单色仪的定标实验中汞光谱两条谱线的补充标定

单色仪的定标实验中汞光谱两条谱线的补充标定
单色仪的定标实验中汞光谱两条谱线的补充标定

单色仪的定标实验中汞光谱两条谱线的补充标定

翟林华 征 洋 姚关心 金 伟 张洪涛 方 涛

(安徽师范大学物理与信息工程学院安徽芜湖241000)

摘 要:讨论了普通物理光学实验有关教材中单色仪定标实验中定标所依据的汞光谱谱线标定问题,通过实验确定了实验可以明显观察到而未能标定的谱线,对原有教材有关内容给出了必要的补充.

关键词:单色仪定标;汞光谱;谱线标定

Two spectral lines supplemented to the Hg spectrum in

the monochromator scaling experiment

ZHAI Lin-hua ZHENG Yang YAO Guan-x in JIN Wei

ZHANG Hong-tao FANG T ao

(Department of Physics and Info rmation,Anhui Normal University,Wuhu,Anhui,241000)

Abstract:It is sug gested that tw o easily observable spectr al lines should be supplem ented to the Hg spectrum attached to the monochr omator scaling exper im ent in the lecture book,and their w avelengths have been sug gested based on the measurement and co nsulting the comprehensive Hg spectrum

Key words:mo no chromator scaling;H g spectr um;spectral line scaling

1 引 言

光学实验中的单色仪定标实验是通过学生观察单色仪所给出的能够清晰观察到的汞光谱可见光的若干条较强的标定谱线对单色仪定标的.教材〔1〕列表给出了相关的汞光谱标定谱线以提供实验依据.这些谱线涵盖了汞光谱从紫光到红光的可见光部分,如表1所示.

实际上通过单色仪除了可以观察到上述谱线以外,还可以明显观察到其它若干条谱线,除了其中强度较弱的以外,尚有与上述谱线强度相当的,处于重要光谱位置的其它谱线.具体说来,在教材标定的蓝绿色和绿色之间可以观察到波长约在500nm的两条谱线,谱线强度和已标定谱线的强度标准相比,强度应为弱谱线,但强于标定谱线中最弱的谱线,通过单色仪仍然可以明显观察到.由于这两条未标定谱线的存在,而且处于光谱显著的位置上,因而较为准确地标定这两条谱线对于这一实验是十分必要的.

2 谱线的测定

为了测定汞光谱中上述谱线的波长位置,实验中采用单色仪定标,实验所使用的高压汞灯为待定光源,以铁的发射光谱为标准,采用W-P1型1m光栅摄谱仪和1200痕/mm的透射光栅对中心位置在510nm的铁和汞一级光谱用全色胶片摄谱.摄谱采用的狭缝宽度铁光谱为10 m,汞光谱为20 m.仪器的光谱分辨率为0.8nm/mm.经过调整曝光条件,摄得蓝

表1 汞灯主要光谱线波长表颜色

波长/nm

强度紫色

404.66407.78410.81433.92434.75435.84强中弱弱中强蓝绿色

491.60496.03(502.65)(504.58)强中弱弱绿色

535.41536.51546.07567.59弱弱强弱黄色

576.96579.07585.92589.02强强弱弱橙色607.26612.33弱弱红色623.44中深红色

671.62690.72708.19

中中弱

绿光部分谱线如图1所示.

图1 汞灯蓝绿光部分谱线

照片上方为铁光谱,下方为汞光谱.通过和铁光谱的对比,可以看出,汞光谱较强的一对谱线中的左方第一条谱线波长为491.60nm,第二

条波长为496.03nm ,均为表1中已标定谱线.它们左边较弱的两条谱线应为需要补充录

入表1的有待确定波长的谱线.事实上这一点可以通过对比照片上的谱线间距和表1看出.

待定谱线的波长可以通过对比标准铁光谱的已知谱线波长,采用内插法〔2〕

较为准确的确定.图1照片上汞光谱左起第二条谱线在铁光谱波长为5027.3nm 和5022.3nm 的两条谱线之间;左起第一条谱线在波长为5049.9nm 和5041.8nm 的两条谱线之间.通过在阿贝比长仪上分别测定各谱线的相对位置,采用内插法,计算求得两条谱线波长值分别为502.62nm 和504.70nm,考虑到仪器精度和测量中谱线可能的定位误差,通过对比,发现从“光谱线波长

表”〔3〕中查得标定的汞光谱谱线波长和教材〔

1〕表1中数据基本一致(例外的是“光谱线波长表”〔3〕

中没有标出496.03nm 的谱线),因而采

用表〔3〕

中谱线分别为502.65nm 和504.58nm 的相应波长数据作为参考数值可能更为合理(见表1中括号内数值).3 结 论

普通物理单色仪定标实验教材所列出的作为定标依据的汞光谱表中,未能完全列出可以参照对单色仪定标的强度较大的谱线.建议在谱线波长表中补充列入波长分别为502.65nm 和504.58nm 的位于蓝绿色区域的两条谱线,以使教材更加完善.4 参考文献

1 杨述武主编.普通物理实验(光学部分).北京:高等

教育出版社,1993.98~104

2 吴讠永华等.近代物理实验.合肥:安徽教育出版社,1987.7

3 冶金工业部科技情报产品标准研究所编译.光谱线波长表.北京:中国工业出版社,1971.679

(2001-05-30收稿)

分子荧光光谱法实验报告

分子荧光光谱法实验报告 一、实验目的 1.掌握荧光光度计的基本原理及使用。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.掌握分子荧光光度计分析物质的特征荧光光谱:激发光谱、发射光谱的测定方法。 4.了解影响荧光产生的几个主要因素。 5.学会运用分子荧光光谱法对物质进行定性和定量分析。 二、实验原理 原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。 具有不饱和基团的基态分子经光照射后,价电子跃迁产生荧光,是当电子从第一激发单重态S1的最低振动能级回到基态S0各振动能级所产生的光辐射。 (1)激发光谱 是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。 激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,使材料发出某一波长光的效

