聚合物基复合材料的界面研究进展

聚合物基复合材料的界面研究进展
聚合物基复合材料的界面研究进展

深圳大学研究生课程论文

题目聚合物基复合材料的界面研究进展成绩

专业材料工程

课程名称、代码1512011080405

年级

姓名学号

时间年月

任课教师

聚合物基复合材料的界面研究进展

【摘要】界面的好坏是直接影响复合材料性能的关键因素之一。当复合材料受到外力作用时,除增强材料和基体受力外,界面亦起着极其重要的作用。本文主要综述无机刚性粒子增强复合材料、无机纳米粒子增强复合材料、纤维增强复合材料、原位复合材料的界面特性及其改性方法,并简要介绍了各种复合材料的增强机理,界面相容性。

【关键词】聚合物;复合材料;综述;增强

1 前言

界面是复合材料极为重要的微观结构,它作为增强体与基体连接的“桥梁”,对复合材料的物理机械性能有至关重要的影响。复合材料一般是由增强相、基体相和它们的中间相(界面相)组成,它们各自都有其独特的结构、性能与作用,增强相主要起承载作用,基体相主要起连接增强相和传载作用,界面是增强相和基体相连接的桥梁,同时是应力的传递者[1]。目前对增强相和基体相的研究已取得了许多成果,但对作为复合材料三大微观结构之一的界面问题的研究却不够深入,其原因是测试界面的精细方法运用起来较困难,描述的理论尚不完整,尤其从力学的角度研究界面的性质、作用及其对复合材料力学性能的影响和破坏机理等方面的工作正在开展。界面的性质直接影响着复合材料的各项力学性能[2],尤其是层间剪切、断裂、抗冲击等性能,因此随着复合材料科学和应用的发展,复合材料界面及其力学行为将越来越受到重视。

复合材料的强度、刚性及韧性是代表其物理机械性能的重要指标,对复合材料进行界面改性使两相界面具有合适的粘附力,形成一个相互作用匹配且能顺利传递应力的中间模量层,以提高聚合物基复合材料的力学性能一直是高分子材料科学的重要研究领域[3]。

2 无机刚性粒子增强聚合物基复合材料及其界面

无机刚性粒子增强聚合物是近年来研究的热点,它克服了以往用弹性体、热塑性树脂增韧聚合物时在韧性提高的同时刚性下降的缺点。常用的无机刚性粒子[4]有CaCO3、SiC、BaSO4、滑石、硅石灰、蒙脱土以及煤灰等。欧玉春[5]等提出刚性粒子增强增韧聚合物的界面结构模型,即在均匀分散的刚性粒子周围嵌入具有良好界面结合和一定厚度的柔性界面相,以便在材料经受破坏时能引发银纹,终止裂缝的扩展。在一定形态结构下它还可引发基体剪切屈服,从而消耗大量冲击能,又能较好地传递所承受的外应力,达到既增强又增韧的目的。

在PP/CaCO3复合体系中用酯酸类偶联剂在刚性粒子表面引入柔性或弹性界面层,降低了添加刚性粒子所引起的材料韧性下降的程度;同时由于界面层的引入,使三相复合体系在较低的橡胶含量下具有较高的模量和冲击强度。欧玉春[6]等报道了PP/三元乙丙橡胶(EPDM)/

滑石粉三相复合体系,在无机填料表面形成的弹性界面相可使三相复合材料同时具有高韧性和高模量的特点。金士九[7]等用乳液聚合的方法将具有不同交联程度和带环氧官能团的刚性粒子作为环氧树脂的增韧改性剂掺到环氧树脂中,研究其界面层结构对增韧的影响,发现刚性粒子与聚合物树脂基体之间发生不同程度的分子互穿,刚性粒子表面带环氧官能团后,与基体材料形成化学键合的界面层结构,从而改善材料的力学性能。

刚性粒子的加入对聚合物基体的结晶行为产生影响,使晶粒尺寸变小,完善程度降低,甚至在界面附近形成择优取向的滑移阻力较小的结晶层,从而促进基体发生屈服变形,利于材料韧性的提高。欧玉春等[8]研究PP/高岭土(Kaolin)/短波纤维(GF)复合体系及其界面结晶性。通过DSC非等温结晶数据分析指出,加入Kaolin粒子和GF后发生异相成核作用,促使PP球晶尺寸变小,使材料韧性提高。

张云灿[9]等研究了HDPE/CaCO3填充体系界面应力的诱导结晶效应,研究了材料缺口冲击强度、产生脆韧转变现象与其基体中晶态结构间的变化关系。HDPE/CaCO3颗粒间界面应力的应变诱导结晶作用引起了材料基体晶态结构、织态结构的显著变化,而对其材料缺口冲击强度和基体结晶度带来了重要影响。在此较为强烈的诱导作用条件下,各CaCO3颗粒周围的伸展链晶体层将相互联系,并贯穿于基体之中,在整个复合材料基体中形成了一相互联系的、较为致密的伸展链晶体的网络结构。CaCO3含量大于20%以后和CaCO3颗粒直径较小时,材料缺口冲击强度和基体结晶度显著增大,材料由脆性至韧性断裂转变。

陈建康[10]等还用微观力学和统计方法研究了含损伤过程的刚性粒子填充高聚物的非线性本构关系,发现材料的变形过程中,刚性粒子与聚合物基体间界面的开裂引发微孔洞的成核与长大,虽然弱化了材料的宏观力学性能,但是带来了宏观本构的非线性效应,为材料的增韧奠定了基础。他分析了刚性粒子对材料的强化作用和微孔洞演化对材料的弱化作用,以及这两种竞争机制的耦合效应对宏观本构关系的影响,从理论上给出了界面强度,粒径分散度,平均粒径等参量对材料宏观力学行为影响的定量分析结果。

3 无机纳米粒子聚合物基增强复合材料及其界面

由于纳米材料的尺寸效应、大的比表面积,高度的活化状态,纳米材料与聚合物之间有强的界面作用,从而可增强增韧聚合物[11]。常用的无机纳米刚性粒子有SiO2、TiO2等。

容敏智[12]等研究了聚苯乙烯辐射接枝纳米SiO2粒子增强PP体系,从复合材料的界面效应等角度研究纳米粒子与聚合物之间发生的协同作用,并对复合材料的力学行为进行了分析解释。吴春蕾[13]等分别用苯乙烯和丙烯酸乙酯对纳米SiO2进行辐照接枝聚合改性,通过两步熔融共混工艺与PP共混制备了SiO2/PP复合材料,接枝改性的SiO2对PP有较好的增强增韧效果,经辐照接枝聚合改性的纳米粒子团聚体的结构变得更加紧凑、结实,且随粒子表面聚合物的性质不同,团聚体与基体树脂的界面粘结都得到不同程度的改善。

4纤维增强聚合物基复合材料及其界面

用于增强聚合物的纤维主要有合成纤维和天然纤维。天然纤维的界面改性方法主要有界

面偶合和表面处理。用羟甲基三聚氰胺对纤维素处理,可降低纤维素的吸水性和增加纤维素的湿态强度,环氧基硅烷和氨酯基硅烷可改善相界面的亲水性[14]。如聚合物的骨架带有氨基时,骨架上过量的氨基与界面上的环氧基硅烷或氨酯基硅烷反应偶联,而未反应氨基又起到疏水作用,从而克服了纤维的不耐水性并改善了纤维与聚合物骨架的粘合性[15]。

Singh[16]等用N-甲基丙烯酰胺、硅烷、锆酸盐和钛酸酯等偶联剂处理剑麻纤维研究剑麻/不饱和聚酯的性能变化。由于偶联剂在纤维表面通过氢键和烷氧基与纤维形成结合紧密的界面层,提高了纤维的憎水性,增强纤维与基体的相容性,同时减少了纤维间的接触,降低了复合材料的应力集中,使所得复合材料的力学性能的提高。许瑞[17]等针对亚麻线型低密度聚乙烯(LLDPE)复合材料,研究γ-氨丙基三乙氧基硅烷(KH-550)、γ-缩水甘油醚氧丙基三甲氧基硅烷(KH-560)、γ-(甲基丙烯酰氧基)丙基三甲氧基硅烷(KH-570)及乙烯基三乙氧基硅烷(A-151)偶联剂对亚麻织物及其复合材料结构性能的影响,发现亚麻经偶联剂预处理后吸湿率降低,热稳定性提高,结晶度和晶面间距下降,复合材料的力学性能有明显提高。杨桂成[18]等指出在短剑麻纤维/酚醛树脂复合体系中,剑麻纤维经KH-550偶联剂处理后能有效改善刚性的剑麻纤维与脆性的酚醛树脂基体界的粘结,提高复合材料的综合力学性能。Sanadi[19]等研究了剑麻/不饱和聚酯的力学性能,发现材料的拉伸强度、弹性模量及冲击强度与纤维体积含量,在含量<40%的范围内呈线形增加关系。

