浙教版七年级数学下册期中试卷及答案
浙教版数学七年级下学期《期中考试试卷》含答案

浙教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一,单项选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,∠1和∠2不是同位角的是()A. B.C. D.2.下列方程中2x−3y=1,x+y2=5,1x −1y=2,12x−12y=z,不是二元一次方程的有几个()A. 1个B. 2个C. 3个D. 4个3.下列计算,正确的是()A. a2⋅a3=a6B. 3a2−a2=2C. a8÷a2=a4D. (−2a)3=−8a34.若x2+mx+14是一个完全平方式,那么m的值是()A. 1B. ±1C. 14D. ±145.下列计算中,正确的是()A. (a−b)2=a2−b2B. (−x−y)(−x+y)=−x2−y2C. (−y−3)2=y2−6y+9D. (−a−3b)(a−3b)=−a2+9b26. 如图1所示,把一张矩形纸片沿EF 折叠后,点D ,C 分别落在点D’,C’的位置.若,则∠AED’等于( )A. 70°B. 65°C. 50°D. 25°7. 如图,已知直线a//b,∠1=40°,∠2=100°,则∠3等于( )A. 40°B. 60°C. 80°D. 100°8. 已知直线l 1// l 2,一块含30°角的直角三角板如图所示放置,∠1=35°,则∠2等于( )A. 25°B. 35°C. 40°D. 45°9. 若关于x ,y 的二元一次方程组{x −y =4kx +y =2k 的解也是二元一次方程2x −y =−7的解,则k 的值是( ) A. −1 B. 0 C. 1 D. 210. 用如图1中的长方形和正方形纸板作侧面和底面,做成如图2的竖式和横式的两种无盖纸盒.现在仓库里有m 张长方形纸板和n 张正方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m +n 的值可能是( )A. 2017B. 2018C. 2019D. 2020二、填空题(本大题共7小题,每小题3分,共21分)11. 若(x −2)0有意义,则x 的取值范围是______ .12. 计算:(2x −1)(x +3)=__________;13. 将一副三角板(含30°、45°、60°、90°角)按如图所示的位置摆放在直尺上,则∠1的度数为______度.14. 如图,已知AB//CD//EF ,FC 平分∠AFE,∠C =25°,则∠A的度数是_________.15.16.17. 若实数a 、b 、c 满足√b −2a +4+|a +b −5|=√c −2+√2−c ,则a 2+b 2+c 2的值是__________________.18. 若m −1m =3,则m 2+1m 2=________.19. 若关于x 、y 的二元一次方程组{3x −my =52x +ny =6的解是{x =1y =2,则关于a 、b 的二元一次方程组{3(a +b )−m (a −b )=52(a +b )+n (a −b )=6的解是_____. 三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分)20. 解方程组{x−16−2−y3=12(x −1)=13−(y +2).21. 计算: 22. (1)(4a −b 2)(−2b); (2)(15x 2y −10xy 2)÷5xy .23.化简求值:(2x−y)13÷[(2x−y)3]2÷[(y−2x)2]3,其中x=2,y=−1.24.将下列推理过程补充完整,并填写理由.如图:(1)∵∠A=(已知),∴AC//ED().(2)∵∠2=(已知),∴AC//ED().(3)∵∠A+=180∘(已知),∴AB//FD().(4)∵AB//(已知),∴∠2+∠AED=180∘().(5)∵AC//(已知),∴∠C=∠1().25.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.试说明AB//CD.26.宁波杨梅季,本地慈溪杨梅在宁波人的心中是一种家乡的味道.今年是杨梅大年,某杨梅种植大户为了能让居民品尝到物美价廉的杨梅,对1000斤的杨梅进行打包方式优惠出售,打包方式及售价如下:圆篮每篮8斤,售价160元;方篮每篮18斤,售价270元.假如用这两种打包方式恰好全部装完这1000斤杨梅.(1)若销售a篮圆篮和a篮方篮共收入8600元,求a的值;(2)当销售总收入为16760元时,①若这批杨梅全部售完,请问圆篮共包装了多少篮,方篮共包装了多少篮;②若杨梅大户留下b(b>0)篮圆篮送人,其余的杨梅全部售出,求b的值.答案与解析一,单项选择题(本大题共10小题,每小题3分,共30分)27.下列图形中,∠1和∠2不是同位角的是()A. B.C. D.[答案]C[解析][分析]本题考查了同位角、内错角、同旁内角的定义,分清楚这三者的概念是解此题的关键.根据同位角的定义,在两条被截直线的同方,第三条直线的同侧,即为同位角.[解答]解:A.∠1和∠2是同位角,不合题意;B.∠1和∠2是同位角,不合题意;C.∠1和∠2不是同位角,符合题意;D.∠1和∠2是同位角,不合题意;故选C.28.下列方程中2x−3y=1,x+y2=5,1x −1y=2,12x−12y=z,不是二元一次方程的有几个()A. 1个B. 2个C. 3个D. 4个[答案]C[解析][分析]本题考查了二元一次方程的定义,利用二元一次方程必须符合以下三个条件是解题关键,方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程.根据二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程,可得答案.[解答]解:2x−3y=1是二元一次方程,x+y2=5不是二元一次方程,1 x −1y=2是分式方程,不是二元一次方程,1 2x−12y=z是三元一次方程,不是二元一次方程,故选C.29.下列计算,正确的是()A. a2⋅a3=a6B. 3a2−a2=2C. a8÷a2=a4D. (−2a)3=−8a3 [答案]D[解析]解:(A)原式=a5,故A错误;(B)原式=2a2,故B错误;(C)原式=a6,故C错误;故选:D.根据整式运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.30.若x2+mx+14是一个完全平方式,那么m的值是()A. 1B. ±1C. 14D. ±14[答案]B[解析][分析]此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.利用完全平方公式的结构特征判断即可确定出m的值.[解答]解:∵x2+mx+1是一个完全平方式,4∴m=±1,故选B31.下列计算中,正确的是()A. (a−b)2=a2−b2B. (−x−y)(−x+y)=−x2−y2C. (−y−3)2=y2−6y+9D. (−a−3b)(a−3b)=−a2+9b2 [答案]D[解析]解:∵(a−b)2=a2−2ab+b2,故选项A错误;∵(−x−y)(−x+y)=x2−y2,故选项B错误;∵(−y−3)2=y2+6y+9,故选项C错误;∵(−a−3b)(a−3b)=−a2+9b2,故选项D正确;故选:D.根据各个选项中的式子,可以计算出正确的结果,本题得以解决.本题考查平方差公式、完全平方公式,解答本题的关键是明确它们各自的计算方法.32.如图1所示,把一张矩形纸片沿EF折叠后,点D,C分别落在点D’,C’的位置.若,则∠AED’等于()A. 70°B. 65°C. 50°D. 25°[答案]C[解析][分析]本题考查了平行线的性质,翻折变换的性质,熟记性质是解题的关键.首先根据AD//BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠DEF=∠FED′,最后求得∠AED′的大小.[解答]解∵AD//BC,∴∠DEF=∠EFB=65°,由折叠的特点知:∠D′EF=∠DEF=65°,∴∠AED′=180°−65°×2=50°.故选C.33.如图,已知直线a//b,∠1=40°,∠2=100°,则∠3等于()A. 40°B. 60°C. 80°D. 100°[答案]B[解析][分析]本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.过点A作AB//a,故可得出AB//a//b,由平行线的性质即可得出结论.[解答]解:过点A作AB//a,∵直线a//b,∠1=40°,∠2=100°,∴AB//a//b,∠DAB=∠1=40°,∴∠3=∠BAC=100°−40°=60°.故选B.34.已知直线l1//l2,一块含30°角的直角三角板如图所示放置,∠1=35°,则∠2等于()A. 25°B. 35°C. 40°D. 45°[答案]A[解析]解:∵∠3是△ADG 的外角,∴∠3=∠A +∠1=30°+35°=65°,∵l 1//l 2,∴∠3=∠4=65°,∵∠4+∠EFC =90°,∴∠EFC =90°−65°=25°,∴∠2=25°.故选:A .先根据三角形外角的性质求出∠3的度数,再由平行线的性质得出∠4的度数,由直角三角形的性质即可得出结论.本题考查的是平行线的性质及三角形外角的性质,用到的知识点为:两直线平行,同位角相等.35. 若关于x ,y 的二元一次方程组{x −y =4kx +y =2k 的解也是二元一次方程2x −y =−7的解,则k 的值是( ) A. −1B. 0C. 1D. 2[答案]A[解析][分析] 此题考查了二元一次方程组的解,以及二元一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.把k 看做已知数表示出方程组的解,代入已知方程计算即可求出k 的值.[解答]解:{x −y =4k ①x +y =2k ②, ①+②得:2x =6k ,解得:x =3k ,②−①得:2y =−2k ,解得:y =−k ,代入2x −y =−7得:6k +k =−7,解得:k =−1故选:A .36. 用如图1中的长方形和正方形纸板作侧面和底面,做成如图2的竖式和横式的两种无盖纸盒.现在仓库里有m 张长方形纸板和n 张正方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m +n 的值可能是( )A. 2017B. 2018C. 2019D. 2020[答案]D[解析][分析] 本题考查了二元一次方程组的应用,根据系数的特点,观察出所需两种纸板的张数的和正好是5的倍数是解题的关键,也是解题的突破口.设做竖式和横式的两种无盖纸盒分别为x 个、y 个,然后根据所需长方形纸板和正方形纸板的张数列出方程组,再根据x 、y 的系数表示出m +n 并判断m +n 为5的倍数,然后选择答案即可.[解答]解:设做竖式和横式的两种无盖纸盒分别为x 个、y 个,根据题意得{4x +3y =m x +2y =n ,两式相加得,m +n =5(x +y),∵x 、y 都是正整数,∴m +n 是5的倍数,∵2017、2018、2019、2020四个数中只有2020是5的倍数,∴m +n 的值可能是2020.故选D .二、填空题(本大题共7小题,每小题3分,共21分)37.若(x−2)0有意义,则x的取值范围是______ .[答案]x≠2[解析][试题解析][分析]本题考查了零指数幂,利用非零的零次幂等于1是解题关键.根据非零的零次幂等于1,可得答案.[解答]解:由题意,得x−2≠0,解得x≠2,故答案为:x≠2.38.计算:(2x−1)(x+3)=__________;[答案]2x2+5x−3[解析][分析]本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可解答.[解答]解:原式=2x2+6x−x−3=2x2+5x−3故答案是:2x2+5x−3.39.将一副三角板(含30°、45°、60°、90°角)按如图所示的位置摆放在直尺上,则∠1的度数为______度.40.41.[答案]75[解析]解:∵∠2+60°+45°=180°,∴∠2=75°.∵直尺的上下两边平行,∴∠1=∠2=75°.故答案为:75.由平角等于180°结合三角板各角的度数,可求出∠2的度数,由直尺的上下两边平行,利用“两直线平行,同位角相等”可得出∠1的度数.本题考查了平行线的性质,牢记“两直线平行,同位角相等”是解题的关键.42.如图,已知AB//CD//EF,FC平分∠AFE,∠C=25°,则∠A的度数是_________.43.44.