)=2f(1)=0,即f(1)=0,则f(x+2)-f(x)=2f(1)=0,即f(x+2)=f(x),则函数的周期是2,又f(0)=2,则f(2 015)+f(2 016)=f(1)+f(0)=0+2=2.答案 B13.(2017·东北四市联考)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图像在区间[0,6]上与x轴的交点个数为________.解析因为当0≤x<2时,f(x)=x3-x.又f(x)是R上最小正周期为2的周期函数,且f(0)=0,则f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,∴f(3)=f(5)=f(1)=0,故函数y =f (x )的图像在区间[0,6]上与x 轴的交点有7个.答案 714.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图像与x 轴所围成图形的面积.解 (1)由f (x +2)=-f (x )得,f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ),所以f (x )是以4为周期的周期函数,所以f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4.(2)由f (x )是奇函数且f (x +2)=-f (x ),得f [(x -1)+2]=-f (x -1)=f [-(x -1)],即f (1+x )=f (1-x ).故知函数y =f (x )的图像关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图像关于原点成中心对称,则f (x )的图像如下图所示.当-4≤x ≤4时,f (x )的图像与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4.特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.。
高中数学函数奇偶性与周期性练习题
函数的奇偶性与周期性1.下列函数中,既是奇函数,又是增函数的为( )A .1+=x yB .2x y -=C .xy 1= D .x x y = 2.设函数)(x f 为偶函数,当),0(+∞∈x 时,x x f 2log (=),则=-)2(f ( ) A .21- B .21 C .2 D .2- 3.函数)(x f 满足)()1(x f x f -=+,且当10≤≤x 时, )1(2)(x x x f -=,则)25(f 的值为( )A .21 B .41 C .41- D .21- 4.已知x x a x f 22)(+=为奇函数,)14(log )(2+-=x bx x g 为偶函数,则=)(ab f ( ) A .417 B .25 C .415- D .23- 5.定义在R 上的偶函数)(x f 满足:对任意的))(0[2121x x x x ≠∞+∈,,,有0)()(1212<--x x x f x f ,则( ) A .)1()2()3(f f f <-< B .)3()2()1(f f f <-<C .)3()1()2(f f f <<-D .)2()1()3(-<<f f f6.已知)(x f 是定义在R 上的周期为2的奇函数,当)1,0(∈x 时,13)(-=x x f ,则=)22019(f ( ) A .13+ B .13- C .13-- D .13+-7.已知函数t x x b x a x f ++-+=11lnsin (),若6)21()21(=-+f f ,则实数=t ( ) A .2- B . 1- C . 1 D .3 8.已知)(x f 是定义域为)11(,-的奇函数,而且)(x f 是减函数, 如果0)32()2(>-+-m f m f 那么实数m 的取值范围是( )A .)351(, B .)35(,-∞ C .)31(, D .)35(∞+,9.若函数ax e x f x ++=)1ln()(为偶函数,则实数a =10.设定义在R 上的函数同时满足以下条件:0)()(=-+x f x f ①)2()(+=x f x f ②12)(,10-=<≤x x f x 时③当, 则)25()2()23()1()21(f f f f f ++++=1.已知函数1222)(31+++=+x x x x f 的最大值为M ,最小值为m ,则M +m 等于( )A .0B .2C .4D .82.设函数211)1ln()(x x x f +-+=,则使得)12()(->x f x f 成立的x 的取值范围为3.已知函数⎪⎩⎪⎨⎧<+=>+-=00002)(22x mx x x x x x x f ,,,是奇函数(1)求实数m 的值(2)若函数)(x f 在区间]21[--a ,上单调递增,求实数a 的取值范围4.奇函数)(x f 的定义域为R ,若)2(+x f 为偶函数,且1)1(=f ,则)9()8(f f +=()A .-2B .-1C .0D .15.已知定义在R 上的奇函数)(x f 满足)()4(x f x f -=-,且在区间]20[,上是增函数,则( )A .)80()11()25(f f f <<-B .)25()11()80(-<<f f fC .)25()80()11(-<<f f fD .)11()80()25(f f f <<-6.定义在R 上的函数)(x f ,满足)()5(x f x f =+,当]03(,-∈x 时,1)(--=x x f , 当]20(,∈x 时,x x f 2log )(=,则)2019()3()2()1(f f f f +⋅⋅⋅+++的值等于() A .403 B .405 C .806 D809.7.设函数)(x f 是R 上的奇函数,)()2(x f x f -=+,当10≤≤x 时,x x f =)((1)求)(πf 的值(2)当44≤≤-x 时,求函数)x f (的图像与x 轴所围成图形的面积。
专题3.3--函数的奇偶性与周期性--教师版
