单片机串行通信

单片机串行通信
单片机串行通信

实验四串行通信

一、实验目的

1、掌握串行口编程控制方法

2、掌握串口调试和仿真器的烧写方法

3、综合应用定时器、串行接口及中断等

二、实验内容

1、编写一个程序,利用单片机的串行口向PC机循环发送0x55。

2、编写一个程序,每当串行口接收到PC机发送的0x55(ASCII码为字母U)

时,返回一个0x41(ASCII码为字母A)。在PC机一端,以接收窗口收到0x41为完成(可以循环此过程)。

3、PC机向单片机发送0—9(无需编程,在DPFlash的串口调试软件下配置即

可),单片机在接收到数据后送数码管显示;同时,单片机每隔0.5S向PC机发送a—z的ASCII码(0x61~0x7a,每秒发2个),在PC机的串口调试软件中显示结果。

三、实验步骤

1、新建工程,编写程序,实现通过串行口向PC机发送0x55(可采用串口模式

1,波特率2400),注意工程的环境变量设置,Target窗口下code和xdata memory设置为空,无须加入startup.A51,Output窗口下选中Create Hex选项,编译生成HEX文件。

2、阅读网上的实验指导书及下面的说明,掌握DPFlash软件的使用,掌握仿真

器的两种工作方式使用。仿真器拨到load方式,打开DPFlash软件,文件菜单中选择装载,加入编译生成的*.HEX文件,点击编程按扭,使用默认配置即可,烧入仿真器的Flash中。

3、关闭电源,将仿真器拨到run方式,并将连接在仿真器上的PC串口通信电缆

拔下,然后与实验仪上的单片机串口相连。开机复位后将自动运行单片机程序,在PC机的DPflash软件中的串口调试器下观察结果。

4、编写程序实现单片机接收到PC机发来的0x55后回送0x41,在串口调试软件

的处理字符串中发送0x55,可以选中下栏的自动发送单选框来实现每隔1S发送一次,观察结果。

5、关闭电源,用导线分别连接A2区INT1、T0、T1到D5区INT_KEY、SDA、

SCL,C1区的VCC(+5V)到D5区的RST_L,检查无误后打开电源。编写程序实现单片机接收到PC机的数据后送数码管显示。同时,单片机每隔0.5s向PC发送a—z的ASCII码,在串口调试软件中显示结果。

四、注意事项

1、由于只有一个串口线与PC机的COM1相连,当需要将程序下载到仿真器时,

要将PC串口线接仿真器并拨至LOAD,而当要运行下载进仿真器的程序时,需要将开关拨至RUN,并把PC串口线接实验仪。由于不能单步仿真,实验中可能要反复这样操作。

2、单片机的通信波特率可以在标准波特率中自行选择,PC的DPFlash软件一定

要配置与单片机相同的帧格式和波特率。

3、本实验程序不能硬件仿真,只可以软件模拟后生成.hex文件,然后写入仿真

器连续运行。可以通过LED或数码管表示程序运行状态,如果不正确,修改后重新写入仿真器,最终程序没问题可以写入芯片得到相同结果。

4、为了顺利完成实验任务,务必预习,用软件模拟排出故障(实际实验时也是

这样做),得到.hex文件,实验时再直接写入仿真器测试功能是否正确。五、实验代码及注释

实验一:

#include

#include

unsigned char key_s, key_v, tmp;

char code str[] = "welcome! https://www.360docs.net/doc/8118089894.html, \n\r";

char code SST516[3] _at_ 0x003b;

sbit P1_0=P1^0;

void send_str();

bit scan_key();

void proc_key();

void delayms(unsigned char ms);

void send_char(unsigned char txd);

sbit K1 = P3^5;

main()

{

TMOD = 0x20;

TH1 = 0xF3;

TL1 = 0xF3;

SCON = 0x50;

PCON &= 0xef;

TR1 = 1;

IE = 0x0;

while(1)

{

send_char(0x55);

delayms(100);

P1_0=~P1_0;

}

}

bit scan_key()

{

key_s = 0x00;

key_s |= K1;

return(key_s ^ key_v);

}

void proc_key()

{

if((key_v & 0x01) == 0)

{

send_str(); ..