[答案]50°[解析][分析]本题考查了平行线的性质,角平分线的定义,属于基础题.根据平行线的性质得到∠A=∠AFE,再根据角平分线的定义得到∠AFE=2∠C=50°,由此可得答案.[解答]解:∵CD//EF,∠C=25°,∴∠CFE=∠C=25°,又∵FC平分∠AFE,∴∠AFE=2∠CFE=50°,又∵AB//CD,∴∠A=∠AFE=50°.故答案为50°.45. 若实数a 、b 、c 满足√b −2a +4+|a +b −5|=√c −2+√2−c ,则a 2+b 2+c 2的值是__________________.[答案]解:由题意得c −2≥0且2−c ≥0,∴c =2,∴√b −2a +4+|a +b −5|=0,∴{b −2a +4=0,a +b −5=0,∴{a =3,b =2,∴a 2+b 2+c 2=32+22+22=17.[解析]本题考查了二次根式非负数的性质,绝对值的非负性,二元一次方程组的应用,根据非负数的性质和被开方数非负数列出关于a 、b 的二元一次方程组,然后求出a 、b 、c 的值,再代入代数式进行计算即可得解.46. 若m −1m =3,则m 2+1m 2=________.[答案]11[解析][分析]本题考查了完全平方公式的应用及代数式的值.解题的关键是根据代数式的特点利用完全平方公式将(m −1m)2计算出来即可求出m 2+1m 2的值. [解答]解:∵m −1m =3,∴(m −1m)2=9, ∴m 2−2+1m 2=9,∴m 2+1m 2=11.故答案为11.47. 若关于x 、y 的二元一次方程组{3x −my =52x +ny =6的解是{x =1y =2,则关于a 、b 的二元一次方程组{3(a +b )−m (a −b )=52(a +b )+n (a −b )=6的解是_____.[答案]{a =32b =−12[解析][分析] 此题考查了二元一次方程组的解,加减消元法解二元一次方程组,方程组的解即为能使方程组中两方程成立的未知数的值,将{x =1y =2代入{3x −my =52x +ny =6求出m 与n 的值,再将m 与n 的值代入所求不等式组即可求出解.[解答]解:将{x =1y =2代入{3x −my =52x +ny =6得: {3−2m =52+2n =6, 解得:{m =−1n =2, 将{m =−1n =2代入{3(a +b )−m (a −b )=52(a +b )+n (a −b )=6得: {3(a +b )+(a −b )=52(a +b )+2(a −b )=6, 解得:{a =32b =−12.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分)48. 解方程组{x−16−2−y 3=12(x −1)=13−(y +2). [答案]解:方程组整理得:{x +2y =11①2x +y =13②, ①×2−②得:3y =9,解得y =3,把y =3代入①得:x +6=11,解得x =5,所以方程组的解为:{x =5y =3. [解析]方程组整理后,利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.49. 计算:50. (1)(4a −b 2)(−2b);51. (2)(15x 2y −10xy 2)÷5xy .[答案]解:(1)原式=−8ab+2b3;(2)原式=15x2y÷5xy−10xy2÷5xy=3x−2y.[解析](1)根据单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加进行计算即可;(2)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加进行计算即可.此题主要考查了整式的乘除,关键是掌握计算法则.52.化简求值:(2x−y)13÷[(2x−y)3]2÷[(y−2x)2]3,其中x=2,y=−1.[答案]解:原式=(2x−y)13÷(2x−y)6÷(2x−y)6 =(2x−y)7÷(2x−y)6=2x−y,当x=2,y=−1时,原式=2×2−(−1)=5.[解析]略53.将下列推理过程补充完整,并填写理由.如图:(1)∵∠A=(已知),∴AC//ED().(2)∵∠2=(已知),∴AC//ED().(3)∵∠A+=180∘(已知),∴AB//FD().(4)∵AB//(已知),∴∠2+∠AED=180∘().(5)∵AC//(已知),∴∠C=∠1().[答案]解:(1)∠BED,同位角相等,两直线平行;(2)∠DFC,内错角相等,两直线平行;(3)∠AFD,同旁内角互补,两直线平行;(4)DF,两直线平行,同旁内角互补;(5)ED,两直线平行,同位角相等.[解析]略54.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.试说明AB//CD.[答案]解:∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又∵∠C=∠1,∴∠C=∠2,∴AB//CD.[解析]略55. 宁波杨梅季,本地慈溪杨梅在宁波人的心中是一种家乡的味道.今年是杨梅大年,某杨梅种植大户为了能让居民品尝到物美价廉的杨梅,对1000斤的杨梅进行打包方式优惠出售,打包方式及售价如下:圆篮每篮8斤,售价160元;方篮每篮18斤,售价270元.假如用这两种打包方式恰好全部装完这1000斤杨梅.(1)若销售a 篮圆篮和a 篮方篮共收入8600元,求a 的值;(2)当销售总收入为16760元时,①若这批杨梅全部售完,请问圆篮共包装了多少篮,方篮共包装了多少篮; ②若杨梅大户留下b(b >0)篮圆篮送人,其余的杨梅全部售出,求b 的值.[答案]解:(1)由题意得160a +270a =8600,解得a =20;(2)①设圆篮共包装了x 篮,方篮共包装了y 篮,则{8x +18y =1000,160x +270y =16760解得{x =44y =36, 答:圆篮共包装了44篮,方篮共包装了36篮;②由8x +18y =1000得:x =125−94y ,则160(125−94y −b)+270y =16760,化简得y =36−169b ,因为x ,y ,b 都是整数,且x ⩾0,y ⩾0,b >0,解得b =18或9.[解析]本题考查了二元一次方程组及二元一次方程的应用,解答本题的关键是仔细审题,理解题目所述的意思,转化为方程思想求解,难度一般.(1)根据收入共8600元,可得出一元一次方程,解出即可;(2)①设圆篮共包装了x篮,方篮共包装了y篮,根据等量关系可得出方程组,解出即可;②根据①的关系可以y表示出x,减去留下的b篮圆篮装,再由销售总收入为16760元,可得出方程,解出即可.。
浙教版七年级下册数学期中考试试题附答案

浙教版七年级下册数学期中考试试卷一、单选题1.将如图所示的图案通过平移后可以得到的图案是()A .B .C .D .2.下列是二元一次方程的是()A .310x =B .22x y =C .12y x +=D .80x y +=3.如果两个不相等的角互为补角,那么这两个角()A .都是锐角B .都是钝角C .一个锐角,一个钝角D .以上答案都不对4.以23x y =-⎧⎨=⎩为解的二元一次方程是()A .2x -3y=-13B .y=2x+5C .y -4x=5D .x=y -35.下列计算正确的是().A .347235x x x ⋅=B .325428a a a ⋅=C .336235a a a +=D .3331243x x x ÷=6.若34x =,97y =,则23x y -的值为().A .47B .74C .4-D .277.把一张对面互相平行的纸条折成如图所示那样,EF 是折痕,若∠EFB=32°则下列结论正确的有()(1)∠C′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.A .1个B .2个C .3个D .4个8.如图,有下列说法:①若DE //AB ,则∠DEF +∠EFB =180°;②能与∠DEF 构成内错角的角的个数有2个;③能与∠BFE 构成同位角的角的个数有1个;④能与∠C 构成同旁内角的角的个数有4个.其中结论正确的个数有()个A .1B .2C .3D .49.已知a m =6,a n =3,则a 2m ﹣3n 的值为()A .43B .34C .2D .910.如图,若△DEF 是由△ABC 经过平移后得到,已知A ,D 之间的距离为1,CE =2,则EF 是()A .1B .2C .3D .4二、填空题11.最薄的金箔的厚度为0.000091mm ,将0.000091用科学记数法表示为_______.12.已知24x y +=,用关于x 的代数式表示y ,则y =______.13.计算:()()202020210.1258-⨯-=______.14.如图,∠1=80°,∠2=100°,∠3=76°,则∠4的度数是______度.15.若方程组342x y +=,25x y -=与36ax by -=,25ax by +=有相同的解,则a =______,b =______.16.如图,∠C =90°,将直角三角形ABC 沿着射线BC 方向平移6cm ,得三角形A′B′C′,已知BC =3cm ,AC =4cm ,则阴影部分的面积为_____cm 2.17.有两个正方形A ,B ,现将B 放在A 的内部如图甲,将A ,B 并排放置后构造新的正方形如图乙.若图甲和图乙中阴影部分的面积分别为14和74,则正方形A ,B 的面积之和为______.三、解答题18.计算(1)()()12312π322--⎛⎫--+-- ⎪⎝⎭.(2)()()354432321510205x y x y x y x y --÷.19.解方程组(1)31x y x y +=⎧⎨-=-⎩(2)()113216x y x y ⎧+=⎪⎨⎪+-=⎩20.化简(1)先化简,再求值:()()()22232m m m +---,其中12m =-.(2)已知3ab =,1a b -=-,求223a ab b ++的值.21.如图,ABC ∠和BCD ∠的平分线交于点P ,延长CP 交AB 于点Q ,且90PBC PCB ∠+∠=︒(1)求证://AB CD .(2)探究PBC ∠与PQB ∠的数量关系.22.某车间有14名工人生产一种螺栓和螺母,每人每天平均能生产螺栓6个或螺母9个,要求1个螺栓配2个螺母,应怎样分配工人才能使每天生产的螺栓和螺母恰好配套?23.阅读以下文字并解决问题:对于形如222x ax a ++这样的二次三项式,我们可以直接用公式法把它分解成()2x a +的形式,但对于二次三项式2627x x +-,就不能直接用公式法分解了.此时,我们可以在2627x x +-中间先加上一项9,使它与26x x +的和构成一个完全平方式,然后再减去9,则整个多项式的值不变.即:()()()()()()22226276992736363693x x x x x x x x x +-=++--=+-=+++-=+-,像这样,把一个二次三项式变成含有完全平方式的形式的方法,叫做配方法.(1)利用“配方法”因式分解:2267x xy y +-.(2)如果2222264130a b c ab b c ++---+=,求a b c ++的值.24.已知AM //CN ,点B 为平面内一点,AB ⊥BC 于B .(1)如图1,直接写出∠A 和∠C 之间的数量关系;(2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =5∠DBE ,求∠EBC 的度数.25.如图,//AB CD ,EF 分别交AB ,CD 于点E ,F ,FG 平分EFC ∠,交AB 于点G ,若180∠=︒,求FGE ∠的度数.参考答案1.A【详解】解:根据平移的性质,平移只改变图形的位置,不改变图形的形状与大小.观察各选项图形可知,A 选项的图案可以通过平移得到.故选A .2.D【分析】根据二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程解答即可.【详解】解:3x =10是一元一次方程,A 不正确;2x 2=y 是二元二次方程,B 不正确;12y x+=不是整式方程,所以不是二元一次方程,C 不正确;x +8y =0是二元一次方程,故选:D .【点睛】本题考查二元一次方程的概念,掌握二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程是解题的关键.3.C根据互为补角的两个角的和等于180°,分析出两个角的范围即可求解.