基于Matlab的相位调制与解调技术

基于Matlab的相位调制与解调技术
基于Matlab的相位调制与解调技术

1.前言

1.1 序言

随着人类社会步入信息化社会,电子信息科学技术正以惊人的速度发展,开辟了社会发展的新纪元。从20世纪90年代开始至今,通信技术特别是移动通信技术取得了举世瞩目的成就。在通信技术日新月异的今天,学习通信专业知识不仅需要扎实的基础理论,同时需要学习和掌握更多的现代通信技术和网络技术。通信技术正向着数字化、网络化、智能化和宽带化的方向发展。全面、系统地论述了通信系统基本理沦、基本技术以及系统分析与设计中用到的基本工具和方法,并将重点放在数字通信系统上。通信系统又可分为数字通信与模拟通信。传统的模拟通信系统,包括模拟信号的调制与解调,以及加性噪声对幅度调制和角度调制模拟信号解调的影响。数字通信的基本原理,包括模数转换、基本AWGN信道中的数字调制方法、数字通信系统的信号同步方法、带限AWGN信道中的数字通信问题、数字信号的载波传输、数字信源编码以及信道编码与译码等,同时对多径信道中的数字通信、多载波调制、扩频、GSM与IS95数位蜂窝通信。随着数字技术的发展原来许多不得不采用的模拟技术部分已经可以由数字化来实现,但是模拟通信还是比较重要的

1.2 设计任务

本设计是基于MATLAB的模拟相位(PM)调制与解调仿真,主要设计思想是利用MATLAB这个强大的数学软件工具,其中的通信仿真模块通信工具箱以及M檔等,方便快捷灵活的功能实现仿真通信的调制解调设计。还借助MATLAB可视化交互式的操作,对调制解调处理,降低噪声干扰,提高仿真的准确度和可靠性。要求基于MATLAB的模拟调制与解调仿真,主要设计思想是利用MATLAB、simulink檔、M檔等,方便快捷的实现模拟通信的多种调制解调设计。基于simulink对数字通信系统的调制和解调建模。并编写相应的m檔,得出调试及仿真结果并进行分析。

2.通信系统与MATLAB软件

2.1模拟通信系统简介

通信系统是为了有效可靠的传输信息,信息由信源发出,以语言、图像、数据为媒体,通过电(光)信号将信息传输,由信宿接收。通信系统又可分为数字通信与模拟通信。基于课程设计的要求,下面简要介绍模拟通信系统。

信源是模拟信号,信道中传输的也是模拟信号的系统为模拟通信。模拟通信系统的模型如图1所示。

图1 模拟通信系统模型

调制器: 使信号与信道相匹配, 便于频分复用等。发滤波器: 滤除调制器输出的无用信号。收滤波器: 滤除信号频带以外的噪声,一般设N(t)为高斯白噪声,则Ni(t)为窄带白噪声。

2.2 相位调制与解调

调制在通信系统中具有重要作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输或便于信道多任务的已调信号,而且它对系统的传输有效性和传输可靠性有着很大的影响。调制方式往往决定了一个通信系统的性能。

在无线电通信中,角度调制(简称角调)是一种重要的调制方式,它包括频率调制和相位调制。频率调制简称调频用FM表示,它是使高频振荡信号的频率按调制信号的规律变化,而振幅保持不变的一种调制方式。我们称调频信号的解调为鉴频或频率检波。相位调制简称调相,用PM表示,它是使高频振荡信号的相位按调制信号的规律变化,其振幅也保持不变。调相信号的解调,称为鉴相或相位检波。角度调制属于频谱的非线性变换,即已调信号的频谱结构不再保持原调制信号频谱的内部结构,且调制后的信号带宽比原调制信号的贷款要大得多。虽然角度调制信号的频带利用率不高,但其抗干扰和噪声的能力较强。

由于从消息变换过来的原始信号具有频率较低的频谱分量,这种信号在许多

信道中不适宜直接进行传输。因此,在通信系统的发送端通常需要有调制过程,而在接收端则需要有反调制过程——解调过程。

所谓载波调制,就是按调制信号(基带信号)的变化规律去改变载波某些参数过程。调制的载波可以分为两类:用正弦型信号作为载波;用脉冲串或一组数字信号作为载波。通常,调制可以分为模拟(连续)调制和数字元调制两种方式。在模拟调制中,调制信号的取值是连续的,而数字调制中的调制信号的取值则为离散的。目前常见的模—数变换可以看成是一种用脉冲串作为载波的数位调制,它又称为脉冲编码调制(PCM)。

2.3 SIMULINK

SIMULINK是MATLAB软件的扩展,它是实现动态系统建模和仿真的一个软件包,它与MATLAB语言的主要区别在于,其与用户交互接口是基于Windows的模型化图形输入,其结果是使得用户可以把更多的精力投入到系统模型的构建,而非语言的编程上。在simulink环境中,利用鼠标就可以在模型窗口中直观地“画”出系统模型,然后直接进行仿真。它为用户提供了方框图进行建模的图形接口,采用这种结构画模型就像你用手和纸来画一样容易。

而所谓模型化图形输入是指SIMULINK提供了一些按功能分类的基本的系统模块,用户只需要知道这些模块的输入输出及模块的功能,而不必考察模块内部是如何实现的,通过对这些基本模块的调用,再将它们连接起来就可以构成所需要的系统模型(以.mdl檔进行存取),进而进行仿真与分析。SIMILINK 模块库按功能进行分类,包括以下8类子库: Continuous(连续模块),Discrete(离散模块),Function&Tables(函数和平台模块),Math(数学模块),Nonlinear (非线性模块),Signals&Systems(信号和系统模块),Sinks(接收器模块),Sources(输入源模块)。

3.原理分析

3.1调相信号

在模拟调制中,一个连续波有三个参数可以用来携带信息而构成已调信号。当幅度和频率保持不变时,改变载波的相位使之随未调信号的大小而改变,这就是调相的概念。

角度调制信号的一般表示形式为:

S m (t)=Acos[ωC t+φ(t)]