专题3.3函数的奇偶性与周期性练基础1.(2021·海南海口市·高三其他模拟)已知函数()(0)f x kx b k =+≠,则“(0)0f =”是“函数()f x 为奇函数”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】化简“(0)0f =”和“函数()f x 为奇函数”,再利用充分必要条件的定义判断得解.【详解】(0)0f =,所以0b =,函数()f x 为奇函数,所以()()0f x kx b f x kx b -=-+=-=--=,所以0b =.所以“(0)0f =”是“函数()f x 为奇函数”的充分必要条件.故选:C2.(2021·福建高三三模)若函数()y f x =的大致图象如图所示,则()f x 的解析式可能是()A .()1xf x x =-B .()1x f x x=-C .()21x f x x =-D .()21x f x x =-【答案】C 【解析】利用排除法,取特殊值分析判断即可得答案解:由图可知,当(0,1)x ∈时,()0f x <,取12x =,则对于B ,112(101212f ==>-,所以排除B ,对于D ,1122()012314f ==>-,所以排除D ,当0x >时,对于A ,()1111x f x x x ==+--,此函数是由1y x =向右平移1个单位,再向上平移1个单位,所以1x >时,()1f x >恒成立,而图中,当1x >时,()f x 可以小于1,所以排除A,故选:C3.(2021·广东高三其他模拟)下列函数中,既是奇函数又在区间()0,1上单调递增的是()A.y =B .1y x x=+C .xx y ee =-﹣D .2log y x=【答案】C 【解析】利用函数奇偶性的定义和函数的解析式判断.【详解】A.函数y =的定义域是[0,)+∞,所以函数是非奇非偶函数,故错误;B.1y x x=+在()0,1上单调递减,故错误;C.因为()()()xx x x f x ee e ef x --=---=-=﹣,所以函数是奇函数,且在()0,1上单调递增,正确;D.因为()()22log =log f x x x f x -=-=,所以函数是偶函数,故错误;故选:C .4.(2021·湖南高三月考)定义函数1,()1,x D x x ⎧=⎨-⎩为有理数,为无理数,则下列命题中正确的是()A .()D x 不是周期函数B .()D x 是奇函数C .()yD x =的图象存在对称轴D .()D x 是周期函数,且有最小正周期【答案】C 【解析】当m 为有理数时恒有()()D x m D x +=,所以()D x 是周期函数,且无最小正周期,又因为无论x 是有理数还是无理数总有()()D x D x -=,所以函数()D x 为偶函数,图象关于y 轴对称.当m 为有理数时,()1,1,x D x m x ⎧+=⎨-⎩为有理数为无理数,()()D x m D x ∴+=,∴任何一个有理数m 都是()D x 的周期,()D x ∴是周期函数,且无最小正周期,∴选项A ,D 错误,若x 为有理数,则x -也为有理数,()()D x D x ∴=-,若x 为无理数,则x -也为无理数,()()D x D x ∴=-,综上,总有()()D x D x -=,∴函数()D x 为偶函数,图象关于y 轴对称,∴选项B 错误,选项C 正确,故选:C5.【多选题】(2021·淮北市树人高级中学高一期末)对于定义在R 上的函数()f x ,下列说法正确的是()A .若()f x 是奇函数,则()1f x -的图像关于点()1,0对称B .若对x ∈R ,有()()11f x f x =+-,则()f x 的图像关于直线1x =对称C .若函数()1f x +的图像关于直线1x =-对称,则()f x 为偶函数D .若()()112f x f x ++-=,则()f x 的图像关于点()1,1对称【答案】ACD 【解析】四个选项都是对函数性质的应用,在给出的四个选项中灵活的把变量x 加以代换,再结合函数的对称性、周期性和奇偶性就可以得到正确答案.【详解】对A ,()f x 是奇函数,故图象关于原点对称,将()f x 的图象向右平移1个单位得()1f x -的图象,故()1f x -的图象关于点(1,0)对称,正确;对B ,若对x ∈R ,有()()11f x f x =+-,得()()2f x f x +=,所以()f x 是一个周期为2的周期函数,不能说明其图象关于直线1x =对称,错误.;对C ,若函数()1f x +的图象关于直线1x =-对称,则()f x 的图象关于y 轴对称,故为偶函数,正确;对D ,由()()112f x f x ++-=得()()()()112,202f f f f +=+=,()()()()312,422,f f f f +-=+-= ,()f x 的图象关于(1,1)对称,正确.故选:ACD.6.【多选题】(2020·江苏南通市·金沙中学高一期中)已知偶函数()f x 在区间[)0,+∞上是增函数,则满足1(21)()3f x f -<的x 的取值是()A .0B .12C .712D .1【答案】BC 【解析】根据偶函数和单调性求得不等式的解,然后判断各选项..【详解】由题意1213x -<,解得1233x <<,只有BC 满足.故选:BC .7.【多选题】(2021·广东高三二模)函数()f x 的定义域为R ,且()1f x -与()1f x +都为奇函数,则下列说法正确的是()A .()f x 是周期为2的周期函数B .()f x 是周期为4的周期函数C .()2f x +为奇函数D .()3f x +为奇函数【答案】BD 【解析】AB 选项,利用周期函数的定义判断;CD 选项,利用周期性结合()1f x -,()1f x +为奇函数判断.【详解】因为函数()f x 的定义域为R ,且()1f x -与()1f x +都为奇函数,所以()()11f x f x --=--,()()11f x f x -+=-+,所以()()2f x f x =---,()()2f x f x =--+,所以()()22f x f x --=-+,即()()4f x f x +=,故B 正确A 错误;因为()()()3341f x f x f x +=+-=-,且()1f x -为奇函数,所以()3f x +为奇函数,故D 正确;因为()2f x +与()1f x +相差1,不是最小周期的整数倍,且()1f x +为奇函数,所以()2f x +不为奇函数,故C 错误.