最优化算法实验报告

最优化算法实验报告
最优化算法实验报告

基于Matlab的共轭梯

度算法

指导老师:

姓名:

学号:

班级:

日期:

基于Matlab的共轭梯度算法

一、实验目的及要求

(1)熟悉使用共轭梯度法求解无约束非线性规划问题的原理;

(2)在掌握原理的基础上熟练运用此方法解决问题

(3)学会利用计算机语言编写程序来辅助解决数学问题;

(4)解决问题的同时分析问题,力求达到理论与实践的统一;

(5)编写规范的实验报告.实验内容

二、实验原理

1.基本思想:

把共轭性与最速下降方法相结合,利用已知点处的梯度构造一组共轭方向,并沿这组方向进行搜索,求出目标函数的极小点。根据共轭方向的基本性质,这种方法具有二次终止性。在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。

2.程序流图:

三、实验代码

通过查阅相关资料,编写一个基于Matlab的共轭梯度算法,具体代码如下:function f=grad_2d(x0,t)

%用共轭梯度法求已知函数f(x1,x2)=x1^2+2*x2^2-4*x1-2*x1*x2的极值点

%已知初始点坐标:x0

%已知收敛精度:t

%求得已知函数的极值:f

x=x0;

syms xi yi a; %定义自变量,步长为符号变量

f=xi^2+2*yi^2-4*yi-2*xi*yi; %创建符号表达式f

fx=diff(f,xi); %求表达式f对xi的一阶求导

fy=diff(f,yi); %求表达式f对yi的一阶求导

fx=subs(fx,{xi,yi},x0); %代入初始点坐标计算对xi的一阶求导实值

fy=subs(fy,{xi,yi},x0); %代入初始点坐标计算对yi的一阶求导实值

fi=[fx,fy]; %初始点梯度向量

count=0; %搜索次数初始为0

while double(sqrt(fx^2+fy^2))>t %搜索精度不满足已知条件

s=-fi; %第一次搜索的方向为负梯度方向

if count<=0

s=-fi;

else

s=s1;

end

x=x+a*s; %进行一次搜索后的点坐标

f=subs(f,{xi,yi},x); %构造一元搜索的一元函数φ(a)

f1=diff(f); %对函数φ(a)进行求导

f1=solve(f1); %得到最佳步长a

if f1~=0

ai=double(f1); %强制转换数据类型为双精度数值

else

break %若a=0,则直接跳出循环,此点即为极值点

end

x=subs(x,a,ai); %得到一次搜索后的点坐标值

f=xi^2+2*yi^2-4*xi-2*xi*yi;

fxi=diff(f,xi);

fyi=diff(f,yi);

fxi=subs(fxi,{xi,yi},x);

fyi=subs(fyi,{xi,yi},x);

fii=[fxi,fyi]; %下一点梯度向量

d=(fxi^2+fyi^2)/(fx^2+fy^2);

s1=-fii+d*s; %下一点搜索的方向向量

count=count+1; %搜索次数加1

fx=fxi;

fy=fyi; %搜索后终点坐标变为下一次搜索的始点坐标

end

x,f=subs(f,{xi,yi},x),count %输出极值点,极小值以及搜索次数

end

四、实验结果

在命令窗口输入:

f=grad_2d([1,1],0.0000001)

输出结果如下:

x =4.0000 2.0000

f =-8.0000

count = 75

f =-8.0000

当在命令窗口输入如下命令时:

f=grad_2d([2,1],0.0000001)

x =4.0000 2.0000

f =-8.0000

count =22

f =-8.0000

当在命令窗口输入如下命令时:

f=grad_2d([2,1],0.001)

x = 3.9996 1.9999

f =-8.0000

count =12

f =-8.0000

由以上结果可知:

(1.)初始点不同搜索次数不同

(2.)无论初始点为多少,精度相同时最终结果极值点都是(4.0000,2.0000)(3.)当初始点相同时,若精度不一样搜索次数和最终结果会有差异但大致相同。

五、总结

从共轭梯度法的计算过程可以看出,第一个搜索方向取作负梯度方向,这就是最速下降法。其余各步的搜索方向是将负梯度偏转一个角度,也就是对负梯度进行修正。所以共轭梯度法实质上是对最速下降法进行的一种改进,故它又被称作旋转梯度法

在自然科学和工程技术中很多问题的解决常常归结为约束优化或无约束优化的问题。首先根据实际的机械问题建立相应的数学模型,即应用数学形式描述实际设计问题。同时需要用专业的知识确定设计的限制条件和所追求的目标,确立各设计变量之间的相互关系等。一旦建立数学模型,应用数学规划理论的方法,根据数学模型的特点可以选择适当的优化方法,进而可以选择适当的计算机程序,以计算作为工具求得最佳优化设计参数。通过学习发现,共轭梯度法是介于

最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。如何把实际的工程技术问题转化为理论的数学模型,进行分析运算求解,是检验我们是否学好这一课的关键。这可以让我们在以后的研究生生涯中有更加透彻的理解能力,扎实地撑握机械知识,培养创造性思维,专业技能有新的提高