率。荧光为光致发光,合适的激发光波长需根据激发光谱确定——激发光谱是在固定荧光波长下,测量荧光体的荧光强度随激发波长变化的光谱。获得方法:先把第二单色器的波长固定,使测定的λem不变,改变第一单色器波长,让不同波长的光照在荧光物质上,测定它的荧光强度,以I为纵坐标,λex为横坐标所得图谱即荧光物质的激发光谱,从曲线上找出λex,,实际上选波长较长的高波长峰。 (2)发射光谱 是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长,纵坐标为发光相对强度。 发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。发射光谱的获得方法:先把第一单色器的波长固定,使激发的λex不变,改变第二单色器波长,让不同波长的光扫描,测定它的发光强度,以I为纵坐标,λem为横坐标得图谱即荧光物质的发射光谱;从曲线上找出最大的λem。 (3)荧光强度与荧光物质浓度的关系 用强度为I0的入射光,照射到液池内的荧光物质时,产生荧光,荧光强度If用仪器测得,在荧光浓度很稀(A 三、实验试剂和仪器试剂:罗丹明B乙醇溶液;1-萘酚乙醇溶液;3,3’-Diethyloxadicarbocyanine iodide:标准溶液,10μg/ml, 20μg/ml,30μg/ml,40μg/ml和未知浓度;蒸馏水;乙 醇。 仪器:Fluoromax-4荧光分光光度计;1cm比色皿;

拉曼光谱实验报告

拉曼光谱实验 姓名学号 何婷21530100 李玉环21530092 宋丹21530111 [实验目的] 1、了解Raman光谱的原理和特点; 2、掌握Raman光谱的定性和定量分析方法; 3、了解Raman光谱的谱带指认。 4、了解显微成像Raman光谱。 [仪器和装置] 1、显微Raman光谱系统一套,拉曼光谱仪的型号为SPL-RAMAN-785 USB2000+的拉曼光谱仪,自带785nm激光; 2、带二维步进电机平移台一台(有控制器一台); 3、PT纳米线样品; 4、光谱仪软件SpectraSuite; 5、步进电机驱动软件; 6、摄像头(已与显微镜集成在一起)。 [实验内容] 1、使用显微Raman系统及海洋光谱软件对单根或多根纳米线进行显微Raman光谱测量, 对测量的图和标准图进行比较,并通过文献阅读对PT纳米线Raman(测量和标准)的谱峰进行指认。 2、使用显微拉曼扫描系统进行二维样品表面拉曼信号收集,并生成样品表面特定波长处的 拉曼信号强度三维图,模拟样品表面拉曼表征。选择多个拉曼波长对样品形状进行观察。[实验结果及分析]

观察PbTiO3的拉曼散射谱并比对具体的拉曼散射光谱数据进行分析,可以找到以上10个拉曼散射峰,分别位于784.54nm,794.94 nm,798.60 nm,802.90 nm,806.84 nm,811.91 nm,817.10 nm,825.29 nm,832.44 nm,879.69nm附近,对应的Raman Shift分别是-7.46 cm-1 159.28 cm-1 216.94 cm-1 284.00 cm-1 344.82 cm-1 422.21 cm-1 500.44 cm-1 621.90 cm-1 725.97 cm-1 1371.21 cm-1。 (通过Raman Shift=1/λ入射-1/λ散射计算得到) PT纳米线Raman测量的谱峰指认: 分析可知,-7.46 cm-1 159.28 cm-1 216.94 cm-1 284.00 cm-1 344.82 cm-1 422.21 cm-1 500.44 cm-1 621.90 cm-1 725.97 cm-1附近的9个振动模,分别对应于PbTiO3的A1(1TO),E(1LO),E(2TO),B1+E,A1(2TO),E(2LO)+A1(2LO),E(3TO)A1(3TO),A1(3LO)声子模。 位于159.28 cm-1附近的模对应PbTiO3纳米线表面的TiO6八面体相对于Pb的振动;位于500.44 cm-1附近的模分别对应于表面Ti-O或Pb-O键的振动;位于725.97 cm-1附近的模对应于TiO6八面体中Ti-O键的振动。而位于284.00 cm-1的振动模为静模。此外,在725.97 cm-1处PbTiO3还具有额外的Raman振动模,可能与该相中含有大量且复杂的晶胞结构有关。据报道,复杂钙钛矿结构中氧八面体的畸变或八面体内B位离子的移动在某种程度上会破坏平移对称性,引起相邻晶胞不再具有相似的局部电场和极化率。 位于-7.46 cm-1处的拉曼峰强度增强,相比标准PbTiO3纳米线,其余拉曼峰强度均减弱。798nm处样品表面拉曼信号三维强度图:

光栅单色仪的调整和使用实验报告

实验报告 陈杨PB05210097 物理二班 实验题目:光栅单色仪的调整和使用 实验目的: 1.了解光栅单色仪的原理结构和使用方法。 2.通过测量钨灯,钠灯和汞灯的光谱了解单色仪的特点。实验内容: 单色仪中等效会聚透镜的焦距f=500mm 光栅的面积64 64mm2 光栅的刻划密度为1200线/mm 1.钨灯发出的光波长与光强的关系 (1)光电倍增管加-450V的高压

480 612 560 490 667 614 500 737 653 510 780 672 520 831 679 530 873 663 540 915 628 550 943 579 (2)波长----光强图线为: (3)透过率的规律:由原始数据可得下图

