微分方程数值解――

微分方程数值解――
微分方程数值解――

微分方程数值解――

第二章 习题

1. 设)('x f 为)(x f 的一阶广义导数,试用类似办法定义)(x f 的k 阶广义导数)

()

(x f k ( ,2,1=k )。

解:对一维情形,函数的广义导数是通过分部积分来定义的。 我们知,)(x f 的一阶广义导数位)(x g ,如果满足 dx x x f dx x x g b

a

b

a

)()()()('??

-=??

类似的,)(x f 的k 阶广义导数为)()()

(x f x g k =,如果有

dx x x f dx x x g b

a

k k b

a

)()()1()()()(??

-=??

2. 试建立与边值问题

?????====<<=+=)

2.1(0)()(,0)()()

1.1(,''44b u b u a u a u b x a f u dx

u

d Lu

等价的变分问题。

证明:

设}0)()(,0)()(),(|{'

'2====∈=b v a v b v a v I H v v V 对方程)1.1(两边同乘以v ,再关于x 在),(b a 上积分)(V v ∈,得

??=+b a

b

a fvdx vdx u dx u

d )(44

其中

dx dx

dv dx u d dx dx dv dx u d dx u d v dx u d d v vdx dx u d b a b a b a b a b

a

????

-=-==33

33333344|)( dx dx

v

d dx u d dx dv dx u d dx u d d dx dv b a b a b

a ??+-=-=22222222|)( dx dx

v

d dx u d b

a

?

=

2

222 (*) 记dx uv dx v

d dx u d v u a b

a ?+=)(),(2

222,?=b a fvdx v f ),(。于是我们得到以下等价变分问题的提法:

设V I c u )(4∈是原边值问题)2.1(),1.1(的解的充分必要条件是,它是以下变分问

题的解:

)2()

,(),(v f v u a =,其中V v ∈

这个等价性是容易证明的。事实上,上述推导过程已经将充分性证明了,我们只要

就必要性予以证明。注意到(*),由其反推,便可证得必要性。

3. 对边值问题

?????

=+==+-=)

2.1()()(,1)()1.1()('

α

βb u b u a u f

qu dx

du p dx d Lu

其中)(1-

∈I c p ,0)(min >≥p x p ,)(1

-

∈I c q ,0)(>x q 建立虚功原理或极小位能原理。

解:

由题意,试探函数空间}1)(),(|{1=∈=a u I H u u U 检验函数空间}1)(),(|{1=∈=a v I H v v V

虚功原理:设U I c u )(2∈是原问题的解,当且仅当u 是以下变分问题的解 ),(),(v f v u a -

= )2(

其中,dx quv dx dv

dx du v u a b

a ?+=][

),(,?-+=-b a

b u b v b p fvdx v f )]()[()(),(βα 证明: 必要性

设U I c u )(2

∈是原问题的解,对方程)1.1(两边同乘以v ,再关于x 在),(b a 上积

分)(V v ∈,得

??=+-b a b

a fvdx vdx u dx du

p dx d ])([ 其中

dx dx

dv dx du v dx du p vdx dx du p dx d b a b a b

a ??+-=-

|)( dx dx

dv dx du b u b v b p b a ?+-=)()()('

dx dx

dv

dx du b u b v b p b a ?+--=)]()[()(βα (*) 令

dx quv dx dv

dx du v u a b

a ?+=][),(,?-+=-

b a

b u b v b p fvdx v f )]()[()(),(βα

则有

),(),(v f v u a -

= 充分性

设U I c u )(2

∈是变分问题)2(的解,即 ),(),(v f v u a -

= V v ∈?

由(*)式,

=?dx dx dv dx du b

a b

a b a v dx du p vdx dx du p dx d |)(+-=? 特别,取)(0I c v ∞

∈,则0|=b a v dx

du p ,0)()[

()(=-b u b v b p βα 于是,

0][=-?b

a

vdx f Lu ,所以由变分法基本引理知,f Lu =,即)1.1(式成立。

将f Lu =代入),(),(v f v u a -

=得到

0)()[()(|=--b u b v b p v dx

du p

b

a βα 于是得到

)()('b u b u βα-= 即)2.1(式成立。

综上,等价性得到证明。

如要建立极小位能原理,则首先要对原边值问题齐次化。

偏微分方程数值解期末试题及标准答案

偏微分方程数值解试题(06B ) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1)(n R x x b x Ax x J ∈-=,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2),()()()(2 000x Ax x b Ax x J x x J λλλλ?+-+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若n R x ∈0满足b Ax =0,则对于任意的x ,)(),(2 1)0()1()(00x J x Ax x x J >+==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:?????==∈=+-=0 )(,0)(),()('b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。 解: 设}0)(),,(|{11=∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