六、调试截图

最优化实验报告

最优化方法 课程设计报告班级:________________ 姓名: ______ 学号: __________ 成绩: 2017年 5月 21 日

目录 一、摘要 (1) 二、单纯形算法 (2) 1.1 单纯形算法的基本思路 (2) 1.2 算法流程图 (3) 1.3 用matlab编写源程序 (4) 二、黄金分割法 (7) 2.1 黄金分割法的基本思路 (7) 2.2 算法流程图 (8) 2.3 用matlab编写源程序 (9) 2.4 黄金分割法应用举例 (11) 三、最速下降法 (11) 3.1 最速下降法的基本思路 (11) 3.2 算法流程图 (13) 3.3 用matlab编写源程序 (13) 3.4 最速下降法应用举例 (13) 四、惩罚函数法 (17) 4.1 惩罚函数法的基本思路 (17) 4.2 算法流程图 (18) 4.3 用matlab编写源程序 (18) 4.4 惩罚函数法应用举例 (19) 五、自我总结 (20) 六、参考文献 (20)

一、摘要 运筹学是一门以人机系统的组织、管理为对象,应用数学和计算机等工具来研究各类有限资源的合理规划使用并提供优化决策方案的科学。通过对数据的调查、收集和统计分析,以及具体模型的建立。收集和统计上述拟定之模型所需要的各种基础数据,并最终将数据整理形成分析和解决问题的具体模型。 最优化理论和方法日益受到重视,已经渗透到生产、管理、商业、军事、决策等各个领域,而最优化模型与方法广泛应用于工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各个部门及各个领域。伴随着计算机技术的高速发展,最优化理论与方法的迅速进步为解决实际最优化问题的软件也在飞速发展。其中,MATLAB软件已经成为最优化领域应用最广的软件之一。有了MATLAB 这个强大的计算平台,既可以利用MATLAB优化工具箱(OptimizationToolbox)中的函数,又可以通过算法变成实现相应的最优化计算。 关键词:优化、线性规划、黄金分割法、最速下降法、惩罚函数法

最优化方法实验报告(1)

最优化方法实验报告Numerical Linear Algebra And Its Applications 学生所在学院:理学院 学生所在班级:计算数学10-1 学生姓名:甘纯 指导教师:单锐 教务处 2013年5月

实验一 实验名称:熟悉matlab基本功能 实验时间: 2013年05月10日星期三实验成绩: 一、实验目的: 在本次实验中,通过亲临使用MATLAB,对该软件做一全面了解并掌握重点内容。 二、实验内容: 1. 全面了解MATLAB系统 2. 实验常用工具的具体操作和功能 实验二 实验名称:一维搜索方法的MATLAB实现 实验时间: 2013年05月10日星期三实验成绩: 一、实验目的: 通过上机利用Matlab数学软件进行一维搜索,并学会对具体问题进行分析。并且熟悉Matlab软件的实用方法,并且做到学习与使用并存,增加学习的实际动手性,不再让学习局限于书本和纸上,而是利用计算机学习来增加我们的学习兴趣。 二、实验背景: (一)0.618法(黄金分割法),它是一种基于区间收缩的极小点搜索

算法,当用进退法确定搜索区间后,我们只知道极小点包含于搜索区间内,但是具体哪个点,无法得知。 1、算法原理 黄金分割法的思想很直接,既然极小点包含于搜索区间内,那么可以不断的缩小搜索区间,就可以使搜索区间的端点逼近到极小点。 2、算法步骤 用黄金分割法求无约束问题min (),f x x R ∈的基本步骤如下: (1)选定初始区间11[,]a b 及精度0ε>,计算试探点: 11110.382*()a b a λ=+- 11110.618*()a b a μ=+-。 (2)若k k b a ε-<,则停止计算。否则当()()k k f f λμ>时转步骤(3)。 当()()k k f f λμ≤转步骤(4)。 (3)置 11111110.382*()k k k k k k k k k k a b b a b a λλμμ+++++++=??=?? =??=+-?转步骤(5)

整数规划实验报告例文

整数规划实验报告例文 篇一:实验报告整数规划 一、实验名称:整数规划问题和动态规划问题 二、实验目的: 熟练使用Spreadsheet建立整数规划、动态规划模型,利用excel建立数学模型,掌握求解过程,并能对实验结果进行分析及评价 三、实验设备 计算机、Excel 四、实验内容 (一)整数规划 1、0-1整数规划 其中,D11=F2;D12=F3;D13=F4;D14=F5; B11=SUMPRODUCT($B$9:$E$9,B2:E2); B12=SUMPRODUCT($B$9:$E$9,B3:E3); B13=SUMPRODUCT($B$9:$E$9,B4:E4); B14=SUMPRODUCT($B$9:$E$9,B5:E5); H8==SUMPRODUCT($B$9:$E$9,B6:E6); 用规划求解工具求解:目标单元格为$H$8,求最大值,可变单元格为$B$9:$E$9,约束条件为 $B$11:$B$14<=$D$11:$D$14;$B$9:$E$9=二进制。在【选项】

果,实现最大利润为140. 2、整数规划 其中,D11=D2;D12=D3; B11=SUMPRODUCT($B$8:$C$8,B2:C2);B12=SUMPRODUCT($B$8:$ C$8,B3:C3); F7=SUMPRODUCT($B$8:$C$8,B4:C4); 用规划求解工具求解:设置目标单元格为F7,求最大值,可变单元格为$B$8:$C$8,约束条件为 $B$11:$B$12<=$D$11:$D$12;$B$8:$C$8=整数。在【选项】菜单中选择“采用线性模型”“假定非负”。即可进行求解得结果,实现最大利润为14. 3、指派问题 人数跟任务数相等: 其中, F11=SUM(B11:E11);F12=SUM(B12:E12);F13=SUM(B13:E13);F14=SU M(B14:E14); B15=SUM(B11:B14);C15=SUM(B11:B14);D15=SUM(B11:B14);E15=SU M(B11:B14); H11,H12,H13,H14,B17,C17,D17,E17单元格值均设为1. 用规划求解工具求解:设置目标单元格为$B$8,求最小值,可变单元格为$B$11:$E$14,约束条件为$B$11:$E$14=二进制; $B$15:$E$15=$B$17:$E$17;$F$11:$F$14=$H$11:$H$14. 在【选

