自动控制元件课程设计

自动控制元件课程设计
自动控制元件课程设计

Harbin Institute of Technology

课程设计说明书(论文)

课程名称:自动控制元件及线路

设计题目:网球训练服务机器人的设计

院系:航天学院控制科学与工程系

班级:1004101班

设计者:老大老二

学号:11004001xx 11004001xx

指导教师:马广程夏红伟

设计时间:2012年12月

摘要

随着人们生活水平的提高,我们对于生活品质的要求更高,对自己的健康则是更加关注,运动则一直是人们保持健康的最佳手段。网球作为一项高运动量的竞技体育项目,如今也是备受关注,越来越多的人开始接受这项体育运动,而一个新手甚至是老将在训练的时候总是会准备一筐网球以便运动者能够更连贯的进行网球的训练,避免了练球时间跟捡球时间差不多长的尴尬局面,这也提高了运动员的训练效率。如今,智能化、自动化的概念更加贴近我们的生活,为了更方便人们在网球场的训练或娱乐,我们构思出一种新型网球场训练服务机器人,将捡球、发球融于一身,再也不用我们麻烦的去捡球了,完全由机器人来代劳就可以了。这样,大汗淋漓的训练完以后,在我们惬意的休息时,机器人则不辞辛劳的为我们去捡球并排列好。这样一来,休息的时间多了,我们就能更好的投入到接下来的训练当中,这无疑又提高了我们的训练效率。如此高品质的生活,谁人不倾心呢?

智能网球场服务机器人采用高精度元件,能相对准确地寻找到网球场内地上散落的网球的位置,并能迅速地前往并进行收集,而且对于收集到的物品进行判断是否为网球,如果不是网球,则另行收集以待随后处理。此机器人还能智能分析球场方位,智能地选取方向进行发球。

关键词:网球智能机器人全自动捡球发球

目录

1.功能设计 (4)

2.系统的性能指标和技术要求 (4)

3.背景及意义 (6)

4.系统的总体结构与设计方案 (6)

5.主要元件选取与设计 (7)

5.1机器人行进电机选择 (7)

5.1.1直流伺服电机的结构 (8)

5.1.2直流伺服电机的驱动原理 (8)

5.1.3直流伺服电机的分类 (9)

5.1.4直流进给运动的速度控制 (9)

5.1.5网球场机器人行进直流伺服电机的选择 (15)

5.2机器人机械臂及内部推进杆电机选择 (16)

5.2.1步进电机基本原理 (16)

5.2.2 主要特点 (17)

5.2.3主要特性 (17)

5.2.4 步进电机的选择 (18)

5.3系统构成 (20)

5.4 选用编码器 (22)

5.4.1旋转变压器 (22)

5.4.2旋转变压器的选取 (27)

5.5测距定位传感器 (27)

5.5.1常用传感器及特点 (27)

5.5.2测距传感器选择 (29)

5.5.3超声波传感器测控系统设计 (29)

5.5.4红外传感器 (33)

5.5.5测距传感器组合特点 (34)

5.6压力传感器 (34)

5.6.1应变式压力传感器 (35)

5.6.2膜片式 (36)

5.6.3压力传感器的选择 (36)

5.7单片机 (37)

5.7.1常用单片机 (37)

5.7.2单片机选型 (38)

5.7.3 LPC2148特点及可行性 (38)

6.系统的流程分析 (39)

7.系统的硬件选型清单 (40)

8.结论 (40)

9.系统优缺点分析 (40)

9.1优点 (40)

9.2缺点 (41)

10.设计过程中的心得体会 (41)

11.分工情况 (42)

1.功能设计

1.自行定位各网球所在点

2.快速自主行动至各网球所在点

3.行进过程中躲避场地障碍物,包括球场设施、人等

4.自行将网球捡起,并收集

5.通过质量和尺寸筛选网球

6.在发球点发射网球至对方场地,以供练球

2.系统的性能指标和技术要求

1.网球定位精度:网球位置±10cm(网球直径介于6.35-6.67厘米)

2.机器人移动至顶点位置精度±10cm

3.机器人移动速度≤ 2 m/s

4.紧急刹车时间≤0.3s

5.捡球时间≤10s

6.筛选时间≤20s

7.筛选网球质量测量±10g

8.发球频率为15次/分钟,球射出时的最大线速度为10米/秒

9.要求发射角度在20°~40°之间可调,击球力量可调

网球场尺寸参数

3.背景及意义

随着人们生活水平的提高,我们对于生活品质的要求更高,对自己的健康则是更加关注,运动则一直是人们保持健康的最佳手段。网球作为一项高运动量的竞技体育项目,如今也是备受关注,越来越多的人开始接受这项体育运动,而一个新手甚至是老将在训练的时候总是会准备一筐网球以便运动者能够更连贯的进行网球的训练,避免了练球时间跟捡球时间差不多长的尴尬局面,这也提高了运动员的训练效率。

如今,智能化、自动化的概念更加贴近我们的生活,为了更方便人们在网球场的训练或娱乐,我们构思出一种新型网球场训练服务机器人,将捡球、发球融于一身,再也不用我们麻烦的去捡球了,完全由机器人来代劳就可以了。

4.系统的总体结构与设计方案

本系统主要由测量元件、执行元件、功率放大元件、主控电路、调节装置构成。整体系统由三个功能环节组成,分别为寻找并到达网球位置过程、收集网球过程以及发球过程。每个过程均有其独立的闭环控制回路,其流程如下:

1、机器人寻找目标球并实现途中避障到达目标球位置。

固定于机器人上同一水平线上的两组距离传感器探测目标球距离,由于两组探测器间距离已定,则单片机可算出目标球距离以及与机器人所成角度,进而单片机想电机发出指令前进至目标物。为防止机器人把球场中的人或网柱误判为目标球,在一定高度上特别放置另一组距离传感器,以排除高大物体并避障。

Figure 1机器人寻找并到达网球所在位置过程

2、捡球并初步筛球(形状大小)。

单片机控制电机带动“V”机械臂把目标球推进机器人腔内,推进路线中有比球稍大的洞,目标球在被推进过程中可掉进洞内进行下一步筛选,比目标球大的物品则被继续推进专设容器中。

Figure 2筛选推进杆1

3、通过称重进一步筛选球。开关触发器为防止推杆过度推进及校正推杆累计推进误差设计

筛选推进杆2

4、自主发球以供训练。发球过程由发球机直接完成。

智能发球过程

5.主要元件选取与设计

5.1机器人行进电机选择

对于机器人底盘的前进轮电机选择,要求启动转矩和额定转矩都足够大,因

为机器人的总质量约为40Kg,对于电动机的承载能力有较高的要求,我们可以选择步进电机或者直流电机,鉴于一般直流电机的承载能力比步进电机强,而且可靠性较好,所以我们选择了用直流伺服电机作为机器人的前进马达,由于在行进过程中对于精度的要求并不是十分高,所以可不用考虑累计误差带来的精度问题。下面就简单说明一下直流电机的特性和选择问题。

直流伺服电机,它包括定子、转子铁芯、电机转轴、伺服电机绕组换向器、伺服电机绕组、测速电机绕组、测速电机换向器,所述的转子铁芯由矽钢冲片叠压固定在电机转轴上构成。

5.1.1直流伺服电机的结构

Figure 3直流伺服电机的结构

5.1.2直流伺服电机的驱动原理

伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。直流伺服电机特指直流有刷伺服电机——电机成本高结构复杂,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),会产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。