式中,A 是载波的恒定振幅;[ωC t+φ(t)]是信号的瞬时相位,而φ(t)称为瞬时相位偏移;d[ωC t+φ(t)]/dt 为信号的瞬时频率,而d φ(t)/dt 称为瞬时频率偏移,即相对于ωC 的瞬时频率偏移。

设高频载波为u c =U cm cos ωc t ,调制信号为U Ω(t),则调相信号的瞬时相位 φ(t)=ωct +K p U Ω(t)

瞬时角频率 ω(t)=dt (t)d φ=ωc +K p dt )t (du Ω

调相信号 u PM =U cm cos [ωc t+K p u Ω(t)]

将信号的信息加在载波的相位上则形成调相信号,调相的表达式为:

S PM (t)=Acos[ωC t+K PM f(t)+φ0]

这里K PM 称为相移指数,这种调制方式,载波的幅度和角频率不变,而瞬时相位偏移是调制信号f(t)的线性函数,称为相位调制。

调相与调频有着相当密切的关系,我们知道相位与频率有如下关系式:

ω=dt t d )(φ=ωC +K PM f(t)

φ(t)=?=dt ωωC t+K PM dt t ?)(f

所以在调相时可以先将调制信号进行微分后在进行频率调制,这样等效于调相,此方法称为间接调相,与此相对应,上述方法称为直接调相。调相信号的产生如图2所示:

图2 PM 调相信号的产生

3.2 调制原理

实现相位调制的基本原理是使角频率为ω

c 的高频载波u

c

(t)通过一个可控

相移网络, 此网络产生的相移Δφ受调制电压uΩ(t)控制, 满足Δφ=K

p

uΩ(t)的关系, 所以网络输出就是调相信号,可控相移网络调相原理图如图3所示:

图3 可控相移网络调相原理图

3.3 解调原理

已调波的解调电路称为检波器,调相波的解调电路称为相位检波器或鉴相器。采用乘积鉴相是最常用的方法。若调相信号为

u

PM =U

cm

cos[ω

c

t+Δφ(t)] 其中Δφ(t)=K

pu

Ω(t)

同步信号与载波信号相差2

π

u

01=

2

rm

cm

U

KU

sinΔφ(t)-sin[2ω

c

t+Δφ(t)] 式中k为乘法器增益, 低通滤波器

增益为1,可以看到乘积鉴相的线性鉴相范围较小,只能解调M

p ≦6

π的调相信

号。乘积鉴相器的原理图如图4所示,由于相乘的两个信号有900的固定相位差,故这种方法又称为正交乘积鉴相。

图4 正交乘积鉴相原理图

4.M函数实现的仿真

4.1源代码

首先任意给定一个已知调制信号m(t)=sin(100*t)

进行相位调制时要用到傅里叶变换,因此先编写傅里叶变换的m文件用作主函数调用,其m文件代码如下:

%求傅里叶变换的子函数

function [M,m,df]=fftseq(m,ts,df)

fs=1/ts;

if nargin==2 n1=0; %nargin为输入参量的个数

else n1=fs/df;

end

n2=length(m);

n=2^(max(nextpow2(n1),nextpow2(n2))); %nextpow2(n)取n最接近的较大2次幂M=fft(m,n); %M为信号m的傅里叶变换,n为快速傅

里叶变换的点数,及基n-FFT变换m=[m,zeros(1,n-n2)]; %构建新的m信号

df=fs/n; %重新定义频率分辨率

上述m文件以“fftseq.m”保存。

在实现相位解调时要调用两个子函数,分述如下:

%求信号相角的子函数,这是调频、调相都要用到的方法

function [v,phi]=env_phas(x,ts,f0)

if nargout==2 %nargout为输出变数的个数

z=loweq(x,ts,f0); %产生调制信号的正交分量

phi=angle(z); %angle是对一个复数求相角的函数

end

v=abs(hilbert(x)); %abs用来求复数hilbert(x)的模

上述m文件以“env_phas.m”保存。

%产生调制信号的正交分量

function x1=loweq(x,ts,f0)

2PSK数字信号的调制与解调

中南民族大学 软件课程设计报告 电信学院级通信工程专业 题目2PSK数字信号的调制与解调学生学号 42 指导教师 2012年4月21日

基于MATLAB数字信号2PSK的调制与解调 摘要:为了使数字信号在信道中有效地传播,必须使用数字基带信号的调制与解调,以使得信号与信道的特性相匹配。基于matlab实验平台实现对数字信号的2psk的调制与解调的模拟。本文详细的介绍了PSK波形的产生和仿真过程加深了我们对数字信号调制与解调的认知程度。 关键字:2PSK;调制与解调;MATLAB 引言 当今社会已经步入信息时代,在各种信息技术中,信息的传输及通信起着支撑作用。而对于信息的传输,数字通信已经成为重要的手段。因此,数字信号的调制就显得非常重要。 调制分为基带调制和带通调制。不过一般狭义的理解调制为带通调制。带通调制通常需要一个正弦波作为载波,把基带信号调制到这个载波上,使这个载波的一个或者几个参量上载有基带数字信号的信息,并且还要使已调信号的频谱倒置适合在给定的带通信道中传输。特别是在无线电通信中,调制是必不可少的,因为要使信号能以电磁波的方式发送出去,信号所占用的频带位置必须足够高,并且信号所占用的频带宽度不能超过天线的的通频带,所以基带信号的频谱必须用一个频率很高的载波调制,使期带信号搬移到足够高的频率上,才能够通过天线发送出去。 主要通过对它们的三个参数进行调制,振幅,角频率,和相位。使这三个参量都按时间变化。所以基带的数字信号调制主要有三种方式:FSK,PSK,ASK。在这三种调制的基础上为了得到更高的效果也出现了很多其它的调制方式,如:DPSK,MASK,MFSK,MPSK,APK。它们其中有的一些是将基本的调制方式用在多进制上或者引入了一些新的方式来解决基本调制的一些问题如相位模糊和无法提取位定时信号,另外一些由是组合多种基本的调制方式来达到更好的效果。 基带信号的调制主要分为线性调制和非线性调制,线性调制是指已调信号的频谱结构与原基带信号的频谱结构基本相同,只是占用的频率位置搬移了。而非线性调制则是指它们的结构完全不同不仅仅是频谱搬移,在接收方会出现很多新的频谱分量。在三种基本的调制中,ASK 属于线性调制,而FSK和PSK属于非线性调制。已调信号会在接收方通过各种方式通过解调得到,但是由于噪声和码间串扰,总会有一定的失真。所以人们总是在寻找不同的接收方式来降低误码率,其中的接收方式主要有相干接收和非相干接收。在接收方通过载波的相位信号去检测信号的方法称为相干检测,反之若不利用就称为非相干检测,而对于一些特别的调制有特别的解调方式,如过零检测法。 系统的性能好坏取决于传输信号的误码率,而误码率不仅仅与信道、接收方法有关还和发送端采用的调制方式有很大的关系。我们研究的ASK,FSK,PSK等就主要是发送方的调制方式。