常用最优化方法评价准则

常用无约束最优化方法评价准则 方法算法特点适用条件 最速下降法属于间接法之一。方法简便,但要计算一阶偏导 数,可靠性较好,能稳定地使函数下降,但收敛 速度较慢,尤其在极点值附近更为严重 适用于精度要求不高或用于对 复杂函数寻找一个好的初始 点。 Newton法属于间接法之一。需计算一、二阶偏导数和Hesse 矩阵的逆矩阵,准备工作量大,算法复杂,占用 内存量大。此法具有二次收敛性,在一定条件下 其收敛速度快,要求迭代点的Hesse矩阵必须非 奇异且定型(正定或负定)。对初始点要求较高, 可靠性较差。 目标函数存在一阶\二阶偏导 数,且维数不宜太高。 共轭方向法属于间接法之一。具有可靠性好,占用内存少, 收敛速度快的特点。 适用于维数较高的目标函数。 变尺度法属于间接法之一。具有二次收敛性,收敛速度快。 可靠性较好,只需计算一阶偏导数。对初始点要 求不高,优于Newton法。因此,目前认为此法是 最有效的方法之一,但需内存量大。对维数太高 的问题不太适宜。 适用维数较高的目标函数 (n=10~50)且具有一阶偏导 数。 坐标轮换法最简单的直接法之一。只需计算函数值,无需求 导,使用时准备工作量少。占用内存少。但计算 效率低,可靠性差。 用于维数较低(n<5)或目标函 数不易求导的情况。 单纯形法此法简单,直观,属直接法之一。上机计算过程 中占用内存少,规则单纯形法终止条件简单,而 不规则单纯形法终止条件复杂,应注意选择,才 可能保证计算的可靠性。 可用于维数较高的目标函数。

常用约束最优化方法评价标准 方法算法特点适用条件 外点法将约束优化问题转化为一系列无约束优化问题。 初始点可以任选,罚因子应取为单调递增数列。 初始罚因子及递增系数应取适当较大值。 可用于求解含有等式约束或不等 式约束的中等维数的约束最优化 问题。 内点法将约束优化问题转化为一系列无约束优化问题。 初始点应取为严格满足各个不等式约束的内点, 障碍因子应取为单调递减的正数序列。初始障碍 因子选择恰当与否对收敛速度和求解成败有较大 影响。 可用于求解只含有不等式约束的 中等维数约束优化问题。 混合罚函数法将约束优化问题转化为一系列无约束优化问题, 用内点形式的混合罚函数时,初始点及障碍因子 的取法同上;用外点形式的混合罚函数时,初始 点可任选,罚因子取法同外点法相同。 可用于求解既有等式约束又有不 等式约束的中等维数的约束化问 题。 约束坐标轮换法由可行点出发,分别沿各坐标轴方向以加步探索 法进行搜索,使每个搜索点在可行域内,且使目 标函数值下降。 可用于求解只含有不等式约束, 且维数较低(n<5),目标函数的 二次性较强的优化问题。 复合形法在可行域内构造一个具有n个顶点的复合形,然 后对复合形进行映射变化,逐次去掉目标函数值 最大的顶点。 可用于求解含不等式约束和边界 约束的低维优化问题。

最优化实验报告(单纯形法的matlab程序,lingo程序)

实验一:线性规划单纯形算法 一、实验目的 通过实验熟悉单纯形法的原理,掌握Matlab 循环语句的应用,提高编程的能力和技巧。 二、实验用仪器设备、器材或软件环境 Windows Xp 操作系统 ,Matlab6.5,计算机 三、算法 对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始 基本可行解。设初始基为B,然后执行如下步骤: (1).解B Bx b =,求得1 B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i m B b i -=i 以b 记的第个分量 (2).计算单纯形乘子w , B wB C =,得到1 B w C B -=,对于非基变量,计算判别数 1i i i B i i z c c B p c σ-=-=-,令 max{}k i i i R z c σ∈=-,R 为非基变量集合 若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一步 (3).解k k By p =,得到 1 k k y B p -=;若0k y ≤,即k y 的每个分量均非正数,则停止计算,问题不存在有限最优解,否则,进行步骤(4). (4).确定下标r,使 { } :0 min ,0 t r rk tk tk b b tk y y t y y >=>且r B x 为离基变量。 k x 为进基变量,用k p 替换r B p ,得到新的基矩阵B ,返回步骤(1)。 对于极大化问题,可以给出完全类似的步骤,只是确定进基变量的准则不同。对于极大化问题,应令 min{}k k j j z c z c -=-

四、计算框图 是 否 是 否 开始 初始可行解B 令1,0,B N B B x B b b x f c x -==== 计算单纯形乘子1 B w c B -=,计算判别数,i j j wp c j R σ=-∈(非基变量) 令max{,}k j j R σσ=∈ 0?k σ≤ 得到最优解 解方程k k By p =,得到1k k y B p -=。 0?k y ≤ 不存在有限最优解 确定下标r ,是 { }:0 min ,0 t r rk tk tk b b tk y y t y y >=>且 k x 为进基变量,用 k p 替换r B p ,得到新的基矩阵B