故选:BD.8.(2021·吉林高三二模(文))写出一个符合“对x R ∀∈,()()0f x f x +-=”的函数()f x =___________.【答案】3x (答案不唯一)【解析】分析可知函数()f x 的定义域为R ,且该函数为奇函数,由此可得结果.【详解】由题意可知,函数()f x 的定义域为R ,且该函数为奇函数,可取()3f x x =.故答案为:3x (答案不唯一).9.(2021·全国高三二模(理))已知()y f x =为R 上的奇函数,且其图象关于点()2,0对称,若()11f =,则()2021f =__________.【答案】1【解析】根据函数的对称性及奇函数性质求得函数周期为4,从而()2021(1)1f f ==.【详解】函数关于点()2,0对称,则()(4)f x f x =--,又()y f x =为R 上的奇函数,则()(4)(4)f x f x f x =--=-,因此函数的周期为4,因此()2021(1)1f f ==.故答案为:1.10.(2021·上海高三二模)已知函数()f x 的定义域为R ,函数()g x 是奇函数,且()()2x g x f x =+,若(1)1f =-,则(1)f -=___________.【答案】32-【解析】通过计算(1)(1)g g +-可得.【详解】因为()g x 是奇函数,所以(1)(1)0g g +-=,即1(1)2(1)02f f ++-+=,所以53(1)122f -=-=-.故答案为:32-.练提升1.(2021·安徽高三三模(文))若把定义域为R 的函数()f x 的图象沿x 轴左右平移后,可以得到关于原点对称的图象,也可以得到关于y 轴对称的图象,则关于函数()f x 的性质叙述一定正确的是()A .()()0f x f x -+=B .()()11f x f x -=-C .()f x 是周期函数D .()f x 存在单调递增区间【答案】C 【解析】通过举例说明选项ABD 错误;对于选项C 可以证明判断得解.【详解】定义域为R 的函数()f x 的图象沿x 轴左右平移后,可以得到关于原点对称的图象,也可以得到关于y 轴对称的图象,∴()f x 的图象既有对称中心又有对称轴,但()f x 不一定具有奇偶性,例如()sin 3f x x π⎛⎫=+⎪⎝⎭,由()()0f x f x -+=,则()f x 为奇函数,故选项A 错误;由()()11f x f x -=-,可得函数()f x 图象关于0x =对称,故选项B 错误;由()0f x =时,()f x 不存在单调递增区间,故选项D 错误;由已知设()f x 图象的一条对称抽为直线x a =,一个对称中心为(),0b ,且a b ¹,∴()()2f a x f x +=-,()()2f x f b x -=-+,∴()()22f a x f b x +=-+,∴()()()2222f a x b f b x b f x +-=-+-=-,∴()()()()442222f x a b f b x b f x a b f x +-=-+-=-+-=,∴()f x 的一个周期()4T a b =-,故选项C 正确.故选:C2.(2021·天津高三二模)已知函数()f x 在R 上是减函数,且满足()()f x f x -=-,若31log 10a f ⎛⎫=- ⎪⎝⎭,()3log 9.1b f =,()0.82c f =,则a ,b ,c 的大小关系为()A .a b c >>B .c b a >>C .b a c >>D .c a b>>【答案】B 【解析】根据对数运算性质和对数函数单调性可得331log log 9.1210->>,根据指数函数单调性可知0.822<;利用()f x 为减函数可知()()0.8331log log 9.1210f f f ⎛⎫-<< ⎪⎝⎭,结合()f x 为奇函数可得大小关系.【详解】33331log log 10log 9.1log 9210-=>>= ,0.822<即:0.8331log log 9.1210->>又()f x 是定义在R 上的减函数()()0.8331log log 9.1210f f f ⎛⎫∴-<< ⎪⎝⎭又()f x 为奇函数3311log log 1010f f⎛⎫⎛⎫∴-=- ⎪ ⎪⎝⎭⎝⎭()()0.8331log log 9.1210f f f ⎛⎫∴-<< ⎪⎝⎭,即:c b a >>.故选:B.3.(2021·陕西高三三模(理))已知函数f (x )为R 上的奇函数,且()(2)f x f x -=+,当[0,1]x ∈时,()22x xaf x =+,则f (101)+f (105)的值为()A .3B .2C .1D .0【答案】A 【解析】根据函数为奇函数可求得函数的解析式,再由()(2)f x f x -=+求得函数f (x )是周期为4的周期函数,由此可计算得选项.【详解】解:根据题意,函数f (x )为R 上的奇函数,则f (0)=0,又由x ∈[0,1]时,()22xx a f x =+,则有f (0)=1+a =0,解可得:a =﹣1,则有1()22xxf x =-,又由f (﹣x )=f (2+x ),即f (x +2)=﹣f (x ),则有f (x +4)=﹣f (x +2)=f (x ),即函数f (x )是周期为4的周期函数,则1313(101)(1)2,(105)(1)22222f f f f ==-===-=,故有f (101)+f (105)=3,故选:A .4.(2021·上海高三二模)若()f x 是R 上的奇函数,且()f x 在[0,)+∞上单调递增,则下列结论:①|()|y f x =是偶函数;②对任意的x ∈R 都有()|()|0f x f x -+=;③()()y f x f x =-在(,0]-∞上单调递增;④反函数1()y fx -=存在且在(,0]-∞上单调递增.