实验一 ASK调制与解调实验

通 信 原 理 实 验 报 告 学院:信息与通信工程学院 专业:光电工程 班级:12051041 学号:12051041 姓名 时间:2014.11.21

实验一 ASK调制与解调实验 一实验目的 1.理解ASK调制的工作原理及电路组成。 2.理解ASK解调的原理及实现方法。 3.了解ASK信号的频谱特性。 二实验内容 1.观察ASK调制与解调信号的波形。 2.观察ASK信号频谱。 三实验器材 1.信号源模块 5.20M双踪示波器一台 2.数字调制模块 6.连接线若干 3.数字解调模块 7.频谱分析仪 4.同步提取模块 四实验原理 1.2ASK 调制原理 ASK 基带信号经过电压比较器(LM339),输出高/低电平驱动模拟开关(74HC4066)导通/关闭,ASK 载波通过电压跟随电路(TL082)提高带负载能力,然后通过模拟开关电路选择通过/截止,最后得到 ASK 调制信号输出。 2.2ASK 解调原理 本实验采用的是包络检波法,ASK 调制信号经过 RC 组成的耦合电路,输出波形可从OUT1观察,然后通过半波整流器(由 1N4148 组成),输出波形可从 OUT2 观察,半波整流后的信号经过低通滤波器(由 TL082 组成),滤波后的波形可从 OUT3 观察,再经过电压比较器(LM339)与参考电位比较后送入抽样判决器(74HC74)进行抽样判决,最后得到解调输出的二进制信号。标号为“ASK 判决电压调节”的电位器用来调节电压比较器的判决电压。判决电压过高,将会导致正确的解调结果的丢失;判决电压过低,将会导致解调结果中含有大量错码,因此,只有合理选择判决电压,才能得到正确的解调结果。抽样判决用的时钟信号就是 ASK 基带信号的位同步信号。

基于MATLAB的FSK调制解调实现完整版

目录 一. FSK理论知识………………………………………………… 1.1FSK概念………………………………………………………………… 1.22FSK信号的波形及时间表示式………………………………………… 1.32FSK信号的产生方法…………………………………………………… 1.42FSK信号的功率谱密度………………………………………………… 1.52FSK信号的解调………………………………………………………… 1.6FSK的误码性能…………………………………………………………… 二.用MATLAB进行FSK原理及误码性能仿真……… 三、结论…………………………………………… 四、参考文献…………………………………………、 五、源程序……………………………………………

1、FSK理论知识 频率调制的最简单形式是二进制频率键控(FSK,frequency-shift keying)。FSK是调制解调器通过电话线路发送比特的方法。每个比特被转换为一个频率,0由较低的频率表示,1由较高的频率表示。 1.1、FSK概念 传“0”信号时,发送频率为f1的载波; 传“1”信号时,发送频率为f2的载波。可见,FSK是用不同频率的载波来传递数字消息的。 实现模型如下图: 1.2、2FSK信号的波形及时间表示式 根据上图模型的实现可以得到2FSK的信号波形如图:

2FSK信号的时间表达式为: 由以上表达式可见,2FSK信号由两个2ASK信号相加构成。 注意:2FSK有两种形式: (1)相位连续的2FSK; (2)相位不连续的2FSK。 在这里,我们只讨论相位不连续的频移键控信号,这样更具有普遍性。 1.3、2FSK信号的产生方法 2FSK信号的产生方法:2FSK信号可以两类方法来产生。 一是采用模拟调频的方法来产生(图1);另一种方法是采用键控法(图2); 图1.3-1 图1.3-2 1.4、2FSK信号的功率谱密度

maab设计DSK信调制与解调

2DPSK调制与解调系统的仿真 1、 2DPSK基本原理 2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图所示。 图 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义为本码元初相与前一码元初相之差,假设: →数字信息“0”; →数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位: 或:0 2DPSK信号的调制原理

一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 2DPSK信号的解调原理 2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 2DPSK信号解调的极性比较法 它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判

2PSK数字信号的调制与解调-分享版

信息对抗大作业

一、实验目的。 使用 MATLAB构成一个加性高斯白噪声情况下的2psk 调制解系统,仿真分析使用信道编 码纠错和不使用信道编码时,不同信道噪声比情况下的系统误码率。 二、实验原理。 数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性 而不能直接传输基带信号。为了使数字信号在带通信道中传输,必须使用数字基带信号对载波 进行调制,以使信号与信道的特性相匹配。这种用数字基带信号控制载波,把数字基带信号变 换为数字带通信号的过程称为数字调制。 数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成 是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离 散取值特点通过开关键控载波,从而实现数字调制。这种方法通常称为键控法,比如对载波的 相位进行键控,便可获得相移键控(PSK)基本的调制方式。 图 1相应的信号波形的示例 101 数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达 到零值,同时达到负最大值,它们应处于" 同相 " 状态;如果其中一个开始得迟了一点,就可能不 相同了。如果一个达到正最大值时,另一个达到负最大值,则称为" 反相 " 。一般把信号振荡一次(一周)作为360 度。如果一个波比另一个波相差半个周期,我们说两个波的相位差180 度,也就是反相。当传输数字信号时, "1" 码控制发 0 度相位, "0" 码控制发 180 度相位。载波的初始相位就 有了移动,也就带上了信息。 相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK 中,通常用初始相位0 和π分别表示二进制“1”和“ 0”。因此, 2PSK信号的时域表达式为 (t)=Acos t+) 其中,表示第 n 个符号的绝对相位: = 因此,上式可以改写为

