量子力学基础第一章

合集下载

第一章 量子力学基础

第一章 量子力学基础

氧化锆晶体的X射线衍射图 (Debye-Scherrer图)
de Broglie还利用他的关系式为Bohr的轨道角动 量量子化条件
h mvr n 2
作了一个解释:由这一条件导出的
nh h S 2r n n mv p
表明圆轨道周长S是波长的整数倍,这正是在圆周上形 成稳定的驻波所需要的,如同琴弦上形成驻波的条件是 自由振动的弦长为半波长的整数倍一样. 尽管这种轨迹确定的轨道被不确定原理否定了, 但“定态与驻波相联系”的思想还是富有启发性的.
测物理量. 波函数应具有品优性 , 包括单值性、连续性 、平方可积性.
波函数的概率解释
例如, 坐标与相应的动量分量、方位角与动量矩等.
不确定原理可以用不同的方式来阐述, 最容易理解也 最常用的是电子的单缝衍射实验:
波是不确定性的表现
单 缝 衍 射
这个象征着科学 的标志, 迄今仍被有 些人认为是原子模型 的真实图像. 实际上, 它只是照耀过科学历 程的星光:
由于坐标与相应 的动量分量不可能同 时精确测定, 所以, 原子中的电子不可能 具有这种轨迹确切的 轨道.
(photoelectric effect), 后来导致了光的粒子学说. 1889年, 斯托列托夫提出获得光电流的电池方案(下图G为电 流表, V为电压表; C为阴极, A为阳极):
1898年,P.勒纳特确认放电粒子为电子, 并于1902年指出: 1.入射光线的频率低于一定值就不会放出光电子; 2.光电子的动能与光强度无关而与光的频率成正比; 3.光电流强度与光强成正比。
de Broglie波不仅对建立量子
力学和原子、分子结构理论有重要
意义,而且在技术上有重要应用.
使用de Broglie波的电子显微镜分辨率

第一章1 量子力学基础

第一章1 量子力学基础

满足上述条件的波函数称为合格波函数或品优波函数 (well-behaved function)
(a)违反单值条件
(b)不连续
(c)一阶微商不连续
(d)波函数不是有限的
不符合品优函数条件的情况
(2)、Ψ 和CΨ 描述同一状态 C为一个非零的常数因子(可以是实数或复数)
ψ
2
重要的是在空间不同点的比值,而不是各点的绝对值大小。
r1 0.529 1010 m=52.9pm
玻尔 半径
氢原子轨道能量 1 me 4 R En 2 ( 2 2 ) 2 ,n 1, 2,3, n 8 0 h n
R 13.6eV
比较:多电子原子轨道能量
Z2 En R 2 n
玻尔理论的缺陷:旧量子论
● 玻尔理论仍然以经典理论为基础,定态假设
2、 电子衍射实验—德布罗意假设的实验验证
(1)戴维逊—革末电子单晶反射实验(1927年)
1925年,戴维逊和革末第一次得到了电子在单晶体中 衍射的现象(Ni 氧化,单晶),1927年他们又精确地进 行了这个实验,实验发现,从衍射数据中求得的电子 的物质波波长与从德布罗意关系式中计算出的波长一 致。
2 2 l 2
求此波函数的归一化常数A。
nx A sin( ) l
(0 x l)
l A 1 A 2
2
2 l
二、假设Ⅱ:力学量和算符
1、算符的定义:一种运算符号,当将其作用到某一函数上 时,就会根据某种运算规则,使该函数变成另一函数
g Af
2、算符的性质 ①相等
定态(E2)→定态(E1)跃迁辐射
(3)量子化条件
电子轨道角动量 M n

第一章量子力学基础知识.doc

第一章量子力学基础知识.doc

第一章 量子力学基础知识1.1 微观粒子的运动特征基本内容一、微观子的能量量子化1. 黑体辐射黑体:是理想的吸收体和发射体.Plank 假设:黑体中原子或分子辐射能量时作简谐振动,它只能发射或吸收频率为ν,数值为ε=hν整数倍的电磁波,及频率为ν的振子发射的能量可以等于:0hν,1 hν,2 hν,3 hν,…..,n hν.由此可见,黑体辐射的频率为ν的能量,其数值是不连续的,只能为hν的倍数,称为能量量子化。

2. 光电效应和光子光电效应:是光照射在金属样品表面上,使金属发射出电子的现象。

金属中的电子从光获得足够的能量而逸出金属,称为光电子。

光电效应的实验结果:(1) 只有当照射光的频率超过某个最小频率ν时金属才能发射光电子,不同金属的ν值也不同。

(2) 随着光强的增加,发射的电子数也增加,但不影响光电子的动能。

(3) 增加光的频率,光电子的动能也随之增加。

光子学说的内容如下:(1) 光是一束光子流,每一种频率的光的能量都有一个最小单位称为光子,光子的能量与光子的频率成正比即:νεh =0(2) 光子不但有能量,还有质量(m ),但光子的静止质量为零。

按相对论质能联系定律,20mc =ε,光子的质量为:c h c m νε==2,所以不同频率的光子有不同的质量。

(3) 光子具有一定的动量(p) p=mc=c h ν=λh(4) 光子的强度取决于单位体积内光子的数目即光子密度:ττρτd dNN =∆∆=→∆0lim将频率为ν的光照射到金属上,当金属中的一个电子受到一个光子撞击时,产生光电效应,并把能量hν转移给电子。