(4)下表为相应波长的滤光片透过率 λ400 410 420 430 440 450 460 470 I/I0 0.49123 0.59677 0.64223 0.6789 0.7048 0.73872 0.74734 0.74299 λ480 490 500 510 520 530 540 550 I/I0 0.74739 0.75331 0.73484 0.71521 0.67477 0.62391 0.56019 0.49358 (5)相关分析: 可以看出,滤光片的透过率随入射光的波长变化而变化。波长位于中间时,透过率比较大,本次实验中约为75%;本次实验中,波 长介于500nm和550nm之间时透过率随波长增大明显减小。 可以用薄膜干涉来解释:这里认为膜的折射率大于其两侧介质(空气)的折射率,对膜的两个表面的反射光来说,是有半波损失的。 此两束相干光若干涉相消,则可以增大透射光线的强度。光程差

荧光光谱分析仪工作原理

X 荧光光谱分析仪工作原理 用x 射线照射试样时,试样可以被激发出各种波长得荧光x 射线,需要把混合得x 射线 按波长(或能量)分开,分别测量不同波长(或能虽:)得X 射线得强度,以进行左性与定疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一泄波长,同时又有一立能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图. 用X 射线照射试样时,试样可以被激发出各种波长得荧光X 射线,需要把混合得X 射 线按波长(或能疑)分开,分别测量不同波长(或能量)得X 射线得强度,以进行定性与左疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一左波长,同时又有一左能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图。 (a )波长色散谱仪 (b )能虽色散谱仪 波长色散型和能量色散型谱仪原理图 现将两种类型X 射线光谱仪得主要部件及工作原理叙述如下: X 射线管 酥高分析器 分光晶体 计算机 再陋电源

丝电源 灯丝 电了悚 X则线 BeiV 輪窗型X射线管结构示意图 两种类型得X射线荧光光谱仪都需要用X射线管作为激发光源?上图就是X射线管得结构示意图。灯丝与靶极密封在抽成貞?空得金属罩内,灯丝与靶极之间加高压(一般为4OKV), 灯丝发射得电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生得一次X射线, 作为激发X射线荧光得辐射源.只有当一次X射线得波长稍短于受激元素吸收限Imi n时,才能有效得激发出X射线荧光?笥?SPAN Ian g =EN-U S >lmin得一次X射线其能量不足以使受激元素激发。 X射线管得靶材与管工作电压决立了能有效激发受激元素得那部分一次X射线得强度。管 工作电压升高,短波长一次X射线比例增加,故产生得荧光X射线得强度也增强。但并不就是说管工作电压越髙越好,因为入射X射线得荧光激发效率与苴波长有关,越靠近被测元素吸收限波长,激发效率越髙。A X射线管产生得X射线透过彼窗入射到样品上, 激发岀样品元素得特征X射线,正常工作时,X射线管所消耗功率得0、2%左右转变为X 射线辐射,其余均变为热能使X射线管升温,因此必须不断得通冷却水冷却靶电极。 2、分光系统 第?准讥器 平面晶体反射X线示意图 分光系统得主要部件就是晶体分光器,它得作用就是通过晶体衍射现彖把不同波长得X射线分开.根据布拉格衍射左律2d S in 0 =n X ,当波长为X得X射线以0角射到晶体,如果晶面间距为d,则在出射角为0得方向,可以观测到波长为X =2dsi n 0得一级衍射及波长为X/2, X /3 ------ ―等髙级衍射。改变()角,可以观测到另外波长得X

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

激光拉曼实验报告

激光拉曼及荧光光谱实验 一、实验目的 1、 了解激光拉曼的基本原理和基本知识以及用激光拉曼的方法鉴别物质成分和分子结构的原理; 2、 掌握LRS – II 激光拉曼/荧光光谱仪的系统结构和操作方法; 3、 研究四氯化碳CCL 4、苯C 6H 6等物质典型的振动—转动光谱谱线特征。 二、实验原理 2.1 基本原理 分子有振动。原子分双子的振动按经典力学的观点可以看成是简谐振子,其能量为 A 是振幅,k 是力常数。按照量子力学,简谐振子的能量是量子化的, t=0,1,2,3,···,是振动量子数,f 是振子的固有振动频率。如果在同一电子态中,有振动能级的跃迁,那么产生的光子能量 hf t t E E h )('12-=-=ν 波数为 CO 在红外部分有4.67微米、2.35微米、1.58微米等光谱带,其倒数之比近似为1: 2:3。当Δt=1时,测得的ν ~反映了分子键的强弱。 分子有转动。双原子分子的转动轴是通过质心而垂直于联接二原子核的直线的。按照经典力学,转动的动能是 式中P 是角动量,I是转动惯量, 222211r m r m I += 可以证明 I P I E 2212 2= =ω2 2 2 121r r m m m m I μ=+= 2222 1212 1 kA kx mv E =+ = 2 12 1m m m m m += hf t E )2 1(+=m k f π21= ,3,2,)(1 ~12ωωωωλ ν =?=-'=-= =t c f t t hc E E