5.1.3直流伺服电机的分类

5.1.3.1常用直流电磁分类

常用的直流电机有:永磁式直流电机(有槽、无槽、杯型、印刷绕组)、励磁式直流电机、混合式直流电机、无刷直流电机、直流力矩电机直流进给伺服系统:永磁式直流电机类型中的有槽电枢永磁直流电机(普通型);

直流主轴伺服系统:励磁式直流电机类型中的他激直流电机。

5.1.3.2永磁直流伺服电机的性能特点

1) 低转速大惯量

2) 转矩大

3) 起动力矩大

4) 调速泛围大,低速运行平稳,力矩波动小

5.1.4直流进给运动的速度控制

5.1.4.1直流伺服电机的调速原理

根据机械特性公式可知调速有二种方法:电枢电压Ua和气隙磁通Φ

⑴改变电枢外加电压Ua :由于绕组绝缘耐压的限制,调压只能在额定转速以下进行。属于恒转矩调速。

⑵改变气隙磁通量Φ:改激磁电流即可改Φ,在Ua恒定情况下,磁场接近饱和,故只能弱磁调速,在额定转速以上进行。属于恒功率调速。

5. 1.4.2直流速度控制单元调速控方式

晶闸管(可控硅)调速系统

晶体管脉宽调制(PWM)调速系统

5. 1.4.2.1晶闸管调速系统

1.系统的组成

Figure 4

控制回路:速度环、电流环、触发脉冲发生器等。

主回路:可控硅整流放大器等。

速度环:速度调节(PI),作用:好的静态、动态特性。

电流环:电流调节(P或PI)。作用:加快响应、启动、低频稳定等。

触发脉冲发生器:产生移相脉冲,使可控硅触发角前移或后移。

可控硅整流放大器:整流、放大、驱动,使电机转动。

2.主回路工作原理

组成:由大功率晶闸管构成的三相全控桥式(三相全波)反并接可逆电路,分成二大部分(Ⅰ和Ⅱ),每部分内按三相桥式连接,二组反并接,分别实现正转和反转。

原理: 三相整流器,由二个半波整流电路组成。每部分内又分成共阴极组(1、3、5)和共阳极组(2、4、6)。为构成回路,这二组中必须各有一个可控硅同时导通。1、3、5在正半周导通,2、4、6在负半周导通。每组内(即二相间)触发脉冲相位相差120o,每相二个触发脉冲相差180o。按管号排列,触发脉冲的顺序1-2-3-4-5-6,相邻之间相位差60o。为保证合闸后两个串联可控硅能同时导通,或已截止的相再次导通,采用双脉冲控制。既每个触发脉冲在导通60o后,在补发一个辅助脉冲;也可以采用宽脉冲控制,宽度大于60o,小于120o。

只要改变可控硅触发角(即改变导通角),就能改变可控硅的整流输出电压,

从而改变直流伺服电机的转速。触发脉冲提前来,增大整流输出电压;触发脉冲

延后来,减小整流输出电压。

3、控制回路分析

触发脉冲产生的过程:改变触发角,即改变控制角。(可控硅导通时间),可调速。没反馈是开环,特性软。

①速度调节器:比例积分PI,高放大(相当C短路)—缓放大—增放大—

稳定(相当C开路)无静差。

②电流调节器:同上,加快电流的反应。

③触发脉冲发生器:正弦波同步锯齿波触发电路,与F直流信号叠加。

速度控制的原理:

调速:当给定的指令信号增大时,则有较大的偏差信号加到调节器的输入端,产生前移的触发脉冲,可控硅整流器输出直流电压提高,电机转速上升。此时测速反馈信号也增大,与大的速度给定相匹配达到新的平衡,电机以较高的转速运行。

干扰:假如系统受到外界干扰,如负载增加,电机转速下降,速度反馈电压降低,则速度调节器的输入偏差信号增大,其输出信号也增大,经电流调节器使触发脉冲前移,晶闸管整流器输出电压升高,使电机转速恢复到干扰前的数值。

电网波动:电流调节器通过电流反馈信号还起快速的维持和调节电流作用,如电网电压突然短时下降,整流输出电压也随之降低,在电机转速由于惯性还未变化之前,首先引起主回路电流的减小,立即使电流调节器的输出增加,触发脉冲前移,使整流器输出电压恢复到原来值,从而抑制了主回路电流的变化。

启动、制动、加减速:电流调节器还能保证电机启动、制动时的大转矩、加减速的良好动态性能。

5.1.4.2.2晶体管脉宽调制(PWM)调速系统

1)系统的组成及特点

Figure 5

①主回路:大功率晶体管开关放大器;功率整流器。

②控制回路:速度调节器;电流调节器;固定频率振荡器及三角波发生器;脉宽调制器和基极驱动电路。

区别:与晶闸管调速系统比较,速度调节器和电流调节器原理一样。不同的是脉宽调制器和功率放大器。

直流脉宽调制:功率放大器中的大功率晶体管工作在开关状态下,开关频率保持恒定,用调整开关周期内晶体管导通时间(即改变基极调制脉冲宽度)的方法来改变输出。从而使电机获得脉宽受调制脉冲控制的电压脉冲,由于频率高及电感的作用则为波动很小的直流电压(平均电压)。脉宽的变化使电机电枢的直流电压随着变化。

直流脉宽调调制的基本原理:

脉冲宽度正比代表速度F值的直流电压

2)脉宽调制器

USr–速度指令转化过来的直流电压

U△-三角波

USC-脉宽调制器的输出(USr+U△)

调制波形图:

开关功率放大器

主回路:可逆H型双极式PWM开关功率放大器

电路图: 由四个大功率晶体管(GTR)T 1 、T 2 、T 3 、T4及四个续流二极管组成的式电路。

H型:又分为双极式、单极式和受限单极式三种。

Ub1、 Ub2、Ub3、Ub4 –为调制器输出,经脉冲分配、基极驱动转换过来的脉冲电压。分别加到T1 、T2、T3 、T4的基极。

工作原理:

T1和T4同时导通和关断,其基极驱动电压Ub1= Ub4。T2和T3同时导通和关断,基极驱动电压Ub2=Ub3=-Ub1。以正脉冲较宽为例,既正转时。

负载较重时:

①动状态:当0≤t ≤ t1时, Ub1、Ub4为正,T1 和T4 导通;Ub2、Ub3

为负, T2和T3截止。电机端电压UAB=US,电枢电流id= id1,由US

→T1→T4→地。

②续流维持电动状态:在t1 ≤t ≤ T时,Ub1、Ub4为负, T1 和T4截

止;Ub2、Ub3 变正,但T2和T3并不能立即导通,因为在电枢电感储能

的作用下,电枢电流id= id2,由D2→D3续流,在D2、D3 上的压降使

T2、T3的c-e极承受反压不能导通。 UAB=-US。接着再变到电动状态、

续流维持电动状态反复进行,如上面左图。

负载较轻时:

①反接制动状态,电流反向:②状态中,在负载较轻时,则id小,续流

电流很快衰减到零,即t =t2 时(见上面右图),id=0。在t2 ~ T 区

段, T2 、T3 在US 和反电动势E的共同作用下导通,电枢电流反向,

id= id3由US→T3→T2→地。电机处于反接制动状态。

②电枢电感储能维持电流反向:在T~t3区段时,驱动脉冲极性改变,T2 、

T3截止,因电枢电感维持电流,id=id4,由D4→D1。

③电机正转、反转、停止:由正、负驱动电压脉冲宽窄而定。当正脉冲较

宽时,既t1> T/2,平均电压为正,电机正转;当正脉冲较窄时,既t1< T/2 ,平均电压为负,电机反转;如果正、负脉冲宽度相等,t1=T/2 ,

平均电压为零,电机停转。

④电机速度的改变:电枢上的平均电压UAB越大,转速越高。它是由驱动

电压脉冲宽度决定的。

⑤双极性:由以上分析表明:可逆H型双极式PWM开关功率放大器,无论

负载是重还是轻、电机是正转还是反转,加在电枢上的电压极性在一个

开关周期内,都在US和-US之间变换一次,故称为双极性。

5.1.4.2.3 PWM调速系统的特点

①频带宽、频率高: 晶体管“结电容”小,开关频率远高于可控(50Hz),可

达2-10KHz。快速性好。

②电流脉动小:由于PWM调制频率高,电机负载成感性对电流脉动由平滑作用,

波形系数接近于1。

③电源的功率因数高: SCR系统由于导通角的影响,使交流电源的波形畸变、

高次谐波的干扰,降低了电源功率因数。PWM系统的直流电源为不受控的整

流输出,功率因数高。

④动态硬度好:校正瞬态负载扰动能力强,频带宽,动态硬度高。

综上考虑,PWM调速控制系统较为简单,而晶闸管方法控制的较为可靠,由于对于机器人的安全特性考虑,在有人突然出现在机器人前方是要求马达可以很快制动,所以对于启动和制动特性要求较高,晶闸管法的一大特点就是电流调节器能保证电机启动、制动时的大转矩、加减速的良好动态性能,所以综合考虑,我们选择了晶闸管调速法。

5.1.5网球场机器人行进直流伺服电机的选择

设计性能指标、环境参数以及其他预估值:

总质量预计:40kg 轮胎与地面滑动摩擦系数:0.6 -0.9

平均行进速度: 1.5m/s-2.0m/s

轮胎与地面滚动摩擦系数:0.012 –

0.022

最大加速度: 0.5 m/s2车轮半径: 10cm

车轮质量: 500g

电动机的功率公式:

由恒速v = 2 m/s算出n = 191.0 r/min ,这里的M等于滚动摩擦力所产生的阻力矩约等于0.88 N2m,计算出在以2 m/s的速度行进时,步进电机的机械功率约为17.6w

在此以恒定速度时的功率外加20%的余量来计算,所选电机的额定功率约为22w

根据求得的参数得知,电机正常工作的最大机械功率为22W,恒定行进速度为2 m/s ,车轮半径为 0.1 m,根据公式:

其中:

T -电机轴端的输出转矩

P -电机输出的机械功率

?-旋转角速度

求得所选电机的额定转矩约为1.76N2m

根据计算出的数据,我们选取了深圳市嘉昱鑫科技有限公司出产的

BH32-750D-20-10直流无刷电机

5.2机器人机械臂及内部推进杆电机选择

网球场服务机器人的一项基本功能就是捡球,所以在外部要设计一套机械臂铲组件,用以收集网球,另外在机器人腔内部要进行网球的筛选,我们选择了通过形状以及重量测量方法进行筛选,过程中需要连杆机构给予推进,这样就需要电机给杆机构以驱动力。而这两项功能的实现都需要电机的驱动,由于功能对转矩要求不大(因为网球质量很小),而且不要求有很大转速,所以可选用步进电机进行功能的实现,而且步进电机的一大有点就是精确,由于内部的杆机构推进距离有较为精确的要求,所以采用步进电机有很大的优势。

5.2.1步进电机基本原理

步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

5.2.2 主要特点

1、一般步进电机的精度为步进角的3-5%,且不累积。

2、步进电机外表允许的最高温度。步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。

3、步进电机的力矩会随转速的升高而下降。当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。

4、步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声。步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)。步进电动机以其显著的特点,在数字化制造时代发挥着重大的用途。伴随着不同的数字化技术的发展以及步进电机本身技术的提高,步进电机将会在更多的领域得到应用。

5.2.3主要特性

1、步进电机必须加驱动才可以运转,驱动信号必须为脉冲信号,没有脉冲的时候,步进电机静止,如果加入适当的脉冲信号,就会以一定的角度(称为步角)转动。转动的速度和脉冲的频率成正比。

2、三相步进电机的步进角度为7.5度,一圈360度,需要48个脉冲完成。

3、步进电机具有瞬间启动和急速停止的优越特性。

4、改变脉冲的顺序,可以方便的改变转动的方向。因此,目前打印机、绘图仪、机器人等等设备都以步进电机为动力核心。

5.2.3.1 优点

1、电机旋转的角度正比于脉冲数;

2、电机停转的时候具有最大的转矩(当绕组激磁时);

3、由于每步的精度在百分之三到百分之五,而且不会将一步的误差积累到下一步因而有较好的位置精度和运动的重复性;

4、优秀的起停和反转响应;

5、由于没有电刷,可靠性较高,因此电机的寿命仅仅取决于轴承的寿命;

6、电机的响应仅由数字输入脉冲确定,因而可以采用开环控制,这使得电机的结构可以比较简单而且控制成本;

7、仅仅将负载直接连接到电机的转轴上也可

以极低速的同步旋转。8、由于速度正比于脉冲频率,因而有比较宽的转速范围。

5.2.3.2 缺点

1、如果控制不当容易产生共振;

2、难以运转到较高的转速。

3、难以获得较大的转矩

4、在体积重量方面没有优势,能源利用率低。

5、超过负载时会破坏同步,高速工作时会发出振动和噪声。

5.2.4 步进电机的选择

5.2.4.1 转矩分析

根据公式:

其中:

T st ―起动转矩

J-阻力转动惯量

F-阻力,其中包含启动时车轮所要克服的与地面间的静摩擦力F k

由于齿轮传动间摩擦力较小,忽略不计。而齿轮见传动力为主要力,假定为20N(外部机械臂)/5N(内部传动杆),电机上安装的齿轮半径定为1cm,则公式中第二项为0.2Nm/0.05Nm。

齿轮以及电机本身的转动惯量所产生的力矩项数值较小,所以合在一起进行估算大约为0.05Nm-0.1Nm。这样根据公式计算得出步进电机的起动转矩约为0.3Nm(外部机械臂)/0.1N(内部传动杆)。

5.2.4.2功率分析

根据步进电机功率公式:

设定转速n = 120r/min ,这里的M等于齿轮阻力力所产生的阻力矩约等于0.2Nm(外部机械臂)/0.05Nm(内部传动杆),计算出在以120r/min的转速运行时,步进电机的机械功率约为2.51w

自动控制课程设计报告书

1 设计目的 (2) 2 设计容与条件 (2) 2.1 设计容 (2) 2.2 设计条件 (2) 3 滞后校正特性及设计一般步骤 (2) 3.1 滞后特性校正 (2) 3.2滞后校正设计一般步骤 (3) 4 校正系统分析 (3) 4.1校正参数确定 (3) 4.2校正前后系统特征根及图像 (6) 4.3 函数动态性能指标及其图像 (10) 4.4系统校正前后根轨迹及其图像 (11) 4.5 Nyquist图 (12) 4.6 Bode图 (15) 5 设计心得体会 (17) 6 设计主要参考文献 (18)