学生科学实验效果最优化的基石实验报告设计

学生科学实验效果最优化的基石实验报告设计 自然科学是以实验为基础的学科。实验是人们研究和认识自然的重要方法。因此,在自然科学的教学中,实验也是重要的教学方法之一。通过实验,不仅可以提供学生对科学现象的感性认识,更可以让学生获得初步的实验技能和观察分析问题的能力。 小学科学实验教学的设计是运用系统论的思想和方法,以学习理论、教学理论为基础,计划和安排实验教学的各个环节、要素,以实现教学效果最优化为目的的活动。通过多年来的实验教学实践与思考,我们可以让学生像科学家那样,亲历科学探究的过程,这有利于充分发挥学生的主体作用,让学生积极主动参与到观察、实验等学习活动中去,亲自感知实验所产生的各种现象和变化,提高自行获取知识的能力,而其中比较重要的一个环节就是学生实验报告的设计与记录。在学生实验的过程中,一份好的实验报告设计,就像是一盏明灯,能给学生指引实验的目标、方向,能提供给学生形成结论的分析数据,进而培养学生科学实验的基本素养,使学生的科学实验效果达到最优化。 一、观察实验报告的填写,有利于学生在实验中观察,进一步培养学生实验的责任心和有序观察能力。 教科版四下《油菜花开了》解剖花的实验中,我设计了如下实验报告,在教学中取得了很好的效果。 《解剖花》实验人

花的名称 实验方法:用镊子把花的各部分,从外向里一层层撕下,整齐排列并贴在相应的名称左边,数一数,填在相应的空格上。 个萼片 个花瓣 个雄蕊 个雌蕊 在班级(1)上课时我没有设计实验报告,就按照书本上的要求,先介绍解剖花的方法、花的结构,然后让学生按照书本要求独立解剖油菜花。在实验过程中,学生非常认真,且相当活跃,但检查结果时,学生雌雄蕊不分,萼片、花瓣不分,桌上、地上掉落的都是花瓣,实验效果之不佳显而易见。 后来,我根据班级(1)出现的情况,设计了如上实验报告,实验的效果就相当出色。在这个实验报告中,我并没有限制学生解剖何种花,但学生可以根据实验要求很清楚地完成解剖的任务。充分体现了以教师为主导、学生为主体的课堂教学思想;而且在实验的过程中,桌上有了这份实验报告,便时刻提醒着学生做实验究竟是何目的,做实验时必须仔细观察什么,做实验的观察步骤是什么。在解剖花的过程中,动作快的同学还可在老师的同意下,多取一两张实验报告单,多解剖几种花,因此既避免了学生在一旁闲着无所事事而打闹的局面,又进一步提高了这些学生的科学素质。至于个别有困难的学生,教师可在巡视的过程中

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

最优化方法(黄金分割与进退法)实验报告

一维搜索方法的MATLAB 实现 姓名: 班级:信息与计算科学 学号: 实验时间: 2014/6/21 一、实验目的: 通过上机利用Matlab 数学软件进行一维搜索,并学会对具体问题进行分析。并且熟悉Matlab 软件的实用方法,并且做到学习与使用并存,增加学习的实际动手性,不再让学习局限于书本和纸上,而是利用计算机学习来增加我们的学习兴趣。 二、实验背景: 黄金分割法 它是一种基于区间收缩的极小点搜索算法,当用进退法确定搜索区间后,我们只知道极小点包含于搜索区间内,但是具体哪个点,无法得知。 1、算法原理 黄金分割法的思想很直接,既然极小点包含于搜索区间内,那么可以不断 的缩小搜索区间,就可以使搜索区间的端点逼近到极小点。 2、算法步骤 用黄金分割法求无约束问题min (),f x x R ∈的基本步骤如下: (1)选定初始区间11[,]a b 及精度0ε>,计算试探点: 11110.382*()a b a λ=+- 11110.618*()a b a μ=+-。 (2)若k k b a ε-<,则停止计算。否则当()()k k f f λμ>时转步骤(3)。 当 ()()k k f f λμ≤转步骤(4)。 (3) 11111110.382*()k k k k k k k k k k a b b a b a λλμμ+++++++=??=?? =??=+-?转步骤(5)

(4) 转步骤(5) (5)令1k k =+,转步骤(2)。 算法的MATLAB 实现 function xmin=golden(f,a,b,e) k=0; x1=a+0.382*(b-a); x2=a+0.618*(b-a); while b-a>e f1=subs(f,x1); f2=subs(f,x2); if f1>f2 a=x1; x1=x2; f1=f2; x2=a+0.618*(b-a); else b=x2; x2=x1; f2=f1; x1=a+0.382*(b-a); end k=k+1; end xmin=(a+b)/2; fmin=subs(f,xmin)

最优化计算方法课后习题答案----高等教育出版社。施光燕

习题二包括题目:P36页5(1)(4) 5(4)

