甜蛋白thaumatin基因高效植物表达载体的构建

甜蛋白thaumatin基因高效植物表达载体的构建
甜蛋白thaumatin基因高效植物表达载体的构建

基因表达载体构建教学设计

“基因表达载体的构建”教学设计

专题1 1.2基因工程的基本操作程序之基因表达载体的构建 一、目的基因和运载体的连接 二、利用标记基因筛选含目的基因的受体细胞 三、目的基因和启动子的相对位置关系 附件1: 附件2:

【教学反思】 基因表达载体的构建是基因工程的关键步骤,空间想象难度大,科学理论和技术实践密切联系,思维跨度也大。福州屏东中学学生程度一般,正因如此,处理不好会提高学习难度,令学生视高科技为畏途,导致教学流于形式。本节课用微课和模型成功地化解了难点。 一方面基于学生课前微课的“先学”,学生对表达载体的构建有个整体的认识,然后以此为支架在课堂上填充和拓展内容,当学生在课堂上遇到相关问题时,能尽快到达“最近发展区”,获得进一步的发展,使学生逐渐对细节有更丰富更具体的理解,这种先整体后局部的处理符合学生的认知规律。基于微课的先学后教模式实质上是利用微课为学生创设一个情境,使学生带着思考和疑惑走进课堂,节省课堂的热身时间,从而使高效率大容量的课堂教学目标得以实现。 另一方面高二学生具有抽象思维,但是仍然需要感性知识,形象知识作为支持,所以教师精心设计纸质模型,基于教材原有的学习完“DNA重组的基本工具”后的纸圈模拟活动,再设计了双酶切的活动,化微观为直观,一系列问题的发生都源自学生自己亲手构建的模型,从模型中发现问题,进而逐步由浅入深。学生像科学家一样思考问题、解决问题,获得成功的体验。由于是带着问题的探究模拟活动,使学生的课堂参与是形式之上思维的积极参与。学生获得的体验是:基因工程这么高深的原理原来我也能想得到。学生的纸质模型立体、科学、易操作,但不好展示,而教师利用不同颜色的磁贴,随着课程的逐步推进,简洁明了地逐步在黑板上呈现,让整个环节衔接自然,师生互动流畅。直观的教学手段——模型构建,减轻了学生掌握这些知识的阻力,激发了学习积极性,使学生在轻松愉快的氛围中突破了重难点,强化了学生交流合作意识。 总之,作为教师,应该想学生之所难,积极探索有效途径,一堂成功的课不是展示教师的才智、形象、语言,更要通过学生的成功来反映。

pCambia1391Z 植物表达载体

北京华越洋?生物?首页关于我们新闻中?心产品展?示在线留?言加?入我们 联系我们 pCambia1391Z pCambia1391Z 产品编号载体名称北京华越洋?生物VECT0010 pCambia1391Z pCambia 1391Z 载体基本信息 出品公司:Cambia 载体名称: pCambia1391Z, pCambia 1391Z 质粒类型: 植物表达载体?高拷贝/低拷贝:低拷贝启动?子:CAMV 35S 克隆?方法 :多克隆位点,限制性内切酶 载体?大?小: 11227 bp 5' 测序引物及序列:M13-F: TGTAAAACGACGGCCAGT 3' 测序引物及序列 : M13-R: CAGGAAACAGCTATGAC 载体标签: GusA 载体抗性: 卡那和潮霉素筛选标记: HPTII 详情产品分类 ?生化试剂 精细化学品 中间体/标准品 病理实验试剂 其他关键词:  热线电话:400-818-1148150  1148  1284

备注:-- 产品?目录号:1391Z 稳定性:稳定表达 组成型:?非组成型 病毒/?非病毒:?非病毒 pCambia 1391Z载体质粒图谱和多克隆位点信息 pCambia 1391Z载体序列 LOCUS pCAMBIA1391Z 11227 bp ds-DNA circular SYN DEFINITION Agrobacterium binary vector for plant transformation, with hygromycin- and kanamycin-resistance and LacZ-GUS genes plus the pUC9 MCS. ACCESSION AF234312 VERSION . KEYWORDS pCAMBIA1391Z SOURCE synthetic DNA construct ORGANISM synthetic DNA construct REFERENCE 1 (bases 1 to 11227) AUTHORS Cambia TITLE Direct Submission JOURNAL Exported from SnapGene Viewer COMMENT The GenBank record was corrected by inserting a G at position 4743. FEATURES Location/Qualifiers

维真生物-如何阅读基因载体图谱

如何阅读基因载体图谱 基因载体是基因工程的核心,也是基因治疗中强有力的生物工具,我们先来认识和阅读载体图谱吧。 一、载体分类及载体组成元件 载体分类 1、按属性分类:病毒载体和非病毒载体 病毒载体是一种常见的分子生物学工具,可将遗传物质带入细胞,原理是利用病毒具有传送其基因组进入目的细胞,进行感染的分子机制。可发生于完整活体或是细胞培养中。可应用于基础研究、基因疗法或疫苗。用于基因治疗和疫苗的病毒载体应具备以下基本条件: (1)携带外源基因并能包装成病毒颗粒; (2)介导外源基因的转移和表达; (3)对人体不致病; (4)在环境中不会引起增殖和传播。 非病毒载体一般是指质粒DNA。 2、按进入受体细胞的类型分类:原核载体、真核载体、穿梭载体(含原核和真核2个复制子,能在原核和真核细胞中复制,并可以在真核细胞中有效表达)。 3、按功能分类:克隆载体、表达载体 克隆载体:具有克隆载体的基本元件(Ori,Ampr,MCS等),可以携带DNA片段或外源基因进入受体细胞并克隆和大量扩增DNA片段(外源基因)的载体。 表达载体:克隆载体中加入一些与表达调控(具有转录/翻译所必需的DNA顺序)有关的元件即成为表达载体。 载体组成元件 1、复制起始位点Ori:即控制复制起始的位点。Ori的箭头指复制方向,其他元件标注的箭头多指转录方向(正向)。 2、抗生素抗性基因:可以便于加以检测,如Amp+ ,Kan+ (1)Ampr:水解β-内酰胺环,解除氨苄的毒性。