电子吸收的能量,一部分用于克服金属对它的束缚力,其余部分则表现为光电子动能。

2021mv h E w h k +=+=νν 当νh <w 时,光子没有足够的能量,使电子逸出金属,不发生光电效应,当νh =w 时,这时的频率时产生光电效应的临阈频率0ν,当νh >w 时从金属中发射的电子具有一定的动能,它随ν的增加而增加,阈光强无关。

第1章 量子力学基础知识

第1章 量子力学基础知识

d 8 m E 2 2 dx h
2 2
8 m E 8 m E c1 cos( ) x c2 sin( ) x 2 2 h h
2 1 2 2 1 2
边界条件: x 0 , 0
2
x l , 2 0
8 m E 8 m E c1 cos( ) x c sin( ) x 2 h2 h2
1927年,美国, C. J. Davisson L. H. Germer 单晶 体电子衍射实验 G.P.Thomson 多晶金属箔电子衍射实验 质子、中子、氦原子、氢原子等粒子流也同样观 察到衍射现象,充分证实了实物微粒具有波动性, 而不限于电子。
22
氧化锆晶体的X射线衍射图
金晶体的电子衍射图
23
n h E 2 8m l
2
n 1,2,3,
nx ( x) c2 sin( ) l
nx ( x) c2 sin( ) l
nx c sin ( )dx 1 l 0
l 2 2 2
* d 1
nx 2 c sin ( ) 1 l 0
l 2 2 2
2 c2 l
25
波粒两相性是微观粒子运动 的本质特性,为微观世界的 普遍现象。
26
-1.1.4- 不确定关系(测不准原理)
x D A e O P
y
Q
A
O C
P psin
电子单缝衍射实验示意图
单 缝 衍 射
1.2 量子力学基本假设
量子力学是描述微观粒子运动规律 的科学。 电子和微观粒子不仅表现出粒性, 而且表现出波性,它不服从经典力 学的规律。
31
-1- 波函数和微观粒子的运动状态

第一章量子力学基础

第一章量子力学基础

RH 1 1 ~ 1 1 = 2 = RH 2 2 2 hc n1 n2 n n 2 1

实物微粒的波粒二象性
德布罗意假说: ε= hν=hu/λ p = h/λ ρ= K|Ψ|2 or ρ∝|Ψ|2
h/ p
h 2meT 1.226nm T / eV
ν/1014s-1
黑体辐射实验曲线
黑体辐射的解释
瑞利· 金斯公式 (麦克斯韦理论) : 8 2 kT E ( , T )d d 3
c
普朗克· 金斯公式:

8h 3 d E ( , T )d c 3 e h / kT 1
维恩公式
(统计热力学理论) :
第一章 量子力学基础
量子力学产生的背景 经典物理学的困难与旧量子论的诞生;实 物微粒的波粒二象性;不确定关系。 量子力学基本原理 波函数与微观粒子的状态;力学量和算符; 量子力学的基本方程;态叠加原理;电子自旋。 量子力学基本原理的简单应用 势箱中运动的粒子;线性谐振子;量子力 学处理微观体系的一般步骤与量子效应。
黑体辐射
黑体辐射模型
5 4
m-2 E (vT)/10-9J·
λБайду номын сангаас
2000K
3
维恩位移定律
T定,辐射频率:v v+dv 辐射能量:E(v,T)dv。辐射最强的 频率λmax随温度升高而发生位移: λmaxT=2.9×10-3 m· K
2
1500K
1
1000K
0 0 1 2 3
斯忒蕃公式
总辐射能量:E=σT4
爱因斯坦光子学说(1905年)
光是一束光子流。每一种频率的光能量都有一最小单位, 即为光子的能量ε: ε= hν 光的能量是量子化的,不连续的。 一束光的能量是hν的N微粒形式出现的集合体。 即: E = Nhν 光子密度: ρ= LinΔΝ/Δτ=dN/dτ Δτ→0 光子的能量和动量: 相对质能联系定律: εo = mc2,m = hν/c2 =h/cλ, 动量: p = mc = hν/c , p = h/λ 光子与电子相碰时服从能量守恒和动量守恒定律 hν=W + T = hνo + ½ mv2,T = ½ mv2 = hν- hνo 光波强度与光子密度的关系:I = ρhν, ρ= dN/dτ I = Eo2/8π+Ho2/8π=Ψ2/4π (麦克斯韦方程) ρhν= Ψ2/4π ρ= K|Ψ|2