5 液晶原位复合材料及其界面

液晶高分子原位复合材料是指主链型热致液晶聚合物(TLCP)与热塑性聚合物(TP)的共混物经熔融后在挤出或注射成型时,体系中的分散相TLCP在合适的应力作用下取向形成微纤结构,并被有效地冻结或保存在TP四基体中,从而形成的一种自增强的微观复合材料[20]。TLCP微纤长径比可高达400,甚至更高[21]。

液晶聚合物在熔融加工过程中,刚性棒状分子容易沿受力方向取向形成足够长径比的微纤,这些微纤的直径小、比表面积大,可均匀地包络在基体中,形成增强骨架,类似于玻璃钢中的玻璃纤维,起承受应力和分散应力的作用。宏观纤维与树脂基体混合不均匀,而且相容性差、易分层、存在界面缺陷,而原位复合对基体的增强效果大大优于宏观纤维。另一方面,微纤可以是结晶聚合物的成核剂,诱发基体聚合物在微纤表面成核、生长、最后形成横穿晶,有利于界面应力的分散、传递,还可提高共混体系的整体强度[22]。TLCP与TP通常是不相容的。它们组成的两相之间粘结差,不能将所受到的载荷有效地从基体传递给TLCP 微纤,因而容易使共混物内部造成缺陷,界面易剥离,材料的强度下降[23]。

Bastida[24]等将一种既能与聚醚酰亚胺(PEI)相容,又能同TLCP产生相互作用的聚芳香酯加入到PEI共混物中,研究发现加入聚芳香酯能明显降低体系的界面张力,提高两相间的相容性及界面粘合力。

张传吉[25]等以对羟基苯甲酸(HBA)、4,4’-联苯二酚(HB)、1,3-二溴丙烷(DP)、对苯二甲酸(TA)为共聚物单体,玻纤为增强共聚组分,采用原位熔融缩聚的方法合成出全芳香族液晶

共聚酯/玻纤原位复合材料。研究结果表明,合成所得的复合材料呈现明显的向列性热致液晶的特性,玻纤的加入增强了复合材料的强度。

6 结语

随着理论与实践的进展,复合材料正由宏观增强向微观增强发展。复合材料的界面研究日益受到人们的关注。如果能够适当的处理好界面的微观粘结关系,并降低其成本,复合材料必将广泛地被应用于各行各业中。

参考文献

[1] Haw. Composites on a molecular level phase relationships, processing and properties [J]. Macromolecule, 1998,

B22(2): 231-257.

[2] 杨俊, 蔡力锋, 林志勇. 增强树脂用玻璃纤维的表面处理方法及其对界面的影响[J].塑料, 2004(01).

[3] MokaddemAllel, Alami Mohamed, Ziani N, et al .Optimization of the Gap Between Fibers for Estimating the

Damage to the Fiber Matrix Interface of a Composite Material by a Genetic Algorithm [J]. International Review of Physics, 2012, 6( 2), p196.

[4] Long-Cheng Tang, Hui Zhang, Stephan Sprenger, et al. Fracture mechanisms of epoxy-based ternary

composites filled with rigid-soft particles [J]. Composites Science and Technology. 2012, 72, (5) :558-565.

[5] 欧玉春. 刚性粒子填充聚合物的增强增韧与界面相结构[J]. 高分子材料科学与工程, 1998(02).

[6] 欧玉春, 方晓萍, 冯宇鹏. 高性能无机粒子填充聚丙烯/三元乙丙橡胶复合材料[J].高分子学报,

1996(05).

[7] 金士九, 冯小兵. 刚性粒子在环氧树脂中的增韧行为研究[J]. 高技术通讯, (07).

[8] 欧玉春, 方晓萍, 冯宇鹏. 聚丙烯混杂复合体系的界面和力学性能[J]. 高分子学报,1997(01).

[9] 张云灿, 潘恩黎, 许慎, 等. CaCO3刚性粒子增韧HDPE的脆韧转变研究[J]. 高分子材料科学与工程,

1998, 14(6)

[10] 陈建康, 黄筑平. 刚性微粒填充高聚物的宏观本构关系[J].高分子学报, 1998, (6):714-719.

[11] Hong-Yuan Liu, Gong-Tao Wang, Yiu-Wing Mai, et al. On fracture toughness of nano-particle modified

epoxy [J]. Composites Part B: Engineering, 2011,42(8):2170-2175.

[12] 容敏智, 章明秋. 纳米SiO2增韧增强聚丙烯的界面效应与逾渗行为[J].复合材料学报, 2002, (2):1-4.

[13] 吴春蕾, 章明秋. 纳米SiO2表面接枝聚合改性及其聚丙烯基复合材料的力学性能[J]. 复合材料学报,

2002, (12): 61-67.

[14] C. E. Bakis, L. C. Bank, F.ASCE, et al. Fiber-Reinforced Polymer Composites for

Construction—State-of-the-Art Review [J] . Journal of Composites for Construction, 2002 (73).

[15] Laura De Lorenzis, RalejsTepfers. Comparative Study of Models on Confinement of Concrete Cylinders with

Fiber-Reinforced Polymer Composites [J]. Journal of Composites for Construction, 2003, 7(3):219-237. [16] Singh B, Gupta M, Verma A. Influence of fibresufface treatment on the properties of sisal-polyester

composites [J]. Polymer Composites, 1996, 17(10):910-918.

[17] 许瑞. 亚麻/LLDPE复合材料力学性能的研究[J]. 复合材料学报, 2002, (10):14-21.

[18] 杨桂成, 曾汉民. 剑麻纤维/酚醛树脂复合材料研究[J]. 玻璃钢/复合材料, 1997, (3):12-14.

[19] Sanadi A R, Prasad S V, Rohatgi P K. Sun hemp fibre reinforced polyester PartI: Analysis of tensile and

impact properties [J]. Journal of Materials Science, 1986, 21(19):4299-4304.

[20] 王宏刚, 简令奇, 杨生荣. 液晶高分子及其原位复合材料研究进展[J]. 高分子材料科学与工程, 2003;

19( 5): 10-14.

[21] 熊传溪, 闻荻江. 高分子原位复合材料的研究进展[J].材料开发与应用, 1999, 14( 1): 35-38.

[22] 袁海根, 曾金芳, 杨杰. 液晶聚合物分子复合材料研究进展[J].2006(1).

[23] 高小玲, 晏雄. 自增强聚合物复合材料研究进展[J]. 玻璃钢/复合材料, 2001, (6): 50- 53.

[24] Bastida S, Eguiazabal J I, Nazabal J. Compatibilization of poly(ether imide)/Rodrun blends by means of a

polyarylate [J]. Polymer, 2001, 42(3):1157-1163.

[25] 张传吉, 黄志雄, 石敏先. 全芳热致性液晶高分子/玻纤原位复合材料的合成与表征[J]. 液晶与显示,

2010, 25(3).