【详解】∵两个不相等的角互为补角,∴这两个角一个角大于90°,一个角小于90°,即一个是钝角,一个是锐角,故选:C【点睛】本题考查互为补角的概念,解题的关键是根据两个角不相等得到两个角的范围.4.A【分析】把23xy=-⎧⎨=⎩分别代入下面四个方程,如果使方程成立就是方程的解,如果左边和右边不相等就不是方程的解.【详解】A.把23xy=-⎧⎨=⎩代入2x−3y=−13,左边=2x-3y=-13=右边,即23xy=-⎧⎨=⎩是该方程的解,故本选项正确;B.把23xy=-⎧⎨=⎩代入y=2x+5,左边=3,右边=1,左边≠右边,即23xy=-⎧⎨=⎩不是该方程的解,故本选项错误;C.把23xy=-⎧⎨=⎩代入y−4x=5,左边=11≠右边,即23xy=-⎧⎨=⎩不是该方程的解,故本选项错误;D.把23xy=-⎧⎨=⎩代入x=y−3,左边=3,右边=0,左边≠右边,即23xy=-⎧⎨=⎩不是该方程的解,故本选项错误;故选A.【点睛】考查方程解的概念,使方程左右两边相等的未知数的值就是方程的解. 5.B根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【详解】解:A 、2x 3•3x 4=6x 7,故错误;B 、4a 3•2a 2=8a 5,故正确;C 、2a 3+3a 3=5a 3,故错误.D 、331243x x ÷=,故错误;故选:B .【点睛】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.6.A【分析】将23x y -变形为()23339y x x y =÷÷,建立与已知条件联系,代入计算即可.【详解】解:∵()22333=9=3y x y x x y -÷÷,∵34x =,97y =,∴243=93=7x y x y -÷,故选:A【点睛】本题考查了同底数幂的除法与幂的乘方的逆用,灵活运用运算法则是解题的关键.7.D【分析】根据平行线的性质及翻折变换的性质对各小题进行逐一分析即可.【详解】解:(1)∵AE ∥BG ,∠EFB=32°,∴∠C′EF=∠EFB=32°,故本小题正确;(2)∵AE ∥BG ,∠EFB=32°,∴∠GEF=∠C′EF=32°,∴∠AEC=180°-32°-32°=116°,故本小题正确;(3)∵∠C′EF=32°,∴∠GEF=∠C′EF=32°,∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,∵AC′∥BD′,∴∠BGE=∠C′EG=64°,故本小题正确;(4)∵∠BGE=64°,∴∠CGF=∠BGE=64°,∵DF∥CG,∴∠BFD=180°-∠CGF=180°-64°=116°,故本小题正确.故选D.【点睛】本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.8.C【分析】运用同位角、内错角、同旁内角的定义及平行线的性质对各个选项进行判定,即可做出判断.【详解】①项,因为DE//AB,根据“两直线平行,同旁内角互补”可知∠DEF+∠EFB=180°,故①项正确;②项,内错角是指两条直线被第三条直线所截,在截线两侧,且夹在被截线之间的两角,与∠DEF构成内错角的角有∠EDC,∠AFE,共2个,故②项正确;③项,同位角是指两条直线被第三条直线所截,在截线同侧,并且在被截线的同一方向的两个角,与∠BFE构成同位角的角有∠FAE,只有1个,故③项正确;④项,同旁内角是指两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,与∠C构成同旁内角的角有∠DEC、∠FEC、∠BAC、∠EDC、∠ABC,共5个,故④项错误;故选C.【点睛】本题考查了平行线的性质定理、内错角、同位角以及同旁内角,熟记同位角、内错角、同旁内角的特征是解题的关键.9.A【分析】原式利用同底数幂的除法法则及幂的乘方运算法则变形,将已知等式代入计算即可求出值.【详解】∵a m =6,a n =3,∴原式=(a m )2÷(a n )3=36÷27=43,故选A .【点睛】本题考查了同底数幂的除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.10.C【分析】根据平移的性质,结合图形可直接求解.【详解】观察图形可知:△DEF 是由△ABC 沿BC 向右移动BE 的长度后得到的,根据对应点所连的线段平行且相等,得BE=AD=CF=1,又∵CE =2∴EF=CE+CF=2+1=3.故答案选:C.【点睛】本题考查的知识点是平移的性质,解题的关键是熟练的掌握平移的性质.11.59.110-⨯【分析】根据科学记数法可直接进行求解.【详解】解:将0.000091用科学记数法表示为59.110-⨯;故答案为59.110-⨯.【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.12.42x-【分析】根据二元一次方程的消元思想进行求解即可.【详解】解:x +2y =4,2y =4-xy =42x -.故答案为:42x -.【点睛】本题主要考查了二元一次方程,将等式2x +3y =1利用消元思想进行求解成为解答本题的关键.13.8-【分析】由题意逆用积的乘方运算法则以及逆用同底数幂相乘的运算法则进行计算即可.【详解】解:()()202020210.1258-⨯-()()202020200.1258(8)=-⨯-⨯-[]2020(0.125)(8)(8)=-⨯-⨯-1(8)=⨯-8=-【点睛】本题考查积的乘方运算法则以及同底数幂相乘的运算法则,熟练掌握并逆用积的乘方运算法则以及逆用同底数幂相乘的运算法则是解题的关键.14.76【详解】2=51=802=1001+5=1803476a b∠∠∠︒∠︒∴∠∠︒∴∴∠=∠=︒,,15.321【分析】先根据两方程组有相同的解,将342x y +=,25x y -=组成方程组,求出x ,y 的值,代入36ax by -=,25ax by +=组成的方程组,即可求出a 、b 的值.【详解】解:∵34225x y x y +=⎧⎨-=⎩①②由②变形为:25y x =-,把25y x =-代入①,得()3422x x y +-=,解得:2x =,把2x =代入②,得1y =-,把2x =,1y =-代入36210ax by ax by -=⎧⎨+=⎩,得2+3645a b a b =⎧⎨-=⎩,解得:321a b ⎧=⎪⎨⎪=⎩,故答案为:32;1【点睛】此题考查了对方程组解的理解:方程组有相同的解,即四个方程有相同解.将已知系数的两个方程组成的方程组的解代入其余两方程,即可解出a 、b 的值.16.18【分析】根据图形之间关系,可得S 阴=S 平行四边形ABB′A′-S △ABC 求解即可.【详解】解:由题意平行四边形ABB′A′的面积=6×4=24(cm 2),S △ABC =12×3×4=6(cm 2),∴S 阴=S 平行四边形ABB′A′-S △ABC =24-6=18(cm 2),故答案为18.【点睛】本题考查平移的性质和三角形的面积等知识,解题的关键是熟练掌握平移的基本知识.17.2【分析】设正方形A 、B 的边长,分别表示甲、乙图中的阴影面积,再变形可得答案;【详解】解:解:设A 的边长为x ,B 的边长为y ,由甲、乙阴影面积分别是14、74可列方程组:()()22221474x y x y x y ⎧-=⎪⎪⎨⎪+--=⎪⎩将②化简得2xy =74③,由①得x 2+y 2−2xy =14,将③代入可知x 2+y 2=17+44=2.∴正方形A ,B 的面积之和为2.故答案为:2.【点睛】本题考查了完全平方公式的几何背景,根据图甲和图乙中阴影部分的面积分别为14和74,列出等式,这是解题的关键.18.(1)354;(2)32324y xy --【分析】(1)根据有理数的乘方,零次幂,负整指数幂,进行计算即可;(2)根据多项式除以单项式进行计算即可.【详解】(1)()()102312π322--⎛⎫--+-- ⎪⎝⎭18124=-+-354=(2)()()354432321510205x y x y x y x y --÷3232325(324)5x y y xy x y =--÷32324y xy =--【点睛】本题考查了有理数的乘方,零次幂,负整指数幂,多项式除以单项式,掌握以上运算法则是解题的关键.19.(1)12x y =⎧⎨=⎩;(2)32x y =⎧⎨=⎩【分析】(1)根据题意直接利用加减消元法解方程组即可得到答案;(2)由题意将方程化简后,利用代入消元法解方程组即可得到答案.【详解】解:(1)31x y x y +=⎧⎨-=-⎩①②,①+②可得,22x =,解得1x =,①-②可得,24y =,解得2y =,∴原方程组的解为:12x y =⎧⎨=⎩;(2)()113216x y x y ⎧+=⎪⎨⎪+-=⎩将方程组化简,得3324x y x y -=-⎧⎨-=⎩①②,由①得,33x y =-③,把③代入②,可得2(33)4y y --=,解得2y =,把2y =代入③,可得3x =,∴原方程组的解为:32x y =⎧⎨=⎩.【点睛】本题考查的是解二元一次方程组,熟练掌握解二元一次方程组的加减消元法和代入消元法是解答此题的关键.20.(1)221216m m -+-,452-;(2)16.【分析】(1)利用平方差公式及完全平方公式化简得出最简结果,再代入计算即可得答案;(2)利用完全平方公式变形,再代入计算即可得答案.【详解】解:(1)()()()22232m m m +---=22431212m m m --+-221216m m =-+-,当12m =-时,原式452=-.(2)223a ab b ++()25a b ab=-+()2153=-+⨯16=.【点睛】本题考查了整式的混合运算,熟练掌握完全平方公式及平方差公式是解题关键.21.(1)见解析;(2)90PBC PQB ∠+∠=︒【分析】(1)利用角平分线定理和平行线的判定定理即可推导得.(2)利用平行线的性质定理结合已知条件即可推导出.【详解】(1)证明:∵BP 平分ABC ∠,∴2ABC PBC ∠=∠.∵CP 平分BCD ∠,∴2BCD PCB ∠=∠,∴22ABC BCD PBC PCB∠+∠=∠+∠又∵90PBC PCB ∠+∠=∴180ABC BCD ∠+∠=∴//AB CD .(2)解:∵CP 平分DCB ∠,∴PCD PCB ∠=∠.∵//AB CD ,∴PCD PQB ∠=∠,∴PCB PQB ∠=∠.又∵90PBC PCB ∠+∠=∴90PBC PQB ∠+∠=︒【点睛】本题考查角平分线的性质定理及平行线的判定性质等知识点,熟练掌握并理解其中的逻辑关系是解题的关键.22.6人生产螺栓,8人生产螺母【分析】设x 人生产螺栓,y 人生产螺母,根据题意列二元一次方程组解决问题.【详解】解:设x 人生产螺栓,y 人生产螺母,由题意得14629x y x y+=⎧⎨⨯=⎩,解得68x y =⎧⎨=⎩答:6人生产螺栓,8人生产螺母能使每天生产的螺栓和螺母恰好配套.【点睛】本题考查了二元一次方程组的应用,根据题意列出方程组是解题的关键.23.(1)()()7x y x y +-;(2)8a b c ++=【分析】(1)将前两项配方后即可得到22(2)4)(x y y -+,然后利用平方差公式因式分解即可;(2)由2222264130a b c ab b c ++---+=,可得222()(3)(2)0a b b c -+-+-=,求得a 、b 、c 后即可得出答案.【详解】解:(1)22222676916x xy y x xy y y +-=++-()()()()22343434x y y x y y x y y =+-=+++-()()7x y x y =+-(2)∵2222264130a b c ab b c ++---+=∴2222269440a ab b b b c c -++-++-+=,∴()()()222320a b b c -+-+-=,∴a b =,3b =,2c =,∴8a b c ++=【点睛】本题考查了因式分解的知识,解题的关键是能够熟记完全平方公式及平方差公式的形式,并能正确的分组.24.(1)∠A +∠C =90°;(2)证明见解析;(3)99°.【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B 作BG ∥DM ,根据同角的余角相等,得出∠ABD =∠CBG ,再根据平行线的性质,得出∠C =∠CBG ,即可得到∠ABD =∠C ;(3)先过点B 作BG ∥DM ,根据角平分线的定义,得出∠ABF =∠GBF ,再设∠DBE =a ,∠ABF =b ,根据∠CBF +∠BFC +∠BCF =180°,可得(2a +b )+5a +(5a +b )=180°,根据AB ⊥BC ,可得b +b +2a =90°,最后解方程组即可得到∠ABE =9°,即可得出∠EBC 的度数.