施耐德RMJAM系列电流控制继电器使用说明

施耐德RMJAM系列电流控制继电器使用说明
施耐德RMJAM系列电流控制继电器使用说明

施耐德RM35JA32M系列电流控制继电器使用说明

固态继电器应用电路图大全

固态继电器应用电路图大全 ■应用电路图 1. 与传感器的连接 SSR可直接连接接近开关、光电开关等传感器。 2. 白炽灯的闪烁控制 3.电气炉的温度控制 4. 单相感应电动机的正反运转

注1. SR1、SSR2其中一个为断开侧SSR的LOAD端子间电压,由于通过 LC结合,电压约为电源电压的2倍, 请务必使用具备电源电压2倍以上的输出额定电压的SSR (例)电源电压交流100V的单相感应电动机的正反运转,应使用有交流200V以上输出电压的SSR 注2. 切换SW1和SW2时,请务必确保有30ms以上的时滞。 5. 三相感应电动机的接通、断开控制 6. 三相电机的正反运转 SSR三相电机正反运转时,请注意SSR的输入信号。如右上图所示,同时切换SW1和SW2时,负载侧发生相间短路,会损坏SSR 的输出元件。这是由于即使没有至SSR输入端子的输入信号,输出元件(三端双向可控硅开关)仍处于导通状态,直至负载电流为0。因此,切换SW1和SW2时,请务必设定30ms以上的时滞。 另外,由于至SSR输入电路的干扰等导致的SSR误动作,也会导致相间短路、SSR损坏。作为此时的对策例,在电路中接入防止产生短路事故的保护电阻R。对于保护电阻R,请根据SSR的浪涌接通电流容量确定。例如, G3NA-220B的浪涌接通电流容量为 220Apeak,因此为R>220V×√2/220A=1.4Ω。另外,考虑到电路电流、通电时间等,请插到消耗功率较小的一侧。 另外,对于电阻的功率,请根据P=I2R×安全率进行计算。 (I=负载电流、R=保护电阻、安全率3~5)

7. 变压器负载的冲击电流 变压器负载时的冲击电流,在电抗不运作的2次侧开放状态下为最大。另外,由于其最大电流是电源频率的1/2周,若不用示波器将很难进行测定。为此,应测定变压器一次侧的直流电阻,据此预测冲击电流。(实际上,由于固有电抗运作,其结果比该计算值还少)。 I peak=V peak/R=(√2×V)/R 假设在负载电源电压220V 使用一次侧的直流电阻3 欧姆的变压器,则此时的冲击电流为, I peak=(1.414×220)/3=103.7A 本公司规定SSR的浪涌接通电流容量为非反复(1天1-2次),请选择能反复使用具备该I peak的2倍的浪涌接通电流容量的SSR。此时,请选择具备207.4A 以上浪涌接通电流容量、G3□□-220□以上的SSR。 另外,若对此进行逆运算,即可算出满足SSR的变压器一次侧的直流电阻值。R=V peak/I peak=(√2×V)/I peak 有关变压器一次侧的直流电阻值适用SSR的一览表,请参考附件。 另外,该一览表表示「满足冲击电流的SSR」,还必须结合「变压器的稳定电流满足各SSR的额定电流」。 〈SSR的额定电流〉 G3□□-240□ 下划线2位的数字显示稳定电流。(此时为40A)

施耐德ATV61参数设置

ATV61参数设置 菜单 [1 变频器菜单] [2 访问等级] [3 打开/另存为] [4 密码] [5 语言选择] [6 监视设置] [7 显示设置] [1 变频器菜单] [1.1简单起动]:用于快速起动的简化菜单 [1.2监视]:显示电流、电机与输入/输出值 [1.3设置]:访问可在运行期间修改的调节参数 [1.4 电机控制]:电机参数(电机铭牌,自整定,开关频率,控制算法等)[1.5输入/输出设置]:I/O设置(缩放比例,滤波,2线控制,3线控制等)[1.6命令]:命令与给定通道的设置(图形显示终端,端子,总线等)[1.7应用功能]:应用功能设置(例如:预置速度,PID等) [1.8 故障管理]:故障管理设置 [1.9通信]:通信参数(现场总线) [1.10诊断]:电机/变频器诊断 [1.11软硬件识别]:变频器与内部可选件的识别 [1.12出厂设置]:访问设置文件并返回出厂设置 [1.13用户菜单]:用户在[7.显示设置]菜单中创建的专用菜单 [1.14内置控制器卡]:可选Controller Inside(内置控制器)卡的设置 [1.1简单起动] ●[2/3线控制]tCC=2C[2线控制] ●[宏配置]CFG=PnF[泵和风机] ●bFr[标准电机频率]= [50 Hz IEC](50):IEC ●nPr[电机额定功率]= ●UnS[电机额定电压]= ●[电机额定电流]nCr= ●FrS[电机额定频率]=