}

}

void send_char(unsigned char txd) {

SBUF = txd;

while(!TI);

TI = 0;

}

void send_str()

{

unsigned char i = 0;

while(str[i] != '\0')

{

SBUF = str[i];

while(!TI);

TI = 0;

i++;

}

}

void delayms(unsigned char ms) {

unsigned char i;

while(ms--)

{

for(i = 0; i < 120; i++);

}

}

实验二:

#include

#include

#define uchar unsigned char

#define uint unsigned int

char code SST516[3] _at_ 0x003b; uchar c;

void init();

void delay(uint ms);

void send_char(uchar out);

void main()

{

init();

while(1)

{

while(RI == 0);

RI = 0;

c = SBUF;

if(c == 'U')

{

send_char('A');

}

}

}

void init()

{

TMOD = 0x20;

TH1 = 0xf3;

TL1 = 0xf3;

SCON = 0x50;

PCON &= 0xef;

TR1 = 1;

}

void send_char(uchar out)

{

SBUF = out;

while(!TI);

TI = 0;

}

void delay(uint ms)

{

uchar i;

while(ms--)

{

for(i = 0; i < 120; i++);

}

}

实验三:

#include

#include

#define uchar unsigned char

#define uint unsigned int

char code SST516[3] _at_ 0x003b;

uchar code dis_table[11] =

{

0x28, 0x7e, 0xa2, 0x62, 0x74, 0x61, 0x21, 0x7a, 0x20, 0x60, 0xff };//0,1,2,3,4,5,6,7,8,9,off

uchar transmit = 0x61;

uchar received;

void init();

void delay(uint ms);

void send_char(uchar out);

void main()

{

init();

P0 = dis_table[10];

while(1)

{

send_char(transmit);

transmit++;

if(transmit == 0x7b)

transmit = 0x61;

delay(500);

}

}

void init()

{

TMOD = 0x20;

TH1 = 0xf3;

TL1 = 0xf3;

SCON = 0x50;

PCON &= 0xef;

IE |= 0x90;

TR1 = 1;

EA = 1;

}

void send_char(uchar out)

{

SBUF = out;

while(!TI);

TI = 0;

}

void delay(uint ms)

{

uchar i;

while(ms--)

{

for(i = 0; i < 120; i++);

}

}

void Serial_ISR() interrupt 4

{

if(RI)

{

RI = 0;

received = SBUF;

switch(received)

{

case 0x30:

P0 = dis_table[0];

break;

case 0x31:

P0 = dis_table[1];

break;

case 0x32:

P0 = dis_table[2];

break;

case 0x33:

P0 = dis_table[3];

break;

case 0x34:

P0 = dis_table[4];

break;

case 0x35:

P0 = dis_table[5];

break;

case 0x36:

P0 = dis_table[6];

break;

case 0x37:

P0 = dis_table[7];

break;

case 0x38:

P0 = dis_table[8];

break;

case 0x39:

P0 = dis_table[9];

break;

default:

P0 = dis_table[10];

}

}

}

七、实验心得

51单片机与PC串口通讯

目录 第1章需求分析 ............................................................................................................................ - 1 - 1.1课题名称 (1) 1.2任务 (1) 1.3要求 (1) 1.4设计思想 (1) 1.5课程设计环境 (1) 1.6设备运行环境 (2) 1.7我在本实验中完成的任务 (2) 第2章概要设计 ............................................................................................................................ - 2 - 2.1程序流程图 (2) 2.2设计方法及原理 (3) 第3章详细设计 ............................................................................................................................ - 3 - 3.1电路原理 (3) 3.1.1STC89C52芯片 ............................................................................................................. - 3 -3.2串口通信协议 (4) 3.3程序设计 (5) 3.3.1主程序模块 .................................................................................................................... - 5 - 3.3.2串口通讯模块 ................................................................................................................ - 6 - 3.3.3控制部分文件 ................................................................................................................ - 8 - 3.3.4公共部分模块 .............................................................................................................. - 11 -3.4电路搭建 (12) 3.4.1电路原理图 .................................................................................................................. - 12 -第4章上位机关键代码分析 ...................................................................................................... - 12 - 4.1打开串口操作 (12) 4.2后台线程处理串口程序 (15) 4.3程序运行界面 (18) 第5章课程设计总结与体会 ...................................................................................................... - 19 -第6章致谢 .................................................................................................................................. - 19 -参考文献........................................................................................................................................... - 19 -

51单片机串口调试实验(C语言)