常微分方程边值问题的数值解法

第8章 常微分方程边值问题的数值解法 引 言 第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。 只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为 则边值问题(8.1.1)有唯一解。 推论 若线性边值问题 ()()()()()(),, (),()y x p x y x q x y x f x a x b y a y b αβ'''=++≤≤?? ==? (8.1.2) 满足 (1) (),()p x q x 和()f x 在[,]a b 上连续; (2) 在[,]a b 上, ()0q x >, 则边值问题(8.1.1)有唯一解。 求边值问题的近似解,有三类基本方法: (1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解; (2) 有限元法(finite element method);

(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。 差分法 8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法 设二阶线性常微分方程的边值问题为 (8.2.1)(8.2.2) ()()()(),,(),(), y x q x y x f x a x b y a y b αβ''-=<

微分方程数值解试题库2011(试题参考)

---------------------------------------------------------------------------------------------------------------------- 《常分方程数值解法》试题一及答案 ---------------------------------------------------------------------------------------------------------------------- 1.用欧拉法解初值问题???1 =060≤≤0--='2)() .(y x xy y y ,取步长 h =0.2.计算 过程保留4位小数。 解:h =0.2, f (x )=-y -xy 2.首先建立欧拉迭代公式 ),,k )(y x (y .y hx hy y )y ,x (hf y y k k k k k k k k k k k 21042021=-=--=+=+ 当k =0,x 1=0.2时,已知x 0=0,y 0=1,有 y (0.2)≈y 1=0.2×1(4-0×1)=0.800 0 当k =1,x 2=0.4时,已知x 1=0.2, y 1=0.8,有 y (0.4)≈y 2=0.2×0.8×(4-0.2×0.8)=0.614 4 当k =2,x 3=0.6时,已知x 2=0.4,y 2=0.614 4,有 y (0.6)≈y 3=0.2×0.614 4×(4-0.4×0.4613)=0.800 0 2.对于初值问题? ??1=0='2 )(y xy y 试用(1)欧拉法;(2)欧拉预报-校正公式; (3)四阶龙格-库塔法分别计算y (0.2),y (0.4)的近似值. 3.证明求解初值问题的梯形公式是 y k +1=y k +)],(),([2 11+++k k k k y x f y x f h , h =x k +1-x k (k =0,1,2,…,n -1),

微分方程数值解--大纲

偏微分方程数值解 (Numerical Methods for Partial Differential Equations) 课程代码:10210801 学位课程/非学位课程:非学位课程 学时/学分:46/3 课程简介: 《偏微分方程数值解》是数学类专业必修的一门专业课。主要内容包括:变分形式和Galerkin有限元法、椭圆型方程的差分方法、抛物型方程的差分方法、双曲型方程的差分方法、离散方程的解法。通过本课程的学习,使学生掌握求解偏微分方程数值解的基本方法,能够根据具体的微分方程使用合适的计算方法。 一、教学目标 1、知识水平教学目标 偏微分方程数值解课程的教学,要使学生掌握椭圆型微分方程、抛物型微分方程、双曲型微分方程等典型方程的差分方法,了解与之相关的理论问题,理解变分原理、有限元方法以及离散方程的解法,理解各种计算方法的收敛条件和收敛速度。 2、能力培养目标 通过偏微分方程数值解课程教学,应注意培养学生以下能力: (1)连续问题离散化能力——掌握科学的思维方法,能够使用差分方法和有限元方法的各种格式对三类典型方程进行离散化处理。 (2)算法分析与设计能力——结合各类偏微分方程的特点,设计各种计算方法,对计算方法的收敛条件和收敛速度等进行分析,具体设计易于上机实现的算法。(3)离散方程组的快速求解能力——理解离散方程组的特点,使用数学软件编程,具体上机实现,进行数值模拟的动手能力。 3、素质培养目标 通过数学物理方程课程教学,应注重培养学生以下素质: (1)具体问题有限化——善于对现实世界中得到的偏微分方程进行有限差分、有限元分析的有限化思想素养。 (2)数值解法定性化——通过学习,引导学生树立偏微分方程数值求解的基本原则,培养学生对数值方法中的稳定性、收敛性和误差等进行定性分析的素质。(3)算法实现程序化——培养学生的创造性和具体实现程序化的思维,使学生学会用数学中算法的观点思考实际问题,用程序和计算机解决数学问题。 二、教学重点与难点 1、教学重点:椭圆型、抛物型、双曲型等微分方程的差分方法,有限元方法。 2、教学难点:各种计算方法的稳定性、收敛性和误差分析,变分形式。 三、教学方法与手段 以教师讲授为主,安排上机实验,辅以习题课、课堂讨论、小论文,注重理论联系实际。 四、教学内容与目标 教学内容教学目标课时分配 (46学时) 1. 边值问题的变分形式 6 二次函数的极值掌握 两点边值问题掌握