基础实验cm调制与解调实验

基础实验c m调制与解 调实验 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

基础实验6 PCM调制与解调实验 一、实验目的 1.掌握PCM编译码原理与系统性能测试; 2.熟悉PCM编译码专用集成芯片的功能和使用方法; 3.学习PCM编译码器的硬件实现电路,掌握它的调整测试方法。 二、实验仪器 1.PCM/ADPCM编译码模块,位号:H 2.时钟与基带数据产生器模块,位号:G 3.20M双踪示波器1台 4.低频信号源1台(选用) 5.频率计1台(选用) 6.信号连接线3根 7.小平口螺丝刀1只 三、实验原理 脉冲编码调制(PCM)是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号在信道中传输。脉冲编码调制是对模拟信号进行抽样,量化和编码三个过程完成的。 PCM通信系统的实验方框图如图6-1所示。

在PCM脉冲编码调制中,话音信号经防混叠低通滤波器后进行脉冲抽样,变成时间上离散的PAM脉冲序列,然后将幅度连续的PAM脉冲序列用类似于“四舍五入”办法划归为有限种幅度,每一种幅度对应一组代码,因此PAM脉冲序列将转换成二进制编码序列。对于电话,CCITT规定抽样率为8KHz,每一抽样值编8位码(即为28=256个量化级),因而每话路PCM编码后的标准数码率是64kB。本实验应用的单路PCM编、译码电路是 TP3057 芯片(见图6-1中的虚线框)。此芯片采用a律十三折线编码,它设计应用于PCM 30/32系统中。它每一帧分32个时隙,采用时分复用方式,最多允许接入30个用户,每个用户

各占据一个时隙,另外两个时隙分别用于同步和标志信号传送,系统码元速率为。各用户PCM编码数据的发送和接收,受发送时序与接收时序控制,它仅在某一个特定的时隙中被发送和接收,而不同用户占据不同的时隙。若仅有一个用户,在一个PCM 帧里只能在某一个特定的时隙发送和接收该用户的PCM编码数据,在其它时隙没有数据输入或输出。 本实验模块中,为了降低对测试示波器的要求,将PCM 帧的传输速率设置为64Kbit/s或128Kbit/s两种,这样增加了编码数据码元的宽度,便于用低端示波器观测。此时一个PCM 帧里,可容纳的PCM编码分别为1路或2路。另外,发送时序FSX与接收时序FSR使用相同的时序,测试点为34TP01。实验结构框图已在模块上画出了,实验时需用信号连接线连接34P02和34P03两铆孔,即将编码数据直接送到译码端,传输信道可视为理想信道。 另外, TP3057芯片内部模拟信号的输入端有一个语音带通滤波器,其通带为200HZ~4000HZ,所以输入的模拟信号频率只能在这个范围内有效。 四、各测量点的作用 34TP01:发送时序FSX和接收时序FSR输入测试点,频率为8KHz的矩形窄脉冲; 34TP02:PCM线路编译时钟信号的输入测试点; 34P01:模拟信号的输入铆孔; 34P02:PCM编码的输出铆孔; 34P03:PCM译码的输入铆孔; 34P04:译码输出的模拟信号铆孔,波形应与34P01相同。 注:一路数字编码输出波形为8比特编码(一般为7个半码元波形,最后半个码元波形被芯片内部移位寄存器在装载下一路数据前复位时丢失掉),数据的速率由编译时钟决定,其中第一位为语音信号编码后的符号位,后七位为语音信号编码后的电平值。

基于MATLAB SIMULINK的FM调制解调

摘要 在模拟通信系统中,由模拟信源产生的携带有信息的消息经过传感器转换成电信号。模拟基带信号在经过调制将低通频谱搬移到载波频率上适应信道,最终解调还原成电信号。本文应用了频率调制法产生调制解调信号。本论文中主要通过对SIMULINK工具箱的学习和使用,利用其丰富的模板以及本科对通信原理知识的掌握,完成了FM信号的调制与解调,以及用SIMULINK进行设计和仿真。首先利用简单的正玄波信号发生器作为信源,对模拟信号进行FM调制解调原理的仿真。 关键词:调制解调;FM ;MATLAB;SIMULINK仿真

Abstract In the simulation of communication systems, generated by the analog source carrying a message through the sensor into electrical signals. Analog baseband signal after the modul- -ation of the low pass spectrum to carrier frequency to adapt to the channel, the final reducti- -on into electrical signal demodulation. This paper applied the frequency modulation method to generate the signal modulation and demodulation. Mainly through the study and use of SIMULINK toolbox in this thesis, with its rich template and undergraduate course on comm--unication theory knowledge,the modulation and demodulation of FM signal, as well as the design and simulation with SIMULINK. Firstly, sine wave signal generator is simple as the source, simulation FM modulation anddemodulation principle of analogue signals. Then, using the song as the source. Keywords: modulation and demodulation;FM; MATLAB; SIMULINK simulation

PSK(DPSK)调制与解调

实验题目——PSK(DPSK)调制与解调 一、实验目的 1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。 2、掌握产生PSK(DPSK)信号的方法。 3、掌握PSK(DPSK)信号的频谱特性。 二、实验内容 1、观察绝对码和相对码的波形。 2、观察PSK(DPSK)信号波形。 3、观察PSK(DPSK)信号频谱。 4、观察PSK(DPSK)相干解调器各点波形。 三、实验仪器 1、信号源模块 2、数字调制模块 3、数字解调模块 4、20M双踪示波器 5、导线若干 四、实验原理 1、2PSK(2DPSK)调制原理 2PSK信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图所示。 2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。如果这个参考相位发生变化,则恢复的数字信息就会与发送的数字信息完全相反,从而造成错误的恢复。这种现象常称为2PSK的“倒π”现象,因此,实际中一般

