互补滤波和卡尔曼滤波的融合姿态解算方法

互补滤波和卡尔曼滤波的融合姿态解算方法
互补滤波和卡尔曼滤波的融合姿态解算方法

卡尔曼滤波简述

Kalman Filter Xianling Wang July23,2016v1.0 目录 一、简介2 二、线性卡尔曼滤波方法2 2.1滤波方法描述 (2) 2.2滤波过程的其他细节 (3) 三、后记4

一、简介 卡尔曼滤波器(Kalman Filter)的核心功能是对观测值进行优化,尽可能降低误差的影响,使其更加贴近系统的实际值。 二、线性卡尔曼滤波方法 2.1滤波方法描述 假设系统在t时刻的状态由x t描述,x t包含了若干个变量,因此以向量的形式出现。同时假设系统状态相对于时间变化的机理是可知的,由式(1)描述,即 x t+1=F t x t+B t u t+w t(1)其中,F t为状态转移矩阵,描述t时刻状态对t+1时刻状态的影响程度;u t表示外界控制因素;B t为控制矩阵,描述外界控制因素对t+1时刻状态的影响程度;w t表示不可控的过程噪声,假设其协方差矩阵为Q t。式(1)所描述的关系是线性的,因此对其误差消除的滤波方法称为线性卡尔曼滤波方法。 假设对系统状态的观测是间接的,而且存在一定误差,即 z t=H t x t+v t(2)其中,z t为所用观测工具可以观测到的直接变量,不一定等同于系统状态中的变量,但却是和系统状态中的变量存在一定线性关系的变量;H t描述直接观测变量和系统状态变量之间的线性关系;v t表示观测误差,假设其协方差矩阵为R t。 虽然t时刻的观测值都是带有误差的,但由于系统状态相对于时间变化的机理是可知的,因此结合t?1时刻的某些信息可以削减该误差,提升t时刻观测值的精确度,得到t时刻的最优估计值,该估计值相对实际值的误差协方差为P t。 为了获得t时刻系统状态的最优估计值,线性卡尔曼滤波器需要以下3个方面的信息: 1.t?1时刻的最优估计值?x t?1; 2.t?1时刻最优估计值相对于实际值的误差协方差P t?1; 3.t时刻的观测值z t; 在获知这些信息的条件下,t时刻系统状态的最优估计值可以依据以下5个公式逐步获得:

基于互补滤波的飞行器姿态解算

基于互补滤波的飞行器姿态解算

————————————————————————————————作者:————————————————————————————————日期: ?

姿态解算 一、主线 姿态表示方式:矩阵表示,轴角表示,欧拉角表示,四元数表示。 惯性测量单元IMU(Inertial Measurement Unit):MPU6050芯片,包含陀螺仪和加速度计,分别测量三轴加速度和三轴角速度。注意,传感器所测数据是原始数据,包含了噪声,无法直接用于飞行器的姿态解算,因此需要对数据进行滤波。 滤波算法:非线性互补滤波算法,卡尔曼滤波算法,Mahony互补滤波算法。 二、知识点补充 加速度计和陀螺仪 加速度计:加速度计,可以测量加速度,包括外力加速度和重力加速度,因此,当被测物体在静止或匀速运动(匀速直线运动)的时候,加速度计仅仅测量的是重力加速度,而重力加速度与R坐标系(绝对坐标系)是固连的,通过这种关系,可以得到加速度计所在平面与地面的角度关系也就是横滚角和俯仰角。把加速度传感器水平静止放在桌子上,它的Z轴输出的是1g的加速度。因为它Z轴方向被重力向下拉出了一个形变。可惜的是,加速度传感器不会区分重力加速度与外力加速度。所以,当系统在三维空间做变速运动时,它的输出就不正确了,或者说它的输出不能表明物体的姿态和运动状态。 陀螺仪:陀螺仪测量角速度。陀螺仪模型如图1所示,陀螺仪的每个通道检测一个轴的旋转。 图1[引自网络] 上图中,Rxz是R在XZ面上的投影,与Z轴的夹角为Axz。Ryz是R在ZY面上的投影,与Z轴的夹角为Ayz。陀螺仪就是测量上面定义角度的变化率,换句话说,它会输出一个与上面这些角度变化率线性相关的值。 加速度计工作原理介绍(摘自网络) 大多数加速度计可归为两类:数字和模拟。数字加速度计可通过I2C,SPI或USART方式获取信息,而模拟加速度计的输出是一个在预定范围内的电压值,你需要用ADC(模拟量转数字量)模块将其转换为数字值。不管使用什么类型的ADC模块,都会得到一个在一定范围内的数值。例如一个10位ADC模块的输出值范围在0-1023间。假设我们从10位ADC模块得到了以下的三个轴的数据: === 586,630,561 AdcRx AdcRy AdcRz