其中正确结论的个数为()A .1B .2C .3D .4【答案】C 【解析】根据奇函数定义以及单调性性质,及反函数性质逐一进行判断选择.【详解】对于①,由()f x 是R 上的奇函数,得()()f x f x -=-,∴|()||()||()|-=-=f x f x f x ,所以|()|y f x =是偶函数,故①正确;对于②,由()f x 是R 上的奇函数,得()()0f x f x -+=,而()|()|f x f x =不一定成立,所以对任意的x ∈R ,不一定有()|()|0f x f x -+=,故②错误;对于③,因为()f x 是R 上的奇函数,且()f x 在[0,)+∞上单调递增,所以()f x 在(,0]-∞上单调递增,且()(0)0f x f £=,因此2()()[()]y f x f x f x =-=-,利用复合函数的单调性,知()()y f x f x =-在(,0]-∞上单调递增,故③正确.对于④,由已知得()f x 是R 上的单调递增函数,利用函数存在反函数的充要条件是,函数的定义域与值域是一一映射,且函数与其反函数在相应区间内单调性一致,故反函数1()y f x -=存在且在(,0]-∞上单调递增,故④正确;故选:C5.【多选题】(2021·全国高三专题练习)已知函数()f x 是偶函数,(1)f x +是奇函数,并且当[]1,2x ∈,()1|2|f x x =--,则下列选项正确的是()A .()f x 在(3,2)--上为减函数B .()f x 在(3,2)--上()0f x <C .()f x 在(3,2)--上为增函数D .()f x 在(3,2)--上()0f x >【答案】CD 【解析】根据题意,分析可得(4)()f x f x +=,结合函数的解析式可得当(3,2)x ∈--时函数的解析式,据此分析可得答案.【详解】解:根据题意,函数(1)f x +为奇函数,则有(1)(1)f x f x +=--+,即(2)()f x f x +=--,又由()f x 为偶函数,则()()f x f x -=,则有(2)()f x f x +=-,即有(4)()f x f x +=,当[1x ∈,2]时,()1|2|1f x x x =--=-,若(3,2)x ∈--,则4(1,2)x +∈,则(4)(4)13f x x x +=+-=+,则当(3,2)x ∈--时,有()3f x x =+,则()f x 为增函数且()(3)0f x f >-=;故()f x 在(3,2)--上为增函数,且()0f x >;故选:CD .6.【多选题】(2021·全国高三专题练习)若函数()f x 对任意x ∈R 都有()()0f x f x +-=成立,m R ∈,则下列的点一定在函数()y f x =图象上的是()A .(0,0)B .(,())m f m --C .(,())m f m --D .(,())m f m -【答案】ABC 【解析】根据任意x ∈R 满足()()0f x f x +-=,得到()f x 是奇函数判断.【详解】因为任意x ∈R 满足()()0f x f x +-=,所以()f x 是奇函数,又x ∈R ,所以令0x =,则(0)(0)f f -=-,得(0)0f =,所以点(0,0),且点(,())m f m --与(,())m f m --也一定在()y f x =的图象上,故选:ABC .7.【多选题】(2021·浙江高一期末)已知函数()y f x =是定义在[1,1]-上的奇函数,当0x >时,()(1)f x x x =-,则下列说法正确的是()A .函数()y f x =有2个零点B .当0x <时,()(1)f x x x =-+C .不等式()0f x <的解集是(0,1)D .12,[1,1]x x ∀∈-,都有()()1212f x f x -≤【答案】BCD 【解析】根据函数奇偶性定义和零点定义对选项一一判断即可.【详解】对A ,当0x >时,由()(1)0f x x x =-=得1x =,又因为()y f x =是定义在[1,1]-上的奇函数,所以()()()00,110f f f =-=-=,故函数()y f x =有3个零点,则A 错;对B ,设0x <,则0x ->,则()()()()11f x f x x x x x =--=----=-+⎡⎤⎣⎦,则B 对;对C ,当01x <≤时,由()(1)0f x x x =-<,得01x <<;当10x -≤≤时,由()(1)0f x x x =-+<,得x 无解;则C 对;对D ,12,[1,1]x x ∀∈-,都有()()()()12max min 1111122442f x f x f x f x f f ⎛⎫⎛⎫⎛⎫-≤-=--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则D 对.故选:BCD .8.【多选题】(2021·苏州市第五中学校高一月考)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x ∈R ,用[]x 表示不超过x 的最大整数,[]y x =也被称为“高斯函数”,例如:[ 3.5]4-=-,[2.1]2=.已知函数()[1]f x x x =+-,下列说法中正确的是()A .()f x 是周期函数B .()f x 的值域是[0,1]C .()f x 在(0,1)上是减函数D .x ∀∈R ,[()]0f x =【答案】AC 【解析】根据[]x 定义将函数()f x 写成分段函数的形式,再画出函数的图象,根据图象判断函数的性质.【详解】由题意可知[]1,210,1011,012,12x x x x x --≤<-⎧⎪-≤<⎪⎪+=≤<⎨⎪≤<⎪⎪⎩,()[]1,21,1011,012,12x x x x f x x x x x x x ---≤<-⎧⎪--≤<⎪⎪∴=+-=-≤<⎨⎪-≤<⎪⎪⎩,可画出函数图像,如图:可得到函数()f x 是周期为1的函数,且值域为(]0,1,在()0,1上单调递减,故选项AC 正确,B 错误;对于D ,取1x =-()11f -=,则()11f -=⎡⎤⎣⎦,故D 错误.故选:AC .9.