不采用2PSK 方式,而采用差分移相(2DPSK )方式。 2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。如图为对同一组二进制信号调制后的2PSK 与2DPSK 波形。 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1数字信息(绝对码)PSK 波形 DPSK 波形 相对码 从图中可以看出,2DPSK 信号波形与2PSK 的不同。2DPSK 波形的同一相位并不对应相同的数字信息符号,而前后码元相对相位的差才唯一决定信息符号。这说明,解调2DPSK 信号时并不依赖于某一固定的载波相位参考值。只要前后码元的相对相位关系不破坏,则鉴别这个关系就可以正确恢复数字信息,这就避免了2PSK 方式中的“倒π”现象发生。同时我们也可以看到,单纯从波形上看,2PSK 与2DPSK 信号是无法分辨的。这说明,一方面,只有已知移相键控方式是绝对的还是相对的,才能正确判定原信息;另一方面,相对移相信号可以看成是把数字信息序列(绝对码)变换成相对码,然后再根据相对码进行绝对移相而形成。 2DPSK 的调制原理与2FSK 的调制原理类似,也是用二进制基带信号作为模拟开关的控制信号轮流选通不同相位的载波,完成2DPSK 调制,其调制的基带信号和载波信号分别从“PSK 基带输入”和“PSK 载波输入”输入,差分变换的时钟信号从“PSK-BS 输入”点输入,其原理框图如图所示: 2DPSK 调制原理框图 2、2PSK (2DPSK )解调原理

数字调制与解调 实验报告材料

计算机与信息工程学院实验报告 一、实验目的 1.掌握绝对码、相对码概念及它们之间的变换关系。 2.掌握用键控法产生2FSK信号的方法。 3.掌握2FSK过零检测解调原理。 4.了解2FSK信号的频谱与数字基带信号频谱之间的关系。 二、实验仪器或设备 1.通信原理教学实验系统 TX-6(武汉华科胜达电子有限公司 2011.10) 2.LDS20410示波器(江苏绿扬电子仪器集团有限公司 2011.4.1) 三、总体设计 3.1数字调制 3.1.1实验内容: 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2FSK信号波形。 3、用频谱仪观察数字基带信号频谱及2FSK信号的频谱。 3.1.2基本原理: 本实验用到数字信源模块和数字调制模块。信源模块向调制模块提供数字基带信号(NRZ码)和位同步信号BS(已在实验电路板上连通,不必手工接线)。调制模块将输入的绝对码AK(NRZ码)变为相对码BK、用键控法产生2FSK信号。调制模块内部只用+5V电压。 数字调制单元的原理方框图如图1-1所示。 图1-1 数字调制方框图 本单元有以下测试点及输入输出点:

? CAR 2DPSK 信号载波测试点 ? BK 相对码测试点 ? 2FSK 2FSK 信号测试点/输出点,V P-P >0.5V 用1-1中晶体振荡器与信源共用,位于信源单元,其它各部分与电路板上主要元器件对 应关系如下: ? ÷2(A ) U8:双D 触发器74LS74 ? ÷2(B ) U9:双D 触发器74LS74 ? 滤波器A V6:三极管9013,调谐回路 ? 滤波器B V1:三极管9013,调谐回路 ? 码变换 U18:双D 触发器74LS74;U19:异或门74LS86 ? 2FSK 调制 U22:三路二选一模拟开关4053 ? 放大器 V5:三极管9013 ? 射随器 V3:三极管9013 2FSK 信号的两个载波频率分别为晶振频率的1/2和1/4,通过分频和滤波得到。 2FSK 信号(相位不连续2FSK )可看成是AK 与AK 调制不同载频信号形成的两个2ASK 信号相加。时域表达式为 t t m t t m t S c c 21cos )(cos )()(ωω+= 式中m(t)为NRZ 码。 2FSK 信号功率谱 设码元宽度为T S ,f S =1/T S 在数值上等于码速率, 2FSK 的功率谱密度如图所示。多进制的MFSK 信号的功率谱与二进制信号功率谱类似。 本实验系统中m(t)是一个周期信号,故m(t)有离散谱,因而2FSK 也具有离散谱。 3.2 数字解调 3.2.1 实验内容 1、 用示波器观察2FSK 过零检测解调器各点波形。 3.2.2 基本原理 2FSK 信号的解调方法有:包络括检波法、相干解调法、鉴频法、过零检测法等。

频率调制与解调实验报告

1.熟悉LM566单片集成电路的组成和应用。 2.掌握用LM566单片集成电路实现频率调制的原理和方法。 3.了解调频方波、调频三角波的基本概念。 4.掌握用LM565单片集成电路实现频率解调的原理,并熟悉其方法。 5.了解正弦波调制的调频方波的解调方法。 6.了解方波调制的调频方波的解调方法。 二、实验准备 1.做本实验时应具备的知识点: ? LM566单片集成压控振荡器 ?LM566组成的频率调制器工作原理 ? LM565单片集成锁相环 ?LM565组成的频率解调器工作原理 2.做本实验时所用到的仪器: ?万用表 ?双踪示波器 ? AS1637函数信号发生器 ?低频函数发生器(用作调制信号源) ?实验板5(集成电路组成的频率调制器单元) 三、实验内容 1.定时元件R T、C T对LM566集成电路调频器工作的影响。 2.输入调制信号为直流时的调频方波、调频三角波观测。 3.输入调制信号为正弦波时的调频方波、调频三角波观测4.输入调制信号为方波时的调频方波、调频三角波观测。 5.无输入信号时(自激振荡产生)的输出方波观测。 6.正弦波调制的调频方波的解调。 7.方波调制的调频方波的解调。 四、实验步骤 1.实验准备 ⑴在箱体右下方插上实验板5。接通实 验箱上电源开关,此时箱体上±12V、±5V电 源指示灯点亮。 ⑵把实验板5上集成电路组成的频率 调制器单元右上方的电源开关(K5)拨到ON 位置,就接通了±5V电源(相应指示灯亮), 即可开始实验。 2.观察R T、C T对频率的影响(R T = R3+W l、