第一章 量子力学基础

第一章 量子力学基础

1.1.3 氢原子光谱与轨道角动量量子化
1913年, Bohr提出一个新模型: 原子中的电子在确定的分 立轨道上运行时并不辐射能量; 只有在分立轨道之间跃迁时才有 不连续的能量辐射; 分立轨道由“轨道角动量量子化”条件确定:
m、v、r分别是电子的质量、线速度和轨道半径,n是一系列正 整数. 由此解释了氢原子的不连续线状光谱. 1922年, Bohr获诺 贝尔物理学奖.
假设 1
微观体系的状态可用一个状态函数或波函数Ψ(x, y, z, t) 描述, Ψ(x, y, z, t)决定了体系的全部可测物理量. 波函数应具有品优性, 包括单值性、连续性、平方可积性.
z 定态波函数 不含时间的波函数ψ(x,y,z)称为定态波函数。 (定态:概率密 度与能量不随时间改变的状态) z 波函数的具体表示形式 用量子力学处理微观体系时,要设法求出波函数的具体表示形 式。而波函数的具体表达式是由解Schrödinger方程得到的。 例如氢原子的1s态的波函数为: ψ 1s =
n=5 n=4 n=3 n=2
n=1
1.1.3 氢原子光谱与轨道角动量量子化
Bohr模型对于单电子原子在多方面应用得很有成效,也 能解释原子的稳定性. 但它竟不能解释 He 原子的光谱,更不 必说较复杂的原子;也不能计算谱线强度。 量子化条件是对的,半径有问题,角动量是错的; 仍属于经典力学,只是认为附加了一些量子化条件——称 为旧量子论
E = hv
λ= h / p
1.1.4 实物微粒的波粒二象性
1927年,戴维逊、革末用电子束单晶衍射法,G.P.汤姆逊用 多晶透射法证实了物质波的存在. 1929年, de Broglie获诺贝尔物 理学奖;1937年,戴维逊、革末、G.P.汤姆逊也获得诺贝尔奖.

量子力学基础

量子力学基础

i 2 i 2 xpx Et xpx Et A exp h x h
第一章 量子力学基础知识
i 2 i 2 i 2 xpx Et px A exp p x h h h
z
e2
第一章 量子力学基础知识
e1
不考虑核的运动
r1 r12 r2
z
2 p12 p2 2e 2 2e 2 e2 E 2m1 2m2 4 0 r1 4 0 r2 4 0 r12
e2
ˆ 2 2 2e 2e e H 1 2 2m1 2m2 4 0 r1 4 0 r2 4 0 r12
第一章 量子力学基础知识
合格(品优)波函数
由于波函数的概率性质,所以波函数必须满足下 列条件: • 单值的,即在空间每一点 只能有一个值;
• 连续的,即 的值不出现突跃; 对x, y, z的 一级微商也是连续函数;
• 平方可积的,即 在整个空间的积分
* d
为一个有限数,通常要求波函数归一化,即
态函数的形式与光波的方程类似,习惯上称之为 波函数。如: 平面单色光的波动方程: A exp i 2 x t E hv, p h 代人波粒二象性关系: i 2 得单粒子一维运动波函数: A exp xpx Et
h


定态波函数:当微观粒子的运动状态不随时 间而变时,其波函数可以写作:
x1 , y1 , z1 , x2 , y2 , z2 , x3 , y3 , z3 , t
or
or
1,2,3, t
q1 , q2 , q3 , t ,
<关于波函数的一些概念和说明> 波函数是体系中所有粒子的坐标和时间的函数。

第一章量子力学基础

第一章量子力学基础

m

h
c2
h
c
光子的质量与光的频率或波长有关,但光子没有静止质 量,因为根据相对论原理:
m
m0
1 (v / c)2
2020/3/17
13
④光子有动量P
P mc mc2 h h c c
⑤光子与电子碰撞时服从能量守恒和动量守恒。
h
W

Ek

h 0

1 m 2
2
——光电方程或爱因斯坦关系式
③光电效应产生的电子
ν
的初动能随光的频率增 大而增加而与光的强度
无关。
④入射光照射到金属表 面立即有电子逸出,二 者几乎无时间差。
11
根据光波的经典图象,光波的能量与它的强度 (振幅的平方)成正比,而与频率无关。因此 只要有足够的强度,任何频率的光都能产生光 电效应,而电子的动能将随着光强的增加而增 加,与光的频率无关,这些经典物理学家的推 测与实验事实不符。
5
E( v,T)10-9J.m-2
5 4 3 2 1
0
max
2000K
1500k
1000K
1
2
3
v/1014s-1
①随着温度(T)的增加, 总辐射能量E(即曲线下的面积) 急剧增加。
E T 4 ( 5.67 108W gm2 gK 4 )
——斯芯蕃公式
②随着温度(T)的增加,E的 极大值向高频移动;曲线的峰值 对应于辐射最强的频率,相应的 波长ma随x 温度升高而发生位移。
1


R° H

1 n12

1 n22

R°为H 里德堡常数, R°=H 1.09677576×107m-1

第一章 量子力学基础.

第一章 量子力学基础.

在量子力学中,最重要的一种本征方程是能量本征方程,
即定态Schrödinger方程(能量算符是Hamilton算符):
Ĥ =E
2
( 2 V ) E
2m
只有参数E取某些特定值时, 该方程才有满足自然条件的非零解
. 参数E的这些取值就是Hamilton算符的本征值,相应的ψ是
Hamilton算符的属于该本征值的本征函数.
力学量
算符
位置x,时间t
xˆ x,tˆ t动量的x Nhomakorabea分量px


x

i
x
角动量的z轴分量
Mˆ z

i
x
y

y
x

力学量 势能 V
动能 T=p2/2m 总能量 E=T+V
算符
Vˆ V



2 2m

2 x 2

2 y 2

2 z 2
dx 2
的本征函数。若是,求出本征值。
d2 (ex ) 1 ex dx 2
ex是算符的本征函数,本征值为1
d 2 (sin x) sin x sinx是算符的本征函数,本征值为-1 dx 2
d2 (2cos x) 2cos x dx 2
2cosx是算符的本征函数,本征值为-1
d2 (x3 ) 6x dx 2
三、能级公式的意义:
En

n2h2 8ml 2
(n
1, 2,3......)
受束缚的粒子的能量必须是量子化的,即边界条件迫使
能量量子化。(一维势箱的量子化是解方程自然得到的,
而非像旧量子论人为附加)