(2)tetr :可以阻止四环素进入细胞。 (3)camr:生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr):氨基糖苷磷酸转移酶,使G418(卡那霉素衍生物)失活。 (5)hygr:使潮霉素β失活。 3、多克隆位点:MCS克隆携带外源基因片段,它具有多个限制酶的单一切点,便于外源基因的插入。如果在这些位点外有外源基因的插入,会导致某种标志基因的失活,便于筛选。决定能不能放目的基因以及如何放置目的基因。还要再看外源DNA插入片段大小。质粒一般只能容纳小于10kb的外源DNA片段。一般来说,外源DNA片段越长,越难插入,越不稳定,转化效率越低。 4、P/E:启动子/增强子 5、Terms:终止信号 6、加poly(A)信号:可以起到稳定mRNA作用 示例阅读载体: pENTER载体 1)human ORF + pENTER载体 2) CMV启动子,T7启动子 3) ORF的C端融合了Flag和His tag 4) 多克隆位点,常用AsisI 和 MluI(人源基因上不常见的)

几种新型植物基因表达载体的构建方法

几种新型植物基因表达载体的构建方法 摘要:利用基因工程技术手段研究基因功能过程中,构建基因表达载体处于转基因植物的主导地位,采用合适的构建方法会使实验效果事半功倍。植物基因表达载体的构建方法除了传统构建法、Gateway 技术、三段T-DNA 法、一步克隆法等,还有近年来出现的几种新型的载体构建方法:基于竞争性连接原理快速构建小片段基因表达载体;Micro RNA 前体PCR 置换法适用于构建小分子RNA 表达载体;重组融合PCR 法特别适用于插入片段中含有较多限制性酶切位点的载体构建;利用In-Fusion 试剂盒可以将任何目的片段插入一个线性化载体的某个区域;构建多片段复杂载体可采用不依赖序列和连接的克隆方法(Sequence and ligation-independent cloning, SLIC) 法;Gibson 等温拼接法。本文将在总结分析前人工作的基础上,分析这6种新方法的特点,期望通过这几种新的方法给植物基因工程表达载体的构建提供新的思路。 关键词: Micro RNA 前体PCR 置换法,In-Fusion 试剂盒法,重组融合PCR 法,Gibson 等温拼接法,Golden Gate 拼接法 基因克隆、载体构建是植物功能基因组研究中的常规步骤[ 1 ]。而载体构建是基因工程和分子生物学研究中常用的基础技术。随着植物基因工程技术的发展,适合于不同研究目的各种载体系统应运而生,其中在转基因植物中最常用的是质粒载体。传统的载体构建方法在进行构建多片段拼接的复杂载体时,需要精心选择酶切位点[ 2 ],有时还需要构建多个中间载体,操作比较麻烦,费时费力,因此寻找简单、高效、快捷的载体构建方法具有重要的现实意义。从1969 年Arber 等发现了限制性内切酶,载体的构建方法逐步发展,从传统构建方法到

基因的克隆、表达载体构建与功能验证

基因的克隆、表达载体构建及功能验证(一般性方法) 一、基因克隆 ★事前三问 a.克隆这个基因干什么?它有什么功能? b.这个基因在哪种材料中扩增? c.材料需要怎么处理? ◎实验前准备工作 a.设计引物,准备材料, b.购置试剂:Taq酶、反转录试剂盒、凝胶回收试剂盒、质粒提取试剂盒、连接试 剂盒 c.实验试剂及用具:枪头、离心管、培养皿、滤纸灭菌;Amp+ 、Kan+等抗生素准 备 ※基本流程 提取和纯化RNA—cDNA第一条链合成—PCR—凝胶电泳—胶回收—连接—转化—涂平板—挑单菌落—摇菌—提质粒—测序 1.总RNA的提取、纯化及cDNA第一链合成 1.1叶片、根总RNA的提取 Trizol是一种高效的总RNA抽提试剂,内含异硫氰酸胍等物质,能迅速裂解植物细胞,抑制细胞释放出的核酸酶,所提取的RNA完整性好且纯度高,以利于下一步的实验。 1)实验前准备 预先配制0.1%的DEPC水(ddH2O中含0.1%DEPC,V/V,37 ℃过夜处理12 h),高温灭菌后,用DEPC水配制75%乙醇,研钵、量筒、试剂瓶等需200℃灭菌至少4 h,所用枪头和枪盒均去RNA酶处理(直接购买)。 2)Trizol 法(小麦)叶片或根的总RNA实验步骤如下: (1)提前在1.5 ml离心管中加入1 mlTrizol,然后将200 mg样品液氮中研磨成白色粉末,