串联滞后校正装置设计 1、设计目的: 1) 了解控制系统设计的一般方法、步骤。 2) 掌握对系统进行稳定性分析、稳态误差分析以及动态特性分析的方法。 3) 掌握利用MATLAB 对控制理论容进行分析和研究的技能。 4) 提高分析问题解决问题的能力。 2、设计容与条件: 2.1设计容: 1) 阅读有关资料。 2) 对系统进行稳定性分析、稳态误差分析以及动态特性分析。 3) 绘制根轨迹图、Bode 图、Nyquist 图。 4) 设计校正系统,满足工作要求。 2.2设计条件: 已知单位负反馈系统的开环传递函数0 K G(S)S(0.0625S 1)(0.2S 1) = ++, 试用频率法设计 串联滞后校正装置,使系统的相位裕度050γ=,静态速度误差系数1 v K 40s -=,增 益欲度>17dB 。 3、滞后校正特性及设计一般步骤: 3.1滞后特性校正: 滞后校正就是在前向通道中串联传递函数为)(s G c 的校正装置来校正控制系统,)(s G c 的表达式如下所示。 1,11)(<++= a Ts aTs s G c 其中,参数a 、T 可调。滞后校正的高频段是负增益,因此,滞后校正对系统中高频噪声有削弱作用,增强了抗干扰能力。可以利用滞后校正的这一低通滤波所造成的高频衰减特性,降低系统的截止频率,提高系统的相位裕度,以改善系统的暂态性能。 滞后校正的基本原理是利用滞后网络的高频幅值衰减特性使系统截止频率下降,从而使系统获得足够的相位裕度。或者,是利用滞后网络的低通滤波特性,

自动化课程设计报告

东北大学自动化专业 课程设计报告设计题目:位置和转速双闭环控制系统设计 班级:自动化140X班 学号:2014XXXX 姓名:XXX 指导教师:闫士杰钱晓龙 设计时间:2017年6月19日~2011年7月7日 目录 1.引言 (2) 1.1课题的背景 (2) 1.2课题的内容(三道题) (2) 1.3课题的意义 (3) 1.4课设的主要任务 (3) 1.5课设的具体安排 (4) 2正文 (4) 2.1仪器与设备 (4) 错误!未定义书签。 错误!未定义书签。 错误!未定义书签。 2.2实验原理 (7) 错误!未定义书签。 错误!未定义书签。 错误!未定义书签。 2.2.4 EB8000人机界面使用原理 .......................................... 错误!未定义书签。 2.3解题思路与方案程序 (8) 2.3.1第一题 ............................................................................. 错误!未定义书签。 2.3.2第二题 ............................................................................. 错误!未定义书签。 2.3.3第三题 ............................................................................. 错误!未定义书签。 2.4实验效果的观测与分析 (12) 错误!未定义书签。 2.5实验错误 (12) 2.5.1错误的产生 ..................................................................... 错误!未定义书签。 2.5.2错误的解决 ..................................................................... 错误!未定义书签。

直流电动机调速课程设计

《电力拖动技术课程设计》报告书 直流电动机调速设计 专业:电气自动化 学生姓名: 班级: 09电气自动化大专 指导老师: 提交日期: 2012 年 3 月

前言 在电机的发展史上,直流电动机有着光辉的历史和经历,皮克西、西门子、格拉姆、爱迪生、戈登等世界上著名的科学家都为直流电机的发展和生存作出了极其巨大的贡献,这些直流电机的鼻祖中尤其是以发明擅长的发明大王爱迪生却只对直流电机感兴趣,现而今直流电机仍然成为人类生存和发展极其重要的一部分,因而有必要说明对直流电机的研究很有必要。 早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流调速还是交流拖动系统的基础。早期直流电动机的控制均以模拟电路为基础,采用运算放大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了直流电动机控制技术的发展和应用范围的推广。随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工效率。

自动控制原理课程设计速度伺服控制系统设计样本

自动控制原理课程设计题目速度伺服控制系统设计 专业电气工程及其自动化 姓名 班级 学号 指引教师 机电工程学院 12月

目录一课程设计设计目 二设计任务 三设计思想 四设计过程 五应用simulink进行动态仿真六设计总结 七参照文献

一、课程设计目: 通过课程设计,在掌握自动控制理论基本原理、普通电学系统自动控制办法基本上,用MATLAB实现系统仿真与调试。 二、设计任务: 速度伺服控制系统设计。 控制系统如图所示,规定运用根轨迹法拟定测速反馈系数' k,以 t 使系统阻尼比等于0.5,并估算校正后系统性能指标。 三、设计思想: 反馈校正: 在控制工程实践中,为改进控制系统性能,除可选用串联校正方式外,经常采用反馈校正方式。常用有被控量速度,加速度反馈,执行机构输出及其速度反馈,以及复杂系统中间变量反馈等。反馈校正采用局部反馈包围系统前向通道中一某些环节以实现校正,。从控制观点来看,采用反馈校正不但可以得到与串联校正同样校正效果,并且尚有许多串联校正不具备突出长处:第一,反馈校正能有效地变化

被包围环节动态构造和参数;第二,在一定条件下,反馈校正装置特性可以完全取代被包围环节特性,反馈校正系数方框图从而可大大削弱这某些环节由于特性参数变化及各种干扰带给系统不利影响。 该设计应用是微分负反馈校正: 如下图所示,微分负反馈校正包围振荡环节。其闭环传递函数为 B G s ()=00t G s 1G (s)K s +()=22t 1T s T K s ζ+(2+)+1 =22'1T s 21Ts ζ++ 试中,'ζ=ζ+t K 2T ,表白微分负反馈不变化被包围环节性质,但由于阻尼比增大,使得系统动态响应超调量减小,振荡次数减小,改进了系统平稳性。 微分负反馈校正系统方框图

自动化自动控制课程设计方案报告

动控制课程设计报告 班级:自动化08-1班 学号:08051116 姓名:刘加伟 2018.7.17

任务一、双容水箱的建模、仿真模拟、控制系统设计 一、控制系统设计任务 1、通过测量实际装置的尺寸,采集DCS系统的数据建立二阶水箱液位对象 模型。<先建立机理模型,并在某工作点进行线性化,求传递函数) 2、根据建立二阶水箱液位对象模型,在计算机自动控制实验箱上利用电 阻、电容、放大器的元件模拟二阶水箱液位对象。 3、通过NI USB-6008数据采集卡采集模拟对象的数据,测试被控对象的开 环特性,验证模拟对象的正确性。 4、采用纯比例控制,分析闭环控制系统随比例系数变化控制性能指标<超调 量,上升时间,调节时间,稳态误差等)的变化。 5、采用PI控制器,利用根轨迹法判断系统的稳定性,使用Matlab中 SISOTOOLS设计控制系统性能指标,并将控制器应用于实际模拟仿真系统,观测实际系统能否达到设计的性能指标。 6、采用PID控制,分析不同参数下,控制系统的调节效果。 7、通过串联超前滞后环节校正系统,使用Matlab中SISOTOOLS设计控制系统性能指 标,并将校正环节应用于实际模拟仿真系统,观测实际系统能否达到设计的性能指标。

(一)建立模型 (二)实验模型及改变阶跃后曲线: 1.取阶跃曲线按照以下模型建立系统辨识模型: 一般取为0.4和0.8 计算上行阶跃各参数: T1=171.26 T2=50.50 K=160.47 t1=141 t2=338 建立传递函数为: G(s>= 计算下行阶跃各参数: T1=84.20 T2=48.67 K=148.08 t1=89 t2=198 建立传递函数为: G(s>= 2.建立机理模型