【多选题】(2021·湖南高三月考)函数()f x 满足以下条件:①()f x 的定义域是R ,且其图象是一条连续不断的曲线;②()f x 是偶函数;③()f x 在()0,∞+上不是单调函数;④()f x 恰有2个零点.则函数()f x 的解析式可以是()A .2()2f x x x =-B .()ln 1f x x =-C .2()1f x x x =-++D .()2xf x e =-【答案】CD 【解析】利用函数图象变换画出选项A ,B ,C ,D 对应的函数图象,逐一分析即可求解.【详解】解:显然题设选项的四个函数均为偶函数,但()ln 1f x x =-的定义域为{}0x x R ≠≠,所以选项B 错误;函数2()2f x x x =-的定义域是R ,在(),1-∞-,()0,1单调递减,在()1,0-,()1,+∞单调递增,但()()()2020f f f -===有3个零点,选项A 错误;函数2()1f x x x =-++的定义域是R ,当()0,x ∈+∞时,2()1f x x x =-++的图象对称轴为12x =,其图象是开口向下的抛物线,故()f x 在1,2⎛⎫-∞- ⎪⎝⎭,10,2⎛⎫ ⎪⎝⎭单调递增,在1,02⎛⎫- ⎪⎝⎭,1,2⎛⎫+∞ ⎪⎝⎭单调递减,由图得()f x 恰有2个零点,选项C 正确;函数()2xf x e =-的定义域是R ,在(),ln 2-∞-,()0,ln 2单调递减,在()ln 2,0-,()ln 2,+∞单调递增,且()()ln 2ln 20f f -==有2个零点,选项D 正确.故选:CD.10.(2021·黑龙江大庆市·高三二模(理))定义在R 上的函数()f x 满足()2()f x f x +=,当[]1,1x ∈-时,2()f x x =,则函数()f x 的图象与()3x g x =的图象的交点个数为___________.【答案】7由题设可知()f x 的周期为2,结合已知区间的解析式及()3x g x =,可得两函数图象,即知图象交点个数.【详解】由题意知:()f x 的周期为2,当[1,1]x ∈-时,2()f x x =,∴()f x 、()g x 的图象如下:即()f x 与()g x 共有7个交点,故答案为:7.【点睛】结论点睛:()()f m x f x +=有()f x 的周期为||m .练真题1.(2020·天津高考真题)函数241xy x =+的图象大致为()A.B.C.D.【解析】【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误.故选:A.2.(2020·全国高考真题(理))设函数()ln |21|ln |21|f x x x =+--,则f (x )()A.是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,22-单调递减C.是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,2-∞-单调递减【答案】D 【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.3.(2020·海南省高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A.[)1,1][3,-+∞ B.3,1][,[01]-- C.[1,0][1,)-⋃+∞D.[1,0][1,3]-⋃【答案】D 【解析】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:021012x x x <⎧⎨-≤-≤-≥⎩或或001212x x x >⎧⎨≤-≤-≤-⎩或或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.4.(2018年理全国卷II)已知op 是定义域为(−∞,+ ∞)的奇函数,满足o1−p =o1+p .若o1)=2,则o1)+o2)+o3)+⋯+o50)=()A.−50B.0C.2D.50【答案】C 【解析】因为op 是定义域为(−∞,+ ∞)的奇函数,且o1−p =o1+p ,所以o1+p =−o −1)∴o3+p =−o +1)=o −1)∴=4,因此o1)+o2)+o3)+⋯+o50)=12[o1)+o2)+o3)+o4)]+o1)+o2),因为o3)=−o1),o4)=−o2),所以o1)+o2)+o3)+o4)=0,∵o2)=o −2)=−o2)∴o2)=0,从而o1)+o2)+o3)+⋯+o50)=o1)=2,选C.5.(2019·全国高考真题(文))设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则()A.233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B.233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭C.23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D.23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】C 【解析】()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222log 422---->==>>∴>> ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C.6.(2019·全国高考真题(理))已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【答案】-3【解析】因为()f x 是奇函数,且当0x >时0x ->,()()ax f x f x e -=--=.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e-=,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3a =-.。
高一数学必修一函数奇偶性和周期性基础知识点及提高练习.docx