卡尔曼滤波算法总结

Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; } 首先是卡尔曼滤波的5个方程: -=--+(1)先验估计 X k k AX k k Bu k (|1)(1|1)() -=--+(2)协方差矩阵的预测(|1)(1|1)' P k k AP k k A Q

卡尔曼滤波简述

广义测量平差课程作业

卡尔曼滤波简述 摘要: 卡尔曼滤波作为一种数值估计优化方法,从系统状态的视角出发,依据预估和修正的核心思想,已成为目前应用最为广泛的滤波方法,并在诸多领域取得了广泛的扩展和应用。本文通过对基本卡尔曼滤波算法(KF)的介绍进行了简单的程序实现。在卡尔曼滤波的基础上对扩展卡尔曼滤波算法(EKF)进行了概述,并讨论了该方法在合成孔径雷达干涉测量(InSAR)领域的相关应用。 关键词:卡尔曼滤波扩展卡尔曼滤波InSAR I.引言 自1960年卡尔曼等人首次从系统状态出发,通过不断地预估和修正观测数据进行动态滤波的方法之后,其在雷达数据处理、动态导航定位、动态测量等领域得到了广泛地应用。卡尔曼滤波是以最小均方误差为估计准则的一种高效递归滤波器,它对非平稳随机过程等动态观测系统具有最优的适用性。但是最初提出的卡尔曼滤波只针对线性系统,为了扩展该方法的应用,后人又对方法进行了改进和扩展。本文将在原始卡尔曼滤波的基础上进一步归纳其在雷达数据处理领域的应用。 II.基本卡尔曼滤波算法(KF) 2.1背景 卡尔曼滤波是在维纳滤波的基础上提出的。二战期间,维纳等人提出了基于最小均方误差准则,针对平稳随机过程的滤波方法。维纳滤波方法中的维纳-霍夫积分方程有效解决了随机信号的预估以及从随机噪声中提取随机信号这两个统计学问题;其中的谱分解方法解决了在静态统计和有理频谱情况下的积分问题。但是,维纳滤波只对平稳的随机过程适用,而且很难获取半无限时间区间内的全部观察数据。尽管后人陆续对维纳滤波进行了相应的改进,但是仍存在提取滤波数据困难,最优脉冲响应的数值确定复杂不便计算,非专业人士难以掌握以及数

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码 卡尔曼滤波算法实现代码(C,C++分别实现) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.360docs.net/doc/7f10629894.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就

基于互补滤波的飞行器姿态解算

姿态解算 一、主线 姿态表示方式:矩阵表示,轴角表示,欧拉角表示,四元数表示。 惯性测量单元IMU(Inertial Measurement Unit):MPU6050芯片,包含陀螺仪和加速度计,分别测量三轴加速度和三轴角速度。注意,传感器所测数据是原始数据,包含了噪声,无法直接用于飞行器的姿态解算,因此需要对数据进行滤波。 滤波算法:非线性互补滤波算法,卡尔曼滤波算法,Mahony互补滤波算法。 二、知识点补充 加速度计和陀螺仪 加速度计:加速度计,可以测量加速度,包括外力加速度和重力加速度,因此,当被测物体在静止或匀速运动(匀速直线运动)的时候,加速度计仅仅测量的是重力加速度,而重力加速度与R坐标系(绝对坐标系)是固连的,通过这种关系,可以得到加速度计所在平面与地面的角度关系也就是横滚角和俯仰角。把加速度传感器水平静止放在桌子上,它的Z轴输出的是1g的加速度。因为它Z轴方向被重力向下拉出了一个形变。可惜的是,加速度传感器不会区分重力加速度与外力加速度。所以,当系统在三维空间做变速运动时,它的输出就不正确了,或者说它的输出不能表明物体的姿态和运动状态。 陀螺仪:陀螺仪测量角速度。陀螺仪模型如图1所示,陀螺仪的每个通道检测一个轴的旋转。 图1[引自网络] 上图中,Rxz是R在XZ面上的投影,与Z轴的夹角为Axz。Ryz是R在ZY面上的投影,与Z轴的夹角为Ayz。陀螺仪就是测量上面定义角度的变化率,换句话说,它会输出一个与上面这些角度变化率线性相关的值。 加速度计工作原理介绍(摘自网络) 大多数加速度计可归为两类:数字和模拟。数字加速度计可通过I2C,SPI或USART方式获取信息,而模拟加速度计的输出是一个在预定围的电压值,你需要用ADC(模拟量转数字量)模块将其转换为数字值。不管使用什么类型的ADC模块,都会得到一个在一定围的数值。例如一个10位ADC模块的输出值围在0-1023间。假设我们从10位ADC模块得到了以下的三个轴的数据: === 586,630,561 AdcRx AdcRy AdcRz