偏微分方程数值解法试题与答案

一.填空(1553=?分) 1.若步长趋于零时,差分方程的截断误差0→lm R ,则差分方程的解lm U 趋近于微分方 程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{} )(,,),()(21 Ω∈''=ΩL f f f y x f H y x 关于内积=1),( g f _____________________是Hilbert 空间; 3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3 x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________; 5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。 二.(13分)设有椭圆型方程边值问题 用1.0=h 作正方形网格剖分 。 (1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2 h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 三.(12)给定初值问题 x u t u ??=?? , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。 1.所选用的差分格式是: 2.计算所求近似值: 四.(12分)试讨论差分方程 ()h a h a r u u r u u k l k l k l k l ττ + - = -+=++++11,111 1 逼近微分方程 0=??+??x u a t u 的截断误差阶R 。 思路一:将r 带入到原式,展开后可得格式是在点(l+1/2,k+1/2)展开的。 思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格 式。

微分方程数值解试卷

中国矿业大学2008~2009学年第 1 学期 《微分方程数值解法》试卷(B )卷 考试时间:100 分钟 考试方式:半开卷 学院 班级 姓名 序号 1、下面关于Euler 公式的结论哪些是正确的(打√)?哪些是错误的(打×)? (1)二阶方法;(2)一阶方法;(3)显式公式;(4)隐式公式;(5)是数值稳定的。 2、如果微分方程为,(0)1u tu u '==,则用Taylor 级数法求()u h 时,它的前两项为: 。 3、二阶差商 11 2 2i i i u u u h +--+近似二阶导数()i u x ''局部截断误差为 。 4、算术平均11 2 i i u u +-+近似函数值()i u x 的局部截断误差为 。 5、在课本P98差分方程(3.10)中,第二个方程的局部误差是什么? 。 6、函数空间0()C I ∞ 中函数满足什么性质? 。 二、(10分)求解常系数齐次差分方程21120,1,2, 1,1 i i i u u u i u u ++-+==?? =-=?的解。 三、(25分)已知数值解公式21132(2)m m m m m u u u h f f +++-+=- (1)写出与它们对应的特征多项式。 (2)这个多步法相容吗? (3)利用课本P47公式(2.66)求公式的局部截断误差的主项。 (4)讨论这个算法的零稳定性。 (5)求这个算法的绝对稳定区间。 四、(10分)试利用初值问题的数值解公式 11 11(,) (,)n n n n n n n n u u hf x u u u hf x u ++++=+?? =+? (1)构造一个PECE 预测校正系统;

偏微分方程数值解期末试题及答案(内容参考)

偏微分方程数值解试题(06B) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有 0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的 x ,)(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(' b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)(),,(|{11 =∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1 b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