习题三 包括题目:P61页1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下 3题的解如下

5,6题 14题解如下 14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T -处的牛顿方向。 解:已知 (1) (4,6)T x =-,由题意得 121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----?? ?= ?+++-----?? ∴ (1)1344()56g f x -?? =?= ??? 21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------? ??= ? +--------+--?? ∴ (1)2(1)1656()()564G x f x --?? =?= ?-?? (1)1 1/8007/400()7/4001/200G x --?? = ?--?? ∴ (1)(1)11141/100()574/100d G x g -?? =-= ?-?? 15(1)解如下 15. 用DFP 方法求下列问题的极小点 (1)22 121212min 353x x x x x x ++++ 解:取 (0) (1,1)T x =,0H I =时,DFP 法的第一步与最速下降法相同 2112352()156x x f x x x ++???= ?++??, (0)(1,1)T x =,(0) 10()12f x ???= ??? (1)0.07800.2936x -??= ?-??, (1) 1.3760() 1.1516f x ???= ?-?? 以下作第二次迭代 (1)(0) 1 1.07801.2936x x δ-??=-= ?-??, (1)(0) 18.6240()()13.1516f x f x γ-??=?-?= ?-?? 0110 111011101 T T T T H H H H H γγδδδγγγ=+-

最优化方法课程实验报告

项目一 一维搜索算法(一) [实验目的] 编写加步探索法、对分法、Newton 法的程序。 [实验准备] 1.掌握一维收搜索中搜索区间的加步探索法的思想及迭代步骤; 2.掌握对分法的思想及迭代步骤; 3.掌握Newton 法的思想及迭代步骤。 [实验容及步骤] 编程解决以下问题: 1.用加步探索法确定一维最优化问题 1 2)(min 30 +-=≥t t t t ? 的搜索区间,要求选取2,1,000===αh t . 加步探索法算法的计算步骤: (1)选取初始点 ]) 0[)(0[max 00t t t ,或,∈?∞+∈,计算 )(00t ??=.给出初始步长0 >h , 加步系数1α>,令0=k 。 (2) 比较目标函数值.令k k k h t t +=+1,计算 )(11++=k k t ??,若k k ??<+1,转(3),否则转(4)。 (3) 加大探索步长.令 k k h h α=+1,同时,令,k t t =,1+=k k t t 1k k =+,转(2)。 (4) 反向探索.若0=k ,转换探索方向,令,k k h h -=1+=k t t ,转(2)。否则,停止迭代,令 11min{}max{}k k a t t b t t ++==,,,。 加步探索法算法的计算框图

程序清单 加步探索法算法程序见附录1 实验结果 运行结果为: 2.用对分法求解 )2()(min +=t t t ?, 已知初始单谷区间]5,3[],[-=b a ,要求按精度3.0=ε,001.0=ε分别计算. 对分法迭代的计算步骤: (1)确定初始搜索区间],[b a ,要求'()0'()0a b ??<>,。 (2) 计算],[b a 的中点)(2 1 b a c +=. (3) 若0)(<'c ?,则c a = ,转(4);若0)(='c ?,则c t =* ,转(5);若0)(>'c ?,则c b = ,转(4). (4) 若ε<-||b a ,则)(2 1* b a t +=,转(5);否则转(2). (5) 打印* t ,结束 对分法的计算框图

《最优化方法》复习题(含答案)

x zD 天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 判断与填空题 arg max f(x)二 arg min 以儿 “ max(x): x D 二 R n 』=-min(x): x D 二 R n ; 设f : D 5 R n > R.若x : R n ,对于一切R n 恒有f(x”)^f(x),则称x”为 设f : D 5 R n >R.若x ” ? D ,存在x ”的某邻域N ;(x”),使得对一切 x ?N .(x)恒有f(x”)::: f (x),则称x”为最优化问题 min f (x)的严格局部最 优解? 给定一个最优化问题,那么它的最优值是一个定值 ? V 非空集合D R n 为凸集当且仅当 D 中任意两点连线段上任一点属于 D . V 非空集合D R n 为凸集当且仅当D 中任意有限个点的凸组合仍属于 D . V 任意两个凸集的并集为凸集? 函数f:D R n >R 为凸集D 上的凸函数当且仅当 -f 为D 上的凹函数? V 设f : D R n >R 为凸集D 上的可微凸函数,X :D ?则对-D ,有 f (x) - f(x )乞 f (x )T (X —X )? 若c(x)是凹函数,则 D={x^R n C(x)启0}是凸集。 V f(x)的算法A 产生的迭代序列,假设算法 A 为下降算法, 则对-k ? 5,1, 2,…匚恒有 ________________ f(x k1)乞 f(x k ) ______________ ? 算法迭代时的终止准则(写出三种) : ___________________________________________________ 凸规划的全体极小点组成的集合是凸集。 V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

最优化方法课程实验报告

. . 项目一 一维搜索算法(一) [实验目的] 编写加步探索法、对分法、Newton 法的程序。 [实验准备] 1.掌握一维收搜索中搜索区间的加步探索法的思想及迭代步骤; 2.掌握对分法的思想及迭代步骤; 3.掌握Newton 法的思想及迭代步骤。 [实验容及步骤] 编程解决以下问题: 1.用加步探索法确定一维最优化问题 1 2)(min 30 +-=≥t t t t ? 的搜索区间,要求选取2,1,000===αh t . 加步探索法算法的计算步骤: (1)选取初始点])0[)(0[max 00t t t ,或,∈?∞+∈,计算)(00 t ??=.给出初始步长0 >h , 加步系数1α>,令0=k 。 (2) 比较目标函数值.令k k k h t t +=+1,计算 )(11++=k k t ??,若k k ??<+1,转(3),否则转(4)。 (3) 加大探索步长.令k k h h α=+1,同时,令,k t t =,1+=k k t t 1k k =+,转(2)。 (4) 反向探索.若0=k ,转换探索方向,令,k k h h -=1+=k t t ,转(2)。否则,停止迭代, 令 11min{}max{}k k a t t b t t ++==,,,。 加步探索法算法的计算框图

. . 程序清单 加步探索法算法程序见附录1 实验结果 运行结果为: 2.用对分法求解 )2()(min +=t t t ?, 已知初始单谷区间]5,3[],[-=b a ,要求按精度3.0=ε,001.0=ε分别计算. 对分法迭代的计算步骤: (1)确定初始搜索区间],[b a ,要求'()0'()0a b ??<>,。 (2) 计算],[b a 的中点)(2 1 b a c += . (3) 若0)(<'c ?,则c a = ,转(4);若0)(='c ?,则c t =* ,转(5);若0)(>'c ?,则c b = ,转(4). (4) 若ε<-||b a ,则)(2 1* b a t +=,转(5);否则转(2).