上式中r1,r2和r分别代表两原子到转轴的距离及两原子之间的距离,μ称为约化质量。按照量子力学,角动量应等于 代入上式得 此式可以从量子力学直接推得,J称为转动量子数。当J=0,1,2,3,···等值时,相应的J(J+1)=0,2,6,12,···,所以能级的间隔是I h 228π的2,4,6,8,···倍。 实验和理论都证明纯转动能级的跃迁只能在邻近能级之间,就是ΔJ=±1。所得 光谱的波长应该有下式表达的值: 谱线波数(ν ~)的间隔是相等的。HCL 分子远红外吸收谱中,曾观察到很多条吸收线,这些线的波数间隔应该是2B,实验测得:B=10.34厘米 -1 ,所以由此求得 转动惯量I,进而求得HCL 分子中原子之间的核间距这一重要数据。 多原子分子的转动可以近似地看作刚体的转动,这涉及到多个转轴的不同的转动惯量。其谱线结构较为复杂,只有直线型的分子和对称高的分子转动曾研究出一些结果。在分析化学领域中提供了一些分析样品的标准特征谱线可供实验参照。 光通过透明的物体时,有一部分被散射。如果入射光具有线状谱,散射光的光谱中 除有入射光的谱线外,还另有一些较弱的谱线,这些谱线的波数ν '~等于入射光某一波数0~ν加或减一个数值,即10~~~ννν±='。新出现谱线的波数与入射光的波数之差发现与光源无关,只决定于散射物。如果换一个光源,0~ν不同了,但如果散射物不变换,那么0~~νν-'还是等于原来的1~ν,散射光的波数变动反映了散射物的性质。由于散射光的波数等于入射光的波数与另一数值1 ~ν组合的数值,所以这样的散射称作组合散射。 可以在紫外或可见区观测分子的振动和转动能级,通过选择波长在可见光波段的激 ,2,1,0,2) 1(=+=J h J J P π ) 1(82 2+= J J I h E πIc h B J BJ J J J J Ic h hc E E 2''''2'8, ,3,2,12)]1()1([8~1 ππνλ= ==+-+=-==

单色仪定标及分类

单色仪定标及分类 单色仪定标是借助于波长已知的线光谱以获取对应的鼓轮读数。为了获得较多的点,必须有一组光源。通常采用汞灯、氢灯、钠灯、氖灯以及用铜、锌、铁做电极的弧光光源等。下面小编简单介绍下单色仪其它信息。 一、单色仪分类 单色仪有多种,从不同的角度对它有不同的分类,如按物镜的形成可分为透射式单色仪和反射式单色仪,按色散元件可分为棱镜单色仪和光栅单色仪。 棱镜单色仪: 棱镜的工作光谱区受到材料的限制(光的波长小于120nm,大于50μm时不能使用),光栅单色仪的角色散率与波长无关,棱镜单色仪的角色散率与波长有关。棱镜单色仪的尺寸越大分辨率越高,但制造越困难,同样分辨率的光栅重量轻,制造容易。 光栅单色仪: 光栅单色仪存在光谱重叠,棱镜光谱仪没有。光栅单色仪存在鬼线(由于刻划误差造成),棱镜单色仪没有。

二、单色仪定标 单色仪出厂时,一般都附有定标曲线的数据或图表供查阅,但经过长期使用或重新装调后,数据会发生变化,需重新定标,以对原数据进行修正。 1、观察入射狭缝和出射狭缝的结构,了解缝宽的调节、读数以及狭缝使用时的注意事项,选取适当的缝宽以获取足够的强度及较好的单色性。 2、在入射狭缝前放置汞灯,为了充分利用进入单色仪的光能,光源应放置在入射准直系统(S1和M1)的光轴上。在单色仪光源与入射缝之间加入聚光透镜,适当选择透镜的焦距和口径,使其相对口径与仪器的相对口径匹配。这样,可获得最大亮度的出射谱线,同时又减少了单色仪内部的杂散光。调节聚光透镜的位置,使出射狭缝呈现的谱线最明亮。 3、将低倍显微镜置于出射狭缝处,对出射狭缝进行调焦,使显微镜视场中观察到的汞谱线最清晰。为使谱线尽量细锐并有足够的亮度,应使入射缝S1尽可能小,出射狭缝可适当大些。根据可见光区汞灯主要谱线的波长、颜色、相对强度和谱线间距辨认谱线。

各种仪器分析的基本原理及谱图表示方法!!!紫外吸收光谱UV分析

各种仪器分析的基本原理及谱图表示方法!!! 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e 分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e 的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法PGC 分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法GPC 分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布热重法TG 分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析DTA 分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化 谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析DSC 分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化 谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息静态热―力分析TMA 分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态

分光计实验报告()

分光计实验报告 【实验目的】 1、了解分光计的结构和工作原理 2、掌握分光计的调整要求和调整方法,并用它来测量三棱镜的顶角和最小偏向角。 3、学会用最小偏向角法测棱镜材料折射率 【实验仪器】 分光计,双面平面镜,汞灯光源、读数用放大镜等。 【实验原理】 1、调整分光计: (1)调整望远镜: a目镜调焦:清楚的看到分划板刻度线。 b调整望远镜对平行光聚焦:分划板调到物镜焦平面上。 c调整望远镜光轴垂直主轴:当镜面与望远镜光轴垂直时,反射象落在上十字线中心,平面镜旋转180°后,另一镜面的反射象仍落在原处。 (2)调整平行光管发出平行光并垂直仪器主轴:将被照明的狭缝调到平行光管物镜焦面上,物镜将出射平行光。 2、三棱镜最小偏向角原理 介质的折射率可以用很多方法测定,在分光计上 用最小偏向角法测定玻璃的折射率,可以达到较高的 精度。这种方法需要将待测材料磨成一个三棱镜。如 果测液体的折射率,可用表面平行的玻璃板做一个中 间空的三棱镜,充入待测的液体,可用类似的方法进 行测量。 当平行的单色光,入射到三棱镜的AB面,经折射 后由另一面AC射出,如图7.1.2-8所示。入射光线LD 和AB面法线的夹角i称为入射角,出射光ER和AC 面法线的夹角i’称为出射角,入射光和出射光的夹角 δ称为偏向角。 可以证明,当光线对称通过三棱镜,即入射角i0等于出射角i0’时,入射光和出射光之间的夹角最小,称为最小偏向角δmin。由图7.1.2-8可知: δ=(i-r)+(i’-r’)(6-2) A=r+r’(6-3) 可得:δ=(i+i’)-A (6-4)