【详解】解:(1)如图1,设AM 与BC 的交点为O ,AM //CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠ABO =90°,∴∠A +∠AOB =90°,即∠A +∠C =90°,故答案为:∠A +∠C =90°;(2)证明:如图2,过点B 作BG //DM ,∵BD AM ,∴∠BDM =90°,∵BG //DM ,180∴∠+∠=︒BDM DBG ,∴90∠=︒DBG ,即∠ABD +∠ABG =90°,∵AB BC ⊥,∴∠ABC =90°,∴∠CBG +∠ABG =90°,∴∠ABD =∠CBG ,∵AM //CN ,BG //DM ,∴BG //CN ,∴∠C =∠CBG ,∴∠ABD =∠C ;(3)如图3,过点B 作BG //DM ,∵BF 平分∠DBC ,BE 平分∠ABD ,∴∠DBF =∠CBF ,∠DBE =∠ABE ,由(2)可得∠ABD =∠CBG ,∴∠-∠=∠-∠DBF ABD CBF CBG ,即∠ABF =∠GBF ,设∠DBE =a ,∠ABF =b ,则∠ABE =a ,∠ABD =∠CBG =2a ,∠GBF =∠ABF =b ,∠BFC =5∠DBE =5a ,∴∠CBF =∠CBG +∠GBF =2a +b ,∵BG //DM ,∴∠AFB =∠GBF =b ,∴∠AFC =∠BFC +∠AFB =5a +b ,∵AM //CN ,∴∠AFC +∠NCF =180°,∵∠FCB +∠NCF =180°,∴∠FCB =∠AFC =5a +b ,在△BCF 中,由∠CBF +∠BFC +∠BCF =180°可得:(2a +b )+5a +(5a +b )=180°,化简得:6=90+︒a b ,由AB BC ,可得:b +b +2a =90°,化简得:=45+︒a b ,联立6=9045a b a b +︒⎧⎨+=︒⎩,解得:=936a b ︒⎧⎨=︒⎩,∴∠ABE =9°,∴∠EBC =∠ABE +∠ABC =9°+90°=99°.【点睛】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.25.50︒【分析】先由两直线平行,同位角相等,求出180EFD ∠=∠=︒,然后根据邻补角的定义求出100EFC ∠=︒,再根据角平分线定义求出GFC ∠度数,最后根据两直线平行,内错角相等,即可求出FGE ∠度数.【详解】∵AB//CD ,∴180EFD ∠=∠=︒,∵180EFC EFD ∠+∠=︒,∴100EFC ∠=︒,∵FG 平分EFC ∠,∴1502GFC EFC ∠=∠=︒,∵AB//CD ,∴FGE GFC ∠=∠,∴50FGE ∠=︒.【点睛】本题主要考查平行线的性质.平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.。
浙教版七年级下册数学期中考试试题及答案

浙教版七年级下册数学期中考试试卷一、单选题1.下列运算正确的是()A .33x x -=B .()325x x =C .235x x x ×=D .22(2)2x x =2.如图,已知直线a∥b,直线c 与a,b 相交,∠1=110°,则∠2的度数为()A .60°B .70°C .80°D .110°3.电力公司需要制作一批如图1所示的安全用电标记图案,该图案可以抽象为如图2所示的几何图形,其中AB DC ,BE FC ,点E ,F 在AD 上,且15A ∠=︒,65B ∠=︒,则制作时AFC ∠的度数是()A .50°B .65°C .80°D .90°4.若215(3)()x mx x x n +-=++,则m 的值为()A .-2B .2C .-5D .55.由方程组53x m y m -=⎧⎨+=⎩,可得到x 与y 的关系式是()A .2x y -=-B .2x y -=C .8x y -=D .8x y -=-6.把代数式244ax ax a -+分解因式,下列结果中正确的是().A .()22a x -B .()22a x +C .()24a x -D .()()22a x x +-7.若M =(a +3)(a -4),N =(a +2)(2a -5),其中a 为有理数,则M 、N 的大小关系是()A .M >NB .M <NC .M =ND .无法确定8.如图,从边长为(a+1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(aA .2cm 2B .2acm 2C .4acm 2D .(a 2﹣1)cm 29.如果多项式4244x x M ++是完全平方式,那么M 不可能...是()A .6x B .38x C .1D .410.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是()A .①②③B .①③C .②③D .①②二、填空题11.已知4m n +=,5mn =,则多项式22m n mn +的值是________.12.已知23x y =⎧⎨=-⎩是方程mx+3y=1的一个解,则m 的值是_______.13.如图,直线a 与直线b 交于点A ,与直线c 交于点B ,1120∠=︒,240∠=︒,若使直线b 与直线c 平行,则可将直线b 绕点A 逆时针旋转________°14.如图是一台起重机的工作简图,前后两次吊杆位置OP 1,OP 2与线绳的夹角分别是30°和70°,则吊杆前后两次的夹角∠P 1OP 2=________°.15.若代数式232x x ++可以表示为2(1)(1)x a x b -+-+的形式,则2+a b 的值是________.16.某商品按标价八折出售仍能盈利b 元,若此商品的进价为a 元,则该商品的标价为_________元.(用含a ,b 的代数式表示).17.已知()222116x m xy y -++是一个完全平方式,则m 的值是__________.18.已知实数m ,n 满足21m n -=,则代数式22241m n m ++-的最小值等于______.三、解答题19.化简(1)33201(1)(3)(3.14)3--⎛⎫-+-⋅-+- ⎪⎝⎭.(2)(2)(2)a b a b -+-+(3)221(2)(2)(24)(2)()x y y x x y x y x y -⎡⎤-+--+-÷+⎣⎦20.已知方程组4363x y a x y a +=-⎧⎨+=⎩的解恰好是方程11x y +=的解,求a 的值.21.如图,////DB FG EC ,60ABD ∠=︒,40ACE ∠=︒,AP 平分BAC ∠.(1)求BAG ∠的度数.(2)求PAG ∠的度数.22.已知实数x,y 满足222480x xy y -+--+=,求代数式xy 的最小值并指出取到最小值时的x ,y 的值.23.如图,已知∠1=∠2=50°,EF ∥DB .(1)DG 与AB 平行吗?请说明理由.(2)若EC 平分∠FED ,求∠C 的度数.24.观察下列等式:(x +1)(x 2-x +1)=x 3+1,(x +3)(x 2-3x +9)=x 3+27,(x +6)(x 2-6x +36)=x 3+216,…(1)按以上等式的规律,填空:(a +b)(________)=a 3+b 3;(2)运用上述规律猜想:(a -b)(a 2+ab +b 2)=________,并利用多项式的乘法法则,通过计算说明此等式成立;(3)利用(1)(2)中的结论,化简:(x +y)(x 2-xy +y 2)-(x -y)(x 2+xy +y 2).25.我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到222()2a b a ab b +=++.(1)写出由图2所表示的数学等式:________.(2)写出由图3所表示的数学等式:________.(3)已知实数a ,b ,c 满足1a b c ++=,2221a b c ++=.①求ab bc ca ++的值.②求3333a b c abc ++-的值.参考答案1.C 【分析】根据合并同类项法则、幂的乘方法则、同底数幂相乘法则、积的乘方法则依次进行计算即可得解.【详解】解:A.32x x x -=,故本选项错误;B.()326x x =,故本选项错误;C.235x x x ×=,故本选项正确;D.()2224x x =,故本选项错误.故选:C 【点睛】本题考查了合并同类项法则、幂的乘方法则、同底数幂相乘法则、积的乘方法则,体现了数学运算的核心素养,熟练掌握各知识点是解决问题的关键.2.B 【分析】直接根据平行线的性质即可得出结论.【详解】∵直线a ∥b ,∴∠3=∠1=110︒,∴∠2=180︒−110︒=70︒,故答案选B.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.3.C【分析】根据三角形内角和定理,得∠AEB=100°,结合BE ∥FC ,得∠DFC =100°,进而即可求解.【详解】∵∠A=15°,∠B=65°,∴∠AEB=180°-15°-65°=100°,∵BE ∥FC ,∴∠DFC=∠AEB=100°,∴AFC ∠=180°-100°=80°,故选C .【点睛】本题主要考查三角形内角和定理和平行线的性质定理,掌握平行线的性质定理,是解题的关键.4.A 【分析】将等式右边的整式展开,然后和等式左边对号入座进行对比:一次项系数相等、常数项相等,从而得到关于m 、n 的二元一次方程组,解方程组即可得解.【详解】解:∵()()()2215333x mx x x n x n x n+-=++=+++∴3315m n n =+⎧⎨=-⎩①②由②得,5n =-把5n =-代入①得,2m =-∴m 的值为2-.故选:A 【点睛】本题考查了多项式乘以多项式法则、两个多项式相等即各项对应相等、解二元一次方程组等知识点,能够得到关于m 、n 的二元一次方程组是解决问题的关键.5.C 【分析】先解方程组求得5x m =+、3y m =-,再将其相减即可得解.【详解】解:∵53x m y m -=⎧⎨+=⎩①②由①得,5x m =+由②得,3y m =-∴()()53538x y m m m m -=+--=+-+=.故选:C 【点睛】本题考查了解含参数的二元一次方程组、以及代数求值的知识点,熟练掌握相关知识点是解决本题的关键.6.A 【分析】先提取公因式a ,再利用完全平方公式分解即可.【详解】ax 2-4ax+4a=a(x 2-4x+4)=a(x-2)2【点睛】本题要掌握提公因式法和完全平方公式解题.7.B 【分析】把M 与N 代入M-N 中计算,判断差的正负即可得到结果.【详解】解:∵M-N=(a+3)(a-4)-(a+2)(2a-5)=a 2-a-12-2a 2+a+10=-a 2-2≤-2<0,∵M <N .故选B .【点睛】此题考查了多项式乘多项式,以及非负数的性质,熟练掌握运算法则是解本题的关键.8.C 【详解】根据题意得出矩形的面积是(a+1)2﹣(a﹣1)2,求出即可:矩形的面积是(a+1)2﹣(a﹣1)2=a2+2a+1﹣(a2﹣2a+1)=4a(cm2).故选C.9.D【详解】A.当M=6x时,原式=42644x x x++=(x3+2x)2,故正确;B.当M=38x时,原式=423448x x x++=(2x2+2x)2,故正确;C.当M=1时,原式=42441x x++=(2x2+1)2,故正确;D.当M=4时,原式=42444x x++,不能变形为完全平方的形式,故不正确.故选D.10.A【分析】根据二元一次方程组的解法逐个判断即可.【详解】当5k=时,方程组为3563510x yx y+=⎧⎨+=⎩,此时方程组无解∴结论①正确由题意,解方程组35661516x yx y+=⎧⎨+=⎩得:2345xy⎧=⎪⎪⎨⎪=⎪⎩把23x=,45y=代入310x ky+=得2431035k⨯+=解得10k=,则结论②正确解方程组356310x yx ky+=⎧⎨+=⎩得:20231545xkyk⎧=-⎪⎪-⎨⎪=⎪-⎩又k为整数x\、y不能均为整数∴结论③正确综上,正确的结论是①②③故选:A.【点睛】本题考查了二元一次方程组的解与解法,掌握二元一次方程组的解法是解题关键.11.20【分析】将所求代数式因式分解成含已知式子的形式,再整体代入求值即可得解.【详解】解:∵4m n +=,5mn =∴()225420m n mn mn m n +=+=⨯=.故答案是:20【点睛】本题考查了因式分解中的提取公因式法、整体代入求值法,比较简单,熟练掌握相关知识点是解决问题的关键.12.5【分析】直接将解代入方程即可求出m.