移入管内,用力摇15 s,在15-30℃温育5 min,使核酸蛋白复合物完全分离。 (2)4℃,12000g离心10min,取上清,离心得到的沉淀中包括细胞外膜、多糖、高分子量DNA,上清中含有RNA。 (3)吸取上清液加0.2 ml氯仿,盖好盖,用力摇15 s,15~30 ℃温育2~3 min。(4)在≤12000g,4℃离心10 min,样品分为三层:底层为黄色有机相,上层为无色水相和一个中间层,RNA主要在水相中,水相体积约为所用TRIzol试剂的60%。 (5)将上层水相转移到新的1.5 ml离心管中,加2倍体积的无水乙醇沉淀RNA,室温静止30 min。 (6)在≤12000g,4℃离心10 min,离心前看不出RNA沉淀,离心后在管侧和管底出现胶状沉淀。 (7)用≥1 ml的75%乙醇洗RNA,涡旋振荡样品,在≤7500g,4℃离心5 min,弃上清。(8)室温放置干燥或真空抽干RNA沉淀,大约晾5-10分钟,加无RNase的水100μl用枪头吸几次,55~60℃温育10 min使RNA溶解。 (9)配制以下体系: 10×DNase buffer 5 μl DNase I (RNase-free)(40 μg/μl) 1 μl RNasin Inhibitor(40 μg/μl) 1 μl Total RNA 70 μg 加去RNase水至总体积为50 μl (10)37 ℃水浴1h,加DEPC处理的水至总体积为100 μl,加入等体积氯仿抽提一次。(11)取上清,加入10 μl的3 mol/L NaAC溶液,200 μl的无水乙醇,-80 ℃沉淀30 min。 (12)2~8 ℃,12000g离心10 min,弃清液,干燥后取50μl无RNase的水溶解RNA。3)RNA的质量及纯度检测 (1)电泳检测取2ul RNA 与1 ul 10×Loading buffer上样缓冲液混合均匀在1% 的琼脂糖凝胶上电泳,在紫外灯下观察RNA 条带并记录实验结果。 (2)分光光度计RNA纯度检测 取1ul RNA液,以DEPC水为空白对照,测定A260/ A280 比值,估测RNA质 量。 4)cDNA第一条链的合成 按照以下体系将提取的总RNA反转录成第一链cDNA: 1)在Eppendorf管中配制下列混合液:

植物表达载体 Pcambia1302 序列图谱

载体质粒图谱和多克隆位点信息 载体简介 载体序列 LOCUS AF234298 10549 bp DNA circular SYN 24-APR-2000 DEFINITION Binary vector pCAMBIA-1302, complete sequence. ACCESSION AF234298 VERSION AF234298.1 GI:7638073

KEYWORDS . SOURCE Binary vector pCAMBIA-1302 ORGANISM Binary vector pCAMBIA-1302 other sequences; artificial sequences; vectors. REFERENCE 1 (sites) AUTHORS Hajdukiewicz,P., Svab,Z. and Maliga,P. TITLE The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation JOURNAL Plant Mol. Biol. 25 (6), 989-994 (1994) PUBMED 7919218 REFERENCE 2 (bases 1 to 10549) AUTHORS Roberts,C., Rajagopal,S., Smith,L.M., Nguyen,T.A., Yang,W., Nugrohu,S., Ravi,K.S., Vijayachandra,K., Harcourt,R.L., Dransfield,L., Desamero,N., Slamet,I., Hadjukiewicz,P., Svab,Z., Maliga,P., Mayer,J.E., Keese,P.K., Kilian,A. and Jefferson,R.A. TITLE A comprehensive set of modular vectors for advanced manipulations and efficient transformation of plants JOURNAL Unpublished REMARK Full description of constructs REFERENCE 3 (bases 1 to 10549) AUTHORS Roberts,C., Rajagopal,S., Smith,L.M., Nguyen,T.A., Yang,W., Nugrohu,S., Ravi,K.S., Vijayachandra,K., Harcourt,R.L., Dransfield,L., Desamero,N., Slamet,I., Hadjukiewicz,P., Svab,Z., Maliga,P., Mayer,J.E., Keese,P.K., Kilian,A. and Jefferson,R.A. TITLE Direct Submission