复合材料的界面改性

界面及界面改性方法 界面结合强度低,则增强纤维与基体很容易分离,在材料的断面可观察到脱粘、纤维拔出、纤维应力松弛等现象,起不到增强作用;但界面结合强度太高,则增强纤维与基体之间应力无法松弛,形成脆性断裂。 在研究和设计界面时,不应只追求界面粘结而应考虑到最优化和最佳综合性能。 1、聚合物基复合材料界面 界面结合有机械粘接与润湿吸附、化学键结合等。 大多数界面为物理粘结,结合强度较低,结合力主要来自如色散力、偶极力、氢键等物理粘结力。 偶联剂与纤维的结合(化学反应或氢键)也不稳定,可能被环境(水、化学介质等)破坏。一般在较低温度下使用,其界面可保持相对稳定。增强剂本身一般不与基体材料反应。 聚合物基复合材料界面改性原则: 1)在聚合物基复合材料的设计中,首先应考虑如何改善增强材料与基体间的浸润性。一般可采取延长浸渍时间,增大体系压力、降低熔体粘度以及改变增强体织物结构等措施。2)适度的界面结合强度 3)减少复合材料中产生的残余应力 4)调节界面内应力和减缓应力集中 聚合物基体复合材料改性方法 1、颗粒增强体在热塑性聚合物基体加入两性相溶剂(增容剂),则能使液晶微纤与基体间形成结合良好的界面 2、纤维增强体复合材料界面改善 a)纤维表面偶联剂 b)涂覆界面层 c)增强体表面改性 2、金属基复合材料界面 金属基体在高温下容易与增强体发生不同程度的界面反应,金属基体多为合金材料,在冷却凝固热处理过程中还会发生元素偏聚、扩散、固溶、相变等。 金属基复合材料界面结合方式有化学结合、物理结合、扩散结合、机械结合。总的来讲,金属基体复合材料界面以化学结合为主,有时也会出现几种界面结合方式共存。 金属基体复合材料的界面有3种类型:第一类界面平整、组分纯净,无中间相。第二类界面不平直,由原始组分构成的凸凹的溶解扩散型界面。第三类界面中含有尺寸在亚微米级的界面反应物。多数金属基复合材料在制备过程中发生不同程度的界面反应。 金属基复合材料的界面控制研究方法: 1)对增强材料进行表面涂层处理在增强材料组元上预先涂层以改善增强材料与基体的浸润性,同时涂层还应起到防止发生反应的阻挡层作用。 2)选择金属元素改变基体的合金成分,造成某一元素在界面上富集形成阻挡层来控制界面反应。尽量避免选择易参与界面反应生成脆硬界面相、造成强界面结合的合金元素 3)优化制备工艺和参数金属基体复合材料界面反应程度主要取决于制备方法和工艺参数,因此优化制备工艺和严格控制工艺参数是优化界面结构和控制界面反应的有效途径。 3、陶瓷基复合材料的界面 陶瓷基体复合材料指基体为陶瓷材料的复合材料。增强体包括金属和陶瓷材料。界面结合方式与金属基体复合材料基本相同,有化学结合、物理结合、机械结合和扩散结合,其中以化学结合为主,有时几种结合方式同时存在。 陶瓷基体复合材料界面控制方法

复合材料期末考试复习题(汇编)

1.复合材料的分类方法? 复合材料的分类方法也很多。常见的有以下几种。 按基体材料类型分类聚合物基复合材料以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体制成的复合材料。 金属复合材料以金属为基体制成的复合材料,如铝墓复合材料、铁基复合材料等。 无机非金属基复合材料以陶瓷材料(也包括玻璃和水泥)为基体制成的复合材料。 按增强材料种类分类 玻璃纤维复合材料。 碳纤维复合材料。 有机纤维(芳香族聚酰胺纤维、芳香族聚酯纤维、高强度聚烯烃纤维等)复合材料。 金属纤维(如钨丝、不锈钢丝等)复合材料。 陶瓷纤维(如氧化铝纤维、碳化硅纤维、翩纤维等)复合材料。 此外,如果用两种或两种以上的纤维增强同一基体制成的复合材料称为“混杂复合材料”。混杂复合材料可以看对免戈趁两种或多种单一纤维复合材料的相互复合,即复合材料的“复合材料”。 按增强材料形态分类 连续纤维复合材料作为分散相的纤维,每根纤维的两个端点都位于复合材料的边界处。 短纤维复合材料短纤维无规则地分散在基体材料中制成的复合材料。 粒状填料复合材料微小颗粒状增强材料分散在基体中制成的复合材料。 编织复合材料以平面二维或立体三维纤维编织物为增强材料与基体复合而成的复合材料。 按用途分类 复合材料按用途可分为结构复合材料和功能复合材料。 2.举例说明复合材料在现代工业中的应用? <1>建筑工业中,复合材料广泛应用于各种轻型结构房屋,建筑装饰、卫生洁具、冷却塔、储水箱、门窗及其门窗构件、落水系统和地面等。 <2>化学工业中,复合材料主要应用于防腐蚀管、罐、泵、阀等。 <3>交通运输方面,如汽车制造业中,复合材料主要应用于各种车身结构件、引擎罩、仪表盘、车门、底板、座椅等;在铁路运输中用于客车车厢、车门窗、水箱、卫生间、冷藏车、储藏车、集装箱、逃生平台等。

聚合物基复合材料试题

第一章 聚合物合金的概念、合金化技术的特点? 聚合物合金:有两种以上不同的高分子链存在的多组分聚合物体系 合金化技术的特点:1、开发费用低,周期短,易于实现工业化生产。2、易于制得综合性能优良的聚合物材料。3、有利于产品的多品种化和系列化。 热力学相容性和工艺相容性的概念? 热力学相容性:达到分子程度混合的均相共混物,满足热力学相容条件的体系。 工艺相容性:使用过程中不会发生剥离现象具有一定程度相容的共混体系。 如何从热力学角度判断聚合物合金的相容性? 1、共混体系的混合自由能(ΔG M )满足ΔG M =ΔH M -TΔS M <0 2、聚合物间的相互作用参数χ 12 为负值或者小的正值。 3、聚合物分子量越小,且两种聚合物分子量相近。 4、两种聚合物的热膨胀系数相近。 5、两种聚合物的溶度参数相近。 *思考如何从改变聚合物分子链结构入手,改变聚合物间的相容性? 1、通过共聚使分子链引入极性基团。 2、对聚合物分子链化学改性。 3、通过共聚使分子链引入特殊相互作用基团。 4、形成IPN或交联结构。 5、改变分子量。 第二章 *列举影响聚合物合金相态结构连续性的因素,并说明分别是如何影响的? 组分比:含量高的组分易形成连续相; 黏度比:黏度低的组分流动性较好,容易形成连续相; 内聚能密度:内聚能密度大的聚合物,在共混物中不易分散,容易形成分散相;溶剂类型:连续相组分会随溶剂的品种而改变; 聚合工艺:首先合成的聚合物倾向于形成连续性程度大的相。 说明聚合物合金的相容性对形态结构有何影响?

共混体系中聚合物间的工艺相容性越好,它们的分子链越容易相互扩散而达到均匀的混合,两相间的过渡区越宽,相界面越模糊,分散相微区尺寸越小。完全相容的体系,相界面消失,微区也随之消失而成为均相体系。两种聚合物间完全不相容的体系,聚合物之间相互扩散的倾向很小,相界面和明显,界面黏接力很差,甚至发生宏观的分层剥离现象。 什么是嵌段共聚物的微相分离?如何控制嵌段共聚物的微相分离结构? 微相分离:由化学键相连接的不同链段间的相分离 控制溶剂、场诱导、特殊基底控制、嵌段分子量来控制 *简述聚合物合金界面层的特性及其在合金中所起的作用。 特性:1、两种分子链的分布是不均匀的,从相区到界面形成一浓度梯度;2、分子链比各自相区内排列松散,因而密度稍低于两相聚合的平均密度;3、界面层内易聚集更多的表面活性剂、其他添加剂、分子量较低的聚合物分子。 作用:力的传递效应;光学效应;诱导效应。 第三章 简述橡胶增韧塑料的形变机理及形变特点。 形变机理:银纹化和剪切带形变 特点:1、橡胶的存在有利于发生屈服形变;2、力学性能受形变机理影响 简述橡胶增韧塑料形变机理的研究方法及影响形变机理的因素。 定量研究:高精度的蠕变仪同时测定试样在张应力作用下的纵向和横向形变 影响因素:树脂基体;应力和应变速率;温度;橡胶含量;拉伸取向 简述橡胶增韧塑料的增韧机理,并列举实例加以说明。 多重银纹化增韧理论:在橡胶增韧的塑料中,由于橡胶粒子的存在,应力场不再是均匀的,橡胶粒子起着应力集中的作用。(脆性玻璃态高聚物受外力作用发生银纹形变时材料韧性很差) 银纹-剪切带增韧机理:银纹和剪切到之间存在着相互作用和协同作用。(ABS 拉伸过程中既有发白现象,又有细颈形成) 试比较橡胶增韧塑料和刚性粒子工程塑料的异同点。 1、增韧剂种类不同; 2、增韧的对象不同; 3、增韧剂含量对增韧效果的影响不同; 4、改善聚合物合金性能的效果不同; 5、增韧机理不同; 6、对两相界面黏结强度的要求是相同 第四章