@第一章 量子力学基础

@第一章 量子力学基础

量子力学基本假设
如果一个体系的可观测力学量的平均值不随时
间而改变,这个体系就被说成是处于一个定态。
注意:定态不等于静止。
本课程中主要讨论定态波函数。
C为一个常数因子(可以是实数或复数)时,Ψ 和 C Ψ描述同一状态。(为什么?)
由于波函数描述的是几率波,所以ψ必须满足3个条 件,即品优波函数或合格波函数: •单值,即在空间每一点ψ只能有一个值
一维势箱
一维势箱中最低能量值:n=1,E1=h2/8ml2, 对应1状态
(3)零点能
E1即为零点能(能量最低的状态1所具有的 能量) 由于箱中V(x)=0,故E1全是动能
箱中动能恒大于0,粒子处在最低的能量 状态,也在运动 能量最低的状态叫基态,基态公式可以看出,当l增大,即粒子的活动 范围扩大时,相应的能量会降低。 这种由于粒子的活动范围扩大而使体系能量降 低的效应称为“离域效应” 在有机化学中,共轭化合物的体系,因离域 效应而使得化合物更加稳定;对当代一些光 电材料学科也具有重要的意义。
电子1/2mv2 = eV; = h/mv = h/(2me)1/2(V)1/2 =1.226×10-9/V1/2(m)
实物微粒波的证明及其统计解释
1926年,波恩提出实物微粒波的统计解 释:他认为在空间任何一点上波的强度和粒 子出现的概率成正比,按照这种解释描述的 粒子的波称为概率波。 1927年,德布罗意的假设被戴维逊-革 末的镍单晶电子衍射实验和汤姆逊的多晶金 属箔电子衍射实验所证实。 1928年后,实验进一步证明,分子,原 子、质子、中子等一切微观粒子都无不具有 介绍 波动性。
量子力学基本假设
假设Ⅳ 态叠加原理
若ψ1,ψ2,…,ψn为某一微观状态的可 能状态,由它们线性组合所得的ψ也是该体系的 可能状态:

第一章量子力学基础

第一章量子力学基础

(3)粒子的动量平方px2值
假设三:本征方程
2 2 2 nx h d 2 ˆ x n 2 2 p sin 4 dx l l h 2 d n 2 nx 2 cos 4 dx l l l
h n 2 nx 2 sin 4 l l l
l
2 l nx ih d nx sin sin dx l 0 l 2 dx l
ih l
nx nx d sin 0 sin l l
l
2 xl
ih sin (nx / l) 0 l 2 x 0
2 ˆ ˆ H - 2 +V 8 m h2
:拉普拉斯算符
2 2 2 2 = 2 + 2 + 2 x y z
19
假设三:本征方程
Schrö dinger方程算法解析
一个质量为m的 粒子,在一维 势井中的运动。
0 , 0 ﹤x ﹤ l V= ∞ , x ≤0 和 x≥ l
一维势箱中粒子的波函数、能级和几率密度
假设三:本征方程
总结: 势箱中粒子的量子效应:
1.存在多种运动状态,可由Ψ1 ,Ψ2 ,…,Ψn 等描述;
2.能量量子化;
3.存在零点能;
4.没有经典运动轨道,只有几率分布;
5.存在节点,节点多,能量高。
假设三:本征方程 箱中粒子的各种物理量
(1)粒子在箱中的平均位置
力学量 算符 力学量 算符
位置
x
ˆx x
ˆ p
ih = - x 2 π x
x y y x
势能 V

第一章量子力学基础

第一章量子力学基础

第⼀章量⼦⼒学基础第⼀章量⼦⼒学基础知识⼀、概念题1、⼏率波:空间⼀点上波的强度和粒⼦出现的⼏率成正⽐,即,微粒波的强度反映粒⼦出现⼏率的⼤⼩,故称微观粒⼦波为⼏率波。

2、测不准关系:⼀个粒⼦不能同时具有确定的坐标和动量3、若⼀个⼒学量A 的算符A作⽤于某⼀状态函数ψ后,等于某⼀常数a 乘以ψ,即,ψψa A=?,那么对ψ所描述的这个微观体系的状态,其⼒学量A 具有确定的数值a ,a 称为⼒学量算符A的本征值,ψ称为A ?的本征态或本征波函数,式ψψa A=?称为A ?的本征⽅程。