C T = C1) ⑴实验准备 ① K4置ON位置,从而C1连接到566的管脚⑦上; ②开关K3接通,K1、K2断开,从而W2和C2连接到566的管脚⑤上; ③调W2使V5=3.5V(用万用表监测开关K3下面的测试点); ④将OUT1端接至AS1637函数信号发生器的INPUT COUNTER来测频率。 ⑵改变W1并观察输出方波信号频率,记录当W1为最小、最大(相应地R T为最小、最大)时的输出频率,并与理论计算值进行比较,给定:R3 =3kΩ,W1=1kΩ,C1=2200pF。 ⑶用双踪示波器观察并记录当R T为最小时的输出方波、三角波波形。 ⑷若断开K4,会发生什么情况?最后还是把K4接通(正常工作时不允许断开K4)。 3.观察输入电压对输出频率的影响 ⑴直流电压控制(开关K3接通,K1、K2断开) 先把W l调至最大(振荡频率最低),然后调节W2以改变输入电压,测量当V5在2.4V~4.8V变化(按0.2V递增)时的输出频率f,并将结果填入表1。 第二部分: 1.实验准备 ⑴在箱体右下方插上实验板5。接通实验箱上电源开关,此时箱体上±12V、±5V电源指示灯点亮。 ⑵把实验板5上集成电路组成的频率调制器单元(简称566 调频单元)的电源开关(K5)和集成电路组成的频率解调器单元(简称565鉴频单元)的电源开关(K1)都拨到ON位置,就接通了这两个单元的±5V电源(相应指示灯亮),即可开始实验。 2.自激振荡观察 在565鉴频单元的IN端先不接输入信号,把示波器探头接到A点,便可观察到VCO自激振荡产生的方波(峰-峰值4.5V左右)。 3.调制信号为正弦波时的解调 ⑴先按实验十的实验内容获得正弦调制的调频方波(566调频单元上开关K1、K2接通,K3断开,K4接通)。为此,把低频函数发生器(用作调制信号源)的输出设置为:波形选择—正弦波,频率—1kHz,峰-峰值—0.4V,便可在566调频单元的OUT1端上获得正弦调制的调频方波信号。 ⑵把566调频单元OUT1端上的调频方波信号接入到565鉴频单元的IN端,并把566调频单元的W l调节到最大(从而定时电阻R T最大),便可用双踪示波器的CH1观察并记录输入调制信号(566调频单元IN端),CH2观察并记录565鉴频单元上的A点波形(峰-峰值为4.5V左右的调频方波)、B点波形(峰-峰值为40mV左右的1kHz正弦波)和OUT端波形(需仔细调节565鉴频单元上的W1,可观察到峰-峰值为4.5V左右的1kHz方波)。 ⑶调节565鉴频单元上的W1,可改变565鉴频单元OUT端解调输出方波的占空比。 五、数据处理

基于MATLAB的FSK调制解调1

基于MATLAB的FSK调制解调 学生姓名:段斐指导老师:吴志敏 摘要本课程设计利用MATLAB集成环境下的M文件,编写程序来实现FSK 的调制解调,并绘制出解调前后的时域和频域波形及叠加噪声时解调前后的时频波形,并观察解调前后频谱有何变化以加深对F SK信号解调原理的理解。对信号叠加噪声,并迚行解调,绘制出解调前后信号的时频波形,改变噪声功率迚行解调,根据运行结果和波形来分析该解调过程的正确性及信道对信号传输的影响。完成整个FSK的调制解调过程。程序开发平台为MATLAB7.1,使用其自带的M文件实现。运行平台为Windows 2000。 关键词:程序设计;FSK ;调制解调;MATLAB7.1;M文件 1引言 本课程设计是利用MATLAB集成环境下的M文件,编写程序来实现FSK 的调制解调,并绘制出解调前后的时域和频域波形及叠加噪声时解调前后的时频波形,根据运行结果和波形来分析该解调过程的正确性及信道对信号传输的影响。 1.1课程设计目的 此次课程设计的目的是熟悉MATLAB中M文件的使用方法,编写M文件实现FSK的调制和解调,绘制出FSK信号解调前后在时域和频域中的波形,观察调解前后频谱的变化,再对信号迚行噪声叠加后解调同样绘制解调前后的

信号时频波形,最后改变噪声功率迚行调解,分析噪声对信号传输造成的影响,加深对FSK信号解调原理的理解。 1.2课程设计要求 熟悉MATLAB中M文件的使用方法,并在掌握FSK调制解调原理的基础上,编写出F SK调制解调程序。在M文件环境下运行程序绘制出F SK信号解调前后在时域和频域中的波形,观察波形在解调前后的变化,对其作出解释,同时对信号加入噪声后解调,得到解调后的时频波形,分析噪声对信号传输造成的影响。解释所得到的结果。 1.3课程设计步骤 本课程设计采用M文件编写的方法实现二迚制的FSK的调制与解调,然后在信号中叠加高斯白噪声。一,调用dmode函数实现FSK的解调,并绘制出F SK信号调制前后在时域和频域中的波形,两者比较。二,调用ddemod函数解调,绘制出F SK信号解调前后在时域和频域中的波形,两者比较。三,调用awgn函数在新海中叠加不同信噪比的噪声,绘制在各种噪声下的时域频域图。最后分析结果。 1.4设计平台简介 Matlab是美国MathWorks公司开发的用于概念设计,算法开发,建模仿真,实时实现的理想的集成环境。是目前最好的科学计算类软件。 作为和Mathematica、Maple并列的三大数学软件。其强项就是其强大的矩阵计算以及仿真能力。Matlab的由来就是Matrix + Laboratory = Matlab,这个软件在国内也被称作《矩阵实验室》。Matlab提供了自己的编译器:全面兼容C++以及Fortran两大语言。Matlab 7.1于2005.9最新发布-完整版,提供了

二进制数字调制与解调系统的设计.