聚合物基复合材料复习要点 增强材料

聚合物基复合材料 高分子专业考试复习资料 现已完结,另有小抄版本稍后更新 第二章增强材料 2.2玻璃纤维 2.21分类 (1)根据化学组成(含碱量)分为:1%以下的无碱纤维,2%-6%的低碱纤维,10%-16%的有碱纤维。 (2)根据外观形状分为:长纤维、短纤维、空心纤维、卷曲纤维。 (3)根据纤维特性分为:高强度(S)、高模量(M)、耐高温、耐碱(G)、普通纤维。 2.2.1成分与作用:氧化硅SiO2:物质基础、骨架 氧化铝Al2O3 :降析晶和膨胀系数,提高稳定性和强度 氧化钙氧化镁:降低高温时粘度,促进熔化、澄清、提高拉丝速度 氧化硼B2O3 氧化铁Fe2O3 碱金属;助熔,提高流动性 2.2.2玻璃纤维物理化学性能: 物理性能:直径5~20微米,密度2.4~2.7 g/cm3;力学性能影响因素(P11);耐热性高,绝缘性取决于组成、温度和湿度 化学性能:直径越小,稳定性越低;碱金属氧化物含量越高,稳定性越低 2.2.3玻璃纤维及制品的生产工艺:(1)坩埚法(2)池窑法 2.2. 3.1池窑法:多种原材料按不同比例混合均匀送入池窑熔化成玻璃液,玻璃液经过澄清,降温后流入支路上的铂铑合金漏板。漏板上布满了100~4000个的小孔,玻璃被拉丝机从这些小孔中拉出,即成玻璃纤维。 池窑法的优点:省去制球工艺,简化工艺流程,效率高;池窑容量大,生产能力高;对窑温、液压、压力、流量和漏板温度可实现自动化集中控制,所得产品质量稳定;适用于采用多孔大漏板生产粗玻璃;废产品易于回炉。 2.3芳纶纤维:芳香族聚酰胺树脂纺成的纤维 分类:全芳族聚酰胺纤维;杂芳族聚酰胺纤维 2.3.1芳纶纤维的制备: 2.3.2芳纶纤维的结构与性能 结构:线型刚性伸直链,分子间氢键,高度结晶,超分子结构 性能:优异的拉伸强度、拉伸模量,低密度,优良的减震性能,耐磨性、耐冲击性、抗疲劳性、尺寸稳定性,良好的耐化学腐蚀性,低膨胀、低导热、不燃、不熔以及优良的介电性能。 2.4碳纤维 2.4.1分类:聚丙烯腈基碳纤维;沥青基碳纤维;纤维素基碳纤维;酚醛基碳纤维;其它有机纤维基碳纤维 2.4.2国产碳纤维存在的主要问题:1)原丝质量与国外比还存在差距。2)大部分国产碳纤维未经过表面处理,制成复合材料层间剪切强度偏低。3)尚未形成经济规模,价格太贵,成本组成不合理。4)品种单一、规格单一,碳纤维来源大部分依赖于进口。 2.4.3碳纤维的制造方法:基本步骤:1)纤维化,聚合物熔化或溶解后制成纤维;2)稳定(氧化或热固化),200~450o C空气中进行;3)碳化,1000~2000o C惰性气体保护,含碳量85~99%;4)石墨化,2500o C以上氩气保护,含碳量99%以上 2.4.4原丝的制备:a.聚合 加入共聚单体的目的:①使原丝予氧化时既能加速大分子的环化,又能缓和纤维化学反应的激烈程度,使反应易于控制;②并可大大提高预氧化及碳化的速度;③有利于预氧化过程的牵伸。共聚单体的种类:在众多的共聚单体中,不饱和羧酸类:如甲基丙烯酸、丙烯酸、丁烯酸、顺丁烯二酸、甲基反丁烯酸等占有重要位置。

聚合物基复合材料

聚合物基复合材料 摘要:聚合物基复合材料以其特有的性能近年来越来越受到人们的青睐。本文简单的介绍了聚合物基复合材料,描述了其作为一种新材料的性能特点,并详细描述了其发展历史及应用。 关键词:聚合物、复合材料、应用、历史 1、聚合物基复合材料 复合材料是指:两个或两个以上独立的物理相,包括粘接材料(基体)和粒料纤维或片状材料所组成的一种固体物。 (1) 复合材料的组分材料虽然保持其相对独立性,但复合材料的性能却不是各组分材料性能的简单加和,而是有着重要的改进。(2)复合材料中通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。(3)分散相是以独立的形态分布在整个连续相中,两相之间存在着界面。分散相可以是增强纤维,也可以是颗粒状或弥散的填料。 聚合物基复合材料(PMC)是以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合,各种材料在性能上互相取长补短,产生协同效应,材料的综合性能优于原组成材料而满足各种不同的要求,充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。通常意义上的聚合物基复合材料一般就是指纤维增强塑料。 而聚合物基复合材料一般都具有以下特性: 1. 比强度、比模量大。比强度和比模量是度量材料承载能力的一个指标,比强度越高,同一零件的自重越小;比模量越高,零件的刚性越大。复合材料的比强度和比模量都比较大,例如碳纤维和环氧树脂组成的复合材料,其比强度是钢的

复合材料试题B卷及答案

2014学年度第 一 学期课程考试 《复合材料》本科 试卷(B 卷) 注意事项:1、 本试卷共 六 大题,满分100分,考试时间90分钟,闭卷; 2、 考前请将密封线内各项信息填写清楚; 3、 所有答案必须写在试卷上,做在草稿纸上无效; 4.考试结束,试卷、草稿纸一并交回。 一、 选择 题分,(30每题2分) 【得分: 】 1、复合材料中的“碳钢”就是( ) A 、玻璃纤维增强Al 基复合材料。 B 、玻璃纤维增强塑料。 C 、碳纤维增强塑料。 D 、氧化铝纤维增强塑料。 2、材料的比模量与比强度越高( ) A 、制作同一零件时自重越小、刚度越大。 B 、制作同一零件时自重越大、刚度越大。 C 、制作同一零件时自重越小、刚度越小。 D 、制作同一零件时自重越大、刚度越小。 3、在体积含量相同情况下,纳米颗粒与普通颗粒增强塑料复合材料( ) A 、前者成本低 B 、前者的拉伸强度好 C 、前者原料来源广泛 D 、前者加工更容易 4、Kevlar 纤维( ) A 、由干喷湿纺法制成。 B 、轴向强度较径向强度低。 C 、强度性能可保持到1000℃以上。 D 、由化学沉积方法制成。 5、碳纤维( ) A 、由化学沉积方法制成。 B 、轴向强度较径向强度低。 C 、强度性能可保持到3000℃以上。 D 、由先纺丝后碳化工艺制成。 6、聚丙烯增强塑料的使用温度一般在:( ) A 、120℃以下 B 、180℃以下 C 、250℃以下 D 、250℃以上 7、碳纤维增强环氧复合材料力学性能受吸湿影响,原因之一就是( ) A 、环氧树脂吸湿变脆。 B 、水起增塑剂作用,降低树脂玻璃化温度。