微分方程数值解

浅谈微分方程数值解法(双语)课堂教学模式 姓名:肖录明 学号:11301010232 摘要:微分方程数值解是高等院校信息与计算科学专业的一门重要专业基础课。这是一门本具有较强实际背景,专门研究科学计算的课程。这门课程理论性较强,公式多而且难记。我们还需要通过一门语言(比如MATLAB语言)来实现我们数值计算算法。由于解微分方程在科学计算中极为常见,故学好这门课程就非常有用且能为以后的学习打下基础。在我国双语教学正在慢慢的被倡导,且益处明显。本文主要探讨该课程的双语教学模式,并对在学习过程中出现的一些问题进行了思考。 关键词:微分方程数值解法双语教学科学计算 1引言 微分方程数值解法在数值分析中占有重要的地位,它以逼近论,数值代数等学科为基础,反过来又推动这些学科的发展。微分方程数值解法就主要研究如何通过离散算法将连续形式的微分方程转化为有限维问题,如代数方程组,进而来求解其近似解[1]。主要包括求解区域网格划分、离散方程的建立、方程性能分析、近似解收敛性分析等环节。微分方程数值解法在科学计算、工程技术等领域有极其广泛的应用,比如在计算物理、化学、流体力学航空航天等很多工程领域都有用到。目前已发展成为一门计算技术学科,其核心理论内容也成为高校计算数学和应用数学等专业的核心基础专业课程之一[2]。

2双语教学的必要性 双语教学主要指中英双语教学,是一种重要的教学模式,具有特殊效果和意义。 1.双语教学可丰富教学模式,转变教学理念,促进教育改革和开放。双语教学提倡用原版教材和国外的教学方式。其语言文字原汁原味,叙述合情合理,注重启发性,内容安排适合学生。这不仅使学生学到专业知识,且有助于提高英语水平,特别是专业英语阅读和写作能力。国外的教学模式以人为本,有助于转变以教师为中心、以学习知识体系为主的教育理念,促进教育改革。 2.双语教学有助于提高学生的人文素质。多学习和运用英语可以让我们发现和扬弃汉语中那些带有落后的人文价值观念和行为方式的词汇和句子,批判地接受一些思想观念和做法,使人的思维灵活有深度,个性得以发展,创新能力不断提高。大范围开展双语教学,有助于培养出具有世界主流人文素质且能很好地参与国际交流和合作的人才。 3.双语教学有助于学生以后在国内外学习、工作、考研和国际合作等带来很多方便。 微分方程数值解法既有数学上严密的逻辑性、独特的理论结构体系,又在各种工程计算中有着重要的应用,因此是联系纯数学理论和工程应用的桥梁和纽带。很多工业应用软件是利用数值方法开发成的,并且大都用英语写成。因此,有必要用双语的形式讲授这门课,让学生在学习专业知识的同时,还掌握专业英语词汇,有助于学生以后的学习和发展。从课程的体系和内容衔接上看,这门课一般安排在大学三年级。这时侯,学生对于数学分析、常微分方程、数学物理方程和计算方法等课程有了很好的基础,其中的很多概念如:导数、定积分、

偏微分方程数值解法

一、 问题 用有限元方法求下面方程的数值解 2 u u u f t ?-?+=? in (]0,T Ω? 0u = on []0,T ?Ω? ()00,u x u = in Ω 二、 问题分析 第一步 利用Green 公式,求出方程的变分形式 变分形式为:求()()21 00,;u L T H ∈Ω,使得 ()())(2 ,,,,u v u v u v f v t ???+??+= ???? ()10v H ?∈Ω (*) 以及 ()00,u x u =. 第二步 对空间进行离散,得出半离散格式 对区域Ω进行剖分,构造节点基函数,得出有限元子空间:()12,,,h NG V span ???=???,则(*)的Galerkin 逼近为: []0,t T ?∈,求()()1 0,h h u t x V H ∈?Ω,使得 ()()()()() () )(2 ,,,,h h h h h h h d u t v u t v u t v f v dt +??+= h h v V ?∈ (**) 以及()0,0h h u u =,0,h u 为初始条件0u 在h V 中的逼近,设0,h u 为0u 在h V 中的插值. 则0t ?≥,有()()1 N G h i i i u t t ξ? == ∑,0,h u =01 N G i i i ξ?=∑,代人(**)即可得到一常微分方程组. 第三步 进一步对时间进行离散,得到全离散的逼近格式 对 du dt 用差分格式.为此把[]0,T 等分为n 个小区间[]1,i i t t -,其长度1i i T t t t n -?=-= ,n t T =. 这样把求i t 时刻的近似记为i h u ,0 h u 是0u 的近似.这里对(**)采用向后的欧拉格式,即 ()()() () )(2 11 11 1 ,,,,i i i i h h h h h h h i h u u v u v u v f v t ++++-+??+ = ? h h v V ?∈ (***) i=0,1,2…,n-1. 0 h u =0,h u 由于向后欧拉格式为隐式格式且含有非线性项,故相邻两时间步之间采用牛顿迭代,即:

偏微分方程数值解复习题(2011硕士)

偏微分方程数值解期末复习(2011硕士) 一、考题类型 本次试卷共六道题目,题型及其所占比例分别为: 填空题20%;计算题80% 二、按章节复习内容 第一章 知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等; 要求: 会辨认差分格式, 判断线性多步法的误差和阶; 第二章 知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等; 要求: 建立椭圆型方程边值问题的差分格式, 极值原理; 第四章 知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等; 要求: 建立抛物型方程边值问题的差分格式, 计算局部截断误差; 第五章 知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff 格式、跳蛙格式、特征线、CFL条件等; 要求: 建立双曲型方程边值问题的差分格式, 计算局部截断误差; 第七章 要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式

三 练习题 1、 已知显格式21131()22 n n n n u u h f f +++-=-,试证明格式是相容的,并求它的阶。 P39+P41 2、用Taylor 展开原理构造一元函数一阶导数和二阶导数的数值微分公式。 提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数 之间的关系 课件 3、用数值微分方法或数值积分方法建立椭圆型方程 2222(,),(,),u u f x y x y x y ??--=?∈Ω?? :01,01x y Ω≤≤≤≤ 内点差分格式。 P75+课件 4、构造椭圆型方程边值问题的差分格式. P101 (4)题 5、构建一维热传导方程220,(0)u u Lu a a t x ??=-=>??的数值差分格式(显隐格式等)。 参考P132-135相关知识点 6、设有逼近热传导方程22(0)u u Lu a f a const t x ??≡-==>??的带权双层格式 ()()1111111122(1)2k k j j k k k k k k j j j j j j u u a u u u u u u h θθτ++++-+-+-??=-++--+?? 其中[0,1]θ∈,试求其截断误差。并证明当2 1212h a θτ=-时,截断误差的阶最 高阶为24()O h τ+。 P135+P165+课件 7、传播因子法证明抛物型方程22(0)u u Lu a f a const t x ??≡-==>??的最简显隐和六点CN 格式稳定性。 P156+课件 8、对一阶常系数双曲型方程的初边值问题 0,0,0,0,(,0)(),0,(0,)(),0, u u a t T x a t x u x x x u t t t T φψ???+=<≤<<∞>?????=≤<∞??=≤≤?

微分方程的分类及其数值解法

微分方程的分类及其数值解法 微分方程的分类: 含有未知函数的导数,如dy/dx=2x 、ds/dt=0.4都是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程。 一、常微分方程的数值解法: 1、Euler 法: 00d (,), (1.1)d (), (1.2) y f x y x y x y ?=???=? 001 (),(,),0,1,,1n n n n y y x y y hf x y n N +=??=+=-? (1.4) 其中0,n b a x x nh h N -=+=. 用(1.4)求解(1.1)的方法称为Euler 方法。 后退Euler 公式???+==+++),,(),(111 00n n n n y x hf y y x y y 梯形方法公式 )].,(),([2 111+++++=n n n n n n y x f y x f h y y 改进的Euler 方法11(,),(,),1().2p n n n c n n p n p c y y hf x y y y hf x y y y y ++?=+??=+???=+??? 2、Runge-Kutta 方法: p 阶方法 : 1()O h -=?总体截断误差局部截断误差 二阶Runge-Kutta 方法 ??? ????++==++=+),,(),,(,2212 1211hk y h x f k y x f k k h k h y y n n n n n n