三棱镜顶角A 是固定的,δ随i 和i’而变化,此外出射角i’也随入射角i 而变化,所以偏向角δ仅是i 的函数.在实验中可观察到,当i 变化时,δ有一极小值,称为最小偏向角. 令 0=di d δ ,由式(6-4)得 1' -=di di (6-5) 再利用式(6-3)和折射定律 ,sin sin r n i = 's i n 's i n r n i = (6-6) 得到 r n i i r n di dr dr dr dr di di di cos cos )1('cos 'cos ''''? -?=??= ' 'csc csc 'sin 1cos sin 1'cos 2 2 2 2222 2 22r tg n r r tg n r r n r r n r --= --- = ' )1(1)1(12 2 22r tg n r tg n -+-+- = (6-7) 由式(6-5)可得:')1(1)1(12 22 2 r tg n r tg n -+=-+ 'tgr tgr = 因为r 和r’都小于90°,所以有r =r ’ 代入式(5)可得i =i'。 因此,偏向角δ取极小值极值的条件为: r =r ’ 或 i =i' (6-8) 显然,这时单色光线对称通过三棱镜,最小偏向角为δ min ,这时由式(6-4)可得: δ min =2i –A )(21 min A i += δ 由式(6-3)可得: A =2r 2 A r = 由折射定律式(6-6),可得三棱镜对该单色光的折射率n 为 2 sin )(21 sin sin sin min A A r i n += =δ (6-9) 由式(6-9)可知,只要测出三棱镜顶角A 和对该波长的入射光的最小偏向角δmin ,就可以计 算出三棱镜玻璃对该波长的入射光的折射率。顶角A 和对该波长的最小偏向角δ min 用分光计测定。 折射率是光波波长的函数,对棱镜来说,随着波长的增大,折射率n 则减少,如果是复色光入射,由于三棱镜的作用,入射光中不同颜色的光射出时将沿不同的方向传播,这就是棱镜的色散现象。 【实验内容】

激光拉曼光谱实验报告

激光拉曼光谱实验报告 摘要:本实验研究了用半导体激光器泵浦的3Nd + :4YVO 晶体并倍频后得到的532nm 激 光作为激发光源照射液体样品的4CCL 分子而得到的拉曼光谱,谱线很好地吻合了理论分析的4CCL 分子4种振动模式,且频率的实验值与标准值比误差低于2%。又利用偏振片及半波片获得与入射光偏振方向垂直及平行的出射光,确定了各振动的退偏度,分别为、、、,和标准值0和比较偏大。 关键词:拉曼散射、分子振动、退偏 一, 引言 1928年,印度物理学家拉曼()和克利希南()实验发现,当光穿过液体苯时被分子散射的光发生频率变化,这种现象称为拉曼散射。几乎与此同时,苏联物理学家兰斯别而格()和曼杰尔斯达姆()也在晶体石英样品中发现了类似现象。在散射光谱中,频率与入射光频率0υ相同的成分称为瑞利散射,频率对称分布在0υ两侧的谱线或谱带01υυ±即为拉曼光谱,其中频率较小的成分01υυ-又称为斯托克斯线,频率较大的成分01υυ+又称为反斯托克斯线。这种新的散射谱线与散射体中分子的震动和转动,或晶格的振动等有关。 拉曼效应是单色光与分子或晶体物质作用时产生的一种非弹性散射现象。拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 20世纪60年代激光的问世促进了拉曼光谱学的发展。由于激光极高的单色亮度,它很快被用到拉曼光谱中作为激发光源。而且基于新激光技术在拉曼光谱学中的使用,发展了共振拉曼、受激拉曼散射和番斯托克斯拉曼散射等新的实验技术和手段。 拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动。它提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。拉曼光谱的分析方向有定性分析、结构分析和定量分析。

(完整版)东北大学单色仪定标实验详细过程

首先是实验报告中的记录表格,那本书上并没有给出完整表格,只给了一个表头,我们画表格的时候则要画至少19行(推荐20行乃至21行会更好些),老师在检查完实验报告后说许多人的表格画的不合格,大都是因为行数画少了。 其次就是实验前预习,老师讲解的时候真的会提问的,不过没有扣分就是了。问的问题大致是六个,分别是: 1.单色仪的结构原理 2.单色仪定标的原理 3.单色仪定标的意义 4.如何识别谱图 5.单色仪鼓轮读数怎么读 6.显微镜的使用方法 前3个问题在书中都能找到,后三个问题稍后我会说明,这6个问题也就是整个实验的核心内容,弄懂了这6个问题整个实验操作就不会犯太大的错误。 进教室并将书包放好之后,老师会将实验报告收上来,然后让我们看一段幻灯片(自动播放的),同时她在那检查实验报告,幻灯片的内容就是上述的6个问题的答案,所以万一课前没来得及预习,将幻灯片里的内容记下来也可以。幻灯片结束之后就是老师讲解了,这里我们略过,直接看实验过程吧。

注:单色仪的两狭缝宽度千万不要调! 光谱、读数显微镜与单色仪

透镜和汞灯

以上就是我们实验时用到的仪器。

首先打开汞灯,刚开始不要急着观察,汞灯需要点亮一段时间才能达到最大亮度。 接着是调整单色仪鼓轮的位置 注意:单色仪的鼓轮是配有一个反射镜的(让我拿下去了),单色仪鼓轮上主尺的读数是左大右小(老师可能会问到),和读数显微镜的主尺标示不一样,如上图所示。 而在实验时我们观察单色仪鼓轮读数是通过反射镜来观察,如下图:

从反射镜中看主尺读数就是左小右大了,如此时的读数应为18.311mm左右(主尺上一个格1mm,测微鼓轮一个格0.01mm)。

光谱分析 实验报告

实验报告 课程名称: 材料科学基础实验 指导老师: 乔旭升 成绩: 实验名称: 光谱分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的 通过本实验了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR )和荧光光谱仪的基本原理、主要用途和实际操作过程。掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。学习分析影响测试结果的主要因素。 二、实验原理 电磁波可与多种物质相互作用。如果这种作用导致能量从电磁波转移至物质,就称为吸收。当光波与某一受体作用时,光子和接受体之间就存在碰撞。光子的能量可被传递给接受体而被吸收,由此产生吸收光谱。通常紫外和可见光的能量接近于某两个电子能级地能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁,又称为电子光谱。 当一束平行单色光照射到非散射的均匀介质时,光的一部分将被介质所反射,一部分被介质吸收,一部分透过介质。如果入射光强度为I0.反射光强度为Ir ,吸收光强度为Ia ,透过光强度为It ,则有I0=Ir+Ia+It 投射光强度与入射光强度之比称为透光率 T=It/I0 当一束具有连续波长的红外光照射某化合物时,其分子要吸收一部分光能转变为分子的震动能量或转动能量。此时若将其透过的光用单色器进行色散,就可得到一带暗条的谱带。以红外光的波长或波数为横坐标,以吸收率或者透过率百分数为纵坐标,把该谱带记录下来,就可得到该化合物的红外吸收光谱图。不同的化合物均有标准特征谱,将实验所得的光谱与标准谱对照,就可进行分子结构的基础研究和化合组成的分析。可由吸收峰的位置和形状来推知被测物的结构,按照特征峰的强度来测定混合物中各组分的含量。 当分子吸收来自光辐射的能量后,其本身就由处于稳定的基态跃迁至不稳定的激发态: M+h ν→。激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁波(荧光或磷光)的方式回到基态: →M+荧光(或磷光)。任何能产生荧光(或磷光)的物质都具有两个特征光谱:激发光谱和发射光谱。 激发光谱:荧光(或磷光)为光致发光,因此必须选择合适的激发光波长,这可通过激发

激光拉曼光谱仪实验报告

实验六 激光拉曼光谱仪 【目的要求】 1.学习和了解拉曼散射的基本原理; 2.学习使用激光拉曼光谱仪测量CCL 4的谱线; 【仪器用具】 LRS-3型激光拉曼光谱仪、CCL 4、计算机、打印机 【原 理】 1. 拉曼散射 当平行光投射于气体、液体或透明晶体的样品上,大部分按原来的方向透射 而过,小部分按照不同的角度散射开来,这种现象称为光的散射。散射是光子与物质分子相互碰撞的结果。由于碰撞方式不同,光子和分子之间会有多种散射形式。 ⑴ 弹性碰撞 弹性碰撞是光子和分子之间没有能量交换,只是改变了光子的运动方向,使得散射光的频率与入射光的频率基本相同,频率变化小于3×105HZ ,在光谱上称为瑞利散射。瑞利散射在光谱上给出了一条与入射光的频率相同的很强的散射谱线,就是瑞利线。 ⑵ 非弹性碰撞 光子和分子之间在碰撞时发生了能量交换,这不仅使光子改变了其运动方向,也改变了其能量,使散射光频率与入射光频率不同,这种散射在光谱上称为拉曼散射,强度很弱,大约只有入射线的10-6。 由于散射线的强度很低,所以为了排除入射光的干扰,拉曼散射一般在入射线的垂直方向检测。散射谱线的排列方式是围绕瑞利线而对称的。在拉曼散射中散射光频率小于入射光频率的散射线被称为斯托克斯线;而散射光频率大于入射光频率的散射线被称为反斯托克斯线。斯托克斯线和反斯托克斯线是如何形成的呢?在非弹性碰撞过程中,光子与分子有能量交换, 光子转移一部分能量给分子, 或者从分子中吸收一部分能量,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值21E E E -=?。在光子与分子发生非弹性碰撞过程中,光子把一部分能量交给分子时,光子则以较小的频率散射出去,称为频率较低的光(即斯托克斯线),散射分子接受的能量转变成为分子的振动或转动能

单色仪的定标

单色仪的定标 姓名:刘国强 学号:201418150285 班级:14级4班 学校:山东大学材料科学与工程学院 摘要:单色仪是产生单色光和测量波长,进行光谱分析的基本仪器,在本实验中所使用的反射式棱镜单色仪其色散器件是棱镜,通过棱镜对不同波长(或频率)的光有不同的折射率,使各种光通过棱镜后能向不同的方向散开,通过在读数显微镜下的观察,得出数据. 关键词;单色仪,光谱,棱镜,汞灯光源,读数显微镜 1672年牛顿发现了光的色散现象,而早在我国北宋初年(公元974-1020年), 杨亿著的《杨文公谈苑》一书中说:“嘉州峨眉山有菩萨石,人多收之,色莹白 如玉,如上饶水晶之类,日射之有五色.”这表明物质的折射率和光的频率有关, 而折射率取决于光在真空中的传播速度和物质中的传播速度之比。不同的光在同 一物质中的传播速度不同,因而棱镜的色散作用是显而易见的. 单色仪是一种常见的分光仪器,利用色散元件把复色光分解为准单色光,能 输出一系列独立的、光谱区间足够窄的单色光,可用于各种光谱分析和光谱特性 的研究,如测量介质的光谱透射率曲线、光源的光谱能量分布、光电探测器的光 谱能量响应等,应用相当广泛. 一、实验目的 通过单色仪的定标,掌握棱镜单色仪的工作原理和正确的使用方法. 二、实验仪器 反射式棱镜单色仪,会聚透镜,汞灯,读数显微镜 三、实验原理 实验室中常采用的棱镜单色仪通常分为两类;一类是透射式单色仪,