卡尔曼滤波计算举例

卡尔曼滤波计算举例 ?计算举例 ?卡尔曼滤波器特性

假设有一个标量系统,信号与观测模型为 [1][][]x k ax k n k +=+[][][] z k x k w k =+其中a 为常数,n [k ]和w [k ]是不相关的零均值白噪声,方差分别为和。 系统的起始变量x [0]为随机变量,其均值为零,方差为。2n σ2 σ[0]x P (1)求估计x [k ]的卡尔曼滤波算法;(2)当时的卡尔曼滤波增益和滤波误差方差。 22 0.9,1,10,[0]10 n x a P =σ=σ==1. 计算举例

根据卡尔曼算法,预测方程为: ??[/1][1/1]x k k ax k k -=--预测误差方差为: 2 2 [/1][1/1]x x n P k k a P k k -=--+σ 卡尔曼增益为: () 1 22 22 22 [][/1][/1][1/1][1/1]x x x n x n K k P k k P k k a P k k a P k k -=--+σ --+σ=--+σ+σ ???[/][/1][]([][/1])??[1/1][]([][1/1])?(1[])[1/1][][]x k k x k k K k z k x k k ax k k K k z k ax k k a K k x k k K k z k =-+--=--+---=---+滤波方程:

()() 2 2222222 222 22 [/](1[])[/1] [1/1]1[1/1][1/1][1/1][1/1]x x x n x n x n x n x n P k k K k P k k a P k k a P k k a P k k a P k k a P k k =--??--+σ=---+σ ?--+σ+σ??σ--+σ = --+σ+σ 滤波误差方差 起始:?[0/0]0x =[0/0][0] x x P P =

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。

卡尔曼滤波简介及其实现(附C代码)

卡尔曼滤波简介及其算法实现代码(C++/C/MATLAB) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.360docs.net/doc/7f10629894.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5 条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