【详解】把23x y =⎧⎨=-⎩代入得,291m -=,5m ∴=.【点睛】本题考查方程的解的概念,给出方程的解,只需将解代入方程计算即可.13.20.【分析】先根据邻补角的定义得到360∠=︒,根据平行线的判定当b 与a 的夹角为40︒时,//b c ,由此得到直线b 绕点A 逆时针旋转604020︒-︒=︒.【详解】解:如图:∠=︒∵1120∠=︒-︒=︒∴318012060∠=︒∵240∠=∠=︒时,直线b与直线c平行∴当3240︒-︒=︒.∴可将直线b绕点A逆时针旋转604020故答案是:20【点睛】本题考查了旋转的定义、平行线的判定、邻补角定义、角的和差等知识点,注意图形中的隐含条件.14.40【分析】根据平行线的性质可得∠P1AP2=∠P2,接下来依据三角形的外角的性质可得∠P1AP2=∠P1+∠P1OP2,即可解出答案.【详解】根据题意得:P1A∥P2B.∴∠P1AP2=∠P2=70°.∵∠P1AP2=∠P1+∠P1OP2,∴∠P1OP2=70°-30°=40°.【点睛】本题考查的知识点是平行线的性质及三角形的的外角性质,解题的关键是熟练的掌握平行线的性质及三角形的的外角性质.【分析】将2(1)(1)x a x b -+-+展开,然后和232x x ++对号入座进行对比:一次项系数相等、常数项相等,从而得到关于a 、b 的二元一次方程组,解方程组后代入求值即可得解.【详解】解:∵()()222(1)(13)221x a x b x a x x a x b -+-+=++-+-+=++∴2312a ab -=⎧⎨-++=⎩∴56a b =⎧⎨=⎩∴25+26=17a b +=⨯.故答案是:17【点睛】本题考查了多项式乘以多项式法则、两个多项式相等即各项对应相等、解二元一次方程组、代数求值等知识点,能够得到关于a 、b 的二元一次方程组是解决问题的关键.16.5()4a b +【分析】首先设标价x 元,由题意得等量关系:标价×打折﹣利润=进价,代入相应数值,再求出x 的值.【详解】设标价x 元,由题意得:80%x ﹣b=a ,解得:x=5()4a b +,故答案为5()4a b +.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,标价×打折﹣利润=进价.17.3或5-试题解析:()()()22222116214,x m xy y x m xy y -++=-++()2124,m ∴-+=±⨯解得:3m =或 5.m =-故答案为3或 5.-18.4【分析】把m-n 2=1变形为n 2=m-1,利用非负数的性质可得出m 的取值范围,再将令y=()22141m m m +-+-将代数式转化为只含字母m 的函数,通过函数的增减性即可得出结果.【详解】解:∵m ﹣n 2=1,即n 2=m-1≥0,∴m≥1,令y=()()2222141=6-3=+3-12m m m m m m +-+-+∴该二次函数开口向上,对称轴为直线m=-3∴m>-3时,y 随着m 的增大而增大∵m≥1,∴当m=1时,y 取得最小值:()213-124y =+=∴代数式22241m n m ++-有最小值:4故答案为:4【点睛】本题主要考查非负数的性质、配方法和二次函数最值等相关知识在求解过程中,重点是要将条件m ﹣n 2=1,转化为n 2=m-1,即利用非负数的性质得出m 的取值范围,又可将后面代数式中的n 2用含m 的式子进行替换,此时就可以用配方法并结合m 的取值以及函数关系式就可得求出最小值.19.(1)-243;(2)2244a ab b -+;(3)322333x x y xy y +++.【分析】(1)根据负整数指数幂法则、整数指数幂法则、零指数幂法则逐一计算出结果,再进行有理数的乘法计算,最后计算加减即可得解;(2)将式子写成完全平方的形式,再利用完全平方公式计算即可得解;(3)先将括号里面的乘方、多项式乘以多项式计算出结果,再合并同类项,同时外面的负指数幂转化为正指数幂、除法转化为乘法,然后三项式乘以二项式每一项乘以每一项,最后合并同类项即可.【详解】解:(1)33201(1)(3)(3.14)3--⎛⎫-+-⋅-+- ⎪⎝⎭12791=--⨯+243=-;(2)(2)(2)a b a b -+-+()22a b =-+2244a ab b =-+;(3)221(2)(2)(24)(2)()x y y x x y x y x y -⎡⎤-+--+-÷+⎣⎦()()2222221144244844x xy y xy y x xy x xy y x y =-++--++-+÷+()()222x xy y x y =++⋅+32222322x x y x y xy xy y =+++++322333x x y xy y =+++.【点睛】本题考查了实数的混合运算、整式的混合运算,涉及到的知识点有负整数指数幂法则、整数指数幂法则、零指数幂法则、有理数的加减乘除法则、完全平方公式、多项式乘以多项式、整式的负指数幂、整式的除法等,熟练掌握各运算法则是解题的关键.20.40.【分析】先利用加减消元法解方程组得到37838a x a y -⎧=⎪⎪⎨+⎪=-⎪⎩,再将其代入11x y +=得出关于参数a 的方程,然后解一元一次方程即可得解.【详解】解:4363x y a x y a +=-⎧⎨+=⎩①②①6⨯-②得,51821a y -=②4⨯-①3⨯得,921a x +=∴方程组的解为:92151821a x a y +⎧=⎪⎪⎨-⎪=⎪⎩∵11x y +=∴9518112121a a +-+=∴40a =.【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a 的方程是解决问题的关键.21.(1)60︒;(2)10︒【分析】(1)直接利用平行线的性质进行推导求解即可;(2)根据平行线的性质、角的和差、角平分线的性质进行推导即可得解.【详解】解:(1)∵//DB FG∴60BAG ABD ∠=∠=︒;(2)∵//FG EC∴40CAG ACE ∠=∠=︒∵60BAG ∠=︒∴100BAC CAG BAG ∠=∠+∠=︒∵AP 平分BAC∠∴1502BAP BAC ∠=∠=︒∴10PAG BAG BAP ∠=∠-∠=︒.【点睛】本题考查了平行线的性质、角的和差、角平分线的性质等知识点,熟练掌握相关知识点是解决问题的关键.22.当x y ==xy取得最小值12.【分析】观察各项,然后拆项、凑出完全平方公式,根据非负数的最小值时进行分析求解.【详解】解:∵222480x xy y -+--+=∴()()221212224x y xy -++-+=-∴((22224x y xy -+-=-∵(20x -≥,(20y -≥∴2240xy -≥∴12xy ≥∴当x y ==xy 取最小值12.【点睛】此题要掌握因式分解的公式法:完全平方公式.能够通过拆项凑出完全平方式、并根据非负数的最小值时进行求解是解题的关键.23.(1)DG 与AB 平行,理由见解析;(2)∠C =65°.【分析】(1)根据EF ∥DB 可得∠1=∠D ,根据∠1=∠2,即可得出∠2=∠D ,进而判定DG ∥AC ;(2)根据EC 平分∠FED ,∠1=50°,即可得到∠DEC=12∠DEF=65°,依据DG ∥AC ,即可得到∠C=∠DEC=65°.【详解】(1)DG 与AB 平行.理由如下:∵EF∥DB∴∠1=∠D,又∵∠1=∠2,∴∠2=∠D,∴DG∥AC;(2)∵EC平分∠FED,∠1=50°,∴∠DEC=12∠DEF=12×(180°﹣50°)=65°,∵DG∥AC,∴∠C=∠DEC=65°.【点睛】本题考查了平行线的性质和判定的应用,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.24.(1)a2-ab+b2;(2)a3-b3;(3)2y3.【解析】【分析】(1)根据所给等式可直接得到答案(a+b)(a2-ab+b2)=a3+b3;(2)利用多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加进行计算即可得到答案;(3)根据题目所给的例子,找出公式后直接运用即可.【详解】(1)(a+b)(a2-ab+b2)=a3+b3,故答案为:a2-ab+b2;(2)(a-b)(a2+ab+b2)=a3-b3,故答案为:a 3-b 3,(a -b)(a 2+ab +b 2)=a 3+a 2b +ab 2-a 2b -ab 2-b 3=a 3-b 3;(3)(x +y)(x 2-xy +y 2)-(x -y)(x 2+xy +y 2)=x 3+y 3-(x 3-y 3)=x 3+y 3-x 3+y 3=2y 3.【点睛】本题考查了多项式乘以多项式,关键是掌握多项式乘法法则,注意观察所给例题,找出其中的规律.25.(1)2222()222a b c a b c ab ac bc ++=+++++;(2)2222()222a b c a b c bc ab ac --=+++--;(3)①0;②1.【分析】(1)根据数据表示出正方形的边长,再根据正方形的面积公式写出等式的左边,再表示出每一小部分的面积,然后根据面积相等即可写出等式;(2)根据数据表示出阴影正方形的边长,再根据正方形的面积公式写出等式的左边,再用大正方形的面积减去其他八小部分的面积,然后根据面积相等即可写出等式;(3)①根据(1)的结论变形为()()22222a b c a b c ab ac bc ++-++++=,代数求值即可得解;②在①的基础上即可求得()()3322323a b c a b a b c ab ac c a bc bc ++++--++--=的值.【详解】解:(1)∵大正方形的边长为a b c++∴大正方形的面积可表示为()2a b c ++∵观察图形可知九小部分的面积和为222a b c ab ab ac ac bc bc++++++++222222a b c ab ac bc=+++++∴由图2所表示的数学等式:()2222222a b c a b c ab ac bc ++=+++++;(2)∵阴影正方形的边长为a b c--∴阴影正方形的面积为()2a b c --∵阴影正方形的面积还以表示为大正方形的面积减去其他八小部分的面积:()()222222222222a b c bc b a b c c a b c a b c bc ab ac---------=+++--∴由图3所表示的数学等式:()2222222a b c a b c bc ab ac --=+++--;(3)①∵由图2所表示的数学等式:()2222222a b c a b c ab ac bc++=+++++∴()()2222222ab ac bc a b c a b c ++=++-++∴()()22222a b c a b c ab ac bc ++-++++=∵1a b c ++=,2221a b c ++=∴()()2222211022a b c a b c ab ac bc ++-++-++===,即0ab bc ca ++=;②∵1a b c ++=,2221a b c ++=∴()()()33322231101a b c a b c ab ac b a b c bc c a ++++--++-⨯-==-=.【点睛】本题考查了完全平方公式的几何背景、项式乘多项式、因式分解的应用,利用面积法列出等式是解题的关键.。
浙教版数学七年级下学期《期中考试试卷》含答案解析

期中测 试 卷
学校________班级________姓名________成绩________
一、选择题
1.下列方程中,属于二元一次方程的是()
A.2x=yB.2x﹣3y=zC.2x2﹣x=5D.3﹣a= +1
2.用科学记数方法表示 ,得()
A. B. C. D.
故答案为:12.
[点睛]本题考查二元一次方程组的应用,巧设未知数,根据矩形的对边相等列出方程组是解题的关键.
三、解答题
17.(1)计算:
(2)化简:
[答案](1)3;(2) ;
[解析]
[分析]
(1)根据零指数幂、负整数指数幂的运算法则计算;
(_______④_______)
∴___________⑤_______(______⑥_______)
22.如图,将一张长方形纸板按图中虚线裁剪成 块,其中有 块是边长都为 厘米的大正方形, 块是边长都为 厘米的小正方形, 块是长为 厘米,宽为 厘米的一模一样的小长方形,且 ,设图中所有裁剪线(虚线部分)长之和为 厘米.
故yx=( )-2=9.
故答案为9.
[点睛]此题主要考查了非负数的性质,正确得出x,y的值是解题关键.
14.如图,将一条对边互相平行的纸带进行折叠,折痕为 ,若 时,则 _________度.
[答案]
[解析]
[分析]
利用平行线的性质以及翻折不变性即可解决问题.