一类是反射式单色仪.本实验所用的是国产的WDF 型瓦兹渥斯反射式单色仪.其内部装置主要由以下三部分组成(见图一). 1,入射准直系统 由入射狭缝S 1和使入射光束变为平行光束的准直物镜M 1组成. 2,散射系统 主要是分光棱镜P 使光束色散,这是因为棱镜的材料对不同的波长(或频率)的光有不同的折射率n 所致,即)(λn n =.所以各种波长的光透过棱镜后能向不同的方向散开,如图一所示。复色光 ),,(321 λλλλ,以入射角1i 射入棱镜,单色光1i 以出射角2i 射出,不同 波长的光的出射角2i 是不相等的.入射光和出射光之间的夹角称偏向角,如图二中的即为单色光1λ和入射光之间的偏向角. 棱镜转动时,偏向角可以发生变化,当转动到某一位置时,偏向角具有最小值,称最小偏向角,用min δ表示,光学理论可以证明,当时 m i n δδ=时,21i i =,并且还可以证明,对顶角一定的棱镜,)(min n f =δ,n 为 棱镜P 的折射率,前面已指出了)(λn n =,所以,)(min λδf =.棱镜P 和平面镜M 作为一个整体,由单色仪下部的鼓轮手柄操作.转动鼓轮, 就改

光谱仪的工作原理

光谱仪的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

光谱仪的工作原理元素的原子在激发光源的作用下发射谱线,谱线经光栅分光后形成光谱,每种元素都有自己的特征谱线,谱线的强度可以代表试样中元素的含量,用光电检测器将谱线的辐射能转换成电能。检测输出的信号,经加工处理,在读出装置上显示出来。然后根据相应的标准物质制作的分析曲线,得出分析试样中待测元素的含量。 表面轮廓仪介绍 表面轮廓仪 - 简介 表面轮廓仪LK-200M型表面轮廓仪采用广精精密最新的基于windows版本的测量软件,具有强大卓越的数据处理分析功能。测量时,零件装夹位置即使任意放置,也能得到满意的测量结果;即使需要测量长度为220mm的工件,测量软件也能保证其1μm的采样步长。 LK-200H型表面轮廓仪采用耐用可靠的16位A/D功能板,其极高的分辨率量程比(1/65536),用户即使需要大量程测量,仍能保持极高的测量精度。 LK-200M型表面轮廓仪采用工控计算机处理测量数据及仪器控制操作。其高质量、高可靠性及突出的防尘、防振、防油、防静电能力使广精精密用户将使用维护成本降至最低。 表面轮廓仪 - 原理 表面轮廓仪LK-200M型表面轮廓仪采用直角坐标法,传感器移动式。直线运动导轨采用高精度气浮导轨,作为测量基准; 电器部分由高级计算机组成;测量软件采用基于中文版Windows操作系统平台的系统测量软件,完成数据采集、处理及测量数据管理等工作。 表面轮廓仪 - 功能 角度处理:两直线夹角、直线与Y轴夹角、直线与X轴夹角 点线处理:两直线交点、交点到直线距离、交点到交点距离、交点到圆心距离、交点到点距离 圆处理:圆心距离、圆心到直线的距离、交点到圆心的距离、直线到切点的距离线处理:直线度、凸度、LG凸度、对数曲线 表面轮廓仪 - 技术规格 表面轮廓仪测量长度:≤200mm

拉曼光谱实验报告

成绩 评定 教师 签名 嘉应学院物理学院近代物理实验 实验报告 实验项目:拉曼光谱 实验地点: 班级: 姓名: 座号: 实验时间:年月日

图2 ν? 0ν ν? 斯托克斯线 瑞利线 反斯托克斯线 一、实验目的: 1、 了解拉曼散射的基本原理 2、 学习使用拉曼光谱仪测量物质的谱线,知道简单的谱线分析方法。 二、实验仪器和用具: RBD 型激光拉曼光谱仪 三、实验原理: 按散射光相对于入射光波数的改变情况,可将散射光分为瑞利散射、布利源散射、拉曼散射;其中瑞利散射最强,拉曼散射最弱。在经典理论中,拉曼散射可以看作入射光的电磁波使原子或分子电极化以后所产生的,因为原子和分子都是可以极化的,因而产生瑞利散射,因为极化率又随着分子内部的运动(转动、振动等)而变化,所以产生拉曼散射。 在量子理论中,把拉曼散射看作光量子与分子相碰撞时产生的非弹性碰撞过程。在弹性碰撞过程中,光量子与分子均没有能量交换,于是它的频率保持恒定,这叫瑞利散射,如图(1a );在非弹性碰撞过程中光量子与分子有能量交换,从而使它的频率改变,它取自或给予散射分子的能量只能是分子两定态之间的差值12E E E ?=-,当光量子把一部分能量交给分子时,频率较低的光为斯托克斯线,散射分子接受的能量转变成为分子的振动或转动能量,从而处于激发态1E ,如图(1b ),这时的光量子的频率为0ννν'=-?;光量子从较大的频率散射,称为反斯托克斯线,这时的光量子的频率为0ννν'=+?。 最简单的拉曼光谱如图2所示,中央的是瑞利散射线,频率为0ν,强度最强;低频一侧的是斯托克斯线,强度比瑞利线的强度弱很多;高频的一侧是反斯托克斯线,强度比斯托克斯线的 图(1a ) 0h ν ()0h νν+? 0h ν ()0h νν-? 图(1b ) (上能态是虚能态,实 际不存在。这样的跃迁 过程只是一种模型实 际并没有发生) 0h ν 0h ν 0h ν 0h ν