叶绿体表达载体--如何构建载体

如何构建载体 1 启动子的选用和改造 外源基因表达量不足往往是得不到理想的转基因植物的重要原因。由于启动子在决定基因表达方面起关键作用,因此,选择合适的植物启动子和改进其活性是增强外源基因表达首先要考虑的问题。 目前在植物表达载体中广泛应用的启动子是组成型启动子,例如,绝大多数双子叶转基因植物均使用CaMV35S启动子,单子叶转基因植物主要使用来自玉米的Ubiquitin启动子和来自水稻的Actinl启动子。在这些组成型表达启动子的控制下,外源基因在转基因植物的所有部位和所有的发育阶段都会表达。然而,外源基因在受体植物内持续、高效的表达不但造成浪费,往往还会引起植物的形态发生改变,影响植物的生长发育。为了使外源基因在植物体内有效发挥作用,同时又可减少对植物的不利影响,目前人们对特异表达启动子的研究和应用越来越重视。已发现的特异性启动子主要包括器官特异性启动子和诱导特异性启动子。例如,种子特异性启动子、果实特异性启动子、叶肉细胞特异性启动子、根特异性启动子、损伤诱导特异性启动子、化学诱导特异性启动子、光诱导特异性启动子、热激诱导特异性启动子等。这些特异性启动子的克隆和应用为在植物中特异性地表达外源基因奠定了基础。例如,瑞士CIBA-GEIGY公司使用PR-IA启动子控制转基因烟草中Bt毒蛋白基因的表达,由于该启动子可受水杨酸及其衍生物诱导,通过喷酒廉价、无公害的化学物质,诱导抗虫基因在虫害重发生季节表达,显然是一个十分有效的途径。 在植物转基因研究中,使用天然的启动子往往不能取得令人满意的结果,尤其是在进行特异表达和诱导表达时,表达水平大多不够理想。对现有启动子进行改造,构建复合式启动子将是十分重要的途径。例如,Ni等人将章鱼碱合成酶基因启动子的转录激活区与甘露碱合成酶基因启动子构成了复合启动子,GUS表达结果表示:改造后的启动子活性比35S启动子明显提高。吴瑞等人将操作诱导型的PI-II基因启动子与水稻Actinl基因内含子1进行组合,新型启动子的表达活性提高了近10倍(专利)。在植物基因工程研究中,这些人工组建的启动子发挥了重要作用。 2 增强翻译效率 为了增强外源基因的翻译效率,构建载体时一般要对基因进行修饰,主要考虑三方面内容: 2.1添加5`-3`-非翻译序列 许多实验已经发现,真核基因的5`-3`-非翻译序列(UTR)对基因的正常表达是非常必要的,该区段的缺失常会导致mRNA的稳定性和翻译水平显著下降。例如,在烟草花叶病毒(TMV)的126kDa 蛋白基因翻译起始位点上游,有一个由68bp核苷酸组成的Ω元件,这一元件为核糖体提供了新的结合位点,能使Gus基因的翻译活性提高数十倍。目前已有许多载体中外源基因的5`-端添加了Ω翻译增强序列。Ingelbrecht等曾对多种基因的 3`-端序列进行过研究,发现章鱼碱合成酶基因的3`-端序列能使NPTII基因的瞬间表达提高20倍以上。另外,不同基因的3`-端序列增进基因表达的效率有所不同,例如,rbcS3`-端序列对基因表达的促进作用比查尔酮合酶基因的3`-端序列高60倍。 2.2 优化起始密码周边序列 虽然起始密码子在生物界是通用的,然而,从不同生物来源的基因各有其特殊的起始密码周边序列。例如,植物起始密码子周边序列的典型特征是AACCAUGC,动物起始密码子周边序列为CACCAUG,原核生物的则与二者差别较大。Kozak详细研究过起始密码子ATG周边碱基定点突变后对转录和翻译所造成的影响,并总结出在真核生物中,起始密码子周边序列为ACCATGG时转录和翻译效率最高,特别是-3位的A对翻译效率非常重要。该序列被后人称为Kozak序列,并被应用于表达载体的构建中。例如,有一个细菌的几丁质酶基因,原来的起始密码周边序列为UUUAUGG,当被修饰为ACCAUGG,其在烟草中的表达水平提高了8倍。因此,利用非植物来源的基因构建表达载体时,应根据植物起始密码子周边序列的特征加以修饰改造。 2.3对基因编码区加以改造

植物细菌诱导型表达载体的构建

收稿日期:2006-11-01 基金项目:广东省科技攻关项目(2002A2070402,2006B20101011);广东省自然科学基金资助项目(5011730). 作者简介:曾骥(1983— ),男,湖南湘潭人,湛江师范学院助理研究员,从事植物基因工程研究.3通讯作者 2006年12月第27卷第6期湛江师范学院学报JOURNA L OF ZH AN J I ANG NORM A L C O LLEGE Dec 1,2006Vol 127 No 16 植物细菌诱导型表达载体的构建 曾 骥1,黄真池23,刘 媛2,黄永莲2 (1.湛江师范学院自然科学与技术研究中心,广东湛江524048;2.湛江师范学院生命科学与技术学院,广东,湛江524048) 摘 要:根据G enBank 中细菌诱导型启动子的碱基序列设计一对引物,通过PCR 扩增出启动子PPP3 (AF469483,220bp ).经分子操作将启动子和质粒pUC18连接后转化E .coli DH5 α,经蓝白筛选和PCR 检测筛选阳性菌落,测序结果与G enebank 中的碱基序列完全相同.对扩增到的PPP3片段和含目的基因(hrap 或p flp )的pBI121质 粒进行双酶切,分别回收PPP3片段和含目的基因的pBI121大片段,连接后转化E .coli DH5 α,通过卡那霉素抗性筛选和PCR 检测,表明细菌诱导型启动子和目的基因已正确连接.用重组质粒转化农杆菌,经卡那霉素抗性筛选和PCR 检测,证明植物细菌诱导型表达载体构建成功. 关键词:细菌诱导型启动子;hrap ;p flp ;植物细菌诱导型表达载体 中图分类号:Q946 文献标识码:A 文章编号:1006-4702(2006)06-0071-04 目前,世界上已经报道的植物细菌性病害有500多种,对农林业生产造成了巨大损失[1] .传统育种方法虽然能利用作物本身或亲缘种的抗性基因选育抗病品种,但存在着可利用的抗性品种资源少,选育时间长,耗资大等缺点;施用化学药剂来防治细菌病害并非完全有效,而且污染环境.近年来植物基因工程技术的不断发展以及对植物和病原物相互作用的深入了解使得将外源抗性基因导入植物来提高抗病性成为一条有效途径.通过转基因技术可以打破传统育种中的种间不亲和现象,消除杂交障碍,极大地拓宽了抗性基因的来源和应用.目前利用基因工程技术提高作物抗病性的研究主要集中在阻碍病原菌间的信号交流,通过RNA 干涉抑制病原菌关键致病基因的表达,转入无毒基因或无毒基因簇,利用强启动子或转录因子促进抗病相关 基因的表达等来提高植物抗病力[2-5].但实践证明,抗性基因的高效表达虽然提高了植物的抗病力,但由于 外源基因在植物体内的持久的高水平表达,植株会因能量过多耗损、而生长缓慢、畸变,甚至死亡[1,4-6].为了 避免这些不足,在转基因中使用诱导型启动子是理想的基因工程策略. 病原微生物侵染植物后,通常会引起植物体内活性氧的爆发,进而诱发超敏反应.超敏反应是一种快速 的局部组织坏死,从而阻止病原物的传播、扩散[7-9].据一系列文献报道,从甜椒中克隆到的p flp 基因能改变 植物细胞中活性氧的水平,hrap 基因能协助一些超敏反应激发子增强超敏反应,而两种基因同时表达可以 大大提高植物的抗病力[10-11].彭建令等[12-13]报道从烟草中克隆到3个细菌诱导型启动子PPP1、PPP2、PPP3, 这些启动子受亲和性病原细菌(青枯菌)、水杨酸、超敏反应激发子harpin 等的诱导.本研究试图构建诱导型启动子和p flp 基因或hrap 基因相连的植物表达载体,期望在转基因植物的生长过程中,病原微生物侵染可作为诱导信号,作用于诱导型启动子引发p flp 基因或hrap 基因的表达从而增强抗病能力.1 材料和方法 1.1 材料