[详解]由翻折可知:∠DMN=∠NMD′= (180°-42°)=69°,
3.如图,在平移三角尺画平行线的过程中,理由是( )
A.两直线平行,同位角相等
B.两直线平行,内错角相等
浙教版数学七年级下学期《期中考试卷》含答案

浙 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一,单项选择题(本大题共10小题,每小题3分,共30分) 1.下列几个方程中,属于二元一次方程的是( )A .9xy =B .21z y -=C .1y x= D .x y +2.如图,与1∠是同位角的是( )A .2∠B .3∠C .4∠D .5∠3.下列运算中,结果正确的是( ) A .336a a a +=B .()325a a =C .348a a a ⋅=D .()3236ab a a =4.下列各式不能用平方差公式计算的是( ) A .(52)(52)x ab x ab -+B .()()ax y ax y ---C .)()(ab c ab c ---D .()()m n m n +--5.如图,点E 在AD 延长线上,下列条件能判断//AB CD 的是( )A .34∠=∠B .180C ADC ︒∠+∠= C .C CDE ∠=∠D .12∠=∠6.利用加减消元法解方程组2510536x y x y +=-⎧⎨-=⎩①②,下列做法正确的是( )A .要消去y,可以将①×5+①×2B .要消去x,可以将①×3+2×(-5)C .要消去y,可以将①×5+①×3D .要消去x,可以将①×(-5)+①×27.若34x =,97y =,则23x y -的值为( )A .47B .74C .3-D .278.父子二人并排竖直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身高的14,父子二人的身高之和为3.4米,若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组( )A . 3.4111134x y x y +=⎧⎪⎨⎛⎫⎛⎫-=- ⎪ ⎪⎪⎝⎭⎝⎭⎩B . 3.411134x y x y +=⎧⎪⎨⎛⎫-= ⎪⎪⎝⎭⎩C . 3.411134x y x y +=⎧⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩D . 3.41134x y x y +=⎧⎪⎨=⎪⎩ 9.已知5,2x y xy +==,则下列结论中①()221x y -=,①2217x y +=①2219x xy y ++=,正确的个数是( )A .0B .1C .2D .310.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .10二、填空题(本大题共7小题,每小题3分,共21分) 11.计算:a 4÷a 2=__.12.己知2x y a=-⎧⎨=⎩是方程235x y +=的一个解,则a 的值为_____.13.已知方程236x y -=,用含y 的代数式表示x 为__________.14.计划在一块长为10米,宽为7米的长方形草坪上,修建一条宽为2米的人行道,则剩余草坪的面积为_____平方米.15.已知108=x ,1016=y ,则210x y +=__________.16.已知22118x x+=,且1x >,则代数式2285x x -+=________. 17.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分) 18.化简:(1)(x -y)(x +y)-(x -2y)(2x +y). (2)-x(3x +2)+(2x -1)2.(3)(3x +5)2-(3x -5)(3x +5). (4)(a +b)2-(a -b)2+a(1-4b).19.解方程组:(1)3221x y x y =⎧⎨+=-⎩ (2)1323222x yx y ⎧-=⎪⎨⎪+=⎩20.先化简,再求值:(1)2(1)(2)(2)a a a +----,其中2a =的值.(2)22(2)(3)(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中12x =-,1y =.21.如图已知12B C ∠=∠∠=∠,,求证://AB CD .证明:①12∠=∠(已知), 且14∠=∠(__________), ①24∠∠=(__________). ①//BF _____(__________). ①∠____3=∠(__________). 又①B C ∠=∠(已知), ①_____________(等量代换). ①//AB CD (__________).22.如图,在三角形ABC 中, D ,E ,F 三点分别在AB ,AC ,BC 上,过点D 的直线与线段EF 的交点为点M ,已知2①1-①2=150°,2① 2-①1=30°. (1)求证:DM ①AC ;(2)若DE ①BC ,①C =50°,求①3的度数.23.用如图1所示的,A B两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A纸板70张,B型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A型纸板较为充足,B型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B型纸板用完)(3)经测量发现B型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽a a a),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,高分别为2,,2可以各做多少个(假设没有边角消耗,没有余料)?答案与解析一,单项选择题(本大题共10小题,每小题3分,共30分) 1.下列几个方程中,属于二元一次方程的是( )A .9xy =B .21z y -=C .1y x= D .x y +[答案]B [分析]根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别. [详解]解:A 、9xy =中xy 项的次数是2,不是二元一次方程,故不符合题意;B 、21z y -=是二元一次方程,故符合题意;C 、1y x=不是整式方程,故不符合题意; D 、x y +不是方程,故不符合题意; 故选B . [点睛]本题主要考查二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程. 2.如图,与1∠是同位角的是( )A .2∠B .3∠C .4∠D .5∠[分析]根据同位角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角即可求解. [详解]解:观察图形可知,与∠1是同位角的是∠4. 故选:C . [点睛]本题考查了同位角、内错角、同旁内角,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形. 3.下列运算中,结果正确的是( ) A .336a a a += B .()325a a =C .348a a a ⋅=D .()3236ab a a =[答案]D [分析]原式各项利用同底数幂的乘除法,以及合并同类项法则计算得到结果,即可作出判断. [详解]解:A 、原式=2a 3,错误; B 、原式=a 6,错误; C 、原式=a 7,错误; D 、原式=a 3b 6,正确. 故选:D .此题考查了同底数幂的乘除法,合并同类项,熟练掌握运算法则是解本题的关键. 4.下列各式不能用平方差公式计算的是( ) A .(52)(52)x ab x ab -+B .()()ax y ax y ---C .)()(ab c ab c ---D .()()m n m n +--[答案]D [分析]根据平方差公式对各选项进行逐一分析即可. [详解]解:A 、(52)(52)x ab x ab -+=222254x a b -,故能用平方差公式计算,不合题意; B 、()()ax y ax y ---=222a x y -+,故能用平方差公式计算,不合题意;C 、)()(ab c ab c ---=222c a b -,故能用平方差公式计算,不合题意;D 、()()m n m n +--=2()m n -+,故不能用平方差公式计算,符合题意; 故选D . [点睛]本题主要考查了平方差公式,熟记公式是解答本题的关键.平方差公式:(a+b)(a -b)=a 2-b 2. 5.如图,点E 在AD 延长线上,下列条件能判断//AB CD 的是( )A .34∠=∠B .180C ADC ︒∠+∠= C .C CDE ∠=∠D .12∠=∠[分析]根据平行线的判定定理即可直接作出判断.[详解]A、根据内错角相等,两直线平行即可证得BC∠AD,不能证AB∠CD,故选项错误;B、根据同旁内角互补,两直线平行,可证得BC∠AD,不能证AB∠CD,故选项错误;C、根据内错角相等,两直线平行即可证得BC∠AD,不能证AB∠CD,故选项错误;D、根据内错角相等,两直线平行即可证得AB∠DC,故选项正确.故选:D.[点睛]此题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.利用加减消元法解方程组2510536x yx y+=-⎧⎨-=⎩①②,下列做法正确的是( )A.要消去y,可以将①×5+①×2B.要消去x,可以将①×3+2×(-5) C.要消去y,可以将①×5+①×3D.要消去x,可以将①×(-5)+①×2 [答案]D[分析]方程组利用加减消元法求出解即可.[详解]解:对于原方程组,要消去x,可以将∠×(-5)+∠×2;若要消去y,则可以将∠×3+∠×5;[点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.若34x =,97y =,则23x y -的值为( )A .47B .74C .3-D .27[答案]A[分析]根据同底数幂的除法和幂的乘方法则,将原式变形,然后代入求解即可.[详解]解:3x -2y =3x ÷32y =3x ÷9y =4÷7=47, 故选:A .[点睛]本题考查了同底数幂的除法,幂的乘方,解答本题的关键是掌握同底数幂的除法法则. 8.父子二人并排竖直站立于游泳池中时,爸爸露出水面的高度是他自身身高的13,儿子露出水面的高度是他自身高的14,父子二人的身高之和为3.4米,若设爸爸的身高为x 米,儿子的身高为y 米,则可列方程组( )A . 3.4111134x y x y +=⎧⎪⎨⎛⎫⎛⎫-=- ⎪ ⎪⎪⎝⎭⎝⎭⎩B . 3.411134x y x y +=⎧⎪⎨⎛⎫-= ⎪⎪⎝⎭⎩ C . 3.411134x y x y +=⎧⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩D . 3.41134x y x y +=⎧⎪⎨=⎪⎩[分析]根据题意可得两个等量关系:∠爸爸的身高+儿子的身高=3.4米;∠父亲在水中的身高(1−13)x =儿子在水中的身高(1−14)y,根据等量关系可列出方程组. [详解]设爸爸的身高为x 米,儿子的身高为y 米, 由题意得: 3.4111134x y x y +=⎧⎪⎨⎛⎫⎛⎫-=- ⎪ ⎪⎪⎝⎭⎝⎭⎩, 故选:A .[点睛]此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出题目中的等量关系,解决此题的关键是知道父亲和儿子浸没在水中的身高是相等的.9.已知5,2x y xy +==,则下列结论中①()221x y -=,①2217x y +=①2219x xy y ++=,正确的个数是( )A .0B .1C .2D .3 [答案]A[分析]利用完全平方公式的变形逐一计算即可.[详解]解:∠()()222454217x y x y xy -=+-=-⨯=,该项结论错误;∠()2222252221x y x y xy +=+-=-⨯=,该项结论错误;∠()22225223x xy y x y xy ++=+-=-=,该项结论错误;[点睛]本题考查利用完全平方公式的变形求代数式的值,掌握完全平方公式是解题的关键. 10.已知长方形ABCD ,AD AB >,10AD =,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S .当213S S b -=时,AB 的值是( )A .7B .8C .9D .10[答案]A[分析] 利用面积的和差分别表示出S 1和S 2,然后利用整式的混合运算计算它们的差,再由S 2-S 1=3b,AD=10,列出方程求得AB 便可.[详解]解:S 1=(AB -a)•a+(CD -b)(AD -a)=(AB -a)•a+(AB -b)(AD -a),S 2=AB(AD -a)+(a -b)(AB -a),∠S 2-S 1=AB(AD -a)+(a -b)(AB -a)-(AB -a)•a -(AB -b)(AD -a)=(AD -a)(AB -AB+b)+(AB -a)(a -b -a)=b•AD -ab -b•AB+ab=b(AD -AB),∠S 2-S 1=3b,AD=10,∠b(10-AB)=3b,∠AB=7.故选:A .[点睛]本题考查了列代数式,整式的混合运算,整体思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.二、填空题(本大题共7小题,每小题3分,共21分)11.计算:a 4÷a 2=__.[答案]a 2[解析][详解]解:42422a a a a -÷==.故答案为2a12.己知2x y a=-⎧⎨=⎩是方程235x y +=的一个解,则a 的值为_____. [答案]3[分析]把x 与y 代入方程计算即可求出a 的值.[详解]解:把2x y a =-⎧⎨=⎩代入方程2x+3y=5得:-4+3a=5, 解得:a=3,故答案为:3.