函数的奇偶性与周期性提高精讲奇函数偶函数如果对于函数 f( x)的定义域内的任意一个 x定义都有 f(- x)=- f(x),那么函数 f(x)是奇函数都有 f( -x)= f(x),那么函数 f(x)是偶函数特点图象关于原点对称图象关于 y 轴对称1.函数 f(x)= 0, x∈ R 既是奇函数又是偶函数2.奇偶函数常用结论:(1)两个偶函数相加所得的和为偶函数 .(2)两个奇函数相加所得的和为奇函数 .(3)一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.(4)两个偶函数相乘所得的积为偶函数 .(5)两个奇函数相乘所得的积为偶函数 .(6)一个偶函数与一个奇函数相乘所得的积为奇函数 .3.周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当 x 取定义域内的任何值时,都有 f(x+ T)=f(x),那么就称函数y=f(x)为周期函数,称T 为这个函数的周期.4.周期函数常见结论:(1)若 f(x+a)=f(x-a),则函数的周期为 2a.(2)若 f(x+a)=- f(x),则函数的周期为 2a.(3)若 f(x+a) =1x (a>0),则函数的周期为 2a.f (4)若 f(x+a)=-1,则函数的周期为 2a.f x5.对称函数如果函数 y f x 满足 f a x f b x,则函数 y f x 的图象关于直线xa b对称 .25练习: 1. 设 f(x)是周期为 2 的奇函数,当0 ≤x≤1时, f(x)=2x(1-x),则 f -2=________.x2.若函数 f(x)=?x-2??x+a?为奇函数,则 a= ()3.已知 f(x)= ax2+ bx 是定义在 [a-1,2a] 上的偶函数,那么 a+b 的值是 ()111A.-3 B 3D.-2【难点一奇偶性与不等式】1.若函数 f(x)=2x+1是奇函数,则使 f(x)>3 成立的 x 的取值范围为 () 2x-aA.(-∞,- 1)B.(-1,0)C(0,1)D.(1,+∞)【难点二求解析式】1.若定义在 R 上的偶函数 f(x)和奇函数 g(x)满足 f(x)+g(x)=e x,则 g(x)= ()x-e-x xx)x x 1 x x)A. e(e +e-(e--e ) D (e-e-22.若函数 f(x)=xln (x+ a+ x2)为偶函数,则 a=________.3.已知 f(x)是定义在 R 上的奇函数,当 x>0 时, f(x)=x2-4x,则不等式 f(x)>x 的解集用区间表示为 ________.4.设偶函数 f(x)满足 f(x)=x3-8(x≥ 0),则 {x|f(x- 2)>0} =()A. { x|x<- 2 或 x>4}B{x|x<0 或 x>4}C. { x|x<0 或 x>6} D.{ x|x<-2 或 x>2}【难点三奇偶性与周期性综合】1.已知 f(x)是定义在 R 上的偶函数,且对任意 x∈R 都有 f(x+4)=f(x)+f(2),则 f(2014)等于 ()A 0B.3C. 4D.612.已知定义在 R 上的奇函数 f(x)满足 f(x+1)=- f(x),且在 [0,1)上单调递增,记 a=f 2,b=f(2),c=f(3),则 a,b,c 的大小关系为 ()A a>b= c B. b>a=c C.b>c>a D.a>c>b3. 设 f(x)是定义在 R 上的以 3 为周期的奇函数,若f(2)>1,f(2014)=2a- 3,则实数 a 的取值范a+1围是 ________.【难点四奇偶性、对称性、周期性】1.已知函数 f(x)是 (-∞,+∞)上的奇函数,且 f(x)的图象关于 x=1 对称,当 x∈ [0,1]时, f(x)=2x-1,则 f(2013)+f(2014)的值为 ()A.- 2B.- 1C.0 D 1x12. 定义在 R 上的函数 f(x)满足 f(- x)=- f(x),f(x-2)=f(x+ 2),且 x∈ (- 1,0)时,f(x)= 2 +5,则 f(log220)= ()A -1C. 1D.-4 5【终极难度定义证明、赋值法、求参数】1.定义在 R 上的函数 f(x)对任意 a,b∈R 都有 f(a+b)= f(a)+ f(b)+k(k 为常数 ).(1)判断 k 为何值时 f(x)为奇函数,并证明;(2)设 k=- 1,f(x)是 R 上的增函数,且 f(4)=5,若不等式 f(mx2-2mx+ 3)>3 对任意 x∈ R 恒成立,求实数 m 的取值范围.2.已知函数 f(x)对任意实数 x,y 恒有 f(x+y)= f(x)+f(y),且当 x>0 时, f(x)<0,又 f(1)=- 2.(1)判断 f(x)的奇偶性;(2)求证: f(x)是 R 上的减函数;(3)求 f(x)在区间 [- 3,3]上的值域;(4)若?x∈R,不等式 f(ax2)-2f(x)<f(x)+4 恒成立,求 a 的取值范围.跟踪练习1.1xb.则 f ( a)已知函数 f ( x) lg.若 f ( a)1xA.b B.- b C.1D.-1b b2.已知函数 y f ( x) 在R是奇函数,且当x 0时, f (x)x 2 2 x ,求:x0 时,f (x)的解析式3. 定义在[ 1,1]上的函数y f (x) 是减函数,且是奇函数,若f a2a1)f a5) 0,求实数(( 4a 的范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学专题训练(教师版)—函数的奇偶性和周期性一、选择题1.下列函数中,不具有奇偶性的函数是( )A .y =e x -e -xB .y =lg 1+x 1-xC .y =cos2xD .y =sin x +cos x答案 D2.(2011·山东临沂)设f (x )是R 上的任意函数,则下列叙述正确的是( )A .f (x )f (-x )是奇函数B .f (x )|f (-x )|是奇函数C .f (x )-f (-x )是偶函数D .f (x )+f (-x )是偶函数答案 D3.已知f (x )为奇函数,当x >0,f (x )=x (1+x ),那么x <0,f (x )等于( )A .