4、态叠加原理:若n ψψψψ,,,,321为某⼀微观体系的可能状态,由它们线性组合所得的ψ也是该体系可能存在的状态。

其中:∑=++++=ii i n n c c c c c ψψψψψψ332211,式中n c c c c ,,,,321为任意常数。

5、Pauli 原理:在同⼀原⼦轨道或分⼦轨道上,⾄多只能容纳两个电⼦,这两个电⼦的⾃旋状态必须相反。

或者说两个⾃旋相同的电⼦不能占据相同的轨道。

6、零点能:按经典⼒学模型,箱中粒⼦能量最⼩值为0,但是按照量⼦⼒学箱中粒⼦能量的最⼩值⼤于0,最⼩的能量为228/ml h ,叫做零点能。

⼆、选择题1、下列哪⼀项不是经典物理学的组成部分? ( )a. ⽜顿(Newton)⼒学b. 麦克斯韦(Maxwell)的电磁场理论c. 玻尔兹曼(Boltzmann)的统计物理学d. 海森堡(Heisenberg)的测不准关系2、下⾯哪种判断是错误的?( )a. 只有当照射光的频率超过某个最⼩频率时,⾦属才能发⾝光电⼦b. 随着照射在⾦属上的光强的增加,发射电⼦数增加,但不影响光电⼦的动能c. 随着照射在⾦属上的光强的增加,发射电⼦数增加,光电⼦的动能也随之增加d. 增加光的频率,光电⼦的动能也随之增加3、根据Einstein的光⼦学说,下⾯哪种判断是错误的?( )a. 光是⼀束光⼦流,每⼀种频率的光的能量都有⼀个最⼩单位,称为光⼦b. 光⼦不但有能量,还有质量,但光⼦的静⽌质量不为0c. 光⼦具有⼀定的动量d. 光的强度取决于单位体积内光⼦的数⽬,即,光⼦密度4、根据de Broglie关系式及波粒⼆象性,下⾯哪种描述是正确的?( )a. 光的波动性和粒⼦性的关系式也适⽤于实物微粒b. 实物粒⼦没有波动性c. 电磁波没有粒⼦性d. 波粒⼆象性是不能统⼀于⼀个宏观物体中的5、下⾯哪种判断是错误的?( )a. 机械波是介质质点的振动b. 电磁波是电场和磁场的振动在空间的传播c. 实物微粒波的强度反映粒⼦出现的⼏率的⼤⼩d. 实物微粒波的强度反映粒⼦出现的⼏率的⼤⼩,也反映了粒⼦在空间振动的强度6、下⾯对宏观物体和微观粒⼦的⽐较哪⼀个是不正确的?( )a. 宏观物体同时具有确定的坐标和动量,可⽤⽜顿⼒学描述,⽽微观粒⼦没有同时确定的位置和动量,需⽤量⼦⼒学描述b. 宏观物体有连续可测的运动轨道,可追踪各个物体的运动轨迹加以分辨;微观粒⼦具有⼏率分布特性,不可能分辨出各个粒⼦的轨道。

中科院量子力学超详细笔记_第一章_量子

中科院量子力学超详细笔记_第一章_量子

第一章 量子力学的物理基础§1.1 ,实验基础1, 第一组实验 —— 光的粒子性实验:黑体辐射、光电效应、Compton 散射能量分立、辐射场量子化的概念,实验揭示了光的粒子性质。

《黑体辐射谱问题》黑体辐射谱的Wien 经验公式(1894年):考虑黑体空腔中单位体积的辐射场,令其中频率在ννν→+d 间的能量密度为dE d νεν=((1.1)这里c 1、c 2β=1/kT 间内与实验符合,但在中、低频区,特别是低频区与实验差别很大。

Rayleigh-Jeans 公式(1900,Rayleigh ;1905,Jeans ):将腔中黑体辐射场看成大量电磁波驻波振子集合,利用能量连续分布的经典观念和Maxwell - Boltzmann 分布律,导出黑体辐射谱的另一个表达式——。

若记ενενν()=N ,这里N ν是腔中辐射场单位体积内频率ν附近单位频率间隔内电磁驻波振子数目(自由度数目),它为823πνc。

下面来简单推算出它: 00:222ikx ikxx x LL e e n kL n k k L L πππ==→==→=→Δ= 于是,在单位体积辐射场中,波数在3k k d k →+v v 内的自由度数目(22k c c ππνωλ===v )为 22332233232312428882L k d k k d k d kd d c cL ππννπννππππ=⋅====⎛⎞⎜⎟⎝⎠v v v v 而εν是频率为ν的驻波振子的平均能量, 由M -B 分布律得kT d e d e ==∫∫∞−∞−00εεεεεβεβν于是得到 (1.2)这个与Wien但在高频波段不但不符合,出现黑体辐射能量密度随频率增大趋于无穷大的荒谬结果。

这就是著名的所谓“紫外灾难”,是经典物理学最早显露的困难之一。

1900年Planck 用一种崭新的观念来计算平均能量εν。

他引入了“能量子”的概念,即,假设黑体辐射空腔中振子的振动能量并不象经典理论所主张的那样和振幅平方成正比并呈连续变化,而是和振子的频率ν成正比并且只能取分立值, ......,3,2,,0νννh h h这里的正比系数h 就是后来所称的Planck 常数。

第01章 量子力学基础(定稿)

第01章  量子力学基础(定稿)

从金属表面打出电子,临阈频率只与金 光的能量则是由光的强度(振幅) 属种类有关。 决定的。
光电流增大,但不影响光电子的动能。
● 随着光强的增加,发射的电子数目增加,
● 增加光的频率,光电子的动能也随之增加。
第一章
光电子动能mv 2/2
斜率为h
纵截距为-φ
光频率ν
第一章
Einstein 首先认识到 Planck 提出的能量量子化的重 要性,他将能量量子化的概念应用于电磁辐射。 1905年,Einstein提出了光子学说,内容如下: 1 光不是看成一种波,光是一束光子流。每一种频率的光的能量都有一个最
第一章
黑体
带有一个微孔的空心的 金属球,非常接近于黑 体,进入金属小孔的辐 射,经过多次吸收、反 射,使射入的辐射完全 被吸收,当空腔受热时 ,又能发射出各种波长 的电磁波。
第一章
5 4 3 2 1 1000K 0 1 2 3 14 -1 /10 s 1500K 2000K
E: 黑体辐射的能量,
Ed: 频率在到 +d范围内、单位 时间、单位表面积上辐射的能量。
E/(10-9J/m2)
以E对作图,得到能量分布曲线。
规律:
随着温度升高,
同一频率的E增大,
极大值向高频移动。
第一章
按照经典物理学的方法,Rayleigh-Jeans 及 Wien等分别作了很多 研究工作,但都不能满意地解释黑体辐射实验的能量分布曲线。
第一章
上式解释了光电效应实验的全部结果: 当hν<W 时,光子没有足够的能量使电子逸出金属,不发生 光电效应;
当hν=W 时,光子的频率是产生光电效应的临阈频率(ν0) ;
当hν>W 时,从金属中发射的电子具有一定的动能,它随ν的 增加而增加,与光强无关。 增加光的强度可增加光束中单位体积内的光子 数,因此增加发射电子的数目。