二进制数字调制与解调系统的设计 MATLAB 及SIMULINK 建模环境简介 MATLAB 是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB 和SIMULINK 两大部分。 Simulink 是MATLAB 最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink 具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink 。 Simulink 是MATLAB 中的一种可视化仿真工具, 是一种基于MATLAB 的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink 可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。为了创建动态系统模型,Simulink 提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。 数字通信系统的基本模型 从消息传输角度看,该系统包括了两个重要交换,即消息与数字基带信号之间的交换,数字基带信号与信道信号之间的交换.通常前一种交换由发收端设备完成.而后一种交换则由调制和解调完成. 数字通信系统模型 一、2ASK 调制解调 基本原理 2ASK 是利用载波的幅度变化来传递数字信息,而其频率和初始相位保持不变。 其信号表达式为: ,S (t)为单极性数字基带信号。 t t S t e c ωcos )()(0 ?=

基于MATLAB的FSK调制解调 (1)

基于MATLAB的FSK的实验报告 姓 1.1

实现对FSK的MATLAB仿真. 重点研究问题: (1) 对FSK的概念、组成以及性能分析方法有深入的研究; (2) FSK调制与解调的原理及应用MATLAB软件实现仿真的方案. 1.2 FSK信号的调制方法 移频键控(FSK):用数字调制信号的正负控制载波的频率。当数字信号的振幅为正时载波频率为f1,当数字信号的振幅为负时载波频率为 f2。有时也把代表两个以上符号的多进制频率调制称为移频键控。移频键控能区分通路,但抗干扰能力不如移相键控和差分移相键控。他的主要调制方法有以下两种: 方法一: 用一个矩形脉冲序列对一个载波进行调频。 图2-3 2FSK信号的产生(一) 方法二:键控法 图2-4 2FSK信号的产生(二) 键控法是利用矩形脉冲()t b来控制开关电路对两个不同的独立频率源进行选通。

1.3 FSK解调的方法 常见的FSK解调方法有两种:相干解调法与非相干解调法.现在我将对这两种解法。 1.4 设计总思路 如下图所示,我将FSK的调制与FSK的解调独立开作为两个子函数,其中FSK调制的输出即可作为FSK解调的输入信号.最后设计一主函数main将两个子函数同时调用完成整个仿真过程。 图3-1 设计总思路图 2.1 FSK调制的仿真设计 本文主要是对2FSK进行调制,而2FSK可看做是基带信号与载波频率的结合就可.FSK的产生思路参考的是键控法,如图4

图3-2 2FSK信号的产生(二) 2.2 FSK解调的仿真设计 如上图所示的FSK信号的相干检测原理图,FSK信号可以采用两个乘法检测器进行相干检测. 上图中输入信号为2FSK信号加上噪声组成 带通滤波器2的设计类似滤波器1,只是更改频率为fc2就可.

实验二 数字信号载波调制

数字信号载波调制实验指导书 数字信号载波调制实验 一、实验目的 1、运用MATLAB 软件工具仿真数字信号的载波传输.研究数字信号载波调制ASK 、FSK 、PSK 在不同调制参数下的信号变化及频谱。 2,研究频移键控的两种解调方式;相干解调与非相干解调。 3、了解高斯白噪声方差对系统的影响。 4、了解伪随机序列的产生,扰码及解扰工作原理。 二、实验原理 数字信号载波调制有三种基本的调制方式:幅度键控(ASK ),频移键控(FSK )和相移键控(PSK )。它们分别是用数字基带信号控制高频载波的参数如振幅、频率和相位,得到数字带通信号。在接收端运用相干或非相干解调方式,进行解调,还原为原数字基带信号。 在幅度键控中,载波幅度是随着调制信号而变化的。最简单的形式是载波在 二进制调制信号1或0的控制下通或断,这种二进制幅度键控方式称为通—断键控(00K )。二进制幅度键控信号的频谱宽度是二进制基带信号的两倍。 在二进制频移键控中,载波频率随着调制信号1或0而变,1对应于载波频率f 1,0对应于载波频率f 2,二进制频移键控己调信号可以看作是两个不同载频的幅度键控已调信号之和。它的频带宽度是两倍基带信号带宽(B )与21||f f -之和。 在二进制相移键控中,载波的相位随调制信号1或0而改变,通常用相位0°和180°来分别表示1或0,二进制相移键控的功率谱与通一断键控的相同,只是少了一个离散的载频分量。 m 序列是最常用的一种伪随机序列,是由带线性反馈的移位寄存器所产生的序列。它具有最长周期。由n 级移位寄存器产生的m 序列,其周期为21,n m -序列有很强的规律性及其伪随机性。因此,在通信工程上得到广泛应用,在本实验中用于扰码和解扰。 扰码原理是以线性反馈移位寄存器理论作为基础的。在数字基带信号传输中,将二进制数字信息先作“随机化”处理,变为伪随机序列,从而限制连“0”

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

基于MATLAB的ASK调制解调实现

基于MATLAB的ASK调制解调实现

————————————————————————————————作者:————————————————————————————————日期: ?

长沙理工大学 《通信原理》课程设计报告 学院专业 班级学号 学生姓名指导教师 课程成绩完成日期2016年1月8日

课程设计成绩评定 学院专业 班级学号 学生姓名指导教师 课程成绩完成日期2016年1月8日 指导教师对学生在课程设计中的评价 评分项目优良中及格不及格课程设计中的创造性成果 学生掌握课程内容的程度 课程设计完成情况 课程设计动手能力 文字表达 学习态度 规范要求 课程设计论文的质量 指导教师对课程设计的评定意见 综合成绩指导教师签字2016年1月8日