-x (1-x )B .x (1-x )C .-x (1+x )D .x (1+x )答案 B解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (-x )=-f (x ),∴f (x )=x (1-x ).4.若f (x )=ax 2+bx +c (a ≠0)是偶函数,则g (x )=ax 3+bx 2+cx 是( )A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数答案 A解析 由f (x )是偶函数知b =0,∴g (x )=ax 3+cx 是奇函数.5.(2010·山东卷)设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=( )A .3B .1C .-1D .-3答案 D解析 令x ≤0,则-x ≥0,所以f (-x )=2-x -2x +b ,又因为f (x )在R 上是奇函数,所以f (-x )=-f (x )且f (0)=0,即b =-1,f (x )=-2-x +2x +1,所以f (-1)=-2-2+1=-3,故选D.6.(2011·北京海淀区)定义在R 上的函数f (x )为奇函数,且f (x +5)=f (x ),若f (2)>1,f (3)=a ,则( )A .a <-3B .a >3C .a <-1D .a >1答案 C解析 ∵f (x +5)=f (x ),∴f (3)=f (-2+5)=f (-2),又∵f (x )为奇函数,∴f (-2)=-f (2),又f (2)>1,∴a <-1,选择C.7.(2010·新课标全国卷)设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}答案 B解析 当x <0时,-x >0,∴f (-x )=(-x )3-8=-x 3-8,又f (x )是偶函数,∴f (x )=f (-x )=-x 3-8,∴f (x )=⎩⎪⎨⎪⎧x 3-8,x ≥0-x 3-8,x <0.∴f (x -2)=⎩⎪⎨⎪⎧(x -2)3-8,x ≥0-(x -2)3-8,x <0, ⎩⎪⎨⎪⎧ x ≥0(x -2)3-8>0或⎩⎪⎨⎪⎧x <0-(x -2)3-8>0, 解得x >4或x <0.故选B.二、填空题8.设函数f (x )=(x +1)(x +a )为偶函数,则a =________.答案 -1解析 f (x )=x 2+(a +1)x +a .∵f (x )为偶函数,∴a +1=0,∴a =-1.9.设f (x )=ax 5+bx 3+cx +7(其中a ,b ,c 为常数,x ∈R ),若f (-2011)=-17,则f (2011)=________.答案 31解析 f (2011)=a ·20115+b ·20113+c ·2011+7f (-2011)=a (-2011)5+b (-2011)3+c (-2011)+7∴f (2011)+f (-2011)=14,∴f (2011)=14+17=31.10.函数f (x )=x 3+sin x +1的图象关于________点对称.答案(0,1)解析 f (x )的图象是由y =x 3+sin x 的图象向上平移一个单位得到的.11.已知f (x )是定义在R 上的偶函数,且对任意的x ∈R ,总有f (x +2)=-f (x )成立,则f (19)=________.答案 0解析 依题意得f (x +4)=-f (x +2)=f (x ),即f (x )是以4为周期的函数,因此有f (19)=f (4×5-1)=f (-1)=f (1),且f (-1+2)=-f (-1),即f (1)=-f (1),f (1)=0,因此f (19)=0.12.定义在(-∞,+∞)上的函数y =f (x )在(-∞,2)上是增函数,且函数y =f (x +2)为偶函数,则f (-1),f (4),f (512)的大小关系是__________. 答案 f (512)<f (-1)<f (4) 解析 ∵y =f (x +2)为偶函数∴y =f (x )关于x =2对称又y =f (x )在(-∞,2)上为增函数∴y =f (x )在(2,+∞)上为减函数,而f (-1)=f (5)∴f (512)<f (-1)<f (4). 13.(2011·山东潍坊)定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断:①f (x )是周期函数;②f (x )关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在[1,2]上是减函数;⑤f (2)=f (0),其中正确的序号是________.答案 ①②⑤解析 由f (x +1)=-f (x )得f (x +2)=-f (x +1)=f (x ),∴f (x )是周期为2的函数,①正确,f (x )关于直线x =1对称,②正确,f (x )为偶函数,在[-1,0]上是增函数,∴f (x )在[0,1]上是减函数,[1,2]上为增函数,f (2)=f (0).因此③、④错误,⑤正确.综上,①②⑤正确.三、解答题14.已知f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+x -2,求f (x )、g (x )的解析式.答案 f (x )=x 2-2,g (x )=x解析 ∵f (x )+g (x )=x 2+x -2.①∴f (-x )+g (-x )=(-x )2+(-x )-2.又∵f (x )为偶函数,g (x )为奇函数,∴f (x )-g (x )=x 2-x -2.②由①②解得f (x )=x 2-2,g (x )=x .15.已知f (x )是定义在R 上的奇函数,且函数f (x )在[0,1)上单调递减,并满足f (2-x )=f (x ),若方程f (x )=-1在[0,1)上有实数根,求该方程在区间[-1,3]上的所有实根之和.