卡尔曼滤波中文

处理线性滤波以及预测问题的一种新途径R.E.Kalman1引言通讯与控制中的理论与实际问题中有很重要的一类具有统计性质。 这样的问题有:(1)、随机信号的预测;(2)、从随机噪声中分离随机信 号;(3)、在有噪声的情况下探测已知形式的信号(脉冲、正弦波)。 在Wiener开拓性的工作中,他证明[1]从问题(1)和问题(2)可导 出所谓Wiener-Hopf积分方程;他同样给出了解决具有实际重要意义的特 殊情况——定态统计和有理数频谱——之积分方程的方法(频谱因式分解)。 在Wiener的基础性工作之后出现了许多延伸和推广。Zadeh与 Ragazzini给出了有限存储器情况的解[2]。Bode和Shannon[3]同时独 立的给出上述情况的解,并且给出了简化的求解方法。Booton讨论了非定 态统计Wiener-Hopf方程[4]。这些结果现在都写入了标准教科书中[5,6]。 最近Darlington[7]沿着这些主线给出了一种稍微有些不同的方法。对抽 样信号的延伸,参见Franklin[8]和Lees[9]的工作。基于Wiener-Hopf方 程(同样应用于非定态问题,尽管前述方法一般并非如此)特征函数的 方法由Davis[10]开创并被许多其他人应用,例如Shinbrot[11],Blum[12], Pugachev[13],Solodovnikov[14]. 在所有这些工作中,目标都是获取一个线性动力系统的明确说明 (Wiener滤波器),由此可以完成预测、分离或者探测随机信号。 现有求解Wiener问题的方法受制于若干限制,这样就使得它们的实际 用处收到削弱: 1.最佳的滤波器由其脉冲响应具体指定。由这些数据合成滤波器并非易 事。 2.数值确定最佳的脉冲响应往往十分复杂并且不很适合机器计算。这种 情况随着问题复杂度的增加而迅速变得更为糟糕。 11引言2 3.重要的推广(如增长存储器滤波器、非定态预测)需要新的推导过 程,经常给非专业人士带来相当大的困难。 4.这些推导过程的数学部分并不透明。基本假设及其后果趋于模糊。 本文回避上述困难,提出看待这些问题的整个集合的新方式。以下是 本文的亮点: 5.最佳估计和正交投影。Wiener问题是以条件分布与期望的观点处理 的。这样,Wiener理论的基本事实可以迅速获取;结果的范围以及基 本假设可以清楚的显现出来。可以看到所有的统计计算以及结果都基 于一阶和二阶平均;不需要其他的统计数据。这样一来困难(4)便被 排除。这种方法在概率论中为人们所熟知(见Doob[15]第148至155 页以及Lo`eve[16]第455至464页),但在工程上还没有大量的应用。 6.随机过程模型。继前人之后,尤其是Bode与Shannon[3],任意随机 信号可以被表示(直到二阶平均统计性质)为线性动力系统受独立或 不相关随机信号(“白噪声”)激励后的输出。这是工程上应用Wiener 理论的标准手法[2,3,4,5,6,7]。这里用到的方法与传统方法相比只 在线性动力系统的描述方法上不同。我们将强调状态以及状态过渡; 换言之,线性系统将以一阶差分(或微分)方程组来刻画。为了利用 (5)中提到的简化,这种观点是自然的,也是必要的。 7.求解Wiener问题。使用状态——过渡方法,单独一次推导即覆盖多

三种卡尔曼滤波理论

经典卡尔曼滤波 动态系统的卡尔曼滤波数学模型包括状态方程和观测方程,对于线性系统,其离散形式为 X k = Φk ,k?1X k?1+ G k?1W k?1 L k = H k X k + V k 其中,X k 为系统在t k 时刻的n ×1维状态向量,Φk ,k?1为系统从t k?1时刻到t k 时刻的n ×n 维状态转移矩阵,W k?1为t k?1时刻的r ×1动态噪声,G k?1为t k?1时刻的n ×r 动态噪声矩阵,L k 为系统在t k 时刻的m ×1维观测向量,H k 为系统在t k 时刻的m ×n 维观测矩阵,V k 为系统在t k 时刻的m ×1维观测噪声。 根据最小二乘原则,可推得卡尔曼滤波递推公式为: 1)状态向量一步预测值为 X k ,k ?1 =Φk ,k?1X k ?1,k ?1 2)状态向量一步预测值方差矩阵为 P k ,k ?1 = Φk ,k?1P k ?1,k ?1 Φk ,k?1T +G k?1Q k?1G k?1T 其中,Q k 为动态噪声方差矩阵。 3)状态向量估计值为 X k ,k = X k ,k ?1 +J k L k ? H k X k ,k ?1 4)状态向量估计值方差矩阵为 P k ,k = I ? J k H k P k ,k ?1 其中,J k 为滤波增益矩阵,具体形式如下 J k = P k ,k ?1 H k T H k P k ,k ?1 H k T + R k ?1 R k 为观测噪声方差矩阵。 基于方差补偿的自适应卡尔曼滤波 假定 W k 和 V k 是正态序列,X 0是正态向量。则定义l 步预测残差是 V k +l = L k +l ? L k +l ,k 其中,L k +l ,L k +l ,k 分别为第k +l 期观测值和它的最佳观测值L k +l ,k = H k +l Φk +l ,k X k ,k ,则V k +l 为正态向量。V k +l 的方差阵S vv 为: S vv = H k +l Φk +l,k P k Φk +l ,k T H k +l T +R k +l + H k +l Φk +l ,k +i l i =1 G k +l ,k +i?1Q k +i?1G k +l ,k +i?1T Φk +l ,k +i T H k +l T