//以下程序都是在VC++6.0 上调试运行过的程序,没有错误,没有警告。 //单片机是STC89C52RC,但是在所有的51 52单片机上都是通用的。51只是一个学习的基础平台,你懂得。 //程序在关键的位置添加了注释。 /****************************************************************************** * * 实验名: 串口实验 * 使用的IO : P2 * 实验效果: 将接收到发送回电脑上面。 * 注意: ******************************************************************************* / #include void UsartConfiguration(); /****************************************************************************** * * 函数名: main * 函数功能: 主函数 * 输入: 无 * 输出: 无 ******************************************************************************* / void main() { UsartConfiguration(); while(1) { } } /****************************************************************************** * * 函数名:UsartConfiguration() * 函数功能:设置串口 * 输入: 无 * 输出: 无 ******************************************************************************* / void UsartConfiguration() { SCON=0X50; //设置为工作方式1

51单片机与PC串口间通讯设计与分析

51单片机与PC串口间通讯设计与分析 摘要:51单片机是一种集CPU,RAM,FLASH ROM,I/O接口和定时中断系统于一体的微型计算机。只要有外加电源和晶体振荡器就可以独立完成对数字信号的算术运算,逻辑控制,串行通信等功能。由于单片机具有体积小,重量轻,功耗低,功能强,价格低,可靠性好等诸多优点,因而在仪器仪表,家用电器,数据采集等一些嵌入式控制领域被广泛应用。 当需要处理较复杂数据或需要对多个采集数据进行综合处理以及需要进行集散控制时,单片机的算术运算和逻辑运算能力显的不足,这时往往需要借助计算机系统。将单片机采集的数据通过串行口传给PC机,由PC机高级语言或数据库语言进行处理,或者实现PC 机对远程单片机进行控制。因此,实现单片机与PC机之间的远程通信更具有实际意义。 关键词:单片机、PC机、发送数据、接收数据串行通信

目录 摘要------------------------------------------------------------------(1)1、绪论---------------------------------------------------------------------------(3) 1.1单片机的发展阶段-------------------------------------------------(3) 1.2单片机的发展趋势-------------------------------------------------(3) 1.3单片机的应用模式-------------------------------------------------(4) 1.4单片机与PC串口间通讯设计的应用--------------------------(5) 2、系统设计-------------------------------------------------------------------(6) 2.1设计思路-------------------------------------------------------------(6) 2.2系统组成-------------------------------------------------------------(6) 3、单元硬件电路设计-------------------------------------------------------(7) 3.1硬件的实现过程-----------------------------------------------------(7) 3.1.1 RS-232C总线标准-------------------------------------------(8) 3.2 RS-232接口电路----------------------------------------------------(9) 3.2.1 MAX-232接口电路------------------------------------------(9) 3.3 51单片机与PC机串行通信电路-----------------------------(11) 4、软件设计------------------------------------------------------------------(12) 4.1 软件设计和硬件设计的关系-----------------------------------(12) 4.2 程序设计-----------------------------------------------------------(13) 4.3程序运行后的结果------------------------------------------------(17) 5、结论-----------------------------------------------------------------------(18) 6、参看文献------------------------------------------------------------------(19)

51单片机与PC机通信资料

《专业综合实习报告》 专业:电子信息工程 年级:2013级 指导教师: 学生:

目录 一:实验项目名称 二:前言 三:项目内容及要求 四:串口通信原理 五:设计思路 5.1虚拟串口的设置 5.2下位机电路和程序设计 5.3串口通信仿真 六:电路原理框图 七:相关硬件及配套软件 7.1 AT89C51器件简介 7.2 COMPIN简介 7.3 MAX232器件简介 7.4友善串口调试助手 7.5 虚拟串口软件Virtual Serial Port Driver 6.9八:程序设计 九:proteus仿真调试 十:总结 十一:参考文献 一:实验项目名称:

基于51单片机的单片机与PC机通信 二:前言 在国内外,以PC机作为上位机,单片机作为下位机的控制系统中,PC机通常以软件界面进行人机交互,以串行通信方式与单片机进行积极交互,而单片机系统根据被控对象配置相应的前向,后向信息通道,工作时作为主控机测对象,作为被控机接受PC机监督,指挥,定期或受命向上位机提供对象及本身的工作状态信息。 目前,随着集成电路集成度的增加,电子计算机向微型化和超微型化方向发展,微型计算机已成为导弹,智能机器人,人类宇宙和太空和太空奥妙复杂系统不可缺少的智能部件。在一些工业控制中,经常需要以多台单片机作为下位机执行对被控对象的直接控制,以一台PC机为上位机完成复杂的数据处理,组成一种以集中管理、分散控制为特点的集散控制系统。 为了提高系统管理的先进性和安全性,计算机工业自动控制和监测系统越来越多地采用集总分算系统。较为常见的形式是由一台做管理用的上位主计算机(主机)和一台直接参与控制检测的下位机(单片机)构成的主从式系统,主机和从机之间以通讯的方式来协调工作。主机的作用一是要向从机发送各种命令及参数:二是要及时收集、整理和分析从机发回的数据,供进一步的决策和报表。从机被动地接受、执行主机发来的命令,并且根据主机的要求向主机回传相应烦人实时数据,报告其运行状态。 用串行总线技术可以使系统的硬件设计大大简化、系统的体积减小、可靠性提高。同时,系统的更改和扩充极为容易。MCS-51系列单片机,由于内部带有一个可用于异步通讯的全双工的穿行通讯接口,阴齿可以很方便的构成一个主从式系统。 串口是计算机上一种非常通用的设备通讯协议,大多数计算机包容两个基于RS232的串口。串口同时也是仪器仪表设备通过用的通讯协议,很多GPIB兼容的设备也带有RS-232口。同时串口通讯协议也可以用于获取远程采集设备数据。所以,深入的理解学习和研究串口通信相关知识是非常必要的。此次毕业设计选题为“PC机与MCS-51单片机的串口通讯”,使用51单片机来实现一个主从式

51单片机串口通信,232通信,485通信,程序

51单片机串口通信,232通信,485通信,程序代码1:232通信 #include #define uchar unsigned char #define uint unsigned int uchar flag,a,i; uchar code table[]="i get"; void init() { TMOD=0X20; TH1=0XFD; TH0=0XFD; TR1=1; REN=1; SM0=0; SM1=1; EA=1; ES=1; } void main() { init();

while(1) { if(flag==1) { ES=0; for(i=0;i<6;i++) { SBUF=table[i]; while(!TI); TI=0; } SBUF=a; while(!TI); TI=0; ES=1; flag=0; } } } void ser() interrupt 4 {

RI=0; a=SBUF; flag=1; } 代码2:485通信 #include #include"1602.h" #define uchar unsigned char #define uint unsigned int unsigned char flag,a,i; uchar code table[]="i get "; void init() { TMOD=0X20; TH1=0Xfd; TL1=0Xfd; TR1=1; REN=1; SM0=0; SM1=1; EA=1; ES=1;

} void main() { init_1602(); init(); while(1) { if(flag==1) { display(0,a); } } } void ser() interrupt 4 { RI=0; a=SBUF; flag=1; } Love is not a maybe thing. You know when you love someone.

基于51单片机的串口通讯系统课程设计论文

引言 人类社会已经进入信息化时代,信息社会的发展离不开电子产品的进步。单片机的出现使人类实现利用编程来代替复杂的硬件搭建电路,它靠程序运行,并且可以修改。通过不同的程序实现不同的功能,尤其是特殊的独特的一些功能,这是别的器件需要费很大力气才能做到的,有些则是花大力气也很难做到的。一个不是很复杂的功能要是用美国50年代开发的74系列,或者60年代的CD4000系列这些纯硬件来搞定的话,电路一定是一块大PCB板!但是如果要是用美国70年代成功投放市场的系列单片机,结果就会有天壤之别!只因为单片机的通过你编写的程序可以实现高智能,高效率,以及高可靠性! 单片机应用的主要领域非常广,智能化家用电器、办公自动化设备商业营销设备、工业自动化控制、智能化仪表、智能化通信产品、汽车电子产品、航空航天系统和国防军事、尖端武器等领域。 单片机应用的意义不仅在于它的广阔围及所带来的经济效益,更重要的意义在于,单片机的应用从根本上改变了控制系统传统的设计思想和设计方法。以前采用硬件电路实现的大部分控制功能,正在用单片机通过软件方法来实现。以前自动控制中的PID调节,现在可以用单片机实现具有智能化的数字计算控制、模糊控制和自适应控制。这种以软件取代硬件并能提高系统性能的控制技术称为微控技术。随着单片机应用的推广,微控制技术将不断发展完善。 电路的集成化不仅对硬件电路的设计相关,与电路的布局同样相关。印刷版的出现使得电路产品更加规,体积更小。Protel99se是一款专业的绘制电路及印刷版的软件,近年来的不断升级使得其功能更加完善,出现了Altium Designer 、Protel DXP等升级版本。