聚合物基复合材料制备方法

摘自课本《聚合物基复合材料》,针对的是聚合物基纳米复合材料的制备方法。 1、溶胶-凝胶法 溶胶-凝胶法是最早用来制备纳米复合材料的方法之一。所谓的溶胶-凝胶工艺过程是将前驱物在一定的有机溶剂中形成均质溶液,均质溶液中的溶质水解形成纳米级粒子并成为溶胶,然后经溶剂挥发或加热等处理使溶胶转化为凝胶。溶胶-凝胶中通常用酸、碱和中性盐来催化前驱物水解和缩合,因其水解和缩合条件温和,因此在制备上显得特别方便。根据聚合物与无机组分的相互作用情况,可将其分为以下几类: (1)直接将可溶性聚合物嵌入到无机网络中把前驱物溶解在形行成的聚合物溶液中,在酸、碱或中性盐的催化作用下,让前驱化合物水解,形成半互穿网络。(2)嵌入的聚合物与无机网络有共价键作用在聚合物侧基或主链末端引入能与无机组分形成共价键的基团,就可赋予其具有可与无机组分进行共价交联的优点,可明显增加产品的弹性模量和极限强度。在良好溶解的情况下,极性聚合物也可与无机物形成较强的物理作用,如氢键。 (3)有机-无机互穿网络在溶胶-凝胶体系中加入交联单体,使交联聚合和前驱物的水解与缩合同步进行,就可形成有机-无机同步互穿网络。用此方法,聚合物具有交联结构,可减少凝胶的收缩,具有较大的均匀性和较小的微区尺寸,一些完全不溶的聚合物可以原位生成均匀地嵌入到无机网络中。 溶胶-凝胶法的特点是可在温和条件下进行,可使两相分散均匀,通过控制前驱物的水解-缩合来调节溶胶-凝胶化过程,从而在反应早期就能控制材料的表面与界面性能,产生结构极其精细的第二相。存在的问题是在凝胶干燥过程中,由于溶剂、小分子、水的挥发可能导致材料内部产生收缩应力,从而会影响材料的力学和机械性能。另外,该法所选聚合物必须是溶解于所用溶剂中的,因而这种方法受到一定限制。 2、层间插入法 层间插入法是利用层状无机物(如粘土、云母等层状金属盐类)的膨胀性、吸附性和离子交换功能,使之作为无机主体,将聚合物(或单体)作为客体插入于无机相的层间,制得聚合物基有机-无机纳米复合材料。层状无机物是一维方向上的纳米材料,其粒子不易团聚且易分散,其层间距离及每层厚度都在纳米尺度范

聚合物基复合材料复习3

1.聚合物基复合材料(PMC)的组成 (1) 基体 热固性基体(thermosetting matrix): i) 熔体或溶液粘度低,易于浸渍与浸润,成型工艺性好 ii) 交联固化后成网状结构,尺寸稳定性好耐热性好,但性脆 iii) 制备过程伴有复杂化学反应 热塑性基体(thermoplastic matrix): i) 熔体粘度大,浸渍与浸润困难,需较高温度和压力下成型,工艺性差 ii) 线性分子结构,抗蠕变和尺寸稳定性差,但韧性好 iii) 制备过程中伴有聚集态结构转变及取向、结晶等物理现象 (2) 增强体 主要有碳纤、玻璃纤维、芳纶纤维、硼纤维等 由于树脂基体与增强体相容性、浸润性较差,增强体多经过表面处理与表面改性,以及浸润剂、偶联剂和涂复层的使用,使其组成复杂化。 2.复合材料的结构(structure of composites) ①无规分散(弥散)增强结构(含颗粒、晶须、 短纤维)(randomly oriented) ②连续长纤维单向增强结构(单向板)(aligned) ③层合(板)结构(二维织布或连续纤维铺层,每层 不同) ④三维编织体增强结构 ⑤夹层结构(sandwich structure) ⑥混杂结构(hybrid structure) 3.复合材料的界面 1)界面现象:①表面吸附作用与浸润 ②扩散与粘结(含界面互穿网络结构) ③界面上分子间相互作用力(范氏力和化学键合力) 2). 复合材料的界面形成过程 PMC、MMC、CMC等复合材料体系对界面要求各不相同,它们的成型加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为三个阶段。(1)第一阶段:增强体表面预处理或改性阶段。 i) 界面设计与控制的重要手段 ii) 改性层成为最终界面层的重要组成部分 iii) 为第二阶段作准备 (2)第二阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程 i) 接触—吸附与浸润—交互扩散—化学结合或物理结合。化学结合可看作是一种 特殊的浸润过程 ii) 界面形成与发展的关键阶段 (3)第三阶段:液态(或粘流态)组分的固化过程,即凝固或化学反应 i) 界面的固定(亚稳态、非平衡态) ii) 界面的稳定(稳态、平衡态)

聚合物基复合材料复习

1.聚合物基复合材料的组成 (1) 基体 热固性基体: i) 熔体或溶液粘度低,易于浸渍与浸润,成型工艺性好 ii) 交联固化后成网状结构,尺寸稳定性好耐热性好,但性脆 iii) 制备过程伴有复杂化学反应 热塑性基体: i) 熔体粘度大,浸渍与浸润困难,需较高温度和压力下成型,工艺性差 ii) 线性分子结构,抗蠕变和尺寸稳定性差,但韧性好 iii) 制备过程中伴有聚集态结构转变及取向、结晶等物理现象 (2) 增强体 主要有碳纤、玻璃纤维、芳纶纤维、硼纤维等 由于树脂基体与增强体相容性、浸润性较差,增强体多经过表面处理与表面改性,以及浸润剂、偶联剂和涂复层的使用,使其组成复杂化。 3.复合材料的界面 1)界面现象:①表面吸附作用与浸润 ②扩散与粘结(含界面互穿网络结构) ③界面上分子间相互作用力(范氏力和化学键合力) 2). 复合材料的界面形成过程 PMC、MMC、CMC等复合材料体系对界面要求各不相同,它们的成型加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为三个阶段。(1)第一阶段:增强体表面预处理或改性阶段。 i) 界面设计与控制的重要手段 ii) 改性层成为最终界面层的重要组成部分 iii) 为第二阶段作准备 (2)第二阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程 i) 接触—吸附与浸润—交互扩散—化学结合或物理结合。化学结合可看作是一种 特殊的浸润过程 ii) 界面形成与发展的关键阶段 (3)第三阶段:液态(或粘流态)组分的固化过程,即凝固或化学反应 i) 界面的固定(亚稳态、非平衡态) ii) 界面的稳定(稳态、平衡态) 在复合材料界面形成过程中涉及: i) 界面间的相互置换:如,润湿过程是一个固-液界面置换固-气表面的过程 ii) 界面间的相互转化:如,固化过程是固-液界面向固-固界面转化的过程后处理过程:固-固界面自身完善与平衡的过程 3)复合材料界面结构与性能特点 i) 非单分子层,其组成、结构形态、形貌十分复杂、形式多样。界面区至少包括: 基体表面层、增强体表面层、基体/增强体界面层三个部分 ii ) 具有一定厚度的界面相(层),其组成、结构、性能随厚度方向变化而变化,具有“梯度”材料的性能特征