最优化方法(试题+答案)

一、 填空题 1 . 若 ()()??? ? ??+???? ?????? ??=212121 312112)(x x x x x x x f ,则 =?)(x f ,=?)(2x f . 2.设f 连续可微且0)(≠?x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。 3.向量T ) 3,2,1(关于3阶单位方阵的所有线性无关的共轭向量 有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算 法: . 6.以下约束优化问题: )(01)(..)(min 212121 ≥-==+-==x x x g x x x h t s x x f 的K-K-T 条件为: . 7.以下约束优化问题: 1 ..)(min 212 2 21=++=x x t s x x x f 的外点罚函数为(取罚参数为μ) . 二、证明题(7分+8分) 1.设1,2,1,:m i R R g n i =→和m m i R R h n i ,1,:1+=→都是线性函数,证明下 面的约束问题: } ,,1{, 0)(},1{, 0)(..)(min 1112 m m E j x h m I i x g t s x x f j i n k k +=∈==∈≥=∑= 是凸规划问题。

2.设R R f →2 :连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题: } ,1{,0} 2,1{,0..) (min 11m m E i b x a m I i b x a t s x f i T i i T i +=∈=-=∈≥- 设d 是问题 1 ||||,0,0..)(min ≤∈=∈≥?d E i d a I i d a t s d x f T i T i T 的解,求证:d 是f 在x 处的一个可行方向。 三、计算题(每小题12分) 1.取初始点T x )1,1() 0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题 (迭代2步): 2 2212)(m in x x x f += 2.采用精确搜索的BFGS 算法求解下面的无约束问题: 212 2212 1)(min x x x x x f -+= 3.用有效集法求解下面的二次规划问题: . 0,001..42)(min 21212 12 221≥≥≥+----+=x x x x t s x x x x x f 4.用可行方向算法(Zoutend ij k算法或Frank Wol fe算法)求解下面的问题(初值设为)0,0() 0(=x ,计算到)2(x 即可): . 0,033..22 1)(min 212112 22121≥≥≤+-+-= x x x x t s x x x x x x f

最优化实验报告

最优化方法 课程设计报告 班级:________________ 姓名: ______ 学号: __________ 成绩: 2017年 5月 21 日 目录 一、摘要 (1)

二、单纯形算法 (2) 1.1 单纯形算法的基本思路 (2) 1.2 算法流程图 (3) 1.3 用matlab编写源程序 (3) 二、黄金分割法 (7) 2.1 黄金分割法的基本思路 (7) 2.2 算法流程图 (8) 2.3 用matlab编写源程序 (9) 2.4 黄金分割法应用举例 (10) 三、最速下降法 (10) 3.1 最速下降法的基本思路 (10) 3.2 算法流程图 (12) 3.3 用matlab编写源程序 (12) 3.4 最速下降法应用举例 (13) 四、惩罚函数法 (16) 4.1 惩罚函数法的基本思路 (16) 4.2 算法流程图 (17) 4.3 用matlab编写源程序 (17) 4.4 惩罚函数法应用举例 (19) 五、自我总结 (19) 六、参考文献 (19)

一、摘要 运筹学是一门以人机系统的组织、管理为对象,应用数学和计算机等工具来研究各类有限资源的合理规划使用并提供优化决策方案的科学。通过对数据的调查、收集和统计分析,以及具体模型的建立。收集和统计上述拟定之模型所需要的各种基础数据,并最终将数据整理形成分析和解决问题的具体模型。 最优化理论和方法日益受到重视,已经渗透到生产、管理、商业、军事、决策等各个领域,而最优化模型与方法广泛应用于工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各个部门及各个领域。伴随着计算机技术的高速发展,最优化理论与方法的迅速进步为解决实际最优化问题的软件也在飞速发展。其中,MATLAB软件已经成为最优化领域应用最广的软件之一。有了MATLAB这个强大的计算平台,既可以利用MATLAB优化工具箱(OptimizationToolbox)中的函数,又可以通过算法变成实现相应的最优化计算。 关键词:优化、线性规划、黄金分割法、最速下降法、惩罚函数 法