pCambia35s-ECFP植物表达载体

pCambia35s--‐ECFP 编号 载体名称 北京华越洋生物VECT1010 pCambia35s--‐ECFP pCambia35s--‐ECFP载体基本信息 出品公司: --‐--‐ 载体名称: pcambia35s--‐ECFP 质粒类型: 植物双元表达载体 高拷贝/低拷贝: --‐--‐ 启动子: --‐--‐ 克隆方法: 多克隆位点,限制性内切酶 载体大小: --‐--‐ 5' 测序引物及序列: --‐--‐ 3' 测序引物及序列: --‐--‐ 载体标签: ECFP 载体抗性: --‐--‐ 筛选标记: --‐--‐ 备注: --‐--‐ 产品目录号: --‐--‐ 稳定性: --‐--‐ 组成型: --‐--‐ 病毒/非病毒: --‐--‐ 其他植物载体质粒: pBI101 pDF15 pBI121 pEarleyGate 100 pBI221 pEarleyGate 101 pBI221--‐GFP pEarleyGate 102 pBin19 pEarleyGate 103 pBINPLUS pEarleyGate 104 pCambia0105.1R pEarleyGate 201 pCambia0305.1 pEarleyGate 202 pCambia0305.2 pEarleyGate 203 pCambia0380 pEarleyGate 204 pCambia0390 pEarleyGate 205 pCambia1105.1 pEarleyGate 301 pCambia1105.1R pEarleyGate 302 pCambia1200 pEarleyGate 303 pCambia1201 pEarleyGate 304 pCambia1281Z pFGC5941 pCambia1291Z pGA643 pCambia1300 pGreen

几种新型植物基因表达载体的构建方法

几种新型植物基因表达载体的构建方法 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

几种新型植物基因表达载体的构建方法 摘要:利用基因工程技术手段研究基因功能过程中,构建基因表达载 体处于转基因植物的主导地位,采用合适的构建方法会使实验效果事半 功倍。植物基因表达载体的构建方法除了传统构建法、Gateway 技术、 三段T-DNA 法、一步克隆法等,还有近年来出现的几种新型的载体构建 方法:基于竞争性连接原理快速构建小片段基因表达载体;Micro RNA 前体 PCR 置换法适用于构建小分子 RNA 表达载体;重组融合 PCR 法特 别适用于插入片段中含有较多限制性酶切位点的载体构建;利用 In-Fusion 试剂盒可以将任何目的片段插入一个线性化载体的某个区域;构建多片段复杂载体可采用不依赖序列和连 接的克隆方法 (Sequence and ligation-independent cloning, SLIC) 法;Gibson 等温拼接法。本文将在总结分析前人工作的基础 上,分析这 6种新方法的特点,期望通过这几种新的方法给植物基因工 程表达载体的构建提供新的思路。 关键词: Micro RNA 前体 PCR 置换法,In-Fusion 试剂盒法,重组融合PCR 法,Gibson 等温拼接法,Golden Gate 拼接法 基因克隆、载体构建是植物功能基因组研究中的常规步骤[ 1 ]。而载 体构建是基因工程和分子生物学研究中常用的基础技术。随着植物基因 工程技术的发展,适合于不同研究目的各种载体系统应运而生,其中在 转基因植物中最常用的是质粒载体。传统的载体构建方法在进行构建多 片段拼接的复杂载体时,需要精心选择酶切位点[ 2 ],有时还需要构建多 个中间载体,操作比较麻烦,费时费力,因此寻找简单、高效、快捷的