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

偏微分方程数值解法

“十二五”国家重点图书出版规划项目 信息与计算科学丛书 67 偏微分方程数值解法 陈艳萍鲁祖亮刘利斌编著

内 容 简 介 本书试图用较少的篇幅描述偏微分方程的几种数值方法. 主要内容包括:Sobolev空间初步, 椭圆边值问题的变分问题, 椭圆问题的有限差分方法, 抛物型方程的有限差分方法, 双曲型方程的有限差分方法, 椭圆型方程的有限元方法, 抛物及双曲方程的有限元方法, 椭圆型方程的混合有限元方法, 谱方法等. 本书内容丰富, 深入浅出, 尽可能地用简单的方法来描述一些理论结果, 并根据作者对有限差分、有限元、混合有限元、谱方法的理解和研究生教学要求, 全面、客观地评价各种数值计算方法,并列举一些数值计算的例子, 阐述许多新的学术观点. 本书可作为高等学校数学系高年级本科生和研究生的教材或参考书, 也可作为计算数学工作者和从事科学与工程计算的科研人员的参考书. 图书在版编目(CIP)数据 偏微分方程数值解法/陈艳萍, 鲁祖亮, 刘利斌编著. —北京:科学出版社, 2015.1 (信息与计算科学丛书67) ISBN 978-7-03-000000-0 Ⅰ. ①偏… Ⅱ. ①陈… ②鲁… ③刘… Ⅲ. ① Ⅳ.① 中国版本图书馆CIP数据核字(2014) 第000000号 责任编辑: 王丽平/责任校对: 彭涛 责任印制: 肖钦/封面设计: 陈敬 出版 北京东黄城根北街16号 邮政编码: 100717 https://www.360docs.net/doc/8014048277.html, 印刷 科学出版社发行 各地新华书店经销 * 2015年1月第一版开本: 720×1000 1/16 2015年1月第一次印刷印张: 14 字数: 280 000 定价: 88.00元 (如有印装质量问题, 我社负责调换)

微分方程数值解习题(李立康)

常微分方程习题 《李立康》 习题 1.用Euler 方法求初值问题 ? ? ?=-='0)0(21u tu u 在1=t 时的近似解(取4 1= h )。 2.初值问题 1 3 00 u u u()??'=? ?=? 有解32 23/u(t )t ?? = ? ?? 。但若用Euler 方法求解,对一切N T ,和H T h = ,都只能得到N t u t ,...,2,1,0==,试解释此现象产生的原因。 3.用Euler 方法计算 ?? ?=='1 )0(u u u 在1=t 处的值,取16 1 和41= h ,将计算结果与精确值e =)1(u 相比较。 4.设),(u t f 满足定理2.1的条件,对改进Euler 法(2.10)式证明: (1)其局部截断误差为)()(12 43 h O t u h -'''- ; (2)当1

?? ?=='1 )0(u u u 计算公式 m m h h u ??? ? ??-+=22 取4 1 = h 计算)1(u 的近似值,并与习题3的结果比较。 6.就初值问题 ?? ?=+='0 )0(u b at u 分别导出用Euler 方法和改进Euler 法求近似解的表达式,并与真解 bt t a u += 22 相比较。 7.证明改进Euler 法的绝对稳定区域是整个左半平面0)Re(

微分方程数值解法答案

包括基本概念,差分格式的构造、截断误差和稳定性,这些内容是贯穿整个教材的主线。解答问题关键在过程,能够显示出你已经掌握了书上的内容,知道了解题方法。这次考试题目的类型:20分的选择题,主要是基本概念的理解,后面有五个大题,包括差分格式的构造、截断误差和稳定性。 习题一 1. 略 2. y y x f -=),(,梯形公式:n n n n n n y h h y y y h y y )121(),(2111+-+=+- =+++,所以0122)1(01])121[()121()121(y h h y h h y h h y h h n h h n n n +--+--+-+=+-+==+-+= ,当0→h 时, x n e y -→。 同理可以证明预报-校正法收敛到微分方程的解. 3. 局部截断误差的推导同欧拉公式; 整体截断误差: ? ++++++-++≤1 ),())(,(11111n n x x n n n n n n n dx y x f x y x f R εε 11)(++-++≤n n n y x y Lh R ε,这里R R n ≤ 而111)(+++-=n n n y x y ε,所以 R Lh n n += -+εε1)1(,不妨设1