●nSP[电机额定速度]= ●tFr[最大输出值频率]= ●tUn[自整定]= [No](nO)/ [Yes](YES)/ [电阻已整定](dOnE) ●tUS[自整定状态] ?[电阻未整定](tAb):默认的定子阻抗值用于控制电机。 ?[整定等待中](PEnd):已经请求自整定,但还未执行。 ?[整定进行中](PrOG):正在执行自整定。 ?[整定失败](FAIL):自整定失败。 ?[电阻已整定](dOnE):自整定功能测出的定子阻抗被用于控制电机。 ●PHr ?[ABC相序](AbC):正相序 ?[ACB相序](ACb):反相序 ●ItH[电机热保护电流]=0~1.2Ln ●ACC[加速时间]=60S ●dEC[减速时间]=60S ●LSP[低速频率]=0.1HZ ●HSP[高速频率]=50HZ [1.6命令](CtL-) ●Fr1[给定1通道] ?[AI1给定](AI1):模拟输入 ?[AI2给定](AI2):模拟输入 ?[AI3给定](AI3):模拟输入,如果已经插入 VW3A3202扩展卡 ?[AI4给定](AI4):模拟输入,如果已经插入 VW3A3202扩展卡 ?[图形终端](LCC):图形显示终端 ?[Modbus](Mdb):集成的Modbus总线 ?[CANopen](CAn):集成的CANopen总线 ?[通信卡](nEt):通信卡(如果已经插入) ?[控制器内置卡](APP):Controller Inside(内置控制器)卡(如果已经插入)?[RP](PI):频率输入,如果已经插入VW3A3202扩展卡 ?[编码器输入](PG):编码器输入,如果已经插入编码器卡 ●CCS[命令通道切换]= [通道1有效](Cd1):[命令通道1](Cd1)被激活(不能切换)●Cd1[命令通道1] ?[端子排](tEr):端子 ?[图形终端](LCC):图形显示终端 ?[Modbus](Mdb):集成的Modbus总线 ?[CANopen](CAn):集成的CANopen总线 ?[通信卡](nEt):通信卡(如果已经插入) ?[编程卡](APP):Controller Inside(内置控制器)卡(如果已经插入) 注意:组合模式](CHCF)= [隔离通道](SEP)或[I/O 模式](IO),此参数可以使用。 ●Cd2[命令通道2] ?[端子排](tEr):端子 ?[图形终端](LCC):图形显示终端 ?[Modbus](Mdb):集成的Modbus总线 ?[CANopen](CAn):集成的CANopen总线

继电器控制电路图

继电器控制电路图 [日期:2008-12-07 ] [来源:东哥单片机学习网https://www.360docs.net/doc/8216239363.html, 作者:佚名] [字体:大中小] (投递新闻) 继电器控制电路图在人们的习惯中,总认为CMOS集成块不能直接带动继电器工作,但实验证明,部分CMOS集成块不仅能直接带动继电器工作,而且工作稳定可靠。实验中所用继电器的型号为JRC5M-DC12V微型密封继电器(其线圈电阻为750Ω)。现将CD4066 CMOS集成块带动继电器的工作原理分析如下: 电路中,继电器线圈两端均反相并联了一只二极管,它是用于保护集成块的,切不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。 低电压下继电器的吸合措施 常常因为电源电压低于继电器的吸合电压而使其不能正常工作,事实上,继电器一旦吸合,便可在额定电压的一半左右可靠地工作。因此,可以在开始时给继电器一个启动电压使其吸合,然后再让其在较低的电源电压下工作,如图所示的电路便可实现此目的。