真核细胞常见表达载体

真核细胞常见表达载体 真核细胞, 表达载体 1、pCMVp-NEO-BAN载体 特点:该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。更重要的是,由于该真核细胞表达载体中抗neo基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。 插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。注意在此载体中有二个EcoR1位点存在。 2、pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein V ector) 特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40origin使该载体在任何表达SV40 T抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。 用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。借此可确定外源基因在细胞内的表达和/或组织中的定位。 亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1)。 3、pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体 特点:pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV启动子驱动下,在真核细胞中高水平表达。载体骨架中的SV40origin使该载体在任何表达SV40 T抗原的真核细胞内进行复制。Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin 抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。 用途: pEGFP-Actin载体在真核细胞表达EGFP-Actin融合蛋白,该蛋白能整合到胞内正在生的肌动蛋白,因而在活细胞和固定细胞中观察到细胞内含肌动蛋白的亚细胞结构。 4、pSV2表达载体 特点:该表达质粒是以病责SV40启动子驱动在真核细胞目的基因进行表达的,克隆位点为Hind111。SV40启动子具有组织/细胞的选择特异性。此载体不含neo基因,故不能用来筛选、建立稳定的表达细胞株。 5、CMV4 表达载体 特点:该真核细胞表达载体由CMV启动子驱动,多克隆区域酶切位点选择性较多。含有氨苄青霉素抗性基因和生长基因片段以及SV40复制原点和fl单链复制原点。但值得注意的是,该表达载体不含有neo基因,转染細胞后不能用G418筛选稳定的表达细胞株。 其他常用克隆Vector: pBluscript II KS DNA 15 ug pUC18 DNA 25 ug pUC19 DNA 25 ug 说明: pBluescript II kS、pUC18 &Puc19载体适合于DNA片段的克隆、DNA测序和对外源基因进行表达等。这些载体由于在lacZ基因中含有多克隆位点,当外源DNA片段扦入,转化lacZ基因缺乏细胞,并在含有IPTG和X-gal的培养基上培养时,含有外源DNA载体的细胞

pCambia1291Z植物表达载体

pCambia1291Z VECT0110 pCambia1291Z pCambia 1291Z : Cambia : pCambia1291Z, p Cambia 1291Z : /: : CAMV 35S : : 11379 b p 5' : M13-F: T GTAAAACGACGGCCAGT 3' : M13-R: C AGGAAACAGCTATGAC : GusA : : HPTII : -- : 1291Z : : /: pCambia 1291Z

pCambia 1291Z LOCUS pCAMBIA1291Z 11379 b p d s-DNA circular S YN DEFINITION Agrobacterium b inary v ector f or p lant t ransformation, w ith hygromycin- a nd c hloramphenicol-resistance a nd L acZ-GUS g enes plus the p UC9 M CS. ACCESSION AF234295 VERSION . KEYWORDS pCAMBIA1291Z SOURCE synthetic D NA c onstruct ORGANISM synthetic D NA c onstruct COMMENT This f ile i s c reated b y V ector N TI COMMENT The G enBank r ecord w as c orrected b y i nserting a G a t p osition 4743. FEATURES Location/Qualifiers source 1..11379 /organism="synthetic D NA c onstruct" /lab_host="Plant C ells" /mol_type="other D NA" CDS join(2..16,207..2024)

叶绿体表达载体--如何构建载体

如何构建载体 1启动子的选用和改造 外源基因表达量不足往往是得不到理想的转基因植物的重要原因。由于启动子在决定基因表达方面起关键作用,因此,选择合适的植物启动子和改进其活性是增强外源基因表达首先要考虑的问题。 目前在植物表达载体中广泛应用的启动子是组成型启动子,例如,绝大多数双子叶转基因植物均使用CaMV35S启动子,单子叶转基因植物主要使用来自玉米的Ubiquitin启动子和来自水稻的Actinl启动子。在这些组成型表达启动子的控制下,外源基因在转基因植物的所有部位和所有的发育阶段都会表达。然而,外源基因在受体植物内持续、高效的表达不但造成浪费,往往还会引起植物的形态发生改变,影响植物的生长发育。为了使外源基因在植物体内有效发挥作用,同时又可减少对植物的不利影响,目前人们对特异表达启动子的研究和应用越来越重视。已发现的特异性启动子主要包括器官特异性启动子和诱导特异性启动子。例如,种子特异性启动子、果实特异性启动子、叶肉细胞特异性启动子、根特异性启动子、损伤诱导特异性启动子、化学诱导特异性启动子、光诱导特异性启动子、热激诱导特异性启动子等。这些特异性启动子的克隆和应用为在植物中特异性地表达外源基因奠定了基础。例如,瑞士CIBA-GEIGY公司使用PR-IA启动子控制转基因烟草中Bt毒蛋白基因的表达,由于该启动子可受水杨酸及其衍生物诱导,通过喷酒廉价、无公害的化学物质,诱导抗虫基因在虫害重发生季节表达,显然是一个十分有效的途径。 在植物转基因研究中,使用天然的启动子往往不能取得令人满意的结果,尤其是在进行特异表达和诱导表达时,表达水平大多不够理想。对现有启动子进行改造,构建复合式启动子将是十分重要的途径。例如,Ni等人将章鱼碱合成酶基因启动子的转录激活区与甘露碱合成酶基因启动子构成了复合启动子,GUS表达结果表示:改造后的启动子活性比35S启动子明显提高。吴瑞等人将操作诱导型的PI-II基因启动子与水稻Actinl基因内含子1进行组合,新型启动子的表达活性提高了近10倍(专利)。在植物基因工程研究中,这些人工组建的启动子发挥了重要作用。 2增强翻译效率 为了增强外源基因的翻译效率,构建载体时一般要对基因进行修饰,主要考虑三方面内容:2.1添加5`-3`-非翻译序列 许多实验已经发现,真核基因的5`-3`-非翻译序列(UTR)对基因的正常表达是非常必要的,该区段的缺失常会导致mRNA的稳定性和翻译水平显著下降。例如,在烟草花叶病毒(TMV)的126kDa蛋白基因翻译起始位点上游,有一个由68bp核苷酸组成的Ω元件,这一元件为核糖体提供了新的结合位点,能使Gus基因的翻译活性提高数十倍。目前已有许多载体中外源基因的5`-端添加了Ω翻译增强序列。Ingelbrecht等曾对多种基因的3`-端序列进行过研究,发现章鱼碱合成酶基因的3`-端序列能使NPTII基因的瞬间表达提高20倍以上。另外,不同基因的3`-端序列增进基因表达的效率有所不同,例如,rbcS3`-端序列对基因表达的促进作用比查尔酮合酶基因的3`-端序列高60倍。 2.2优化起始密码周边序列 虽然起始密码子在生物界是通用的,然而,从不同生物来源的基因各有其特殊的起始密码周边序列。例如,植物起始密码子周边序列的典型特征是AACCAUGC,动物起始密码子周边序列为CACCAUG,原核生物的则与二者差别较大。Kozak详细研究过起始密码子ATG周边碱基定点突变后对转录和翻译所造成的影响,并总结出在真核生物中,起始密码子周边序列为ACCATGG时转录和翻译效率最高,特别是-3位的A对翻译效率非常重要。该序列被后人称