复合材料聚合物基体考试整理

济南大学复合材料聚合物基体考试整理 复材1108班 第一章(12分) 不饱和聚酯树脂:是指不饱和聚酯在乙烯基类交联单体(例如苯乙烯)中的溶液。不饱和聚酯:是由不饱和二元酸或酸酐、饱和二元酸或酸酐,二元醇经缩聚反应合成的相对分子质量不高的聚合物。 不饱和聚酯树脂的合成方法:熔融缩聚法、溶剂共沸脱水法、减压法、加压法。不饱和聚酯树脂的合成过程包括:线型不饱和聚酯的合成、用苯乙烯稀释聚酯。不饱和聚酯树脂固化的三个阶段:凝胶、定型、熟化。 最常用的交联单体:是苯乙烯。 酸值:中和一定量的不饱和聚酯树脂所消耗的氢氧化钾的毫克数。 固化:粘流态树脂体系发生交联反应而转变成为不溶、不熔的具有体型网络结构的固态树脂的全过程。 引发剂:是能使单体分子或含双键的线型高分子活化而成为游离基并进行连锁聚合反应的物质。 有机过氧化物的通式为:R-O-O-H或R-O-O-R。其中的R基团可以是:烷基、芳基、酰基、碳酸酯基。 有机过氧化物的特性是用:活性氧含量、临界温度、半衰期来表征的。 通用型不饱和聚酯树脂具有下列技术指标:粘度、酸值、凝胶时间、固体含量。工业上生产不饱和聚酯树脂的方法有:一步法、二步法。 增粘剂:能使不饱和聚酯树脂粘度增加的物质。 阻聚剂:使单体与不饱和聚酯不能发生聚合反应的物质。 不饱和聚酯树脂的固化是一种游离基型共聚反应,具有链引发、链增长 链终止三个游离基型聚合反应的特点。 影响树脂增粘过程的因素:树脂的起始粘度、不饱和聚酯的结构、增粘剂的种类与用量、体系的水分含量、填料的种类。 常用的交联剂分为:单官能团单体、双官能团单体、多官能团单体。 酸酐中的反式双键比顺式双键活泼。 第二章(6分) 环氧树脂:指分子中含有两个或两个以上环氧基团的那一类有机高分子化合物。环氧树脂分5类:缩水甘油醚类、缩水甘油酯类、缩水甘油胺类、线型脂肪族类、脂环族类。 环氧值:是指每100g树脂中所含环氧基的克当量数。 环氧当量:含有1克当量环氧基的环氧树脂的克数。 半衰期:在给定温度下,有机过氧化物分解一半所需要的时间。 常用的脂肪族胺类固化剂有:二乙烯三胺(H2NCH2CH2NHCH2CH2NH2)、三乙烯四胺(H2NCH2CH2NHCH2CH2NHCH2CH2NH2)、四乙烯五胺(H2NCH2CH2NHCH2CH2NHCH2CH2NHCH2CH2NH2)。 用于环氧树脂的固化剂有两类:反应性固化剂、催化性固化剂。 E-44表示主要组成物质为:二酚基丙烷,环氧平均值为0.44。 稀释剂:用来降低环氧树脂的粘度。主要有两种:活性稀释剂、非活性稀释剂。增韧剂:能够改善环氧树脂固化物的抗冲击强度、耐热冲击性能。主要分为:活性增韧剂、非活性增韧剂。 第三章(4分)

聚合物基复合材料

纤维增强的聚合物基复合材料 一、复合材料 1、定义 复合材料是一种多相的复合体系,由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料。 2、分类 根据组成复合材料的不同物质在复合材料中的形态,可将它们分为基体材料和分散材料。复合材料按分散材料形式不同可分为纤维增强复合材料、粒子增强复合材料、晶须增强复合材料等;按基体材料不同可分为聚合物基复合材料、金属基复合材料、陶瓷基复合材料。 二、纤维增强聚合物基复合材料 聚合物基复合材料是以高分子聚合物为基体,添加增强纤维制得的一种复合材料。 它有许多优异的性能:(1)质轻高强。若按比强

度计算(强度与密度的比值),玻璃纤维增强的聚合物基复合材料不仅大大超过碳钢,而且可超过某些特殊合金钢。特别是有机纤维、碳纤维复合材料有更低的密度和更高的强度。(2)耐疲劳性能好。聚合物复合材料中的纤维与基体的界面能阻止裂纹的发展,金属的疲劳强度是其拉伸强度的30~50%,碳纤维/不饱和聚酯复合材料是70~80%。(3)耐热性强。虽然聚合物基复合材料的耐热性不及金属基和陶瓷基复合材料,但随着高性能树脂和高性能增强材料的发展,它的耐热性也达到很优异的效果。甲基二苯乙炔基硅烷树脂为基体的复合材料在500℃下仍能保持较好的力学性能。(4)介电性能好。通过选择树脂基体和增强纤维可制备低介电损耗角正切(小于0.005)的复合材料.如,热固性丁苯树脂基、聚酰亚胺树脂基复合材料。 1、聚合物基体 目前可供选择的树脂主要有两类:一类为热固性树脂,其中包括环氧树脂、聚酰亚胺树脂、酚醛树脂等,另一类为热塑性树脂,如尼龙、聚砜、聚醚醚酮、聚醚酰亚胺等。 聚合物的选择应考虑:A、基体材料能在结构使用温度范围内正常使用;B、基体材料具有一定的力学

聚合物基复合材料的界面研究进展

大学研究生课程论文 题目聚合物基复合材料的界面研究进展成绩 专业材料工程 课程名称、代码1512011080405 年级 姓名学号 时间年月 任课教师

聚合物基复合材料的界面研究进展 【摘要】界面的好坏是直接影响复合材料性能的关键因素之一。当复合材料受到外力作用时,除增强材料和基体受力外,界面亦起着极其重要的作用。本文主要综述无机刚性粒子增强复合材料、无机纳米粒子增强复合材料、纤维增强复合材料、原位复合材料的界面特性及其改性方法,并简要介绍了各种复合材料的增强机理,界面相容性。 【关键词】聚合物;复合材料;综述;增强 1 前言 界面是复合材料极为重要的微观结构,它作为增强体与基体连接的“桥梁”,对复合材料的物理机械性能有至关重要的影响。复合材料一般是由增强相、基体相和它们的中间相(界面相)组成,它们各自都有其独特的结构、性能与作用,增强相主要起承载作用,基体相主要起连接增强相和传载作用,界面是增强相和基体相连接的桥梁,同时是应力的传递者[1]。目前对增强相和基体相的研究已取得了许多成果,但对作为复合材料三大微观结构之一的界面问题的研究却不够深入,其原因是测试界面的精细方法运用起来较困难,描述的理论尚不完整,尤其从力学的角度研究界面的性质、作用及其对复合材料力学性能的影响和破坏机理等方面的工作正在开展。界面的性质直接影响着复合材料的各项力学性能[2],尤其是层间剪切、断裂、抗冲击等性能,因此随着复合材料科学和应用的发展,复合材料界面及其力学行为将越来越受到重视。 复合材料的强度、刚性及韧性是代表其物理机械性能的重要指标,对复合材料进行界面改性使两相界面具有合适的粘附力,形成一个相互作用匹配且能顺利传递应力的中间模量层,以提高聚合物基复合材料的力学性能一直是高分子材料科学的重要研究领域[3]。 2 无机刚性粒子增强聚合物基复合材料及其界面 无机刚性粒子增强聚合物是近年来研究的热点,它克服了以往用弹性体、热塑性树脂增韧聚合物时在韧性提高的同时刚性下降的缺点。常用的无机刚性粒子[4]有CaCO3、SiC、BaSO4、滑石、硅石灰、蒙脱土以及煤灰等。欧玉春[5]等提出刚性粒子增强增韧聚合物的界面结构模型,即在均匀分散的刚性粒子周围嵌入具有良好界面结合和一定厚度的柔性界面相,以便在材料经受破坏时能引发银纹,终止裂缝的扩展。在一定形态结构下它还可引发基体剪切屈服,从而消耗大量冲击能,又能较好地传递所承受的外应力,达到既增强又增韧的目的。 在PP/CaCO3复合体系中用酯酸类偶联剂在刚性粒子表面引入柔性或弹性界面层,降低

聚合物基复合材料考试答案

1聚合物基复合材料的定义、特征、结构模式。 聚合物基复合材料:是以有机聚合物为基体,以颗粒、纤维等为增 强材料组成的复合材料 特征:1比强度和比模量高,比强度(抗拉强度与密度之比)和比模 量(弹性模量与密度之比)高,说明材料轻而且刚性大。2 良好的抗 疲劳性能疲劳是材料在循环应力作用下的性质。复合材料能有效地 阻止疲劳裂纹的扩展。3、减振性能好在工作过程中振动问题十分突出,复合材料为多相系统,大量的界面对振动有反射吸收作用。且 自振动频率高,不易产生共振4、高温性能好复合材料在高温下强度 和模量基本不变5、各项异性和可设计性。6、成型加工性好复合材 料可成型任意型面的零件7、其它优点与其它类材料相比,聚合物基 复合材料耐化学腐蚀、导电、导热率低等特点。 缺点:1耐湿热性差2.材料性能分散性差3.价格过高 复合材料的结构①无规分散(弥散)增强结构(含颗粒、晶须、短 纤维)②连续长纤单向增强结构(单向板)③层合(板)结构(二维 织布或连续纤维铺层,每层不同)④三维编织体增强结构⑤夹层结 构(蜂窝夹层等)⑥混杂结构 2、复合材料的界面效应有哪些?怎么影响材料的性能。 界面在复合材料中所起到的效应: 1、传递效应:界面可将复合材料体系中基体承受的外力传递给增强相,起到基体和增强相之间的桥梁作用。 2、阻断效应:基体和增强相之间结合力适当的界面有阻止裂纹扩展、减缓应力集中的作用。 3、不连续效应:在界面上产生物理性能的不连续性和界面摩擦出现 的现象 4、散射和吸收效应:光波、声波、热弹性波、冲击波等在界面产生 散射和吸收。 5、诱导效应:一种物质(通常是增强物)的表面结构使另一种(通常 是聚合物基体)与之接触的物质的结构由于诱导作用而发生改变,由 此产生一些现象 3.试说明玻璃纤维、碳纤维与芳纶纤维表面处理方法的相同点和不 同点。 相同点是都需要在高温下处理,改善纤维的微结构,使纤维与界面 和基体更加匹配。包括化学键理论,润湿理论,表面形态理论,可