电机课程设计

第一章绪论 1.1摘要 电动机是把电能转换成机械能的设备。在机械、冶金、石油、煤炭、化学、航空、交通、农业以及其他各种工业中,电动机被广泛地应用着。随着工业自动化程度不断提高,需要采用各种各样的控制电机作为自动化系统的元件,人造卫星的自动控制系统中,电机也是不可缺少的。此外在国防、文教、医疗及日常生活中(现代化的家电工业中)电动机也愈来愈广泛地应用起来 与单相电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的 随着工业的不断发展,三相异步电动机的需求会越来越大,三相异步电动机的应用越来越广泛,三相异步电动机的操作系统是一个非常庞大而复杂的系统,它不仅为现代化工业、家庭生活和办公自动化等一系列应用提供基本操作平台,而且能提供多种应用服务,使人们的生活质量有了大幅度的提高,摆脱了人力劳作的模式。而三相异步电动机主要应用于工业生产的自动化操作中是三相异步电动机的主要应用之一,因此本课程设计课题将主要以在工业中三相交流异步电动机调频变速方法的应用过程可能用到的各种技术及实施方案为设计方向,为工业生产提供理论依据和实践指导。 1.2课程目的 笼式三相异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。正由于此,通过此课程设计,实现三相异步电动机的变频调速控制与应用。 1.3课程意义 这次课程设计可以使我们在学校学的理论知识用到实践中,使我们在学习中起到主导地位,是我们在实践中掌握相关知识,能够培养我们的职业技能,课程设计是以任务引领,以工作过程为导向,以活动为载体,给我们提供了一个真实的过程,通过设计和运行,反复调试、训练、便于我们掌握规范系统的电机方面的知识,同时也提高了我们的动手能力 1.4课程内容 在这次课程设计任务中,主要工作在于 1.了解三相异步电动机的结构和工作原理 2.了解异步电动机调速的意义、方法及其在工程上的应用,重点掌握绕线式三相异步电动机的串电阻调速方法,掌握绕线式异步电动机调压调速的原理和方法 3.三相异步电动机使用过程中的注意事项及故障处理 4.心得体会

自动控制课程设计~~~

指导教师评定成绩: 审定成绩: 重庆邮电大学 移通学院 自动控制原理课程设计报告 系部: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:2013年12 月 重庆邮电大学移通学院制

目录 一、设计题目 二、设计报告正文 摘要 关键词 设计内容 三、设计总结 四、参考文献

一、设计题目 《自动控制原理》课程设计(简明)任务书——供2011级机械设计制造及其自动化专业(4-6班)本科学生用 引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。 一设计题目:I型二阶系统的典型分析与综合设计 二系统说明: 该I型系统物理模拟结构如图所示。 系统物理模拟结构图 其中:R=1MΩ;C =1uF;R0=41R 三系统参量:系统输入信号:x(t); 系统输出信号:y(t);

四设计指标: 设定:输入为x(t)=a×1(t)(其中:a=5) 要求动态期望指标:M p﹪≤20﹪;t s≤4sec; 五基本要求: a)建立系统数学模型——传递函数; b)利用根轨迹方法分析和综合系统(学号为单数同学做); c)利用频率特性法分析和综合系统(学号为双数同学做); d)完成系统综合前后的有源物理模拟(验证)实验; 六课程设计报告: 1.按照移通学院课程设计报告格式写课程设计报告; 2.报告内容包括:课程设计的主要内容、基本原理; 3.课程设计过程中的参数计算过程、分析过程,包括: (1)课程设计计算说明书一份; (2)原系统组成结构原理图一张(自绘); (3)系统分析,综合用精确Bode图一张; (4)系统综合前后的模拟图各一张(附实验结果图); 4.提供参考资料及文献 5.排版格式完整、报告语句通顺; 6.封面装帧成册。

青岛农业大学电子设计自动化与专用集成电路课程设计报告汇总

青岛农业大学 理学与信息科学学院 电子设计自动化及专用集成电路 课程设计报告 设计题目一、设计一个二人抢答器二、密码锁 学生专业班级 学生姓名(学号) 指导教师 完成时间 实习(设计)地点信息楼121 年 11 月 1 日

一、课程设计目的和任务 课程设计目的:本次课程设计是在学生学习完数字电路、模拟电路、电子设计自动化的相关课程之后进行的。通过对数字集成电路或模拟集成电路的模拟与仿真等,熟练使用相关软件设计具有较强功能的电路,提高实际动手,为将来设计大规模集成电路打下基础。 课程设计任务: 一、设计一个二人抢答器。要求: (1)两人抢答,先抢有效,用发光二极管显示是否抢到答题权。 (2)每人两位计分显示,打错不加分,答对可加10、20、30分。 (3)每题结束后,裁判按复位,重新抢答。 (4)累积加分,裁判可随时清除。 二、密码锁 设计四位十进制密码锁,输入密码正确,绿灯亮,开锁;不正确,红灯亮,不能开锁。密码可由用户自行设置。 二、分析与设计 1、设计任务分析 (1)二人抢答器用Verilog硬件描述语言设计抢答器,实现: 1、二人通过按键抢答,最先按下按键的人抢答成功,此后其他人抢答无效。 2、每次只有一人可获得抢答资格,一次抢答完后主持人通过复位按键复位,选手再从新抢答。 3、有从新开始游戏按键,游戏从新开始时每位选手初始分为零分,答对可选择加10分、20分,30分,最高九十分。 4、选手抢答成功时其对应的分数显示。 (2)密码锁 1、第一个数字控制键用来进行密码的输入 2、第二个按键控制数字位数的移动及调用密码判断程序。当确认后如果显示数据与预置密码相同,则LED 亮;如不相等,则无反应。按下复位键,计数等均复位

计算机控制技术课程设计报告

《计算机控制技术》课程设计单闭环直流电机调速系统

1 设计目的 计算机控制技术课程是集微机原理、计算机技术、控制理论、电子电路、自动控制系统、工业控制过程等课程基础知识一体的应用性课程,具有很强的实践性,通过这次课程设计进一步加深对计算机控制技术课程的理解,掌握计算机控制系统硬件和软件的设计思路,以及对相关课程理论知识的理解和融会贯通,提高运用已有的专业理论知识分析实际应用问题的能力和解决实际问题的技能,培养独立自主、综合分析与创新性应用的能力。 2 设计任务 2.1 设计题目 单闭环直流电机调速系统 实现一个单闭环直流电机调压调速控制,用键盘实现对直流电机的起/停、正/反转控制,速度调节要求既可用键盘数字量设定也可用电位器连续调节,需要有速度显示电路。扩展要求能够利用串口通信方式在PC上设置和显示速度曲线并且进行数据保存和查看。 2.2 设计要求 2.2.1 基本设计要求 (1)根据系统控制要求设计控制整体方案;包括微处理芯片选用,系统构成框图,确定参数测围等; (2)选用参数检测元件及变送器;系统硬件电路设计,包括输入接口电路、逻辑电路、操作键盘、输出电路、显示电路; (3)建立数学模型,确定控制算法; (4)设计功率驱动电路; (5)制作电路板,搭建系统,调试。 2.2.2 扩展设计要求 (1)在已能正常运行的微计算机控制系统的基础上,通过串口与PC连接; (2)编写人机界面控制和显示程序;编写微机通信程序;实现人机实时交互。