课程设计任务书 城南学院通信工程专业 课程名称通信原理课程设计时间2015/2016学年第一学期17~19 周 学生姓名指导老师 题目基于MATLAB的ASK调制解调实现 主要内容: 利用MATLAB集成环境下的M文件,编写程序来实现ASK的调制解调, 要求采样频率为360HZ,并绘制出解调前后的时域和频域波形及叠加噪声时解 调前后的时频波形,根据运行结果和波形来分析该解调过程的正确性及信道对信 号传输的影响。 要求: 1)熟悉MATLAB中M文件的使用方法,并在掌握ASK调制解调原理 的基础上,编写出ASK调制解调程序。 2)绘制出ASK信号解调前后在时域和频域中的波形,并观察解调前后频谱有何变化以加深对ASK信号解调原理的理解。 3)对信号叠加噪声,并进行解调,绘制出解调前后信号的时频波形,改变噪声功率进行解调,分析噪声对信号传输造成的影响。 4)在老师的指导下,要求独立完成课程设计的全部内容,并按要求编写课 程设计学年论文,能正确阐述和分析设计和实验结果。 应当提交的文件: (1)课程设计学年论文。 (2)课程设计附件。

PSK(DPSK)调制与解调资料讲解

P S K(D P S K)调制与解 调

实验题目——PSK(DPSK)调制与解调 一、实验目的 1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。 2、掌握产生PSK(DPSK)信号的方法。 3、掌握PSK(DPSK)信号的频谱特性。 二、实验内容 1、观察绝对码和相对码的波形。 2、观察PSK(DPSK)信号波形。 3、观察PSK(DPSK)信号频谱。 4、观察PSK(DPSK)相干解调器各点波形。 三、实验仪器 1、信号源模块 2、数字调制模块 3、数字解调模块 4、20M双踪示波器 5、导线若干 四、实验原理 1、2PSK(2DPSK)调制原理 2PSK信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图所示。

2PSK 信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。如果这个参考相位发生变化,则恢复的数字信息就会与发送的数字信息完全相反,从而造成错误的恢复。这种现象常称为2PSK 的“倒π”现象,因此,实际中一般不采用2PSK 方式,而采用差分移相(2DPSK )方式。 2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。如图为对同一组二进制信号调制后的2PSK 与2DPSK 波形。 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 数字信息(绝对码)PSK 波形 DPSK 波形 相对码 从图中可以看出,2DPSK 信号波形与2PSK 的不同。2DPSK 波形的同一相位并不对应相同的数字信息符号,而前后码元相对相位的差才唯一决定信息符号。这说明,解调2DPSK 信号时并不依赖于某一固定的载波相位参考值。只要前后码元的相对相位关系不破坏,则鉴别这个关系就可以正确恢复数字信息,这就避免了2PSK 方式中的“倒π”现象发生。同时我们也可以看到,单纯从波形上看,2PSK 与2DPSK 信号是无法分辨的。这说明,一方面,只有已知移相键控方式是绝对的还是相对的,才能正确判定原信息;另一方面,相对移相信号可以看成是把数字信息序列(绝对码)变换成相对码,然后再根据相对码进行绝对移相而形成。

基于matlab的数字信号调制与解调

一matlab常用函数 1、特殊变量与常数 ans 计算结果的变量名computer 确定运行的计算机eps 浮点相对精 度Inf 无穷大I 虚数单位inputname 输入参数名NaN 非 数nargin 输入参数个数nargout 输出参数的数目pi 圆周 率nargoutchk 有效的输出参数数目realmax 最大正浮点数realmin 最小正浮点数varargin 实际输入的参量varargout 实际返回的参量操作符与特殊字符+ 加- 减* 矩阵乘法 .* 数组乘(对应元素相乘)^ 矩阵幂 .^ 数组幂(各个元素求幂)\ 左除或反斜杠/ 右除或斜面杠 ./ 数组除(对应元素除)kron Kronecker张量积: 冒号() 圆括[] 方括 . 小数点 .. 父目录 ... 继续, 逗号(分割多条命令); 分号(禁止结果显示)% 注释! 感叹号' 转置或引用= 赋值== 相等<> 不等 于& 逻辑与| 逻辑或~ 逻辑非xor 逻辑异或 2、基本数学函数 abs 绝对值和复数模长acos,acodh 反余弦,反双曲余弦acot,acoth 反余切,反双曲余切acsc,acsch 反余割,反双曲余割angle 相角asec,asech 反正割,反双曲正割secant 正切asin,asinh 反正弦,反双曲正 弦atan,atanh 反正切,双曲正切tangent 正切atan2 四象限反正 切ceil 向着无穷大舍入complex 建立一个复数conj 复数配 对cos,cosh 余弦,双曲余弦csc,csch 余切,双曲余切cot,coth 余切,双曲余切exp 指数fix 朝0方向取整floor 朝负无穷取整*** 最大公因数imag 复数值的虚部lcm 最小公倍数log 自然对数log2 以2为底的对数log10 常用对数mod 有符号的求余nchoosek 二项式系数和全部组合数real 复数的实部rem 相除后求余round 取整为最近的整数sec,sech 正割,双曲正割sign 符号数sin,sinh 正弦,双曲正弦sqrt 平方根tan,tanh 正切,双曲正切 3、基本矩阵和矩阵操作 blkding 从输入参量建立块对角矩阵eye 单位矩阵linespace 产生线性间隔的向量logspace 产生对数间隔的向量numel 元素个数ones 产生全为1的数组rand 均匀颁随机数和数组randn 正态分布随机数和数组zeros 建立一个全0矩阵colon) 等间隔向量cat 连接数组diag 对角矩阵和矩阵对角线fliplr 从左自右翻转矩阵flipud 从上到下翻转矩阵repmat 复制一个数组reshape 改造矩阵roy90 矩阵翻转90度tril 矩阵的下三角triu 矩阵的上三角dot 向量点集cross 向量叉 集ismember 检测一个集合的元素intersect 向量的交 集setxor 向量异或集setdiff 向是的差集union 向量的并集数值分析和傅立叶变换cumprod 累积cumsum 累 加cumtrapz 累计梯形法计算数值微分factor 质因子inpolygon 删除多边形区域内的点max 最大值mean 数组的均 值mediam 中值min 最小值perms 所有可能的转 换polyarea 多边形区域primes 生成质数列表prod 数组元素的乘积rectint 矩形交集区域sort 按升序排列矩阵元 素sortrows 按升序排列行std 标准偏差sum 求

相关文档
最新文档