卡尔曼滤波基础知识

卡尔曼滤波 马尔可夫过程: 在随机理论中,把在某时刻的事件受在这之前事件的影响,其影响范围有限的随机过程,称为马尔可夫过程。一个事件受在它之前的事件的影响的深远程度,通常用在它之前的事件作为条件的概率来表达。受前一个事件的影响,简称为马尔可夫过程;受前两个事件的影响,称为二阶马尔可夫过程;受前三个事件的影响,称为三阶马尔可夫过程! 卡尔曼滤波简介+算法实现代码(转): 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 现设线性时变系统的离散状态防城和观测方程为: X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1) Y(k) = H(k)·X(k)+N(k) 其中 X(k)和Y(k)分别是k时刻的状态矢量和观测矢量 F(k,k-1)为状态转移矩阵 U(k)为k时刻动态噪声

T(k,k-1)为系统控制矩阵 H(k)为k时刻观测矩阵 N(k)为k时刻观测噪声 则卡尔曼滤波的算法流程为: 1 2预估计X(k)^= F(k,k-1)·X(k-1) 3计算预估计协方差矩阵C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)' Q(k) = U(k)×U(k)' 4计算卡尔曼增益矩阵 K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1) R(k) = N(k)×N(k)' 5更新估计 X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^] 6计算更新后估计协防差矩阵 C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)' 7X(k+1) = X(k)~ C(k+1) = C(k)~ 重复以上步骤 其c语言实现代码如下: #include "stdlib.h" #include "rinv.c" int lman(n,m,k,f,q,r,h,y,x,p,g) int n,m,k; double f[],q[],r[],h[],y[],x[],p[],g[]; { int i,j,kk,ii,l,jj,js; double *e,*a,*b; e=malloc(m*m*sizeof(double)); l=m;

卡尔曼滤波的基本原理及应用

卡尔曼滤波的基本原理及应用卡尔曼滤波在信号处理与系统控制领域应用广泛,目前,正越来越广泛地应用于计算机应用的各个领域。为了更好地理解卡尔曼滤波的原理与进行滤波算法的设计工作,主要从两方面对卡尔曼滤波进行阐述:基本卡尔曼滤波系统模型、滤波模型的建立以及非线性卡尔曼滤波的线性化。最后,对卡尔曼滤波的应用做了简单介绍。 卡尔曼滤波属于一种软件滤波方法,其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 最初的卡尔曼滤波算法被称为基本卡尔曼滤波算法,适用于解决随机线性离散系统的状态或参数估计问题。卡尔曼滤波器包括两个主要过程:预估与校正。预估过程主要是利用时间更新方程建立对当前状态的先验估计,及时向前推算当前状态变量和误差协方差估计的值,以便为下一个时间状态构造先验估计值;校正过程负责反馈,利用测量更新方程在预估过程的先验估计值及当前测量变量的基础上建立起对当前状态的改进的后验估计。这样的一个过程,我们称之为预估-校正过程,对应的这种估计算法称为预估-校正算法。以下给出离散卡尔曼滤波的时间更新方程和状态更新方程。 时间更新方程: 状态更新方程: 在上面式中,各量说明如下: A:作用在X k-1上的n×n 状态变换矩阵 B:作用在控制向量U k-1上的n×1 输入控制矩阵 H:m×n 观测模型矩阵,它把真实状态空间映射成观测空间 P k-:为n×n 先验估计误差协方差矩阵 P k:为n×n 后验估计误差协方差矩阵 Q:n×n 过程噪声协方差矩阵 R:m×m 过程噪声协方差矩阵 I:n×n 阶单位矩阵K k:n×m 阶矩阵,称为卡尔曼增益或混合因数 随着卡尔曼滤波理论的发展,一些实用卡尔曼滤波技术被提出来,如自适应滤波,次优滤波以及滤波发散抑制技术等逐渐得到广泛应用。其它的滤波理论也迅速发展,如线性离散系统的分解滤波(信息平方根滤波,序列平方根滤波,UD 分解滤波),鲁棒滤波(H∞波)。 非线性样条自适应滤波:这是一类新的非线性自适应滤波器,它由一个线性组合器后跟挠性无记忆功能的。涉及的自适应处理的非线性函数是基于可在学习