第一章 量子力学基础-1

第一章 量子力学基础-1

第一章 量子力学基础
• 对光电效应的解释:
1 2 hν = W + Ek = hν 0 + mv 当hν< W时,光子没有 2 足够的能量使电子逸出
金属,而不能发生光电 效应。 当hν= W时,这时的频 率是产生光电效应的临 阈频率。 当hν> W时,从金属中 发射的电子具有一定的 动能,它随ν的增加而 增加,与光强无关。
电磁波:电场和磁场的振动在空间传播,不依赖 于介质,能在真空传播。
y
实物微粒波产生于所有带电或不带电物体的运 动——不是电磁波
实物微粒波——概率波。认为 空间任何一点波的强 概率波。 度和粒子出现在这一点的概率成正比。 度和粒子出现在这一点的概率成正比
第一章 量子力学基础
<注意>
• 电子的运动表现有波性,不能理解为一个电子象波那 样分布于一定的空间区域,或理解为电子在空间的振 动。只能理解为电子运动时,在空间不同区域出现的 几率是由其波动性所控制的。 • 说到电子等实物微粒具有微粒性时,也要注意到它不 同于经典的“质点”。 • 实物微粒波:本质尚待阐明。但其强度反映粒子出现 概率的大小,称为概率波。
第一章 量子力学基础
实物粒子与光子运动规律的有关计算公式的比较 h h p= p= λ p=mv λ p=mc λ λ
u λ= v
实物粒子
ν
E = hν
E
p2 E= 2m
c λ= v
光子
E = pc
ν
E = hv
E
¾ 主要差别: 光子的λ=c/ν,c既是光的传播速度,又是光子的运动速 度;实物粒子λ=u/ν,u是de Broglie波的传播速度,不等 于粒子的运动速度,可以证明v=2u 。 光子:p=mc,E=pc ≠ p2/2m;实物粒子:p=mv,E= p2/2m ≠ pv 。

第一章:量子力学基础

第一章:量子力学基础
n
ˆ p n | pn 2 n d 2 n sin x ) * ( i ) sin xdx 0 a a dx a a a 2 n n n (i ) (sin x)( )(cos x)dx 0 a a a a 2 n 1 a 2 n (i )( ) sin xdx a a 2 0 a 0 (
1. 乘法与对易 满足结合律,一般不服从交换律
ˆ ˆ ˆ AB A( B )
ˆ ˆˆ ˆˆ ˆ A( BC ) ( AB)C
ˆ ˆ ˆˆ AB BA
ˆˆ 如: xDf ( x) xf ' ( x)
ˆ xf ( x) d xf ( x) f ( x) xf ' ( x) Dˆ dx ˆˆ ˆ ˆ ˆ ˆ ˆ Dx I xD xD
*
(m n ) m | n 0
因为
13
m n
所以
m | n 0
Chapter 1 量子力学基础
1.4 算符
厄米算符的本征函数与本征值 —— 性质 III
定理(3):厄米算符本征函数构成一完备集合,任何一个
品优函数可用它展开
f Cnn
n
其中展开系数:
1.4 算符 其它力学量表示法 动能
ˆ F (r ,i) ˆ F (r , p) F
p2 2 2 ˆ T T 2m 2m
势能 V(r ) V (r ) ˆ 角动量 L r p L r (i) H Hamilton 算符
1.4 算符
厄米算符 (Hermitian Operator)
对任意品优波函数,算符满足 则 F 是厄米算符
ˆ ˆ 定理:若两个厄米算符 A 和 B 对易,即 ˆ 是厄米的 。 ˆ 则乘积算符 AB