3方案比较 方案一:采用继电器对电动机的开或关进行控制。这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高。 方案二:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。更主要的问题在于一般电动机的电阻很小,但电流很大;分压不仅会降低效率,而且实现很困难。 方案三:采用由电力电子器件组成的H 型PWM 电路。用单片机控制电力电子器件使之工作在占空比可调的开关状态,精确调整电动机转速。这种电路由于工作在电力电子器件的饱和截止模式下,效率非常高;H 型电路保证了可以简单地实现转速和方向的控制;电子开关的速度很快,稳定性也极佳,是一种广泛采用的PWM 调速技术。 兼于方案三调速特性优良、调整平滑、调整围广、过载能力大,因此本设计采用方案三。 4单闭环直流电机调速系统设计 4.1单闭环调速原理 4.1.1 闭环系统框图 4.1.2 调速原理 直流电机转速有: 常数Ke Ka 不变,Ra 比较小。 所以调节Ua 就能调节n 。 n n I K R K U K R I U n d d a e e d ?-=Φ -Φ=-=0φa a a U I U ≈-

Wincc课程设计报告——自动化

内蒙古建筑职业技术学院《组态软件WINCC及其应用》设计报告 水箱液位的WinCC监控 姓名: 学号: 专业班级: 指导老师: 所在学院: 年月日

本设计是基于SIMATIC WinCC的水箱液位监控系统,可以自动完成蓄水和排水功能,满足工业生产过程中的需要。SIMATIC WinCC是第一个使用最新的32位技术的过程监视系统,具有良好的开放性和灵活性。 随着科学技术的发展,工业生产过程的自动化水平越来越高,相应的要求其控制界面也应该越来越人性化和简洁化,人们也逐渐意识到原有的上位机编程的开发方式。WINCC软件是一种通用的工业监控软件,它把过程控制设计、现场操作以及工厂资源管理与一体,实现最优化管理。它基于Microsoft Windows XP/NT2000操作系统,用户可以在企业网络的所有层次的各个位置上都可以获得系统的实时信息。采用组态王软件开发工业监控工程,可以极大地增强用户生产控制能力、提高工厂的生产力和效率、提高产品的质量、减少成本及原材料的消耗。它适用于从单一设备的生产运营管理和故障诊断,到网络结构分布是大型集中监控管理系统的开发。它以标准的工业计算机软、硬件平台构成的集成系统取代传统的封闭式系统。 关键字:WinCC、自动化、工业监控

This design is based on SIMATIC WinCC water control system, you can auto-complete of water storage and drainage features, and meet the needs of industrial production processes. SIMATIC WinCC is the first process monitoring systems with the latest 32-bit technology, openness and flexibility with good. With the development of science and technology, the industry increasingly higher level of automation of the production process, the corresponding requirements under its control interface should be more humane and simplicity of, people also come to realize that the original development of computer programming.WINCCsoftware is a general industrial monitor software, it design, hands-on process control and plant resource management and integration, achieving optimal management. It is based on the Microsoft Windows XP/NT2000 operating system, the user can at all levels of the corporate network wherever it can get real time information system. Using the kingview software development industry to monitor the project, can greatly enhance user control, to improve productivity and efficiency, improve product quality, reduce costs and raw material consumption. It is suitable for production and operations management from a single device and troubleshooting to the network structure is the distribution of the large concentrated monitoring system development. It to a standard industry computer software and hardware platforms constitute integrated system to replace the traditional closed systems. Keywords: WinCC,Automation , industrial monitor

车站信号自动控制课程设计报告

1设计目的 在学习了“车站信号自动控制”课程的基础上,加深对6502电气集中电路的理解;掌握信号平面布置图的设计,熟悉各个轨道区段的划分、各类信号机的布置和命名;轨道电路极性交叉的配置和轨道送受电端扼流变压器的设置。通过本次课程设计,提高工程设计技能,为后续课程的学习和毕业设计打下基础。 2设计要求及内容 2.1设计内容 此次课程设计内容包括车站信号平面图及双线轨道电路图的绘制。车站信号平面布置图是车站信号工程设计和施工的重要依据,是车站联锁系统的根本基础,双线轨道电路的极性交叉是列车安全运行的保障。掌握该设计的原则对我们今后所从事的工作意义重大。 (1) 使用CAD绘图软件绘制出5#站信号平面布置图; (2) 使用CAD绘图软件绘制出5#站信号平面布置对应的双线轨道电路图。 2.2设计要求 要求在老师的指导下独立完成设计任务,设计中一方面要利用已有的资料,合理参考,尽快完成课程设计,另一方面,不能盲目地﹑机械地抄袭,要具体问题具体分析﹑有针对性的进行设计,课程设计结束时,绘制出图纸,按要求写出课程设计报告。报告应能够充分说明所涉及的内容,语言流畅,逻辑性强,书写规范。 3图纸说明 本次课程设计的主要任务包括熟悉与车站信号相关的各种工程实践环节及运用所学的车站信号自动控制知识进行基本的工程设计,其中包括两张CAD工程图纸的绘制及编写,即: (1)5#站信号平面布置图(如附图1所示); (2)5#站下行咽喉双线轨道电路图(如附图2所示); 3.15#站信号平面布置图 3.1.1信号平面布置图的布置原则 附图1为5#站信号平面布置图,可反映出道岔直向位置﹑轨道电路区段的划分及列车的运行情况等。信号平面布置图的布置包括以下几个方面:

自动控制课程设计题目

题目一转子绕线机控制系统 设转子绕线机控制系统对应的结构图如图所示,绕线机用直流电机来缠绕铜线,能快速准确地绕线,并使线圈连贯坚固。采用自动绕线机后,操作人员只需从事插入空的转子、按下启动按钮和取下绕好线的转子等简单操作。 设计控制器满足如下条件: (s G ) c 1.系统对斜坡输入响应的稳态误差小 于10%,静态速度误差系数Kv=10; 2.系统对阶跃输入的超调量在10%左 右; 3.按△=2%要求的系统调节时间为3s左 右。 要求: 1.分析设计要求,说明控制器的设计思路; 2.详细设计;

3.用MATLAB编程输出仿真结果及图形。 题目二海底隧道钻机控制系统连接法国和英国的英吉利海峡海底隧道于1987年12月开工建设,1990年11月,从两个国家分头开钻的隧道首次对接成功。隧道长37.82km,位于海底面以下61m. 隧道于1992年完工,共耗资14亿美元,每天能通过50辆列车,从伦敦到巴黎的火车行车时间缩短为3h. 钻机在推进过程中,为了保证必要的隧道对接精度,施工中使用了一个激光导引系统,以保持钻机的直线方向。钻机控制系统如图所示。图中C(s)为钻机向前的实际角度,R(s)为预期角度,N(s)为负载对机器的影响。

该系统设计目的是选择增益K,使系统对输入角度的响应满足工程要求,并且使扰动引起的稳态误差较小。 要求: 1.分析设计要求,说明控制器的设计思路; 2.详细设计; 3.用MATLAB编程输出仿真结果及图形。 题目三哈勃太空望远镜指向控制哈勃太空望远镜于1990年4月14日发射至离地球611km的太空轨道,它的发射与应用将空间技术发展推向了一个新的高度。望远镜的2.4m镜头拥有所有镜头中最光滑的表面,其指向系统能在644km以外将视野聚集在一枚硬币上。望远镜的偏

自动控制设计(自动控制原理课程设计)