复合材料试题B卷及答案精编版

复合材料试题B卷及答 案 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

2014学年度第 一 学期课程考试 《复合材料》本科 试卷(B 卷) 注意事项:1. 本试卷共 六 大题,满分100分,考试时间90分钟,闭卷; 2. 考前请将密封线内各项信息填写清楚; 3. 所有答案必须写在试卷上,做在草稿纸上无效; 4.考试结束,试卷、草稿纸一并交回。 一、选择题(30 分,每题2分) 【得 分: 】 1.复合材料中的“碳钢”是( ) A 、玻璃纤维增强Al 基复合材料。 B 、玻璃纤维增强塑料。 C 、碳纤维增强塑料。 D 、氧化铝纤维增强塑料。 2.材料的比模量和比强度越高( ) A 、制作同一零件时自重越小、刚度越大。 B 、制作同一零件时自重越大、刚度越大。 C 、制作同一零件时自重越小、刚度越小。 D 、制作同一零件时自重越大、刚度越小。 3.在体积含量相同情况下,纳米颗粒与普通颗粒增强塑料复合材料( ) A 、前者成本低 B 、前者的拉伸强度好 C 、前者原料来源广泛 D 、前者加工更容易

4、Kevlar纤维() A、由干喷湿纺法制成。 B、轴向强度较径向强度低。 C、强度性能可保持到1000℃以上。 D、由化学沉积方法制成。 5、碳纤维() A、由化学沉积方法制成。 B、轴向强度较径向强度低。 C、强度性能可保持到3000℃以上。 D、由先纺丝后碳化工艺制成。 6、聚丙烯增强塑料的使用温度一般在:() A、120℃以下 B、180℃以下 C、250℃以下 D、250℃以上 7、碳纤维增强环氧复合材料力学性能受吸湿影响,原因之一是() A、环氧树脂吸湿变脆。 B、水起增塑剂作用,降低树脂玻璃化温度。 C、环氧树脂发生交联反应。 D、环氧树脂发生水解反应。 8、玻璃纤维() A、由SiO 玻璃制成。 B、在所有纤维中具有最高的比弹性模量。 2 C、其强度比整块玻璃差。 D、价格贵、应用少。 9、生产锦纶纤维的主要原料有() A、聚碳酸酯。 B、聚丙烯腈。 C、尼龙。 D、聚丙烯。 10、晶须() A、其强度高于相应的本体材料。 B、长径比一般小于5。 C、直径为数十微米。 D、含有很少缺陷的长纤维。 11、对玻璃纤维和聚酰胺树脂构成的复合材料命名不正确的是()。 A.玻璃纤维聚酰胺树脂复合材料 B.玻璃纤维/聚酰胺树脂复合材料

复合材料试题B卷及答案

2014学年度第一学期课程考试 《复合材料》本科试卷(B卷) 注意事项:1. 本试卷共六大题,满分100分,考试时间90分钟,闭卷; 2. 考前请将密封线内各项信息填写清楚; 3. 所有答案必须写在试卷上,做在草稿纸上无效; 4.考试结束,试卷、草稿纸一并交回。 一、选择题(30分,每题2分)【得 分:】 1.复合材料中的“碳钢”是() A、玻璃纤维增强Al基复合材料。 B、玻璃纤维增强塑料。 C、碳纤维增强塑料。 D、氧化铝纤维增强塑料。 2.材料的比模量和比强度越高() A、制作同一零件时自重越小、刚度越大。 B、制作同一零件时自重越大、刚度越大。 C、制作同一零件时自重越小、刚度越小。 D、制作同一零件时自重越大、刚度越小。 3.在体积含量相同情况下,纳米颗粒与普通颗粒增强塑料复合材料() A、前者成本低 B、前者的拉伸强度好 C、前者原料来源广泛 D、前者加工更容易 4、Kevlar纤维() A、由干喷湿纺法制成。 B、轴向强度较径向强度低。 C、强度性能可保持到1000℃以上。 D、由化学沉积方法制成。 5、碳纤维() A、由化学沉积方法制成。 B、轴向强度较径向强度低。 C、强度性能可保持到3000℃以上。 D、由先纺丝后碳化工艺制成。 6、聚丙烯增强塑料的使用温度一般在:() A、120℃以下 B、180℃以下 C、250℃以下 D、250℃以上

7、碳纤维增强环氧复合材料力学性能受吸湿影响,原因之一是() A、环氧树脂吸湿变脆。 B、水起增塑剂作用,降低树脂玻璃化温度。 C、环氧树脂发生交联反应。 D、环氧树脂发生水解反应。 8、玻璃纤维() A、由SiO 玻璃制成。 B、在所有纤维中具有最高的比弹性模量。 2 C、其强度比整块玻璃差。 D、价格贵、应用少。 9、生产锦纶纤维的主要原料有() A、聚碳酸酯。 B、聚丙烯腈。 C、尼龙。 D、聚丙烯。 10、晶须() A、其强度高于相应的本体材料。 B、长径比一般小于5。 C、直径为数十微米。 D、含有很少缺陷的长纤维。 11、对玻璃纤维和聚酰胺树脂构成的复合材料命名不正确的是()。 A.玻璃纤维聚酰胺树脂复合材料 B.玻璃纤维/聚酰胺树脂复合材料 C.聚酰胺材料 D.聚酰胺基玻璃纤维复合材料 12、目前,复合材料使用量最大的增强纤维是()。 A.碳纤维 B.氧化铝纤维 C.玻璃纤维 D.碳化硅纤维 13、目前,复合材料使用量最大的民用热固性树脂是()。 A.环氧树脂 B.不饱和聚酯 C.酚醛树脂 D.尼龙14.聚合物基复合材料制备的大体过程不包括() A.预浸料制造 B.制件的铺层 C.固化及后处理加工 D.干燥 15、有关环氧树脂,说法正确的是() A、含有大量的双键 B、使用引发剂固化 C、使用胺类固化剂固化 D、属于热塑性塑料 二、判断题(20分,每题2分)【得分:】 1、复合材料是由两个组元以上的材料化合而成的。() 2、混杂复合总是指两种以上的纤维增强基体。() 3、层板复合材料主要是指由颗料增强的复合材料。() 4、最广泛应用的复合材料是金属基复合材料。() 5、复合材料具有可设计性。()