量子力学基础

量子力学基础
若算符 Gˆ与函数Ψ(q,t)之间满足如下关系:
Gˆi (q,t) Gii (q,t)
其中Gi为常数。 将Ψ(q,t)描写的状态称为力学量的本征态,此式称 为力学量的本征方程;
Gi称为的第i个本征值; Ψ(q,t)为相应的本征函数
上一内容 下一内容 回主目录
返回
6/8/2020
1.1 基本假设----假设3
[,] 0,[ pˆ, pˆ] 0,[, pˆ] i
对易子的几个基本规则: [Fˆ , Gˆ ] [Gˆ , Fˆ ]
[Fˆ , Gˆ Hˆ ] [Fˆ , Gˆ ] [Fˆ , Hˆ ] [FˆGˆ , Hˆ ] [Fˆ , Hˆ ]Gˆ Fˆ[Gˆ , Hˆ ] [Fˆ , Gˆ Hˆ ] [Fˆ , Gˆ ]Hˆ Gˆ[Fˆ , Hˆ ]
第一章 量子力学基础
1.1 量子力学基本假设 1.2 算符 1.3 力学量同时有确定值的条件 1.4 测不准关系 1.5 Pauli原理
上一内容 下一内容 回主目录
返回
6/8/2020
1.1 基本假设—假设1
•假设1---状态函数和几率
(1)状态函数和几率
• 微观体系的任何状态可由坐标波函数Ψ(q,t)来表示。
上一内容 下一内容 回主目录
返回
6/8/2020
1.1 基本假设---假设1
简并本征态的线性组合仍是该体系的本征态,且本
征值不变;非简并本征态的线性组合也仍是该体系的可
能状态,但一般不再是本征态,而是非本征态.
a
1 2
(2s
2 px
2 py
2 pz )
a
1 2
(2s
2 px
2 py
2 pz )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LOGO
§1.1微观粒子的运动特征
❖ 三个著名实验导致“量子”概念的引入和应用 ❖ 1、黑体辐射和能量量子化
黑体——是指能够完全吸收照射在其上面各种波长的光而 无反射的物体。黑色物体或开一小孔的空心金属球近似于黑 体。黑体是理想化模型。黑体并不一定呈黑色。
黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。 进入金属球小孔的辐射,经过多次吸收、反射、使射
LOGO
3. 氢原子光谱的不连续性
元素的原子被激发时,能受激而发光,形成光源。 将它的辐射线通过狭缝或棱镜,可以分解为许多不连续 的明亮的线条,称为原子光谱。
氢原子激发后会发出光来,测其波长,得到原子光谱。
656.3
486.1 434.1 410.2
nm
H
H
H H
LOGO
在承认光的波动的同时又承认光是由具有一定能量的粒 子(光子)所组成。这样光具有波动和微粒的双重性质,就 称为光的波粒二象性。标志光的粒子性的能量和动量,和标 志波动性的光的频率和波长之间,遵循爱因斯坦关系式
相互作用
粒 子
h
p h/