自动控制原理课程设计 本课程设计的目的着重于自动控制基本原理与设计方法的综合实际应用。主要内容包括:古典自动控制理论(PID)设计、现代控制理论状态观测器的设计、自动控制MATLAB 仿真。通过本课程设计的实践,掌握自动控制理论工程设计的基本方法与工具。 1 内容 某生产过程设备如图1所示,由液容为C1与C2的两个液箱组成,图中Q 为稳态液体流量)/(3s m ,i Q ?为液箱A 输入水流量对稳态值的微小变化)/(3s m ,1Q ?为液箱A 到液箱B 流量对稳态值的微小变化)/(3s m ,2Q ?为液箱B 输出水流量对稳态值的微小变化)/(3s m ,1h 为液箱A 的液位稳态值)(m ,1h ?为液箱A 液面高度对其稳态值的微小变化)(m ,2h 为液箱B 的液位稳态值)(m ,2h ?为液箱B 液面高度对其稳态值的微小变化)(m ,21,R R 分别为A,B 两液槽的出水管液阻))//((3s m m 。设u 为调节阀开度)(2m 。 已知液箱A 液位不可直接测量但可观,液箱B 液位可直接测量。 图1 某生产过程示意图

要求 1. 建立上述系统的数学模型; 2. 对模型特性进行分析,时域指标计算,绘出bode,乃示图,阶跃反应曲线 3. 对B 容器的液位分别设计:P,PI,PD,PID 控制器进行控制; 4. 对原系统进行极点配置,将极点配置在-1+j 与-1-j;(极点可以不一样) 5. 设计一观测器,对液箱A 的液位进行观测(此处可以不带极点配置); 6. 如果要实现液位h2的控制,可采用什么方法,怎么更加有效?试之。 用MATLAB 对上述设计分别进行仿真。 (提示:流量Q=液位h/液阻R,液箱的液容为液箱的横断面积,液阻R=液面差变化h ?/流量变化Q ?。) 2 双容液位对象的数学模型的建立及MATLAB 仿真过程 一、对系统数学建模 如图一所示,被控参数2h ?的动态方程可由下面几个关系式导出: 液箱A:dt h d C Q Q i 111?=?-? 液箱B:dt h d C Q Q 22 21?=?-? 111/Q h R ??= 222/Q h R ??= u K Q u i ?=? 消去中间变量,可得: u K h dt h d T T dt h d T T ?=?+?++?222122221)( 式中,21,C C ——两液槽的容量系数 21,R R ——两液槽的出水端阻力 111C R T =——第一个容积的时间常数 222C R T =——第二个容积的时间常数 2R K K u =_双容对象的放大系数

自动控制原理课程设计报告

成绩: 自动控制原理 课程设计报告 学生姓名:黄国盛 班级:工化144 学号:201421714406 指导老师:刘芹 设计时间:2016.11.28-2016.12.2

目录 1.设计任务与要求 (1) 2.设计方法及步骤 (1) 2.1系统的开环增益 (1) 2.2校正前的系统 (1) 2.2.1校正前系统的Bode图和阶跃响应曲线 (1) 2.2.2MATLAB程序 (2) 3.3校正方案选择和设计 (3) 3.3.1校正方案选择及结构图 (3) 3.3.2校正装置参数计算 (3) 3.3.3MATLAB程序 (4) 3.4校正后的系统 (4) 3.4.1校正后系统的Bode图和阶跃响应曲线 (4) 3.4.2MATLAB程序 (6) 3.5系统模拟电路图 (6) 3.5.1未校正系统模拟电路图 (6) 3.5.2校正后系统模拟电路图 (7) 3.5.3校正前、后系统阶跃响应曲线 (8) 4.课程设计小结和心得 (9) 5.参考文献 (10)

1.设计任务与要求 题目2:已知单位负反馈系统被控制对象的开环传递函数 ()() 00.51K G s s s =+用串联校正的频率域方法对系统进行串联校正设计。 任务:用串联校正的频率域方法对系统进行串联校正设计,使系统满足如下动态及静态性能 指标: (1)在单位斜坡信号作用下,系统的稳态误差0.05ss e rad <; (2)系统校正后,相位裕量45γ> 。 (3)截止频率6/c rad s ω>。 2.设计方法及步骤 2.1系统的开环增益 由稳态误差要求得:20≥K ,取20=K ;得s G 1s 5.0201)s(0.5s 20)s (20+=+=2.2校正前的系统 2.2.1校正前系统的Bode 图和阶跃响应曲线 图2.2.1-1校正前系统的Bode 图

10KW直流电动机不可逆调速系统_电力拖动自动控制系统课程设计

交、直流调速课程设计 2004级电气工程专业电力拖动自动控制系统课程设计第五组课程设计 题目:10KW直流电动机不可逆调速系统课程:电力拖动自动控制系统专业:电气工程及其自动化指导老师:华* 组员:郑** 李** 张** 江* 日期:2007年12月24日星期一

课题:10KW直流电动机不可逆调速系统 一、技术数据: 直流电动机: 型号:Z3 —71、额定功率P N=10KW、U N=220V、额定电流I N =55A A N =1000r/min、极数2P=4、电枢电阻 R N =O.5Q、电枢电感 L D =7mH 励磁电压U L=220V、励磁电流I L=1.6A。 、要求 调速范围D=1O、S<=15%、电流脉动系数S < 10%、设计中几个重点说明 、主电路选择与参数计算 1、主电路选择原则:一般整流器功率在4KW以下采用单向整流电路,4KW 以上米用三相整流。 2、参数计算包括 整流变压器的参数计算、整流晶闸管的型号选择、保护电路的说明,参数计算与元件选择,平波电抗器电感量计算。 1.1直流电动机 型号:Z3 —71、额定功率P N=10KW、额定电压U N=220V、额定电流I N =55A 转速n N=1000r/min、极数2P=4 电枢电阻R N=O.5Q、电枢电感L D =7mH 励磁电压U L=220V、S<=15%、励磁电流I L=1.6A。 1.2电动机供电方案 据题意采用晶闸管可控整流装置供电。 本设计选用的是中直流电动机,可选用三相整流电路。又因本系统设计是不可逆系统,所以可选用三相半控桥整流电路。电动机的额定电压为220V,若用 电网直接供电,会造成导通角小,电流脉动大,并且功率因数抵,因此,还是用整流变压器供电方式为宜。 题中对电流的脉动提出要求,故使用增加电抗器。 反馈方式选择原则应是满足调速指标要求的前提下,选择最简单的反馈方

自动控制原理课程设计报告

自控课程设计课程设计(论文) 设计(论文)题目单位反馈系统中传递函数的研究 学院名称Z Z Z Z学院 专业名称Z Z Z Z Z 学生姓名Z Z Z 学生学号Z Z Z Z Z Z Z Z Z Z 任课教师Z Z Z Z Z 设计(论文)成绩

单位反馈系统中传递函数的研究 一、设计题目 设单位反馈系统被控对象的传递函数为 ) 2)(1()(0 0++= s s s K s G (ksm7) 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、对系统进行串联校正,要求校正后的系统满足指标: (1)在单位斜坡信号输入下,系统的速度误差系数=10。 (2)相角稳定裕度γ>45o , 幅值稳定裕度H>12。 (3)系统对阶跃响应的超调量Mp <25%,系统的调节时间Ts<15s 3、分别画出校正前,校正后和校正装置的幅频特性图。 4、给出校正装置的传递函数。计算校正后系统的截止频率Wc 和穿频率Wx 。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、在SIMULINK 中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设计方法 1、未校正系统的根轨迹图分析 根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式的根在s 平面上变化的轨迹。 1)、确定根轨迹起点和终点。 根轨迹起于开环极点,终于开环零点;本题中无零点,极点为:0、-1、-2 。故起于0、-1、-2,终于无穷处。 2)、确定分支数。 根轨迹分支数与开环有限零点数m 和有限极点数n 中大者相等,连续并且对称于实轴;本题中分支数为3条。