遗传算法实验报告

遗传算法实验报告 专业:自动化姓名:张俊峰学号:13351067 摘要:遗传算法,是基于达尔文进化理论发展起来的一种应用广泛、高效的随机搜索与优化方法。本实验利用遗传算法来实现求函数最大值的优化问题,其中的步骤包括初始化群体、个体评价、选择运算、交叉运算、变异运算、终止条件判断。该算法具有覆盖面大、减少进入局部最优解的风险、自主性等特点。此外,遗传算法不是采用确定性原则而是采用概率的变迁规则来指导搜索方向,具有动态自适应的优点。 关键词:串集最优化评估迭代变异 一:实验目的 熟悉和掌握遗传算法的运行机制和求解的基本方法。 遗传算法是一种基于空间搜索的算法,它通过自然选择、遗传、变异等操作以及达尔文的适者生存的理论,模拟自然进化过程来寻找所求问题的答案。其求解过程是个最优化的过程。一般遗传算法的主要步骤如下: (1)随机产生一个确定长度的特征字符串组成的初始种群。。 (2)对该字符春种群迭代地执行下面的步骤a和步骤b,直到满足停止准则为止: a计算种群中每个个体字符串的适应值; b应用复制、交叉和变异等遗传算子产生下一代种群。 (3)把在后代中表现的最好的个体字符串指定为遗传算法的执行结果,即为问题的一 个解。 二:实验要求 已知函数y=f(x 1,x 2 ,x 3 ,x 4 )=1/(x 1 2+x 2 2+x 3 2+x 4 2+1),其中-5≤x 1 ,x 2 ,x 3 ,x 4 ≤5, 用遗传算法求y的最大值。三:实验环境

操作系统:Microsoft Windows 7 软件:Microsoft Visual studio 2010 四:实验原理与步骤 1、遗传算法的思想 生物的进化是以集团为主体的。与此相对应,遗传算法的运算对象是由M个个体所组成的集合,称为群体。与生物一代一代的自然进化过程相类似,遗传算法的运算过程也是一个反复迭代过程,第t代群体极为P(t),进过一代遗传和进化后,得到第t+1代群体,他们也是由多个个体组成的集合,记做P(t+1)。这个群体不断地经过遗传和进化操作,并且每次都按照有优胜劣汰的规则将适应度较高的个体更多地遗传到下一代,这样最终在群体中将会得到一个优良的个体X,它所对应的表现性X将达到或接近于问题的最优解。 2、算法实现步骤 ①、产生初始种群:产生初始种群的方法通常有两种:一种是完全随机的方法产生的,适合于对问题的解无任何先验知识的情况;另一种是将某些先验知识转变为必须满足的一组要求,然后在满足这些要求的解中再随机地选择样本,t=0,随机产生n个个体形成一个初始群体P(t),该群体代表优化问题的一些可能解的集合; ②适应度评价函数:按编码规则,将群体P(t)中的每一个个体的基因码所对应的自变量取值代入目标函数,算出其函数值f,i=1,2,…,n,f越大,表示该个体有较高的适应度,更适合于f所定义的生存环境,适应度f为群体进化提供了依据; ③选择:按一定概率从群体P(t)中选出m个个体,作为双亲用于繁殖后代,产生新的个体加入下一个群体P(t+1)中。此处选用轮盘算法,也就是比例选择算法,个体被选择的概率与其适应度成正比。 ④交叉(重组):对于选中的用于繁殖的每一个个体,选择一种交叉方法,产生新的个体;此处采取生成随机数决定交叉的个体与交叉的位置。 ⑤变异:以一定的概率Pm从群体P(t+1)中随机选择若干个个体,对于选中的个体随机选择某个位置,进行变异; ⑥对产生新一代的群体返回步骤③再进行评价,交叉、变异如此循环往复,使群体中个体的适应度和平均适应度不断提高,直至最优个体的适应度达到某一限值或最优个体的适应度和群体的平均适应度不再提高,则迭代过程收敛,算法结束。 五:实验结果 实验结果的显示取决于判断算法终止的条件,这里可以有两种选择:1、在程序中设定迭代的次数;2在程序中设定适应值。本实验是在程序中实验者输入需要迭代的次数来判断程序终结的。

最优化方法(试题+答案)

一、 填空题 1.若()()??? ? ??+???? ?????? ??=212121 312112)(x x x x x x x f , 则=?)(x f ,=?)(2x f . 2.设f 连续可微且0)(≠?x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。 3.向量T )3,2,1(关于3阶单位方阵的所有线性无关的共轭向量有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算法: . 6.以下约束优化问题: )(01)(..)(min 212121 ≥-==+-==x x x g x x x h t s x x f 的K-K-T 条件为: . 7.以下约束优化问题: 1 ..)(min 212 2 21=++=x x t s x x x f 的外点罚函数为(取罚参数为μ) . 二、证明题(7分+8分) 1.设1,2,1,:m i R R g n i =→和m m i R R h n i ,1,:1+=→都是线性函数,证明下 面的约束问题: } ,,1{, 0)(},1{, 0)(..)(min 1112 m m E j x h m I i x g t s x x f j i n k k +=∈==∈≥=∑= 是凸规划问题。

2.设R R f →2 :连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题: } ,1{,0} 2,1{,0..) (min 11m m E i b x a m I i b x a t s x f i T i i T i +=∈=-=∈≥- 设d 是问题 1 ||||,0,0..)(min ≤∈=∈≥?d E i d a I i d a t s d x f T i T i T 的解,求证:d 是f 在x 处的一个可行方向。 三、计算题(每小题12分) 1.取初始点T x )1,1() 0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题 (迭代2步): 2 2212)(m in x x x f += 2.采用精确搜索的BFGS 算法求解下面的无约束问题: 212 2212 1)(min x x x x x f -+= 3.用有效集法求解下面的二次规划问题: . 0,001..42)(min 21212 12 221≥≥≥+----+=x x x x t s x x x x x f 4.用可行方向算法(Zoutendijk 算法或Frank Wolfe 算法)求解下面的问题(初值设为)0,0() 0(=x ,计算到)2(x 即可): . 0,033..22 1)(min 21211222121≥≥≤+-+-= x x x x t s x x x x x x f