制作本电路时,一般可取继电器的额定电压为电源电压的1.5倍左右,一般情况下,任何型号的单向可控硅(或双向可控硅)皆可满足本电路需要。V2、C1、C3的耐压视电源电压的高低选取。C2耐压最好不低于电源电压的两倍。 继电器的三种附加电路 继电器是电子电路中常用的一种元件,一般由晶体管、继电器等元器件组成的电子开关驱动电路中,往往还要加上一些附加电路以改变继电器的工作特性或起保护作用。继电器的附加电路主要有如下三种形式: 1.继电器串联RC电路:电路形式如图1,这种形式主要应用于继电器的额定工作电压低于电源电压的电路中。当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈中电流的增大,从而延长了吸合时间,串联上RC电路后则可以缩短吸合时间。原理是电路闭合的瞬间,电容C两端电压不能突变可视为短路,这样就将比继电器线圈额定工作电压高的电源电压加到线圈上,从而加快了线圈中电流增大的速度,使继电器迅速吸合。电源稳定之后电容C不起作用,电阻R起限流作用。 2.继电器并联RC电路:电路形式见图2,电路闭合后,当电流稳定时RC电路不起作用,断开电路时,继电器线圈由于自感而产生感应电动势,经RC电路放电,使线圈中电流衰减放慢,从而延长了继电器衔铁释放时间,起到延时作用。 3.继电器并联二极管电路:电路形式见图3,主要是为了保护晶体管等驱动元器件。当图中晶体管VT由导通变为截止时,流经继电器线圈的电流将迅速减小,这时线圈会产生很高的自感电动势与电源电压叠加后加在VT的c、e两极间,会使晶体管击穿,并联上二极管后,即可将线圈的自感电动势钳位于二极管的正向导通电压,此值硅管约0.7V,锗管约0.2V,从而避免击穿晶体管等驱动元器件。并联二极管时一定要注意二极管的极性不可接反,否则容易损坏晶体管等驱动元器件。 无电感式模拟继电器 本文介绍一种无电感式模拟继电器,其电路原理如下图所示。

继电器的结构和工作原理及应用举例

继电器的结构和工作原理及其在电机控制中的应用举例 一、继电器的结构和工作原理 图l-2a是继电器结构示意图,它主要由电磁线圈、铁心、触点和复位弹簧组成。继电器有两种不同的触点,于断开状态的触点称为常开触点(如图1-2中的触3,4),处于闭合状态的触点称为常闭触点(如图1-2中的触点当线圈通电时,电磁铁产生磁力,吸引衔铁,使常闭触点断开,常开触点闭合。线圈电流消失后,复位弹簧的位置,常开触点断开,常闭触点闭合。图l-2b是继电器的线圈、常开触点和常闭触点在电路图中的符号。一若干对常开触点和常闭触点。在继电器电路图中,一般用相同的由字母、数字组成的文字符号(如KA2)来标注同圈和触点。

二、接触器在电机控制中的应用 图1—3是用交流接触器控制异步电动机的主电路、控制电路和有关的波形图。接触器的结构和工作原理与继电区别仅在于继电器触点的额定电流较小,而接触器是用来控制大电流负载的,例如它可以控制额定电流为几十安电动机。按下起动按钮SBl,它的常开触点接通,电流经过SBl的常开触点和停止按钮SB2、作过载保护用的热闭触点,流过交流接触器KM的线圈,接触器的衔铁被吸合,使主电路中的3对常开触点闭合,异步电动机M 通,电动机开始运行,控制电路中接触器KM的辅助常开触点同时接通。放开起动按钮后,SBl的常开触点断开辅助常开触点和SB2、FR的’常闭触点流过KM的线圈,电动机继续运行。KM的辅助常开触点实现的这种功或“自保持”,它使继电器电路具有类似于R-S触发器的记忆功能。 在电动机运行时按停止按钮SB2,它的常闭触点断开,使KM的线圈失电,KM的主触点断开,异步电动机断,电动机停止运行i同时控制电路中KM的辅助常开触点断开。当停止按钮SB2被放开,其常闭触点闭合后,失电,电动机继续保持停止运行状态。图1.3给出了有关信号的波形图,图中用高电平表示1状态(线圈通电、低电平表示0状态(线圈断电、按钮被放开)。 图1.3中的控制电路在继电器系统和PLC的梯形图中被大量使用,它被称为“起动-保持-停止”电路,或简称路。