电子设计自动化课程设计报告

电子设计自动化课程设计报告

电子设计自动化课程设计报告

学生姓名: 学号: 课设题目: VGA彩条信号显示控制器设计同组人:

电子设计自动化课程设计报告 郝欣欣 一、课程设计内容 1、使用Verilog语言和Modelsim仿真器完成可显示横彩条、竖彩条、棋盘格相间的VGA控制器的设计和验证 2、设计并验证可显示英语单词”HIT”的VGA 控制器 3、使用Quartus II和SOPC实验箱验证设计的正确性 4、Verilog代码要符合微电子中心编码标准 二、FPGA原理 CPLD、FPGA是在PAL、GAL等基础上发展起来的一种具有丰富的可编程I/O 引脚、逻辑宏单元、门电路以及RAM空间的可编程逻辑器件,几乎所有应用门阵列、PLD和中小规模通用数字集成电路的场合均可应用FPGA和CPLD器件。CPLD的设计是基于乘积项选择矩阵来实现的,而FPGA基于查找表来设计的。查找表就是实现将输入信号的各种组合功能以一定的次序写入RAM中,然后在输入信号的作用下,输出特定的函数运算结果。其结构图如图1所示: 图1. FPGA查找表单元 一个N输入查找表(LUT,Look Up Table)可以实现N个输入变量的任何逻辑功能,如N输入“与”、N输入“异或”等。

输入多于N个的函数、方程必须分开用几个查找表(LUT)实现(如图2 所示)。 图2 FPGA查找表单元内部结构 该系统设计中,FPGA芯片用的是ALTERA公司的EP1K30QC208-2,它的系统结构如图3所示。它由若干个逻辑单元和中央布线池加I/O端口构成

图3 EP1K30QC208内部结构 三、VGA接口 VGA的全称为Video Graphic Array,即显示绘图阵列。在PC行业发展的初期,VGA以其支持在640X480的较高分辨率下同时显示16种色彩或256种灰度,同时在320X240分辨率下可以同时显示256种颜色的良好特性得到广泛支持。后来,厂商们纷纷在VGA基础上加以扩充,如将显存提高至1M并使其支持更高分辨率如800X600或1024X768,这些扩充的模式就称之为VESA(Video Electronics Standards Association,视频电子标准协会)的Super VGA模式,简称SVGA,现在的显卡和显示器都支持SVGA模式。 图4 VGA接口 VGA接口就是显卡上输出模拟信号的接口,也叫D-Sub接口。VGA接口是一种D型接口,上面共有15针空,分成三排,每排五个。VGA接口是显卡上应用最为广泛的接口类型,绝大多数的显卡都带有此种接口。 表1 VGA管脚定义 管脚定义 1 红基色 red 2 绿基色 green 3 蓝基色 blue 4 地址码 ID Bit 5 自测试 (各家定义不同)

自动控制原理课程设计报告

自控课程设计 课程设计(论文) 设计(论文)题目 单位反馈系统中传递函数的研究 学院名称 Z Z Z Z 学院 专业名称 Z Z Z Z Z 学生姓名 Z Z Z 学生学号 Z Z Z Z Z Z Z Z Z Z 任课教师 Z Z Z Z Z 设计(论文)成绩 单位反馈系统中传递函数的研究 一、设计题目 设单位反馈系统被控对象的传递函数为 ) 2)(1()(00++=s s s K s G (ksm7) 1、画出未校正系统的根轨迹图,分析系统是否稳定。 2、对系统进行串联校正,要求校正后的系统满足指标: (1)在单位斜坡信号输入下,系统的速度误差系数=10。 (2)相角稳定裕度γ>45o , 幅值稳定裕度H>12。 (3)系统对阶跃响应的超调量Mp <25%,系统的调节时间Ts<15s

3、分别画出校正前,校正后和校正装置的幅频特性图。 4、给出校正装置的传递函数。计算校正后系统的截止频率Wc和穿频率Wx。 5、分别画出系统校正前、后的开环系统的奈奎斯特图,并进行分析。 6、在SIMULINK中建立系统的仿真模型,在前向通道中分别接入饱和非线性环节和回环非线性环节,观察分析非线性环节对系统性能的影响。 7、应用所学的知识分析校正器对系统性能的影响(自由发挥)。 二、设计方法 1、未校正系统的根轨迹图分析 根轨迹简称根迹,它是开环系统某一参数从0变为无穷时,闭环系统特征方程式的根在s平面上变化的轨迹。 1)、确定根轨迹起点和终点。 根轨迹起于开环极点,终于开环零点;本题中无零点,极点为:0、-1、-2 。故起于0、-1、-2,终于无穷处。 2)、确定分支数。 根轨迹分支数与开环有限零点数m和有限极点数n中大者相等,连续并且对称于实轴;本题中分支数为3条。 3)、确定根轨迹渐近线。 渐近线与实轴夹角为,交点为:。且: k=0,1,2······n-m-1; ; 则:、、;。 4)、确定根轨迹在实轴上的分布。 在(-1,0)、(,)区域内,右边开环实数零极点个数之和为奇数,该区域必是根轨迹;在(-2.-1)区域内,右边开环实数零极点个数之和为偶数,该区域不是根轨迹。 5)、确定根轨迹分离点与分离角。 分离点坐标d是以下方程的解:

自动控制系统课程设计

黑龙江科技大学 自动控制系统课程设计 课程名称自动控制系统课程设计 班级 学号 姓名

第一章系统工作原理 直流电机调速控制系统的原理框图如图1-1所示: 图1-1 原理框图 1.1 结构与调速原理 直流电机由定子和转子两部分组成,其间有一定的气隙。其构造的主要特点是具有一个带换向器的电枢。直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。其中电枢由电枢铁心和电枢绕组两部分组成。电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。换向器是一种机械整流部件。由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。各换向片间互相绝缘。换向器质量对运行可靠性有很大影响。 直流电机斩波调速原理是利用可控硅整流调压来达直流电机调速的目的,利用交流电相位延迟一定时间发出触发信号使可控硅导通即为斩波,斩波后的交流电经电机滤波后其平均电压随斩波相位变化而变化。为了达到控制直流电机目的,在控制回路加入了速度、电压、电流反馈环路和PID调节器来防止电机由于负载变化而引起的波动和对电机速度、电压、电流超常保护。

第二章主电路的设计与分析 2.1 主电路的各个部分电路 主电路主要环节是:整流电路、斩波电路。 图2-1 调速系统 直流脉宽调速系统的组成如图2-1所示,由主电路、控制及保护电路、信号检测电路三大部分组成。二极管整流桥把输入的交流电变为直流电,电阻R1为起动限流电阻,C1为滤波电容。可逆PWM变换器主电路系采用MOSFET所构成的H型结构形式,它是由四个功率IGBT管(VT1、VT2、VT3、VT4)和四个续流二极管(VD1、VD2、VD3、VD4)组成的双极式PWM可逆变换器,根据脉冲占空比的不同,在直流电机M上可得到正或负的直流电压。 2.1.1 整流电路 晶体二极管桥式整流电路是使用最多的一种整流电路。这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。

相关文档
最新文档