学生科学实验效果最优化的基石实验报告设计

( 实验报告) 姓名:____________________ 单位:____________________ 日期:____________________ 编号:YB-BH-054067 学生科学实验效果最优化的基The design of cornerstone experiment report for optimizing the

学生科学实验效果最优化的基石实 验报告设计 自然科学是以实验为基础的学科。实验是人们研究和认识自然的重要方法。因此,在自然科学的教学中,实验也是重要的教学方法之一。通过实验,不仅可以提供学生对科学现象的感性认识,更可以让学生获得初步的实验技能和观察分析问题的能力。 小学科学实验教学的设计是运用系统论的思想和方法,以学习理论、教学理论为基础,计划和安排实验教学的各个环节、要素,以实现教学效果最优化为目的的活动。通过多年来的实验教学实践与思考,我们可以让学生像科学家那样,亲历科学探究的过程,这有利于充分发挥学生的主体作用,让学生积极主动参与到观察、实验等学习活动中去,亲自感知实验所产生的各种现象和变化,提高自行获取知识的能力,而其中比较重要的一个环节就是学生实验报告的设计与记录。在学生实验的过程中,一份好的实验报告设计,就像是一盏明灯,能给学生指引实验的目标、方向,能提供给学生形成结论的分析数据,进而培养学生科学实验的基本素养,使学生的科学实验效果达到最优化。 一、观察实验报告的填写,有利于学生在实验中观察,进一步培养学生实验的责任心和有序观察能力。

教科版四下《油菜花开了》解剖花的实验中,我设计了如下实验报告,在教学中取得了很好的效果。 《解剖花》实验人 花的名称 实验方法:用镊子把花的各部分,从外向里一层层撕下,整齐排列并贴在相应的名称左边,数一数,填在相应的空格上。 个萼片 个花瓣 个雄蕊 个雌蕊 在班级(1)上课时我没有设计实验报告,就按照书本上的要求,先介绍解剖花的方法、花的结构,然后让学生按照书本要求独立解剖油菜花。在实验过程中,学生非常认真,且相当活跃,但检查结果时,学生雌雄蕊不分,萼片、花瓣不分,桌上、地上掉落的都是花瓣,实验效果之不佳显而易见。 后来,我根据班级(1)出现的情况,设计了如上实验报告,实验的效果就相当出色。在这个实验报告中,我并没有限制学生解剖何种花,但学生可以根据实验要求很清楚地完成解剖的任务。充分体现了以教师为主导、学生为主体的课堂教学思想;而且在实验的过程中,桌上有了这份实验报告,便时刻提醒着学生做实验究竟是何目的,做实验时必须仔细观察什么,做实验的观察步骤是什么。在解剖花的过程中,动作快的同学还可在老师的同意下,多取一两张实验报告单,多解剖几种花,因此既避免了学生在一旁闲着无所事事而打闹的局面,又进一步提高了这些学生的科学素质。至于个别有困难的学生,教师可在巡视的过程中随

最优化算法实验报告(附Matlab程序)

最优化方法(Matlab)实验报告 ——Fibonacci 法 一、实验目的: 用MATLAB 程序实现一维搜索中用Fibonacc 法求解一元单峰函数的极小值问题。二、实验原理: (一)、构造Fibonacci 数列:设数列{}k F ,满足条件: 1、011F F == 2、11 k k k F F F +-=+则称数列{}k F 为Fibonacci 数列。(二)、迭代过程: 首先由下面的迭代公式确定出迭代点: 1 1 1 (),1,...,1(),1,...,1n k k k k k n k n k k k k k n k F a b a k n F F u a b a k n F λ---+--+=+ -=-=+ -=-易验证,用上述迭代公式进行迭代时,第k 次迭代的区间长度缩短比率恰好为 1 n k n k F F --+。故可设迭代次数为n ,因此有11121211221111223231 ()()......()()n n n n n n n n n F F F F F F b a b a b a b a b a F F F F F F F ------= -=?-==?-=-若设精度为L ,则有第n 次迭代得区间长度111 ()n n n b a L b a L F -≤-≤,即 就是 111 ()n b a L F -≤,由此便可确定出迭代次数n 。

假设第k 次迭代时已确定出区间[,]k k a b 以及试探点,[,]k k k k u a b λ∈并且k k u λ<。计算试探点处的函数值,有以下两种可能:(1)若()()k k f f u λ>,则令 111111111,,()() () k k k k k k k k n k k k k k n k a b b f f F a b a F λλμλμμ++++--++++-=====+-计算1()k f μ+的值。(2)()()k k f f u λ≤,则令 111121111,,()() () k k k k k k k k n k k k k k n k a a b f f F a b a F μμλμλλ++++--++++-=====+-计算1()k f λ+的值。 又因为第一次迭代确定出了两个迭代点,以后每迭代一次,新增加一个迭代点,这样在迭代n-1后便计算完了n 个迭代点。因此第n 次迭代中,选用第n-1次的迭代点以及辨别常数δ构造n λ和n μ: 1 1n n n n λλμλδ --==+再用同样的方法进行判断:(1)、若()n f λ>()n f μ则令 1 n n n n a b b λ-==(2)、若()n f λ<=()n f μ则令 1n n n n a a b μ-==这样便可确定出最优解的存在区间[,]n n a b 。

相关文档
最新文档