光栅光谱仪实验报告

光栅光谱仪的使用 学号 2015212822 学生姓名张家梁 专业名称应用物理学(通信基础科学) 所在系(院)理学院 2017 年 3 月 14 日

光栅光谱仪的使用 张家梁 1 实验目的 1.了解光栅光谱仪的工作原理。 2.学会使用光栅光谱仪。 2实验原理 1. 光栅光谱仪 光栅光谱仪结构如图所示。光栅光谱仪的色散元件为闪耀光栅。入射狭缝和出射狭缝分别在两个球面镜的焦平面上,因此入射狭缝的光经过球面镜后成为平行光入射到光栅上,衍射光经后球面镜后聚焦在出射狭缝上。光栅可在步进电机控制下旋转,从而改变入射角度和终聚焦到出射狭缝处光线的波长。控制入射光源的波长范围,确保衍射光无级次重叠,可通过控制光栅的角度唯一确定出射光的波长。 光谱仪的光探测器可以有光电管、光电倍增管、硅光电管、热释电器件和CCCD 等多种,经过光栅衍射后,到达出射狭缝的光强一般都比较弱,因此本仪器采用光电倍增管和CCD 来接收出射光。 2. 光探测器 光电倍增管是一种常用的灵敏度很高的光探测器,它由光阴极、电子光学输入系统、倍增系统及阳极组成,并且通过高压电源及一组串联的电阻分压器在阴极──打拿极(又称“倍增极”) ──阳极之间建立一个电位分布。光辐射照射到阴极时,由于光电效应,阴极发射电子,把微弱的光输入转换成光电子;这些光电子受到各电极间电场的加速和聚焦,光电子在电子光学输入系统的电场作用下到达第一倍增极,产生二次电子,由于二次发射系数大于1,电子数得到倍增。以后,电子再经倍增系统逐级倍增,阳极收集倍增后的电子流并输出光电流信号,在负载电阻上以电压信号的形式输出。

CCD 是电荷耦合器件的简称,是一种金属—氧化物—半导体结构的新型器件,在电路中常作为信号处理单元。对光敏感的CCD 常用作图象传感和光学测量。由于CCD 能同时探测一定波长范围内的所有谱线,因此在新型的光谱仪中得到广泛的应用。 3. 闪耀光栅 在光栅衍射实验中,我们了解了垂直入射时(Φ=90°)光栅衍射的一般特性。当入射角Φ=90°时,衍射强度公式为 光栅衍射强度仍然由单缝衍射因子和多缝衍射因子共同决定,只不过此时 当衍射光与入射光在光栅平面法线同侧时,衍射角θ取+号,异侧时取-号。单缝衍射中央主极大的条件是u=0,即sinΦ=-sinθ或Φ=θ。将此条件代入到多缝干涉因子中,恰好满足v=0,即0 级干涉大条件。这表明单缝衍射中央极大与多缝衍射0 级大位置是重合的(图9.1a),光栅衍射强度大的峰是个波长均不发生散射的0 级衍射峰,没有实用价值。而含有丰富信息的高级衍射峰的强度却非常低。 为了提高信噪比,可以采用锯齿型的反射光栅(又称闪耀光栅)。闪耀光栅的锯齿相当于平面光栅的“缝”。与平面光栅一样,多缝干涉条件只取决于光栅常数,与锯齿角度、形状

光谱仪的原理、功能以及分类【详尽版】

光谱仪的原理光谱仪的主要功能以及具体的分类 内容来源网络,由SIMM深圳机械展整理 更多相关展示,就在深圳机械展! 光谱仪器是进行光谱研究和物质结构分析,利用光学色散原理及现代先进电子技术设计的光电仪器,光谱仪的主要功能是什么,在它工作原理的基础上怎么对其进行分类的,本文将详细的为大家介绍。 光谱仪的主要功能 它的基本作用是测量被研究光(所研究物质反射、吸收、散射或受激发的荧光等)的光谱特性,包括波长、强度等谱线特征。因此,光谱仪器应具有以下功能: (1)分光:把被研究光按一定波长或波数的发布规律在一定空间内分开。 (2)感光:将光信号转换成易于测量的电信号,相应测量出各波长光的强度,得到光能量按波长的发布规律。 (3)绘谱线图:把分开的光波及其强度按波长或波数的发布规律记录保存或显示对应光谱图。 要具备上述功能,一般光谱仪器都可分成四部分组成:光源和照明系统,分光系统,探测接收系统和传输存储显示系统。 主要分类 根据光谱仪器的工作原理可以分成两大类:一类是基于空间色散和干涉分光的光谱仪;另一类是基于调制原理分光的新型光谱仪。本设计是一套利用光栅分光的光谱仪,其基本结构如

图。 光源和照明系统可以是研究的对象,也可以作为研究的工具照射被研究的物质。一般来说,在研究物质的发射光谱如气体火焰、交直流电弧以及电火花等激发试样时,光源就是研究的对象;而在研究吸收光谱、拉曼光谱或荧光光谱时,光源则作为照明工具(如汞灯、红外干燥灯、乌灯、氙灯、LED、激光器等等)。为了尽可能多地会聚光源照射的光强度,并传递给后面的分光系统,就需要设计照明系统。 分光系统是任何光谱仪的核心部分,它一般是由准直系统、色散系统、成像系统三部分组成,作用是将照射来的光在一定空间内按照一定波长规律分开。如图2-1所示,准直系统一般由入射狭缝和准直物镜组成,入射狭缝位于准直物镜的焦平面上。光源和照明系统发出的光通过狭缝照射到准直物镜,变成平行光束投射到色散系统上。色散系统的作用是将入射的单束复合光分解为多束单色光。多束单色光经过成像物镜按照波长的顺序成像在透镜焦平面上;这样,单束的复合光经过分光系统后变成了多束单色光的像。目前主要的色散系统主要有物质色散(如棱镜)、多缝衍射(如光栅)和多光束干涉(如干涉仪)。 探测接收系统的作用是将成像系统焦平面上接收的光谱能量转换成易于测量的电信号,并测

相关文档
最新文档