[点睛]本题考查二元一次方程的解,解题的关键是正确理解二元一次方程的解的概念,本题属于基础题型.13.已知方程236x y -=,用含y 的代数式表示x 为__________.[答案]263x - [分析]将x 看做已知数求出y 即可.[详解]解:2x -3y=6,得到y=263x -, 故答案为:263x -. [点睛]此题考查了解二元一次方程,解题的关键是将x 看作已知数求出y .14.计划在一块长为10米,宽为7米的长方形草坪上,修建一条宽为2米的人行道,则剩余草坪的面积为_____平方米.[答案]56[分析]利用平移把草坪变为一个长为8米,宽为7米的矩形,然后根据矩形的面积计算即可.解:剩余草坪的面积=(10-2)×7=56(平方米).故答案为:56.[点睛]本题考查生活中的平移现象:利用平移的性质,把几个图形合为一个图形.15.已知108=x ,1016=y ,则210x y +=__________.[答案]1024[分析]根据10x =8,10y =16,应用幂的乘方的运算方法,以及同底数的幂的乘法法则,求出102x+y 的值是多少即可.[详解]解:∠10x =8,10y =16,∠102x =(10x )2=64,∠102x+y =102x ×10y =64×16=1024.故答案为:1024.[点睛]此题主要考查了同底数幂的乘法法则和幂的乘方,解题的关键是灵活运用运算法则.16.已知22118x x+=,且1x >,则代数式2285x x -+=________. [答案]7[分析] 根据22118x x +=得到14x x -=,可变形241x x -=,再将2285x x -+适当变形,最后代入计算.解:∠22118x x +=, ∠2212182x x+-=-, 即2116x x ⎛⎫-= ⎪⎝⎭, ∠14x x-=±, 又∠x >1, ∠14x x-=, ∠214x x -=,即2410x x --=,∠241x x -=,∠2285x x -+=()2245x x -+=215⨯+=7,故答案为7.[点睛]本题考查了代数式求值,完全平方公式的应用,解题的关键是根据22118x x+=得到241x x -=.17.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________[答案]20[解析]试题分析:过B作BE∠m,则根据平行公理及推论可知l∠BE,然后可证明得到∠1+∠2=∠ABC=45°,因此可求得∠2=20°.故答案为:20.三、解答题(本大题共6小题,18,19.20题各7分,21题8分,22,23题各10分,共49分) 18.化简:(1)(x-y)(x+y)-(x-2y)(2x+y).(2)-x(3x+2)+(2x-1)2.(3)(3x+5)2-(3x-5)(3x+5).(4)(a+b)2-(a-b)2+a(1-4b).[答案](1)-x2+3xy+y2;(2)x2-6x+1;(3)30x+50;(4)a.[解析][分析](1)利用平方差公式和多项式乘以多项式的法则计算,然后再合并同类项;(2)利用单项式乘以多项式的法则和完全平方公式计算,然后再合并同类项;(3)利用完全平方公式和平方差公式计算,然后再合并同类项;(4))利用完全平方公式和单项式乘以多项式的法则计算,然后再合并同类项即可得到结果.[详解](1)原式=x2-y2-(2x2+xy-4xy-2y2)=x2-y2-2x2+3xy+2y2=-x2+3xy+y2;(2)原式=-3x2-2x+4x2-4x+1=x2-6x+1;(3)原式=9x2+30x+25-(9x2-25)=9x2+30x+25-9x2+25=30x+50;(4)原式=a2+2ab+b2-(a2-2ab+b2)+a-4ab=a2+2ab+b2-a2+2ab-b2+a-4ab=a.故答案为:(1)-x2+3xy+y2;(2)x2-6x+1;(3)30x+50;(4)a.[点睛]本题考查整式的混合运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,单项式乘以多项式的法则,以及多项式乘以多项式的法则,熟练掌握公式及法则是解本题的关键.19.解方程组:(1)3221 x yx y=⎧⎨+=-⎩(2)1 323222 x yx y⎧-=⎪⎨⎪+=⎩[答案](1)93xy=-⎧⎨=-⎩;(2)62xy=⎧⎨=⎩[分析](1)直接利用代入消元法解;(2)先整理方程组,再利用加减消元法解.[详解](1)3...... 221...... x yx y=⎧⎨+=-⎩①②把∠代入∠中得:6y+y=-21,解得y=-3,把y=-3代入∠中得:x=-9,所以方程组的解为:93 xy=-⎧⎨=-⎩;(2)1 323222 x yx y⎧-=⎪⎨⎪+=⎩整理方程组得:23 6...... 3222...... x yx y-=⎧⎨+=⎩①②由∠×2得:4x-6y=12……∠由∠×3得:9x+6y=66……∠由∠+∠得:13x=78,解得x=6,把x=6代入∠中得:2y=4,解得y=2,所以方程组的解为:62 xy=⎧⎨=⎩.[点睛]考查了解二元一次方程组,解题关键是利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.先化简,再求值:(1)2(1)(2)(2)a a a +----,其中2a =的值.(2)22(2)(3)(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中12x =-,1y =. [答案](1)25a +,9;(2)42x y -+,4[分析](1)先将括号展开,再合并同类项,最后将a 的值代入计算进而得出答案;(2)直接利用乘法公式以及多项式除以单项式运算法则化简,再将x 和y 值代入计算得出答案.[详解]解:(1)2(1)(2)(2)a a a +----=22124a a a +++-=25a +将a=2代入,原式=2×2+5=9;(2)22(2)(3)(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦=()2222244952x y xy x y y x ++-+-÷=()2842x xy x -+÷ =42x y -+ 将12x =-,1y =代入, 原式=14212⎛⎫-⨯-+⨯ ⎪⎝⎭=4. [点睛]此题主要考查了整式的混合运算,正确运用乘法公式是解题关键.21.如图已知12B C ∠=∠∠=∠,,求证://AB CD .证明:①12∠=∠(已知),且14∠=∠(__________),①24∠∠=(__________).①//BF _____(__________).①∠____3=∠(__________).又①B C ∠=∠(已知),①_____________(等量代换).①//AB CD (__________).[答案]见解析[分析]根据平行线的判定和性质解答.[详解]解:证明:∠∠1=∠2(已知),且∠1=∠4(对顶角相等),∠∠2=∠4(等量代换),∠BF∠EC(同位角相等,两直线平行),∠∠C=∠3(两直线平行,同位角相等).又∠∠B=∠C(已知),∠∠3=∠B(等量代换),∠AB∠CD(内错角相等,两直线平行).[点睛]本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.22.如图,在三角形ABC中, D,E,F三点分别在AB,AC,BC上,过点D的直线与线段EF 的交点为点M,已知2①1-①2=150°,2① 2-①1=30°.(1)求证:DM①AC;(2)若DE①BC,①C =50°,求①3的度数.[答案](1)证明见解析(2)50°[解析]试题分析:(1) 已知2∠1-∠2=150°,2∠2-∠1=30°,可得∠1+∠2=180°,再由∠1+∠DME=180°,可得∠2=∠DME,根据内错角相等,两直线平行即可得DM∠AC;(2) 由(1)得DM∠AC,根据两直线平行,内错角相等可得∠3=∠AED ,再由DE∠BC ,可得∠AED=∠C ,所以∠3=∠C 50°.试题解析:(1)∠ 2∠1-∠2=150°,2∠2-∠1=30°,∠ ∠1+∠2=180°.∠ ∠1+∠DME=180°,∠ ∠2=∠DME .∠ DM∠AC .(2)∠ DM∠AC,∠ ∠3=∠AED .∠ DE∠BC ,∠ ∠AED=∠C .∠ ∠3=∠C .∠ ∠C=50°,∠ ∠3=50°.23.用如图1所示的,A B两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A纸板70张,B型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A型纸板较为充足,B型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B型纸板用完)(3)经测量发现B型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽a a a),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,高分别为2,,2可以各做多少个(假设没有边角消耗,没有余料)?[答案](1)制作甲24个,乙22个.(2)最多可以制作甲,乙纸盒24个.(3)制作甲6个,乙4个.[分析](1)设制作甲x个,乙y个,则需要A,B型号的纸板如下表:从而可得答案,(2)设制作甲m 个,乙k 个,则需要A,B 型号的纸板如下表:由方程组的正整数解可得答案,(3)由1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,通过列方程求方程的正整数解得到答案.[详解]解:(1)设制作甲x 个,乙y 个,则34160270x y x y +=⎧⎨+=⎩,解得:2422x y =⎧⎨=⎩ , 即制作甲24个,乙22个.(2)设制作甲m 个,乙k 个,则23430m k n m k +=⎧⎨+=⎩, 消去k 得,465m n =-, 因为:,m n 为正整数,所以:10152, 6.63n n m m k k ==⎧⎧⎪⎪==⎨⎨⎪⎪==⎩⎩综上,最多可以制作甲,乙纸盒24个.(3)因为1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,设制作甲c 个,乙d 个,则4 4.542c d +=,因为,c d 为正整数,所以6,4c d ==,即可以制作甲6个,乙4个.[点睛]此题考查了二元一次方程组的应用.二元一次方程(组)的正整数解,解题关键是弄清题意,找出题目蕴含的等量关系,列出方程或方程组解决问题.。
浙教版数学七年级下学期《期中考试试卷》附答案

[点睛]本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.
2.下列计算正确的是()
A. B.
C. D.
[答案]D
[解析]
[分析]
分别根据有理数的混合运算及平方根的定义,对各个选项进行判断即可.
[详解]解:A. ,故本选项错误;
B. ,故本选项错误;
C. ,故本选项错误;
(1)如果购买甲、乙两种纪念品一共花费了9600元,求购买甲、乙两种纪念品各是多少件?
(2)设购买甲种纪念品m件,如果购买乙种纪念品的件数不超过甲种纪念品的数量的2倍,并且总费用不超过9400元.问组委会购买甲、乙两种纪念品共有几种方案?哪一种方案所需总费用最少?最少总费用是多少元?
25.在平面直角坐标系中,OA=4,OC=8,四边形ABCO是平行四边形.
5.下列各式,属于二元一次方程的个数有()
①xy+2x﹣y=7;②4x+1=x﹣y;③ +y=5;④x=y;⑤x2﹣y2=2;⑥6x﹣2y;⑦x+y+z=1;⑧y(y﹣1)=2x2﹣y2+xy
A.1B.2C.3D.4
[答案]B
[解析]
[分析]
根据二元一次方程的定义对各式进行判断即可.
[详解]①xy+2x﹣y=7属于二元二次方程,故错误;
D. ,故本选项正确
故选D.
[点睛]本题主要考查了有理数的混合运算及平方根,熟记相关定义与法则是解答本题的关键.
3.下列不等式组是一元一次不等式组的是()
A. B. C. D.
[答案]B
[解析]
[分析]
根据不等式组中只含有一个未知数并且未知数的次数是一次的,可得答案.
浙教版七年级下学期数学《期中检测试卷》附答案

17.计算:(1) (2)
[答案](1) . (2)
[解析]
试题分析:(1)直接利用单项式乘以单项式运算法则求出答案;
(2)直接利用积的乘方运算法则以及同底数幂的乘法运算法则化简,进而合并同类项即可得出答案.
6.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()
A.50oB.60oC.75oD.85o
7.关于 、 二元一次方程组 的解也是二元一次方程 的解,则 的值是().
A. B. C. D.
8.已知xa=2,xb=3,则x3a+2b=()
A.17B.72C.24D.36
9.一个角的两边分别和另一个角的两边平行,已知其中一个角是60°,则另一个角的度数是()
(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),∠PAC,∠APB,∠PBD之间的关系是否发生改变?请说明理由.
答案与解析
一、选择题(共10个小题,每小题3分,共30分)
1.如图,直线b、c被直线a所截,则∠1与∠2是()
A.同位角B.内错角C.同旁内角D.对顶角
[答案]A
[解析]
直线b,c被直线a所截,∠1与∠2在直线a的同侧,
[详解]如图所示:
∵AD∥BC,
∴∠CBF=∠DEF=30°,
∵AB为折痕,
∴2∠α+∠CBF=180°,
即2∠α+30°=180°,
解得∠α=75°.
故选C.
[点睛]考查了平行线 性质和图形的翻折问题;找到相等的角,利用平角列出方程是解答翻折问题的关键.
7.关于 、 的二元一次方程组 的解也是二元一次方程 的解,则 的值是().