答案 2解析 由f (2-x )=f (x )可知函数f (x )的图象关于直线x =1对称,又因为函数f (x )是奇函数,则f (x )在(-1,1)上单调递减,根据函数f (x )的单调性,方程f (x )=-1在(-1,1)上有唯一的实根,根据函数f (x )的对称性,方程f (x )=-1在(1,3)上有唯一的实根,这两个实根关于直线x =1对称,故两根之和等于2.16.已知定义域为R 的函数f (x )=-2x +b 2x +1+a 是奇函数. (Ⅰ)求a ,b 的值;(Ⅱ)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.答案 (1)a =2,b =1 (2)k <-13解析 (Ⅰ)因为f (x )是奇函数,所以f (0)=0,即b -1a +2=0⇒b =1 ∴f (x )=1-2xa +2x +1又由f (1)=-f (-1)知1-2a +4=-1-12a +1⇒a =2. (Ⅱ)解法一 由(Ⅰ)知f (x )=1-2x2+2x +1,易知f (x )在(-∞,+∞)上为减函数.又因f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <0⇒k <-13解法二 由(Ⅰ)知f (x )=1-2x 2+2x +1.又由题设条件得: 1-2t 2-2t 2+2t 2-2t +1+1-22t 2-k 2+22t 2-k +1<0, 即:(22t 2-k +1+2)(1-2t 2-2t )+(2t 2-2t +1+2)(1-22t 2-k )<0,整理得23t 2-2t -k >1,因底数2>1,故:3t 2-2t -k >0上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0⇒k <-131.(2010·上海春季高考)已知函数f (x )=ax 2+2x 是奇函数,则实数a =________.答案 02.(2010·江苏卷)设函数f (x )=x (e x +ae -x )(x ∈R )是偶函数,则实数a 的值为________.答案 -1解析 令g (x )=x ,h (x )=e x +ae -x ,因为函数g (x )=x 是奇函数,则由题意知,函数h (x )=e x +ae -x 为奇函数,又函数f (x )的定义域为R ,∴h (0)=0,解得a =-1.3.(2011·《高考调研》原创题)已知f (x )是定义在R 上的奇函数,且{x |f (x )>0}={x |1<x <3},则f (π)+f (-2)与0的大小关系是( )A .f (π)+f (-2)>0B .f (π)+f (-2)=0C .f (π)+f (-2)<0D .不确定答案 C解析 由已知得f (π)<0,f (-2)=-f (2)<0,因此f (π)+f (-2)<0.4.如果奇函数f (x )在区间[3,7]上是增函数,且最小值为5,那么f (x )在区间[-7,-3]上是( )A .增函数且最小值为-5B .增函数且最大值为-5C .减函数且最小值为-5D .减函数且最大值为-5答案 B解析 先考查函数f (x )在[-7,-3]上的最值,由已知,当3≤x ≤7时,f (x )≥5,则当-7≤x ≤-3时,f (-x )=-f (x )≤-5即f (x )在[-7,-3]上最大值为-5.再考查函数f (x )在[-7,-3]上的单调性,设-7≤x 1<x 2≤-3.则3≤-x 2<-x 1≤7,由已知-f (x 2)=f (-x 2)<f (-x 1)=-f (x 1),从而f (x 2)>f (x 1),即f (x )在[-7,-3]上是单调递增的.5.(08·全国卷Ⅰ)设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x <0的解集为________.答案 (-1,0)∪(0,1)解析 由f (x )为奇函数,则不等式化为xf (x )<0 法一:(图象法)由,可得-1<x <0或0<x <1时,x ·f (x )<0.法二:(特值法)取f (x )=x -1x,则x 2-1<0且x ≠0,解得-1<x <1,且x ≠0. 6.定义在R 上的函数f (x )满足f (x +1)=-f (x ),且f (x )=⎩⎪⎨⎪⎧1 (-1<x ≤0)-1 (0<x ≤1),则f (3)=________.解析 ∵f (x +1)=-f (x ),则f (x )=-f (x +1)=-[-f (x +2)]=f (x +2),则f (x )的周期为2,f (3)=f (1)=-1.7.(2011·深圳)设f (x )=1+x 1-x,又记f 1(x )=f (x ),f k +1(x )=f (f k (x )),k =1,2,…,则f 2011(x )=( )A .-1xB .x C.x -1x +1 D.1+x 1-x答案 C解析 由题得f 2(x )=f (1+x 1-x )=-1x ,f 3(x )=f (-1x )=x -1x +1,f 4(x )=f (x -1x +1)=x ,f 5(x )=1+x 1-x=f 1(x ),其周期为4,所以f 2011(x )=f 3(x )=x -1x +1.1.设函数f (x )在(-∞,+∞)上满足f (2-x )=f (2+x ),f (7-x )=f (7+x ),且在闭区间[0,7]上,只有f (1)=f (3)=0.(1)证明函数f (x )为周期函数;(2)试求方程f (x )=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.解析 (1)由⎩⎪⎨⎪⎧ f (2-x )=f (2+x )f (7-x )=f (7+x ) ⇒⎩⎪⎨⎪⎧f (x )=f (4-x )f (x )=f (14-x )⇒f (4-x )=f (14-x ) ⇒f (x )=f (x +10)∴f (x )为周期函数,T =10.(2)∵f (3)=f (1)=0, f (11)=f (13)=f (-7)=f (-9)=0 故f (x )在[0,10]和[-10,0]上均有两个解,从而可知函数y =f (x )在[0,2005]上有402个解, 在[-2005,0]上有400个解,所以函数y =f (x )在[-2005,2005]上有802个解.。