传播过程
光是波性和粒性的统一体。 光在传播过程中,例如光的干涉、衍射,波性为主; 光与物质作用时,例如光电效应,光化反应,粒性为主。
LOGO
4. 1905年Einstein推广Planck量子论解释光电效应
①光的最小能量单位叫光子(光量子)ε =hv
②光电效应机理 h W 1 mv2
5. 实验验证
2
1916年密立根在实验上验证了爱因斯坦的解释,所测得的
Planck常数h与黑体辐射得到的结果相同。
瞬时作用-粒子性
时间 统计结果--- 波动性
LOGO
LOGO
环纹处,粒子出现的概 率大, 环纹愈强,概率愈大, 空白区,概率很小。 衍射图上并不能区分个别粒子 的位置,看到的是大量粒子的统计平均行为。
(3)单个电子有粒子性,到达底片得不到衍射图象,当电子 数目足够多时,底片就显示出衍射图象。所以,电子的 波性是其行为统计性的结果。
LOGO
LOGO
②频率条件
原子从一个定态跃迁到另一个定态要吸收或发射频率
为ν 的辐射,其频率条件由 (玻尔频率条件)。
E E2 E1 h决 定
③角动量量子化
对于原子各种可能存在的定态有一个限制,即电子轨 道运动的角动量必须等于( )的h整数倍。
2
根据以上假定,计算氢原子电子绕核运动的半径
度v; 它可以在真空中传播,因而不是机械波;它产生于所
有带电或不带电物体的运动,因而也不是电磁波。
实物微粒波也称为德布罗意波。光度在与真群空速中度的相相等速
实物粒子的相速度u 与群速度v不相等
LOGO
实物粒子
p h mv
E h p2
2m
u
光子
p h mc
E h pc
c
德布罗依(De Broglie)波与光波的区别: 光波的传播速度和光子的运动速度相等;德布罗依波
的传播速度为相速度u,不等于实物粒子的运动速度V。
LOGO
德布罗意波长的实验证实
1925年,戴维逊和革末第一次得到了电子在单晶体中衍射的现象(Ni 氧化, 单晶),1927年他们又精确地进行了这个实验,实验发现,从衍射数据中 求得的电子的物质波波长与从德布罗意关系式中计算出的波长一致。
旧量子论
• 依然假定微观粒子的位置和速度可以同时确定,即可以得 到微观粒子运动的轨迹
• 量子化的提出,带有明显的人为性质,没有在本质上解释 • 没有注意到大量微粒所具有的波动性特征
旧量子论很快就被量子力学所取代
LOGO
4、微观粒子的波粒二象性
法国物理学家德布罗意(de Broglie) 提出了实物微粒 也有波动性的假设-德布罗 意假设:
像这种某物理量的变化是不连续的,而以某一最小单 位作跳跃式的增减,就称这物理量的变化是“量子化”的, 这一最小单位就叫“量子”。因此,后人将Plank的假说称 为“量子说”。
LOGO
2. 光电效应 (photoelectric effect)
光电效应:光照在金属表面上,使金属发射出电子的现象。
a0=52.92pm(玻尔半径),所计算出Rydberg常数与实
验完全吻合。
玻尔于1922年获得Nobel物理奖
LOGO
Bohr理论的局限性
➢ 不能解释氢光谱的谱线强度、光谱精细结构、多电子 原子的光谱现象。
➢ 其假设的平面轨道与电子围绕原子核呈球形对称的现 象不符。
➢ 未解释原子稳定存在的原因。
H
LOGO
1885年巴尔麦(Balmer)和随后的里德堡(Rydberg) 建立 了对映氢原子光谱的可见光区14条谱线的巴尔麦公式。20世 纪初又在紫外和红外区发现了许多新的氢谱线,公式推广为:
经典物理无法解释氢原子光谱
LOGO
玻尔1913年基于Rutherford 提出的原子模型,综合
LOGO
由电子衍射实验发现:
(1) 用较强的电子流可以在短时间内得到电子衍射照片;
(2)若用很弱的电子流,让电子先后一个一个的到达底片,只要时间足 够长,也能得到同样的衍射结果。单个电子有粒子性,到达底片得 不到衍射图象,当电子数目足够多时,底片就显示出衍射图象。
1
2
3
4
爱因斯坦1921年获Nobel物理奖
密立根在1923年获Nobel物理奖
LOGO
光的波粒二象性 光的本质认识历史:
以Newton为代表的微粒说(1680年) 以Huggens为代表的波动说(1690年) Maxwell在十九世纪证明光是一种电磁波
Einstein在二十世纪初提出光具有波粒二象性
LOGO
其计算得到的E v 值与实验观察到的黑体辐射非常吻合。 由此可见,黑体辐射频率为v 的能量,其数值是不连续的, 只能是hv 的整数倍即能量量子化(quantization of energy)。
也就是说,黑体辐射是量子化的一种振动方式,只能 一份一份的能量激发,其数值是不连续的,每一份最小能 量称为量子。
Planck 1858-1947
②每个特定频率的谐振子的能量E总是某个最小能量单位0的 整数倍 E=n0,这个基本单位叫能量子;
③每个能量子的能量与谐振子的振动频率的关系为0h 基于
以上假设,就可以推导出Planck黑体辐射公式
Planck 常数:h=6.626 × 10-34 J·S
提出新的理论:能量量子化. 1918年获诺贝尔物理奖
二象性的微观粒子,它们遵循什么样的物理规律?
一个粒子不形成波,但大量粒子的衍射图揭示出粒子运动 的波性及其统计性。 几率波
微粒的波性是和微粒行为的统计性联系在一起的。
LOGO
❖ 德布罗意波的概率解释 ❖ 1926年波恩提出实物粒子波的概率解
释实物微粒在空间不同区域出现的概率 呈波动性分布。波函数所描写的是处于 相同条件下的大量粒子的一次行为或者 是一个粒子的多次重复行为,微观粒子 的波动性是与其统计性密切联系着的, 而波函数所表示的就是概率波。这与电 Max Born(1882-1970) 磁波,机械波等有根本区别。在化学中,电子在原子分子中 各点的概率密度分布叫电子云,即电子云是电子概率密度的 空间分布。 ❖ 波恩获1954年Nobel物理奖
LOGO
量子力学基础
结构化学第一章
主要内容
结构化学研究内容及量子力学实验基础 微观粒子的运动特征 量子力学基本假设
箱中粒子的Schrödinger方程及其解
LOGO
结构化学研究内容及量子力学实验基础
❖ 研究内容:电子、原子、分子和晶体的微观结构、运 动规律以及结构和性质之间关系
❖ 量子力学是结构化学的基础
从十八世纪起,物理学迅速发展、完善起来,逐步成为严谨的经 典物理学体系
牛顿(Newton)力学体系
经典物理学
麦克斯韦(Maxwell)光电磁学理论
吉布斯-玻耳兹曼(Gibbs-Boltzmann)统计力学
LOGO
❖ 经典物理学理论,①质量恒定,不随速度改变;②物体的 能量是连续变化;③物体有确定的运动轨道;④光现象只 是一种波动。
Planck和Einstein的量子论,提出了关于原子结构的模型 ①经典轨道加定态条件 氢原子中的电子绕原子核作圆周轨道运动,在一定轨道运 动的电子具有一定的能量,电子若不发生跃迁,总是处于 定态,处于定态时的原子不产生辐射,根据核对电子的静 电引力与电子在轨道上运动的离心效应的平衡,可以求出 允许的定态。
Wien(维恩)曲线 Rayleigh-
Jeans (瑞利- 金)曲线
实验曲线
波长
黑体辐射能量分布曲线
LOGO
黑体辐射和能量量子化
后来,1900年普朗克(Planck) 提出的能量量子化公式:
Ev
2h
c2
3

h
e
kt
11
能量量子化假设
①黑体是由不同频率的谐振子组成 ;
所有的实物微粒中。
LOGO


h p

h
m
h
:德布罗意波的波长;
p:粒子的动量; h:Planck常数;
:为粒子能量;
v:物质波频率。
de Broglie关系式。形式上与Einstein关系式相同,但
却是一个新的假设。 De Broglie波的传播速度为相速度u, 不等于粒子运动速
1. 光电效应(Hertz 1887年) 2. 实验现象 ①发射出的电子的动能与光的强度无关; ②只有当光的频率超过临阈值时,电子才会 发射,并且即使光线很弱,仍然立刻就会发 射电子; ③当入射光的频率超过阈值时,发射电子的 动能与光的频率呈线性关系,与光的强度 无关,光的强度只影响光电子的数量。 3. 经典电磁理论无法解释
相关文档
最新文档