汇编语言实现串口通信(PC和单片机间)教学文案

8.用C语言或汇编语言实现串口通信(PC和单片机间) 上位机和下位机的主从工作方式为工业控制及自动控制系统所采用。由于PC 机分析能力强、处理速度更快及单片机使用灵活方便等特点,所以一般都将PC 机作为上位机,单片机作为下位机,二者通过RS-232或者RS-485接收、发送数据和传送指令。单片机可单独处理数据和控制任务,同时也将数据传送给PC机,由PC机对这些数据进行处理或显示 1 硬件电路的设计 MCS-51单片机有一个全双工的串行通讯口UART,利用其RXD和TXD与外界进行通信,其内部有2个物理上完全独立的接收、发送缓冲器SBUF,可同时发送和接收数据。所以单片机和PC机之间可以方便地进行串口通讯。单片机串口有3条引线:TXD(发送数据),RXD(接收数据)和GND(信号地)。因此在通信距离较短时可采用零MODEM方式,简单三连线结构。IBM-PC机有两个标准的RS-232串行口,其电平采用的是EIA电平,而MCS-51单片机的串行通信是由TXD(发送数据)和RXD(接收数据)来进行全双工通信的,它们的电平是TTL电平;为了PC机与MCS-51 机之间能可靠地进行串行通信,需要用电平转换芯片,可以采用MAXIM公司生产的专用芯片MAX232进行转换。电路如图1所示。硬件连接时,可从MAX232中的2路发送器和接收器中任选一路,只要注意发送与接收的引脚对应关系即可。接口电路如图3.5所示。

总体设计按照整体设计思路方案绘制原理图如下所示: 2 系统软件设计 软件设计分上位机软件设计和下位机软件设计。这两部分虽然在不同的机器上编写和运行,但它们要做的工作是对应的:一个发送,另一个接收。为了保证数据通信的可靠性,要制定通信协议,然后各自根据协议分别编制程序。现约定通信协议如下:PC机和单片机都可以发送和接收。上位机和下位机均采用查询方式发送控字符和数据、中断方式接收控制字符和数据。采用RS-232串口异步通信, 1上位PC机与下位单片机异步串行通信的通信协议

单片机串行通信实验

单片机实验报告 实验名称:串行通信实验 姓名:高知明 学号:110404320 班级:通信3 实验时间:2014-6-11 南京理工大学紫金学院电光系

一、实验目的(四号+黑体) 1、理解单片机串行口的工作原理; 2、学习使用单片机的TXD\RXD口; 3、了解MAX232芯片的作用; 二、实验原理 MCS-51单片机内部集成有一个UART,用于全双工方式的串行通信,可以发送、接收数据。他有两个相互独立的接收、发送缓冲器,这两个缓冲器同名(SBUF),共用一个地址号(99H)。发送缓冲器只能写入,不能读出,接受缓冲器只能读出,不能写入。要发送的字节数据直接写入发送缓冲器。SBUF=a;当UART接收到数据后,CPU从接收缓冲器中读取数据,a=SBUF;串行口内部有两个移位寄存器,一个用于串行发送,一个用于串行接收。定时器T1作为波特率发生器,波特率发生器的溢出信号昨接受或发送移位寄存器的位移时钟。TI与RI分别为发送完数据的中断标志,用来想CPU发中断请求。 三、实验内容 1、发送信号 1)C51程序: #include void main(void) { SCON=0X40; //设置串口为接受,REN=0 PCON=0; //波特率不倍频 REN=1; TMOD=0X20; //启动定时器1的方式2 TH1=0XFD; TL1=0XFD; //初值:0XFD TR1=1; //启动定时器1 while(1) {SBUF='U'; while(!TI); TI=0; //发送中断清0 }} 2)硬件图:

2、接受装置: 1)C51程序: #include char s[32]; void main(void) { char a,b=0; SCON=0X40; //设置串口为接受,REN=0 PCON=0; //波特率不倍频 REN=1; TMOD=0X20; //启动定时器1的方式2 TH1=0XFD; TL1=0XFD; //初值:0XFD TR1=1; //启动定时器1 a=32; for(;b

第06章单片机串行通信系统习题解答

第6章单片机串行通信系统习题解答 一、填空题 1.在串行通信中,把每秒中传送的二进制数的位数叫波特率。 2.当SCON中的M0M1=10时,表示串口工作于方式 2 ,波特率为 fosc/32或fosc/64 。 3.SCON中的REN=1表示允许接收。 4.PCON 中的SMOD=1表示波特率翻倍。 5.SCON中的TI=1表示串行口发送中断请求。 6.MCS-51单片机串行通信时,先发送低位,后发送高位。 7.MCS-51单片机方式2串行通信时,一帧信息位数为 11 位。 8.设T1工作于定时方式2,作波特率发生器,时钟频率为,SMOD=0,波特率为时,T1的初值为 FAH 。 9.MCS-51单片机串行通信时,通常用指令 MOV SBUF,A 启动串行发送。 10.MCS-51单片机串行方式0通信时,数据从引脚发送/接收。 二、简答题 1.串行口设有几个控制寄存器它们的作用是什么 答:串行口设有2个控制寄存器,串行控制寄存器SCON和电源控制寄存器PCON。其中PCON中只有的SMOD与串行口的波特率有关。在SCON中各位的作用见下表: 2.MCS-51单片机串行口有几种工作方式各自的特点是什么 答:有4种工作方式。各自的特点为:

3.MCS-51单片机串行口各种工作方式的波特率如何设置,怎样计算定时器的初值 答:串行口各种工作方式的波特率设置: 工作方式O :波特率固定不变,它与系统的振荡频率fosc 的大小有关,其值为fosc/12。 工作方式1和方式3:波特率是可变的,波特率=(2SMOD/32)×定时器T1的溢出率 工作方式2:波特率有两种固定值。 当SM0D=1时,波特率=(2SM0D/64)×fosc=fosc/32 当SM0D=0时,波特率=(2SM0D/64)×fosc=fosc/64 计算定时器的初值计算: 4.若fosc = 6MHz ,波特率为2400波特,设SMOD =1,则定时/计数器T1的计数初值为多少并进行初始化编程。 答:根据公式 N=256-2SMOD ×fosc /(2400×32×12)= ≈243 =F3H TXDA: MOV TMOD,#20H ;置T1定时器工作方式2 MOV TL1,#0F3H ;置T1计数初值. MOV TH1,#0F3H B f B f N OSC SMOD OSC SMOD ??-=???-=384225612322256

51单片机与串口通信(含代码)

51单片机与串口通信(含代码) 串口调试 1. 发送:向总线上发命令 2. 接收:从总线接收命令,并分析是地址还是数据。 3. 定时发送:从内存中取数并向主机发送. 经过调试,以上功能基本实现,目前可以通过上位机对单片机进行实时控制。 程序如下: //这是一个单片机C51串口接收(中断)和发送例程,可以用来测试51单片机的中断接收 //和查询发送,另外我觉得发送没有必要用中断,因为程序的开销是一样的 #i nclude #i nclude #i nclude #define INBUF_LEN 4 //数据长度 unsigned char inbuf1[INBUF_LEN]; unsigned char checksum,count3 , flag,temp,ch; bit read_flag=0; sbit cp=P1^1; sbit DIR=P1^2; int i; unsigned int xdata *RAMDATA; /*定义RAM地址指针*/ unsigned char a[6] ={0x11,0x22,0x33,0x44,0x55,0x66} ; void init_serialcomm(void) { SCON=0x50; //在11.0592MHz下,设置串行口波特率为9600,方式1,并允许接收

PCON=0x00; ES=1; TMOD=0x21; //定时器工作于方式2,自动装载方式TH0=(65536-1000)%256; TL0=(65536-1000)/256; TL1=0xfd; TH1=0xfd; ET0=1; TR0=1; TR1=1; // TI=0; EA=1; // TI=1; RAMDATA=0x1F45; } void serial () interrupt 4 using 3 { if(RI) { RI=0; ch=SBUF; TI=1; //置SBUF空 switch(ch) { case 0x01 :printf("A"); TI=0;break; case 0x02 :printf("B"); TI=0;break; case 0x03 :printf("C"); TI=0;break; case 0x04 :printf("D"); TI=0;break; default :printf("fg"); TI=0;break; } }