运载体与基因表达载体的区别

运载体与基因表达载体的区别 1、不同点: ⑴“运载体”泛指基因工程操作中能将目的基因送达受体细胞的工具。如细菌质粒等。 相对“基因表达载体”而言,“运载体”主要是强调它能运输目的基因这一功能,只要能运输目的基因就算是运载体,并不计较是不是真正运输了目的基因。 ⑵“基因表达载体”,是实施了运输目的基因、并且要保证目的基因到达受体细胞后能够表达的运载体。 这样看来,运载体、基因表达载体二者之间就不能完全等同。 2、联系: “基因表达载体”是在”运载体”的基础上构建成的。 基因表达载体的构成:目的基因+ 启动子+ 终止子+ 标记基因。 3、表达载体上的启动子和终止子是本身具有还是后加上去的呢? 这个问题,教科书中并没有明确说明,但我个人的观点是:这要看获取目的基因的方法,而问题的根源在于基因的结构。关于基因的结构,在新课程标准中也不再做为教学的要求了。 (人类)结构基因的基本结构:上游非编码区+ 启动子+ 编码区+ 终止子+ 下游非编码区 人类结构基因4个区域: ①前导区,位于编码区上游,相当于RNA5’末端非编码区(非翻译区); ②编码区,包括外显子与内含子; ③尾部区,位于RNA3’编码区下游,相当于末端非编码区(非翻译区); ④调控区,包括启动子和增强子等。基因编码区的两侧也称为侧翼顺序(图1-1)。 ⑴启动子:启动子(promoter)能促进转录过程。也有人将启动子称为“RNA聚合酶识别位点”。 包括下列几种不同顺序: ①TATA框(TATA box):其一致顺序为TATAATAAT。它约在基因转录起始点上游约-30-50bp 处,基本上由A-T碱基对组成,是决定基因转录始的选择,为RNA聚合酶的结合处之一,RNA聚合酶与TATA框牢固结合之后才能开始转录。 ②CAAT框(CAAT box):其一致顺序为GGGTCAATCT,是真核生物基因常有的调节区,位于转录起始点上游约-80-100bp处,可能也是RNA聚合酶的一个结合处,控制着转录起始的频率。 ③GC框(GC box):有两个拷贝,位于CAAT框的两侧,由GGCGGG组成,是一个转录调节区,有激活转录的功能。 此外,RNA聚合酶Ⅲ负责转录tRNA的DNA和5SrDNA,其启动子位于转录的DNA 顺序中,称为下游启动子。

表达载体的构建方法及步骤

表达载体的构建方法及步骤 一、载体的选择及如何阅读质粒图谱 目前,载体主要有病毒和非病毒两大类,其中质粒DNA 是一种新的非病毒转基因载体。一个合格质粒的组成要素: (1)复制起始位点Ori 即控制复制起始的位点。原核生物DNA 分子中只有一个复制起始点。而 真核生物DNA 分子有多个复制起始位点。 (2)抗生素抗性基因可以便于加以检测,如Amp+ ,Kan+ (3)多克隆位点MCS 克隆携带外源基因片段 (4)P/E 启动子/增强子 (5)Terms 终止信号 (6)加poly(A)信号可以起到稳定mRNA 作用 选择载体主要依据构建的目的,同时要考虑载体中应有合适的限制酶切位点。如果构建的目 的是要表达一个特定的基因,则要选择合适的表达载体。 载体选择主要考虑下述3点: 【1】构建DNA 重组体的目的,克隆扩增/基因表达,选择合适的克隆载体/表达载体。【2】.载体的类型: (1)克隆载体的克隆能力-据克隆片段大小(大选大,小选小)。如<10kb 选质粒。(2)表达载体据受体细胞类型-原核/真核/穿梭,E.coli/哺乳类细胞表达载体。