施耐德 双电源MG ATS用户手册

ATS技术操作规程 一.送电前检查 1.检查接线是否正确 检查ACP(辅助控制板)与BA或UA(控制器)之间9#.10#连接端子对应是否正确; 检查ACP上P25M与断路器之间接线是否正确(详见“ATS接线”单页) 2.检查BA或UA控制器顶部17#.18#;20#.21#端子是否安装,17#.18#;20#21#已分别短封好; 3.检查断路器电操左下方的手动(manu)和电动(auto)切换拨钮是否在 “auto”位置; 4.检查电操与BA或UA控制器的操作电压是否一致(220V~或380V~); 5. 检查ATS装置无异物; 6.检查ACP上P25M是否已在合闸位置。 二.操作试验 1.预设电源转换时间: 通过控制器右上方时间整定钮调整; 2.将BA或UA控制器上的选择开关置于“STOP”位置,将ACP上“N(工作电源)”及“R(备用电源)”侧 P25M分别合闸(两台断路器电操储能)。 3.将BA或UA控制器上的选择开关转到“auto”位, N断路器合闸,BA或UA“N”、“R”侧ON或OFF指 示断路器的合分状态。观察控制器指示与断路器电操上的ON. OFF位置应一致; 4.将ACP上N侧P25M开关分断模拟电源故障, 此时N侧断路器分断;R侧断路器合闸(系统自动转换到备 用电源R侧); 合上N侧开关,电源应自动恢复到主电源(N)侧合闸---自投自复功能; 5.将N侧断路器下端的故障试验推杆按入(模拟负荷故障),N侧断路器断开BA或UA控制器的N侧Fault 指示灯亮(红色),电源并不转换到备用侧; 手动拨N侧断路器电操的储能手柄2次,(N侧断路器储能、合闸)故障复位,控制器N侧Fault指示灯灭, 恢复原始状态; 6.将BA或UA控制器选择开关置“R”位, 则ATS强制在备用电源侧运行; 同样再置“N”位, ATS强制在工 作电源运行,此操作过程中,控制器电源指示均正常;

继电器的用法

继电器驱动应用 一、实验目的 掌握继电器驱动的方法 二、实验原理 什么是继电器呢?这个东西很常见,在电子设备以及电力系统中的应用都很广泛,简单的来就是一种用小电流来控制大电流的开关。小电流通过线圈,产生磁场,这个磁场使得控制大电流的开关吸合。从而使得人们能够安全的超控大电流大电压设备。 继电器原理 继电器是一种电子控制器件,它具有控制系统和被控制系统通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。 继电器的选择 先了解必要的条件: ①控制电路的电源电压,能提供的最大电流; ②被控制电路中的电压和电流; ③被控电路需要几组、什么形式的触点。 选用继电器时,一般控制电路的电源电压可作为选用的依据。控制电路应能给继电器提供足够的工作电流,否则继电器吸合是不稳定的。 查阅有关资料确定使用条件后,可查找相关资料,找出需要的继电器的型号和规格号。若手头已有继电器,可依据资料核对是否可以利用。最后考虑尺寸是否合适。 继电器驱动 1、晶体管驱动

Multisim仿真功能在继电器控制电路设计中的应用

M u l t i s i m仿真功能在继电器控制电路设计中 的应用 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

M u l t i s i m仿真功能在继电器控制电路设计中的应用 陈竹 Multisim软件是由美国国家仪器公司(NI)下属的Electronics Workbench Group开发的交互式SPICE仿真和电路分析软件,其 Multisim10.1 版本于2008年初推出的最新版。 该软件提供了一个非常大的元器件数据库,并提供原理图输入接口、全部的数模Spice仿真功能、VHDL、Verilog设计接口与仿真功能、FPGA、CPLD综合、RF设计能力和后处理功能、梯形图仿真,还可以实现从原理图设计工具到PCB布线工具包(Ultiboard)的无缝数据传输。它提供的简单易用的图形输入接口可以满足用户的设计需求。 这个平台将虚拟仪器技术的灵活性扩展到了电子设计者的工作台上,弥补了测试与设计功能之间的缺口。Multisim10.1提供了24种以上虚拟仪器,这些虚拟仪器与现实中所使用的仪器一样,人们可以直接通过虚拟仪器观察电路的运行状态。同时,虚拟仪器还充分利用了计算机处理数据速度快的优点,对测量的数据进行加工处理,并产生相应的结果。 Multisim 10.1包括新增和改善的数据库。其中包括来自领先制造商美国AD和德州仪器公司的大约300多个新元器件,这些元件包括运算放大器、比较器、模拟开关和电压参考组件;500多个更新的组件;以及最新的通用电力仿真部件,这些部件包括Buck、 Boost、 Buck-Boost、和 PWM控制器。 Multisim10.1 教育版下载网址(试用30天): 要求设计一种继电器控制电路,在一段时间间隔段内最多只能计两次数的累计装置。具体要求是:线路上电后延时2分钟才能开始计数,计数2次后不能再计数,再过1分半种后电路复位,重新开始进入可计数状态。 1.实现线路