串行口通信实验 单片机实验报告

实验六串行口通信实验 一、实验内容 实验板上有RS-232接口,将该接口与PC机的串口连接,可以实现单片机与PC机的串行通信,进行双向数据传输。本实验要求当PC机向实验板发送的数字在实验板上显示,按实验板键盘输入的数字在PC机上显示,并用串口助手工具软件进行调试。 二、实验目的 掌握单片机串行口工作原理,单片机串行口与PC机的通信工作原理及编程方法。 三、实验原理 51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通信。进行串行通讯信要满足一定的条件,比如电脑的串口是RS232电平(-5~-15V为1,+5~+15V为0),而单片机的串口是TTL电平(大于+2.4V为1,小于- 0.7V为0),两者之间必须有一个电平转换电路实现RS232电平与TTL电平的相互转换。 为了能够在PC机上看到单片机发出的数据,我们必须借助一个Windows软件进行观察,这里我们可以使用免费的串口调试程序SSCOM32或Windows的超级终端。 单片机串行接口有两个控制寄存器:SCON和PCON。串行口工作在方式0时,可通过外接移位寄存器实现串并行转换。在这种方式下,数据为8位,只能从RXD端输入输出,TXD端用于输出移位同步时钟信号,其波特率固定为振荡频率的1/12。由软件置位串行控制寄存器(SCON)的REN位后才能启动,串行接收,在CPU将数据写入SBUF寄存器后,立即启动发送。待8位数据输完后,硬件将SCON寄存器的T1位置1,必须由软件清零。 单片机与PC机通信时,其硬件接口技术主要是电平转换、控制接口设计和远近通信接口的不同处理技术。在DOS操作环境下,要实现单片机与微机的通信,只要直接对微机接口的通信芯片8250进行口地址操作即可。WINDOWS的环境下,由于系统硬件的无关性,不再允许用户直接操作串口地址。如果用户要进行串行通信,可以调用WINDOWS的API 应用程序接口函数,但其使用较为复杂,可以使用KEILC的通信控件解决这一问题。 四、实验电路 [参考学习板说明书P27]

51单片机实现的485通讯程序

51单片机实现的485通讯程序 #ifndef __485_C__ #define __485_C__ #include #include #define unsigned char uchar #define unsigned int uint /* 通信命令*/ #define __ACTIVE_ 0x01 // 主机询问从机是否存在 #define __GETDATA_ 0x02 // 主机发送读设备请求 #define __OK_ 0x03 // 从机应答 #define __STATUS_ 0x04 // 从机发送设备状态信息 #define __MAXSIZE 0x08 // 缓冲区长度 #define __ERRLEN 12 // 任何通信帧长度超过12则表示出错uchar dbuf[__MAXSIZE]; // 该缓冲区用于保存设备状态信息uchar dev; // 该字节用于保存本机设备号 sbit M_DE = P1^0; // 驱动器使能,1有效 sbit M_RE = P1^1; // 接收器使能,0有效

void get_status(); // 调用该函数获得设备状态信息,函数代码未给出 void send_data(uchar type, uchar len, uchar *buf); // 发送数据帧 bit recv_cmd(uchar *type); // 接收主机命令,主机请求仅包含命令信息 void send_byte(uchar da); // 该函数发送一帧数据中的一个字节,由send_data()函数调用void main() { uchar type; uchar len; /* 系统初始化*/ P1 = 0xff; // 读取本机设备号 dev = (P1>>2); TMOD = 0x20; // 定时器T1使用工作方式2 TH1 = 250; // 设置初值 TL1 = 250; TR1 = 1; // 开始计时 PCON = 0x80; // SMOD = 1 SCON = 0x50; // 工作方式1,波特率9600bps,允许接收 ES = 0; // 关闭串口中断 IT0 = 0; // 外部中断0使用电平触发模式 EX0 = 1; // 开启外部中断0

基于51单片机的双机串行通信

河南机电高等专科学校2015-2016学年第1学期通信实训报告 系别:电子通信工程系 班级:xxxxxx 学号:13xxxxxxxxx 姓名:xxxxxxx 2015年12月

基于51单片机的双机串行通信 摘要:串行通信是单片机的一个重要应用,本次课程设计就是要利用单片机来完成一个系统,实现爽片单片机床航通信,通信的结果使用数码管进行显示,数码管采用查表方式显示,两个单片机之间采用RS-232进行双击通信。在通信过程中,使用通信协议进行通信。 关键字:通信双机 一、总体设计 1设计目的 1.通过设计相关模块充分熟悉51单片机的最小系统的组成和原理; 2.通过软件仿真熟悉keil和proteus的配合使用; 3.通过软件编程熟悉51的C51编程规范; 4.通过实际的硬件电路搭设提高实际动手能力。 2.设计要求: 两片单片机之间进行串行通信,A机将0x06发送给B机,在B机的数码管上静态显示1,B机将0~f动态循环发送到A机,并在其数码管上显示。 3.设计方案: 软件部分,通过通信协议进行发送接收,A机先送0x06(B机数码管显示1)给B机(B机静态显示),当从机接收到后,向B机发送代表0-f的数码管编码数组。B收到0x06后就把数码表TAB[16]中的数据送给从机。 二、硬件设计