(1)纤维增强聚合物基复合材料界面残余热应力研究

纤维增强聚合物基复合材料界面残余热应力研究 赵若飞 周晓东 戴干策 (华东理工大学聚合物加工室上海200237) 摘要:本文综述了聚合物基纤维复合材料界面残余热应力的形成、测定方法和各种理论分析方法。阐述了残余应力对界面粘结强度以及复合材料断裂韧性和强度的影响,最后对界面残余应力的控制方法作了评述。 关键词:聚合物基纤维复合材料 残余热应力 界面 1 前 言 聚合物基纤维复合材料的基体和增强纤维的热 膨胀系数存在很大的差异,而复合材料有相当部分 是在升温条件下成型的,当温度降低时,由于基体和 纤维的体积收缩率不同,会产生热残余应力,热固性 树脂在固化过程中发生体积收缩也会形成残余应 力。复合材料的残余应力同时存在于基体、纤维和 界面上,基体中的应力会使基体的性质发生变 化[1、2],使基体的耐冲击性、疲劳强度、压缩强度等下 降,甚至会引起基体的破坏。纤维中主要存在轴向 压缩残余应力,可能引起纤维发生曲折[3]。界面相 的残余应力有径向压缩或拉伸应力、环向拉伸应力 和界面剪切应力[4、5],这些应力都会对界面的粘结强 度和纤维的脱粘产生重要的影响[6~8]。 界面相残余应力的存在显然严重影响复合材料 的宏观性能,因此,人们一直希望能定量测定它,但 是界面层的厚度很小,属于微结构(纳米结构),而且界面存在材料的内部,所以难以直接测量残余应力[9]。纤维和基体中的残余应力则可采用各种实验方法来测定,例如光弹性法[2、10]、Ramman光谱法[11]、纤维总应变法[12]、碳纤维电阻率法[13]、单丝拔除法[14]等,可以通过测定邻近界面的基体或纤维中的残余应力来得到界面残余应力。另一方面,三十年来发展了有限元分析等各种理论分析方法研究复合材料残余应力[15~21],使人们对界面残余应力有了深入的认识。 近年来热塑性树脂基复合材料得到发展和广泛应用,人们对聚合物基复合材料的界面残余应力的研究越来越重视,这是因为与热固性树脂基复合材料相比,这种热塑性树脂在加工冷却过程中多伴有结晶的形成,与纤维的体积收缩比具有更大的差异[1、22] ,可能形成较大的界面残余应力。 2 残余应力的形成 聚合物基纤维复合材料有不少是在高于环境温度(150~300℃)的条件下加工,当体系温度降低时,会由于树脂和纤维的体积收缩不匹配而造成残余应力,表1列举了几种纤维和树脂的热膨胀系数和温度变化时的体积收缩率。由表1可见玻璃纤维是各向同性的,而碳纤维和凯芙拉纤维的横向和纵向热膨胀系数差别很大,当升温时沿纤维纵向收缩,横向膨胀。环氧树脂在固化过程中,伴随着化学反应体积发生收缩,产生残余应力,体积收缩率随树脂类型的不同在1%-6%范围内,固化完成后,环氧树脂随温度的降低继续发生一定的体积收缩,热膨胀系数在较窄的温度范围内(50~150℃)可看作常数(40~80ppm/℃)[24]。热塑性树脂在温度达到固化温度时(T c或者T g),体积收缩开始产生热应力,在达到固化温度以前,热塑性树脂仍然是熔体,虽然也有很大的体积收缩但却不产生残余应力,非晶型热塑性树脂的体积收缩率与环氧树脂相差不大,而结晶型的体积收缩率则相当高。 FRP/CM 2000.No.4

聚合物基复合材料的界面研究进展

深圳大学研究生课程论文 题目聚合物基复合材料的界面研究进展成绩 专业材料工程 课程名称、代码1512011080405 年级 姓名学号 时间年月 任课教师

聚合物基复合材料的界面研究进展 【摘要】界面的好坏是直接影响复合材料性能的关键因素之一。当复合材料受到外力作用时,除增强材料和基体受力外,界面亦起着极其重要的作用。本文主要综述无机刚性粒子增强复合材料、无机纳米粒子增强复合材料、纤维增强复合材料、原位复合材料的界面特性及其改性方法,并简要介绍了各种复合材料的增强机理,界面相容性。 【关键词】聚合物;复合材料;综述;增强 1 前言 界面是复合材料极为重要的微观结构,它作为增强体与基体连接的“桥梁”,对复合材料的物理机械性能有至关重要的影响。复合材料一般是由增强相、基体相和它们的中间相(界面相)组成,它们各自都有其独特的结构、性能与作用,增强相主要起承载作用,基体相主要起连接增强相和传载作用,界面是增强相和基体相连接的桥梁,同时是应力的传递者[1]。目前对增强相和基体相的研究已取得了许多成果,但对作为复合材料三大微观结构之一的界面问题的研究却不够深入,其原因是测试界面的精细方法运用起来较困难,描述的理论尚不完整,尤其从力学的角度研究界面的性质、作用及其对复合材料力学性能的影响和破坏机理等方面的工作正在开展。界面的性质直接影响着复合材料的各项力学性能[2],尤其是层间剪切、断裂、抗冲击等性能,因此随着复合材料科学和应用的发展,复合材料界面及其力学行为将越来越受到重视。 复合材料的强度、刚性及韧性是代表其物理机械性能的重要指标,对复合材料进行界面改性使两相界面具有合适的粘附力,形成一个相互作用匹配且能顺利传递应力的中间模量层,以提高聚合物基复合材料的力学性能一直是高分子材料科学的重要研究领域[3]。 2 无机刚性粒子增强聚合物基复合材料及其界面 无机刚性粒子增强聚合物是近年来研究的热点,它克服了以往用弹性体、热塑性树脂增韧聚合物时在韧性提高的同时刚性下降的缺点。常用的无机刚性粒子[4]有CaCO3、SiC、BaSO4、滑石、硅石灰、蒙脱土以及煤灰等。欧玉春[5]等提出刚性粒子增强增韧聚合物的界面结构模型,即在均匀分散的刚性粒子周围嵌入具有良好界面结合和一定厚度的柔性界面相,以便在材料经受破坏时能引发银纹,终止裂缝的扩展。在一定形态结构下它还可引发基体剪切屈服,从而消耗大量冲击能,又能较好地传递所承受的外应力,达到既增强又增韧的目的。 在PP/CaCO3复合体系中用酯酸类偶联剂在刚性粒子表面引入柔性或弹性界面层,降低了添加刚性粒子所引起的材料韧性下降的程度;同时由于界面层的引入,使三相复合体系在较低的橡胶含量下具有较高的模量和冲击强度。欧玉春[6]等报道了PP/三元乙丙橡胶(EPDM)/

复合材料聚合物基体与纤维考试整理

复合材料聚合物基体与纤维考试整理 绪论(标注(次要)二字表示老师未提及可删) 题型:选择、名词解释、简答、问答、图表(上课分析过的) 热塑性树脂:具有线型或支链型大分子结构的树脂 热固性树脂:最终具有体型大分子结构的树脂 高分子定义:由重复结构单元通过聚合反应而获得的,以共价键形式连接的,分子量1万以上的同系物或者是化合物。 复合材料:由两种或两种以上具有不同物理和化学性质的组分经过一定的成型加工工艺而得到的一种多相固体材料。 树脂的定义:没有添加加工助剂没有成型的高分子化合物。 树脂与高分子区别、联系:树脂是高分子,但高分子不一定是树脂 第一章不饱和聚酯树脂(UPR) 一、聚酯是主链上含有酯键的高分子化合物总称,一般由二元羧酸和二元醇经缩聚反应而成。 定义:不饱和聚酯树脂是指不饱和聚酯在乙烯基类交联单体(例如苯乙烯)中的溶液 合成原理:不饱和聚酯是由不饱和二元羧酸(或酸酐)、饱和二元羧酸(或酸酐)与多元醇缩聚而成。 注意:生产时:聚合反应;固化时:连锁聚合,自由基加成 原料:1、不饱和二元酸作用:提供双键2、饱和二元酸的作用:a、增加与交联单体的相容性b、降低UP的结晶性能c、改善UPR的特定性能3、多元醇作用(常见为12丙二醇):以降低结晶倾向,改善与苯乙烯的相容性,提高固化物的耐水性及电性能。 四、不饱和酸与饱和酸的比例 1、一般情况下,顺酐和苯酐等摩尔比投料, 2、若顺酐/苯酐的摩尔比增加UPR凝胶时间、折光率和粘度下降,而固化树脂的耐热性提高,以及一般的耐溶剂、耐腐蚀性能也提高, 3、若顺酐/苯酐的摩尔比降低UPR 固化不良,力学强度↓。合成特殊性能要求的聚酯,可以适当增加顺酐/苯酐的比例 五、不饱和聚酯的相对分子质量对固化树脂性能的影响 在合成UP时二元醇约过量5%~10% (摩尔),其分子量在1000~3000左右,UP的分子量对UPR的性能有影响。 不饱和聚酯的缩聚度n=7~8(酸值30~25,分子量为2000~2500左右)时,固化树脂具有较好的物理性能。 1-热 1-抗弯模量;2-抗弯强度;3-抗拉强度

相关文档
最新文档