继电器驱动电路原理及注意事项

继电器驱动电路原理及注意事项 默认分类2008-09-22 11:04:21 阅读1762 评论0 字号:大中小 继电器驱动电路原理及注意事项 家用空调器电控板上的12V直流继电器,是采用集成电路2003驱动,当2003输出脚不够用时才会用晶体管驱动,下面分别介绍这两种驱动电路。 1、集成电路2003电路原理图 左图1~7是信号输入(IN),10~16是输出信号(OUT),8和9是集成电路电源。右图是集成块内部原理图。 1.1 工作原理简介 根据集成电路驱动器2003的输入输出特性,有人把它简称叫“驱动器”“反向器”“放大器”等,现在常用型号为:TD62003AP。当2003输入端为高电平时,对应的输出口输出低电平,继电器线圈通电,继电器触点吸合;当2003输入端为低电平时,继电器线圈断电,继电器触点断开;在2003内部已集成起反向续流作 用的二极管,因此可直接用它驱动继电器。 1.2检修判断2003好坏的方法非常简单,用万用表直流档分别测量其输入和输出端电压,如果输入端1~7是低电平(0V),输出端10~16必然是高电平 (12V);反之,如果输入端1~7是高电平(5V),输出端10~16必然是低电平(0V);否则,驱动器已坏。 测试条件:1.待机;2.开机。 测试方法:将万用表调至20V直流档,负表笔接电控板地线(7812稳压块散热片),正表笔分别轻触2003各脚。 2. 晶体管驱动电路 当晶体管用来驱动继电器时,必须将晶体管的发射极接地。具体电路如下:

2.1工作原理简介 NPN晶体管驱动时:当晶体管T1基极被输入高电平时,晶体管饱和导通,集电极变为低电平,因此继电器线圈通电,触点RL1吸合。 当晶体管T1基极被输入低电平时,晶体管截止,继电器线圈断电,触点RL1断开。 PNP晶体管驱动电路目前没有采用,因此在这里不作介绍。 2.1 电路中各元器件的作用: 晶体管T1可视为控制开关,一般选取VCBO≈VCEO≥24V,放大倍数β一般选择在120~240之间。。电阻R1主要起限流作用,降低晶体管T1功耗,阻值为2 KΩ。电阻R2使晶体管T1可靠截止,阻值为5.1KΩ。二极管D1反向续流,抑制浪涌,一般选1N4148即可 能带动继电器工作的CMOS集成块 在人们的习惯中,总认为CMOS集成块不能直接带动继电器工作,但实验证明,部分CMOS集成块不仅能直接带动继电器工作,而且工作稳定可靠。实验中所用继电器的型号为JRC5M-DC12V微型密封继电器(其线圈电阻为750Ω)。现将CD4066 CMOS集成块带动继电器的工作原理分析如下: CD4066是四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的通断。当SCR1接高电平时,集成块①、②脚导通,+12V→K1→集成块①、②脚→电源负极使K1吸合;反之当SCR1输入低电平时,集成块①、②脚开路,K1失电释放,SCR2~SCR4输入高电平或低电平时状态与SCR1 相同。

施耐德万高D型控制器使用说明-

D 型控制器 用户手册 施耐德万高()电气设备 Schneider Wingoal (Tianjin) Electric Equipment Co., Ltd ● 控制器功能介绍 ● 控制器安装及接线说明 ● 控制器设置操作 ● 附录1 通讯协议

下面的符号将用于本手册的说明,提醒您注意潜在的危险,或者请您注意那些阐述、简化过程和关键操作。 :安全警示标志,提示您如果违规操作可能造成人身安全危险或本开关的不可恢复性损坏。 : 关键性操作,提示您使用不当时,可能使控制器工作于非正常状态。 :提供另外的信息或简化的操作方法。 请注意: 电气设备应该让有资格的专业人员进行安装、操作、使用、维护。未按使用手册操作而造成的不良后果,施耐德电气公司将不负任何责任。