A. B. C. D.
浙教版初中数学七年级下册期中测试卷(较易)(含答案解析)

浙教版初中数学七年级下册期中测试卷(较易)(含答案解析)考试范围:第单一,二,三单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如图,下列四组条件中,能判定AB//CD的是( )A. ∠1=∠2B. ∠ABD=∠BDCC. ∠3=∠4D. ∠BAD+∠ABC=180∘2. 如图所示,过点C作线段AB的平行线,下列说法中,正确的是( )A. 不能作出B. 只能作出一条C. 能作出两条D. 能作出无数条3. 已知在同一平面内有三条不同的直线a,b,c,下列说法错误的是( )A. 如果a//b,a⊥c,那么b⊥cB. 如果b//a,c//a,那么b//cC. 如果b⊥a,c⊥a,那么b⊥cD. 如果b⊥a,c⊥a,那么b//c4. 计算a3⋅(−a)的结果是( )A. a2B. −a2C. a4D. −a45. 如图,描述同位角、内错角、同旁内角关系不正确的是( )A. ∠1与∠4是同位角B. ∠2与∠3是内错角C. ∠3与∠4是同旁内角D. ∠2与∠4是同旁内角6. 如图,在下列给出的条件中,可以判定AB//CD的有( ) ①∠1=∠2; ②∠1=∠3; ③∠2=∠4; ④∠DAB+∠ABC=180∘; ⑤∠BAD+∠ADC=180∘.A. ① ② ③B. ① ② ④C. ① ④ ⑤D. ② ③ ⑤7. 已知某种新型感冒病毒的直径为0.000000823米,将0.000000823用科学记数法表示为( )A. 8.23×10−6B. 8.23×10−7C. 8.23×106D. 8.23×1078. 如果长方形的长为(4a 2−2a +1),宽为(2a +1),则这个长方形的面积为( )A. 8a 3−4a 2+2a −1B. 8a 3+4a 2−2a −1C. 8a 3−1D. 8a 3+19. 下列多项式的乘法运算可以运用平方差公式计算的是( )A. (x +1)(x +1).B. (a +2b)(a −2b).C. (−a +b)(a −b).D. (−m −n)(m +n).10. 下列各组数中,是二元一次方程5x −y =2的一个解的是( )A. {x =3,y =1.B. {x =0,y =2.C. {x =2,y =0.D. {x =1,y =3. 11. 方程组{y =2x −53x −2y =8用代入法消去y 后所得的方程是( )A. 3x −4x −10=8B. 3x −4x +5=8C. 3x −4x −5=8D. 3x −4x +10=812. 从甲地到乙地有一段上坡路与一段平路.如果保持上坡速度为每小时3千米,平路速度为每小时4千米,下坡速度为每小时5千米,那么从甲地到乙地需54分钟,从乙地到甲地需42分钟.问:从甲地到乙地全程是多少千米⋅小红将这个实际问题转化为二元一次方程组问题.设未知数x ,y ,已经列出一个方程为x 3+y 4=5460,那么另一个方程正确的是( ) A. x 4+y 3=4260. B. x 5+y 4=4260. C. x 4+y 5=4260. D. x 3+y 4=4260. 第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 如图,已知直线a⊥c,b⊥c,∠1=140∘,则∠2的度数是.14. 在三元一次方程x+6y−2z=50中,用含x,y的代数式表示z:.15. 计算:(ab2)3⋅3a2=.16. 小明在解关于x,y的二元一次方程组{x+⊗y=3,3x−⊗y=1时得到了正确结果{x=⊕,y=1后来发现“⊗”“⊕处被墨水污损了,请你帮他找出⊗,⊕的值分别是__________.三、解答题(本大题共9小题,共72.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册期中复习检测题(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =34°,则 ∠BED 的度数是( ) A .17° B .34° C .56° D .68°,第1题图) ,第5题图) ,第6题图),第10题图)2.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.000 000 000 34 m ,这个数据用科学记数法表示正确的是( )A .3.4×10-9B .0.34×10-9C .3.4×10-10D .3.4×10-113.下列计算正确的是( )A .a 4+a 2=a 6B .3a -a =2C .(a 3)4=a 7D .a 3·a 2=a 54.下列计算正确的是( )A .-2x 2y ·3xy 2=-6x 2y 2B .(-x -2y )(x +2y )=x 2-4y 2C .6x 3y 2÷2x 2y =3xyD .(4x 3y 2)2=16x 9y 45.如图,有a ,b ,c 三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( ) A .a 户最长 B .b 户最长 C .c 户最长 D .三户一样长6.如图,已知AB ∥CD ,∠AEG =40°,∠CFG =60°,则∠G 等于( ) A .100° B .60° C .40° D .20°7.如果关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =3a ,x -y =9a 的解是二元一次方程2x -3y +12=0的一个解,那么a 的值是( )A.34 B .-47 C.74 D .-438.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,该班男生有x 人,女生有y 人.根据题意,所列方程正确的是( )A.⎩⎪⎨⎪⎧x +y =78,3x +2y =30B.⎩⎪⎨⎪⎧x +y =78,2x +3y =30C.⎩⎪⎨⎪⎧x +y =30,2x +3y =78D.⎩⎪⎨⎪⎧x +y =30,3x +2y =789.某地为了紧急安置60名灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好能容纳这60名灾民,则不同的搭建方案有( )A .4种B .6种C .9种D .11种10.如图,周长为68 cm 的长方形ABCD 被分成7个相同的小长方形,则小长方形的长为( ) A .10 cm B .12 cm C .14 cm D .16 cm二、填空题(每小题3分,共24分) 11.如图,在高为2米,水平距离为3米的楼梯的表面铺地毯,那么地毯长度至少需要 米.,第11题图),第18题图)12.计算:-2-2+(π-3)0+(-23)-2= ;(1.36×103)÷(4×109)= .(用科学记数法表示)13.已知2x =3,4y =5,则2x -2y -3= .14.计算:(a -2b)(-a -2b)= ;(a -2b )(-a +2b )= . 15.已知2x +3m =1,y -m =3,用含x 的代数式表示y 为__ .16.若关于x ,y 的方程组⎩⎪⎨⎪⎧2x +3y =4,3x +2y =2m -3的解满足x +y =3,则m = .17.一机器人从A 点出发向北偏东60°方向走到B 点,再从B 点向南偏西25°方向走到C 点,则∠ABC 的度数等于 .18.如图,已知AB ∥CD ,若∠ABE =120°,∠DCE =35°,则∠BEC = .三、解答题(共66分) 19.(12分)计算:(1)(x +2)(x 2-2x +4); (2)(m -3)(-m -3)+(-m -3)2; 解:(3)(12)-2-(5-2)0+(3×10-2)4÷(3×10-5)2.解:20.(5分)先化简,再求值:(a -b)2+b(3a -b)-a 2,其中a =2,b = 6. 解:原式=21.(10分)解方程组:(1)⎩⎪⎨⎪⎧2x -7y =5,3x -8y -10=0; (2)⎩⎪⎨⎪⎧2x +3y +z =6,x -y +2z =-1,x +2y -z =5. 解:22.(6分)已知a -b =5,ab =32,求a 2+b 2和(a +b)2的值.解:23.(6分)如图,已知∠1=∠2,∠3=∠E,∠4=∠5,请判断AD与BC的位置关系,并证明你的结论.24.(7分)为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月),例如:方女士家5月份用电500度,电费为180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元,请问表中二档电价、三档电价各是多少?解:阶梯电量电价一档0-180度0.6元/度二档181-400度二档电价三档401度及以上三档电价25.(8分)如图,已知BD∥AP∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BD的延长线于点Q,且∠Q=15°,求∠ACB的度数.解:26.(12分)花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表:租金:(单位:元/台·时) 挖掘土石方量(单位:m3/台·时) 甲型挖掘100 60机乙型挖掘120 80机各需多少台?(2)若每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?解:【参考答案】(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =34°,则 ∠BED 的度数是( D ) A .17° B .34° C .56° D .68°,第1题图) ,第5题图) ,第6题图),第10题图)2.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.000 000 000 34 m ,这个数据用科学记数法表示正确的是( C )A .3.4×10-9B .0.34×10-9C .3.4×10-10D .3.4×10-113.下列计算正确的是( D )A .a 4+a 2=a 6B .3a -a =2C .(a 3)4=a 7D .a 3·a 2=a 54.下列计算正确的是( C )A .-2x 2y ·3xy 2=-6x 2y 2B .(-x -2y )(x +2y )=x 2-4y 2C .6x 3y 2÷2x 2y =3xyD .(4x 3y 2)2=16x 9y 45.如图,有a ,b ,c 三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( D ) A .a 户最长 B .b 户最长 C .c 户最长 D .三户一样长6.如图,已知AB ∥CD ,∠AEG =40°,∠CFG =60°,则∠G 等于( A ) A .100° B .60° C .40° D .20°7.如果关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =3a ,x -y =9a 的解是二元一次方程2x -3y +12=0的一个解,那么a 的值是( B )A.34 B .-47 C.74 D .-438.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,该班男生有x 人,女生有y 人.根据题意,所列方程正确的是( D )A.⎩⎪⎨⎪⎧x +y =78,3x +2y =30B.⎩⎪⎨⎪⎧x +y =78,2x +3y =30C.⎩⎪⎨⎪⎧x +y =30,2x +3y =78D.⎩⎪⎨⎪⎧x +y =30,3x +2y =78 9.某地为了紧急安置60名灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好能容纳这60名灾民,则不同的搭建方案有( B )A .4种B .6种C .9种D .11种10.如图,周长为68 cm 的长方形ABCD 被分成7个相同的小长方形,则小长方形的长为( A ) A .10 cm B .12 cm C .14 cm D .16 cm二、填空题(每小题3分,共24分)11.如图,在高为2米,水平距离为3米的楼梯的表面铺地毯,那么地毯长度至少需要__5__米.,第11题图),第18题图)12.计算:-2-2+(π-3)0+(-23)-2=__3__;(1.36×103)÷(4×109)=__3.4×10-7__.(用科学记数法表示)13.已知2x =3,4y =5,则2x -2y -3=__340__.14.计算:(a -2b)(-a -2b)=__4b 2-a 2__;(a -2b )(-a +2b )=__-a 2+4ab -4b 2__.15.已知2x +3m =1,y -m =3,用含x 的代数式表示y 为__y =10-2x3__.16.若关于x ,y 的方程组⎩⎪⎨⎪⎧2x +3y =4,3x +2y =2m -3的解满足x +y =3,则m =__7__.17.一机器人从A 点出发向北偏东60°方向走到B 点,再从B 点向南偏西25°方向走到C 点,则∠ABC 的度数等于__35°__.18.如图,已知AB ∥CD ,若∠ABE =120°,∠DCE =35°,则∠BEC =__95°__.三、解答题(共66分) 19.(12分)计算:(1)(x +2)(x 2-2x +4); (2)(m -3)(-m -3)+(-m -3)2;解:(1)原式=x 3+8 (2)原式=6m +18(3)(12)-2-(5-2)0+(3×10-2)4÷(3×10-5)2.解:(3)原式=90320.(5分)先化简,再求值:(a -b)2+b(3a -b)-a 2,其中a =2,b = 6. 解:原式=ab ,当a =2,b =6时,原式=2321.(10分)解方程组:(1)⎩⎪⎨⎪⎧2x -7y =5,3x -8y -10=0; (2)⎩⎪⎨⎪⎧2x +3y +z =6,x -y +2z =-1,x +2y -z =5.解:(1)⎩⎪⎨⎪⎧x =6,y =1 (2)⎩⎪⎨⎪⎧x =2,y =1,z =-122.(6分)已知a -b =5,ab =32,求a 2+b 2和(a +b)2的值.解:a 2+b 2=28,(a +b )2=3123.(6分)如图,已知∠1=∠2,∠3=∠E ,∠4=∠5,请判断AD 与BC 的位置关系,并证明你的结论.解:AD ∥BC.理由:∵∠4=∠5,∴AB ∥CE ,∴∠E +∠BAE =180°,∵∠E =∠3,∴∠3+∠BAE =180°,∴AE ∥BF ,∴∠2=∠AFB ,∵∠1=∠2,∴∠1=∠AFB ,∴AD ∥BC24.(7分)为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月),例如:方女士家5月份用电500度,电费为180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元,请问表中二档电价、三档电价各是多少?解:设二档电价是x 元/度,三档电价是y 元/度,根据题意得⎩⎪⎨⎪⎧180×0.6+220x +100y =352,180×0.6+220x +60y =316,解得⎩⎪⎨⎪⎧x =0.7,y =0.9.故二档电价是0.7元/度,三档电价 是0.9元/度阶梯 电量 电价一档 0-180度0.6元/度 二档 181-400度二档电价 三档 401度及以上 三档电价25.(8分)如图,已知BD ∥AP ∥GE ,AF ∥DE ,∠1=50°. (1)求∠AFG 的度数;(2)若AQ 平分∠FAC ,交BD 的延长线于点Q ,且∠Q =15°,求∠ACB 的度数.解:(1)∠AFG =50° (2)由(1)知∠AFG =50°,∵AP ∥GE ,∴∠PAF =∠AFG =50°,∵AP ∥BD ,∴∠PAQ =∠Q =15°,∴∠FAQ =∠PAF +∠PAQ =65°,∵AQ 平分∠FAC ,∴∠CAQ =∠FAQ =65°,∴∠CAP =∠CAQ +∠PAQ =65°+15°=80°,∵AP ∥BD ,∴∠ACB =∠CAP =80°26.(12分)花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540 m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表:各需多少台?(2)若每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案?解:(1)甲、乙两种型号的挖掘机各需5台,3台 (2)设租用m 辆甲型挖掘机,n 辆乙型挖掘机,依题意得60m +80n =540,∴m =9-43n ,∵m ,n 均为正整数,m =5,n =3或m =1,n =6.当m =5,n =3时,支付租金100×5+120×3=860(元),超出限额;当m =1,n =6时,支付租金100×1+120×6=820(元),符合要求.故有一种用车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机。