时间序列分析方法 第3章 kalman滤波

第十三章 卡尔曼滤波 在本章中,我们介绍一种被称为卡尔曼滤波的十分有用的工具。卡尔曼滤波的基本思想是将动态系统表示成为一种称为状态空间表示的特殊情形。卡尔曼滤波是对系统线性投影进行序列更新的算法。除了一般的优点以外,这种算法对计算确切的有限样本预测、计算Gauss ARMA 模型的确切似然函数、估计具有时变参数的自回归模型等,都提供了重要方法。 §13.1 动态系统的状态空间表示 我们已经介绍过一些随机过程的动态表示方法,下面我们在以前的假设基础上,继续分析动态系统的表示方法。 13.1.1 继续使用的假设 假设t y 表示时刻t 观测到的n 维随机向量,一类非常丰富的描述t y 动态性的模型可以利用一些可能无法观测的被称为状态向量(state vector)的r 维向量t ξ表示,因此表示t y 动态性的状态空间表示(state-space representation)由下列方程系统给出: 11+++=t t t v ξF ξ 状态方程(state model) (13.1) t t t w ξH x A y t +'+'= 量测方程(observation model) (13.2) 这里F ,A '和H '分别是阶数为r r ?,k n ?和r n ?的参数矩阵,t x 是1?k 的外生或者前定变量。方程(13.1)被称为状态方程(state model),方程(13.2)被称为量测方程(observation model),1?r 维向量t v 和1?n 维向量t w 都是向量白噪声,满足: ? ??≠=='τττt t E t ,,)(0Q v v (13.3) ? ??≠=='τττt t E t ,,)(0R w w (13.4) 这里Q 和R 是r r ?和n n ?阶矩阵。假设扰动项t v 和t w 对于所有阶滞后都是不相关的,即对所有t 和τ,有: 0w v =')(τ t E (13.5) t x 是外生或者前定变量的假定意味着,在除了包含在121,,,y y y --t t 内的信息以外,t x 没有为s t +ξ和s t +w ( ,2,1,0=s )提供任何新的信息。例如,t x 可以包括t y 的滞后值,也可以包括与τξ和τw (任意τ)不相关的变量。 方程系统中方程(13.1)至方程(13.5)可以表示有限观测值的序列},,,{21T y y y ,这时需要状态向量初始值1ξ。假设1ξ与t v 和t w 的任何实现都不相关: 0ξv =')(1 t E ,对任意T t ,,2,1 = (13.6) 0ξw =')(1 t E ,对任意T t ,,2,1 = (13.7) 状态方程(13.1)表明,t ξ可以表示成为},,,,{321t v v v ξ 的线性函数: 1122221ξF v F v F v F v ξ----+++++=t t t t t t ,T t ,,3,2 = (13.8) 因此,方程(13.6)和方程(13.3)意味着t v 与所有ξ的滞后值都是不相关的: 0ξv =')(τ t E ,1,,2,1 --=t t τ (13.9) 类似地,可以得到: 0ξw =')(τ t E ,T ,,2,1 =τ (13.10)

卡尔曼滤波简介和实例讲解.

卡尔曼,美国数学家和电气工程师。1930年5月 19日生于匈牙利首都布达佩斯。1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。1958~1964年在巴尔的摩高级研究院研究控制和数学问题。1964~1971年到斯坦福大学任教授。1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。1960年卡尔曼还提出能控性的概念。能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。卡尔曼著有《数学系统概论》(1968)等书。 什么是卡尔曼滤波 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼

滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。 释文:卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性系统的递归滤波器。这个系统可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。 卡尔曼滤波的应用 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表.

卡尔曼滤波的原理说明(通俗易懂)

为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。 另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。 好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。 假如我们要估算k时刻的是实际温度值。 首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。 然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。 由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance 来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg =0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23) =24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。 现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5 =2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。 就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇! 下面就要言归正传,讨论真正工程系统上的卡尔曼。

什么是卡尔曼滤波器——基础理解

1.什么是卡尔曼滤波器 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。卡尔曼是一个人的名字。 卡尔曼全名Rudolf Emil Kalman,1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文 《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。 简单来说,卡尔曼滤波器是一个 “optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。(所谓高斯白噪声中的高斯是指概率分布是正态函数,而白噪声是指它的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。这是考查一个信号的两个不同方面的问题。 高斯白噪声:如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。) 好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。 假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平

卡尔曼滤波简介及其算法MATLAB实现代码

卡尔曼滤波简介说明及其算法MATLAB实现代码 卡尔曼滤波算法实现代码(C,C++分别实现) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.360docs.net/doc/7f10629894.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就

相关文档
最新文档