(3)对原核表达载体应该注意:选择合适的启动子及相应的受体菌,用于表达真核蛋白质时注意克服4个困难和阅读框错位;表达天然蛋白质或融合蛋白作为相应载体的参考。【3】载体MCS 中的酶切位点数与组成方向因载体不同而异,适应目的基因与载体易于链接,不能产生阅读框架错位。 综上所述,选用质粒(最常用)做载体的5点要求: (1)选分子量小的质粒,即小载体(1-1.5kb)→不易损坏,在细菌里面拷贝数也多(也有大载 体); (2)一般使用松弛型质粒在细菌里扩增不受约束,一般10个以上的拷贝,而严谨型质粒<10个。 (3)必需具备一个以上的酶切位点,有选择的余地; (4)必需有易检测的标记,多是抗生素的抗性基因,不特指多位Ampr(试一试)。(5)满足自己的实验需求,是否需要包装病毒,是否需要加入荧光标记,是否需要加入标签蛋白,是否需要真核抗性(如Puro、G418)等等。 无论选用哪种载体,首先都要获得载体分子,然后采用适当的限制酶将载体DNA 进行切割,获得线性载体分子,以便于与目的基因片段进行连接。 如何阅读质粒图谱 第一步:首先看Ori 的位置,了解质粒的类型(原核/真核/穿梭质粒) 第二步:再看筛选标记,如抗性,决定使用什么筛选标记。 (1)Ampr 水解β-内酰胺环,解除氨苄的毒性。 (2)tetr 可以阻止四环素进入细胞。 (3)camr 生成氯霉素羟乙酰基衍生物,使之失去毒性。 (4)neor(kanr)氨基糖苷磷酸转移酶使G418(长那霉素衍生物)失活

植物基因工程中的载体

植物基因工程中的改进之载体 朱祺琪社科1003 3100104077 【摘要】植物基因工程经历了二十多年的发展历程,虽然取得了令世人瞩目的成绩,但仍有许多问题一直困扰着这个领域的研究者。本文从各种文献中整理了国内外在构建植物表达载体方面的一些新进展,这些策略的最终目的都是为了更好地增强外源基因的表达水平,提高生物工程体的安全性。 【关键字】植物基因工程载体启动子内含子定位信号位置效应 【引言】近几年来植物基因工程的研究进展十分迅速。在植物抗病、抗虫、抗除草剂和改变植物的某些成份方面都已得到不少转基因植株,有的已经建成了品系;为提高作物的产量、抗逆能力、改进它们的品质,进行快速、优质、稳产的良种选育提供了一条全新的诱人的途径。 植物基因工程经历了二十多年的发展历程,虽然取得了令世人瞩目的成绩,但仍有许多问题一直困扰着这个领域的研究者。突出的问题表现在外源基因往往表达效率不高,难以得到理想的转基因植物(作物),转基因作物的安全性不好。这些问题不仅成为植物基因工程发展的限制因素,而且也是近几年在西欧等国家对转基因作物有较大争议甚至产生排斥反应的直接原因之一。如何提高载体的表达效率,最大程度上消除植物基因工程的非安全因素,已经成为当下一个值得深思的问题。 【正文】 一、植物基因工程过程简介 基因工程简单地说就是采用目前知道的新技术,在大分子(DNA分子)水平上将个别基因的分子基础输入到另一种生物的细胞以定向改变其遗传特性。

一般来讲,基因工程的实现主要分为三个步骤:1)以人工方法在现有的生物中取得所需要的DNA片断,利用mRNA复制所需的DNA,即人工合成基因。2)将 人工合成的基因输入到新细胞当中去,并使其与新细胞中原有的DNA相组合,即DNA的重组。3)筛选和培养有外源基因的细胞或组织,使其产生正常健康的转基因植物,通过有性繁殖将优良性状传递给下一代。实现以上三步需要进行以下工作:1) 寻找目标基因。2) 取得目标基因。3) 基因的载体问题。 二、植物基因工程载体的种类 1、载体是指运载外源DNA 进入受体细胞内的运载工具。它同外源DNA 在体外重组成DNA 重组分子, 在进入受体后形成一个复制子, 即形成在细胞内能独自进行自我复制的遗传因子。因此, 作为载体应该具有以下几个要求: ①有某种限制酶的一个切点, 最好是有许多种限制酶的切点, 而且每种酶的切点只有一个; ②外源DNA 插入后不影响载体在受体细胞中进行自我复制, 载体应对受体细胞无害, 以及载体能接纳尽可能大的外源DNA 片段; ③有利于选择的标记基因, 可以很方便地知道外源DNA 已经插入, 以及把接受了载体的受体细胞选出; ④具有促进外源DNA 表达的调控区。 2、克隆载体及表达载体 载体又可分成克隆载体和表达载体两大类。克隆载体一般是原核细菌将需要克隆的基因与克隆载体的质粒相连接, 再导入原核细菌内, 质粒会在原核细菌内大量复制, 形成大量的基因克隆。被克隆的基因不一定会表达, 但一定被大量复制。而表达载体是一些用于工程生产的细菌, 他们被导入目标基因, 这些目标基因会在此类细菌中得到表达。生产出我们需要的产物, 导入的基因是有克隆载体产出的。最常用的载体是Ti质粒载体。 质粒是许多种细菌中发现的染色体外的遗传因子,它是闭合环状的双链DNA 分子, 大小从1kb 直到200kb 以上。质粒所带的基因通常有利于宿主细胞。受体细胞由于质粒的进入而产生了新的表型。质粒复制时利用宿主细胞复制自身染色体的同一组酶系。有些质粒处于“严紧控制”之下, 即它们的复制是同宿主细胞的复制偶联同步的。因此在每个细胞中的质粒只有一份拷贝, 或最多只有几份拷贝。

相关文档
最新文档