偏微分方程数值解法答案

1. 课本2p 有证明 2. 课本812,p p 有说明 3. 课本1520,p p 有说明 4. Rit2法,设n u 是u 的n 维子空间,12,...n ???是n u 的一组基底,n u 中的任一元素n u 可 表为1n n i i i u c ?==∑ ,则,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???=== -=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ????=,令 () 0n j J u c ?=?,从而得到12,...n c c c 满足1 (,)(,),1,2...n i j i j i a c f j n ???===∑,通过解线性方程组,求的i c ,代入1 n n i i i u c ?==∑, 从而得到近似解n u 的过程称为Rit2法 简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1 n n i i i u c ?== ∑, 利用,11 11()(,)(,)(,)(,)22j n n n n n n i j i j j i j j J u a u u f u a c c c f ???===-=-∑∑确定i c ,求得近似解n u 的过程 Galerkin 法:为求得1 n n i i i u c ? == ∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,) n a u V f V =,对任 意 n V u ∈或(取 ,1j V j n ?=≤≤) 1 (,)(,),1,2...n i j i j i a c f j n ???===∑的情况下确定i c ,从而得到近似解1 n n i i i u c ?==∑的过程称 Galerkin 法为 Rit2-Galerkin 法方程: 1 (,)(,)n i j i j i a c f ???==∑ 5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构 造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用 有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。 6. 解:对求解区间进行网格剖分,节点01......i n a x x x x b =<<<<=得到相邻节点1,i i x x -

常微分方程初值问题数值解法

常微分方程初值问题数值解法 朱欲辉 (浙江海洋学院数理信息学院, 浙江舟山316004) [摘要]:在常微分方程的课程中讨论的都是对一些典型方程求解析解的方法.然而在生产实 际和科学研究中所遇到的问题往往很复杂, 在很多情况下都不可能给出解的解析表达式. 本篇文章详细介绍了常微分方程初值问题的一些数值方法, 导出了若干种数值方法, 如Euler法、改进的Euler法、Runge-Kutta法以及线性多步法中的Adams显隐式公式和预测校正 公式, 并且对其稳定性及收敛性作了理论分析. 最后给出了数值例子, 分别用不同的方法计算出近似解, 从得出的结果对比各种方法的优缺点. [关键词]:常微分方程;初值问题; 数值方法; 收敛性; 稳定性; 误差估计 Numerical Method for Initial-Value Problems Zhu Yuhui (School of Mathematics, Physics, and Information Science, Zhejiang Ocean University, Zhoushan, Zhejiang 316004) [Abstract]:In the course about ordinary differential equations, the methods for analytic solutions of some typical equations are often discussed. However, in scientific research, the problems are very complex and the analytic solutions about these problems can’t be e xpressed explicitly. In this paper, some numerical methods for the initial-value problems are introduced. these methods include Euler method, improved Euler method, Runge-Kutta method and some linear multistep method (e.g. Adams formula and predicted-corrected formula). The stability and convergence about the methods are presented. Some numerical examples are give to demonstrate the effectiveness and accuracy of theoretical analysis. [Keywords]:Ordinary differential equation; Initial-value problem; Numerical method; Convergence; Stability;Error estimate

微分方程数值解――

微分方程数值解―― 第二章 习题 1. 设)('x f 为)(x f 的一阶广义导数,试用类似办法定义)(x f 的k 阶广义导数) () (x f k ( ,2,1=k )。 解:对一维情形,函数的广义导数是通过分部积分来定义的。 我们知,)(x f 的一阶广义导数位)(x g ,如果满足 dx x x f dx x x g b a b a )()()()('?? -=?? 类似的,)(x f 的k 阶广义导数为)()() (x f x g k =,如果有 dx x x f dx x x g b a k k b a )()()1()()()(?? -=?? 2. 试建立与边值问题 ?????====<<=+=) 2.1(0)()(,0)()() 1.1(,''44b u b u a u a u b x a f u dx u d Lu 等价的变分问题。 证明: 设}0)()(,0)()(),(|{' '2====∈=b v a v b v a v I H v v V 对方程)1.1(两边同乘以v ,再关于x 在),(b a 上积分)(V v ∈,得 ??=+b a b a fvdx vdx u dx u d )(44 其中 dx dx dv dx u d dx dx dv dx u d dx u d v dx u d d v vdx dx u d b a b a b a b a b a ???? -=-==33 33333344|)( dx dx v d dx u d dx dv dx u d dx u d d dx dv b a b a b a ??+-=-=22222222|)( dx dx v d dx u d b a ? = 2 222 (*) 记dx uv dx v d dx u d v u a b a ?+=)(),(2 222,?=b a fvdx v f ),(。于是我们得到以下等价变分问题的提法:

相关文档
最新文档