1.51单片机串行通信功能 计算机与外界的信息交换称为通信,常用的通信方式有两种:并行通信和串行通信。51单片机用4个接口与外界进行数据输入与数据输出就是并行通信,并行通信的特点是传输信号的速度快,但所用的信号线较多,成本高,传输的距离较近。串行通信的特点是只用两条信号线(一条信号线,再加一条地线作为信号回路)即可完成通信,成本低,传输的距离较远。 51单片机的串行接口是一个全双工的接口,它可以作为UART(通用异步接受和发送器)用,也可以作为同步移位寄存器用。51单片机串行接口的结构如下: 图1.AT89C51(52) (1)数据缓冲器(SBUF) 接受或发送的数据都要先送到SBUF缓存。有两个,一个缓存,另一个接受,

51单片机usart通信程序(有CRC校验)

#include #include #include #define uchar unsigned char #define uint unsigned int //uchar const table[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; uchar p[]={0x01,0x03,0x25,0x23,0x00,0x01}; /* CRC 高位字节值表*/ uchar const crchi[] = { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0/**/, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 } ; /* CRC低位字节值表*/ uchar const crclo[] = { 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06/**/, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,

单片机串口通信C程序及应用实例

一、程序代码 #include//该头文件可到https://www.360docs.net/doc/8118089894.html,网站下载#define uint unsigned int #define uchar unsigned char uchar indata[4]; uchar outdata[4]; uchar flag; static uchar temp1,temp2,temp3,temp; static uchar R_counter,T_counter; void system_initial(void); void initial_comm(void); void delay(uchar x); void uart_send(void); void read_Instatus(void); serial_contral(void); void main() { system_initial(); initial_comm(); while(1) { if(flag==1) { ES = 0; serial_contral(); ES = 1; flag = 0; } else read_Instatus(); } } void uart_send(void) { for(T_counter=0;T_counter<4;T_counter++) { SBUF = outdata[T_counter]; while(TI == 0);

TI = 0; } T_counter = 0; } uart_receive(void) interrupt 4 { if(RI) { RI = 0; indata[R_counter] = SBUF; R_counter++; if(R_counter>=4) { R_counter = 0; flag = 1; } } } void system_initial(void) { P1M1 = 0x00; P1M0 = 0xff; P1 = 0xff; //初始化为全部关闭 temp3 = 0x3f;//初始化temp3的值与六路输出的初始值保持一致 temp = 0xf0; R_counter = 0; T_counter = 0; } void initial_comm(void) { SCON = 0x50; //设定串行口工作方式:mode 1 ; 8-bit UART,enable ucvr TMOD = 0x21; //TIMER 1;mode 2 ;8-Bit Reload PCON = 0x80; //波特率不加倍SMOD = 1 TH1 = 0xfa; //baud: 9600;fosc = 11.0596 IE = 0x90; // enable serial interrupt TR1 = 1; // timer 1 RI = 0; TI = 0; ES = 1; EA = 1; }

基于51单片机串行通信的无线发射极和接收机设计

基于51单片机串行通信的无线发射极和接收机设计---- 1 概述 1.1 课题的目的、背景和意义 最近几年来,由于无线接入技术需求日益增大,以及数据交换业务(如因特 网、电子邮件、数据文件传输等)不断增加,无线通信和无线网络均呈现出指数增 加的趋势。有力的推动力无线通信向高速通信方向发展。然而,工业、农业、车载 电子系统、家用网络、医疗传感器和伺服执行机构等无线通信还未涉足或者刚刚涉 足的领域,这些领域对数据吞吐量的要求很低,功率消耗也比现有标准提供的功率 消耗低。此外,为了促使简单方便的,可以随意使用的无线装置大量涌现,需要在 未来个人活动空间内布置大量的无线接入点,因而低廉的价格将起到关键作用。为 降低元件的价格,以便这些装置批量生产,所以发展了一个关于这种网络的标准方案。Zigbee就是在这一标准下一种新兴的短距离、低功耗、低数据传输的无线网 络技术,它是一种介于无线标记技术和蓝牙之间的技术方案。 对于这种短距离、低功耗、低数据传输无线技术,它不仅在工业、农业、军 事、环境、医疗等传统领域有着巨大的应用价值,未来应用中还可以涉及人类日常 生活和社会生产活动的所有领域。由于各方面的制约,这种技术的大规模商业应用 还有待时日,但已经显示出了非凡的应用价值,相信随着相关技术的发展和推进, 一定会得到更广泛应用。 1.2国内外无线技术相关现状及Zigbee现状 无线通信从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段: 第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短波频及电子 管技术,至该阶段末期出现才出现150MHVHF单工汽车公用移动电话系统MTS。

相关文档
最新文档