控制器功能介绍 本控制器工作电压为AC380V,工作频率为50Hz,主要功能是进行电压采集,根据电压的实时值进行故障判断(三相断相、欠压、过压和失压),并控制转换开关进行相应的转换动作。用户还可根据实际需要选配电流模块实现实时电流、有功功率和有功电能的显示。另外,控制器提供多组无源节点的输入和输出,包括故障输出、负荷卸载、发电机启动、动作无源输出、远程投备(无源输入)、消防联动(无源输入)以及通讯接口,具体接线参见第2.2节。 控制器安装及接线说明 1.1.控制器外形尺寸 图1 D型控制器外形尺寸

1.2. 控制器二次接线 1.2.1. 控制器端子说明 1.2.2. A1-A3备A4-D2,A5-RJ,A6-OUT,A7-D3,A8-D1,A9-NJ,A10-12,主 A2A3A4A5A6A7A8A9A10 A11A12OUT B1B2B3B4B5B6B7B8B9B10B11B12 故障输出 负荷卸载 主转备备转主 发电机启动 C1C2C3C4C5C6C7C8C9C10 空 D3 NB RB 空 远程投备 消防联动 D1D2D3D4D5D6D7D8D9D10D11D12 A B A`B` G 空 IC*IB*IA*动作输出 RS485 IC IB IA ? 动作输出:当机构中电机转动时,常开触点闭合; ? 故障输出:当常用或备用电源故障时,常开触点闭合; ? 负荷卸载:在电网-发电机模式下,常用电源故障,常开触点闭合; ? 发电机启动:在电网-发电机模式下,常用电源正常,常开触点闭合,常用电源故障,常开触点打开; ? RS485:通信用端口,A’ B’为通信预留端口; ? IA~IC :电流互感器输入端口I*为输入端,I 为输出端;(输入额定电流5A ) ? 远程投备(无源):短接此两点,机构转到备用位置,开关状态主分备合;(可靠距离10m) ? 消防联动(无源):短接此两点,机构转到双分位置,开关状态主分备分;(可靠距离 10m,WTS-D800~5000系列不具备该项功能) : 控制器的发电机启动端子在常用电源正常时常闭触点断开,当常用电源故障时常闭触点闭合以接通发电机启动电路;常开触点与之相反,请用户注意。

继电器控制电路模块及原理讲解

能直接带动继电器工作的CMOS集成块电路 在电子爱好者认识电路知识的的习惯中,总认为CMOS集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-DC12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066 CMOS集成块带动继电器的工作原理分析如下: CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的通断。当SCR1接高电平时,集成块①、②脚导通,+12V→K1→集成块①、②脚→电源负极使K1吸合;反之当SCR1输入低电平时,集成块①、②脚开路,K1失电释放,SCR2~SCR4输入高电平或低电平时状态与SCR1相同。 本电路中,继电器线圈的两端均反相并联了一只二极管,它是用来保护集成电路本身的,千万不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。 低电压下继电器的吸合措施 常常因为电源电压低于继电器的吸合电压而使其不能正常工作,事实上,继电器一旦吸合,便可在额定电压的一半左右可靠地工作。因此,可以在开始时给继电器一个启动电压使其吸合,然后再让其在较低的电源电压下工作,如图所示的电路便可实现此目的。 工作原理: 如图所示。V1为单结晶体管BT33C

,它与R1、R2、R3和C1组成一个张弛式振荡器,SCR为单向可控硅,按下启动按钮AN1后,电路通电,因为SCR无触发电压,所以不导通,继电器J不动作,电源通过R4和VD1给电容C2迅速充电至接近电源电压(Vcc-VD1压降)。同时,电源经R1给电容C1充电。数秒后,C1上电压充到V1的触发电压,C1立即通过V1放电,在R3上形成一个正脉冲,该脉冲一路加到V2基极,使V2迅速饱和导通,V2集电极也即电容C2正极近于接地。由于此时C2上充有上正下负的正极性电压,所以C2负极也即J线圈一端呈负电位。R3上的正脉冲另一路经VD2、C3去触发可控硅导通,SCR阴极也即J线圈另一端接近电源电压。这时,J线圈实际上承受约两倍的电源电压,所以J1-1闭合,松开AN1后,J1-1自保。J1-2将V1、V2供电切断,继电器在接近电源电压下工作。图中,AN2为停止按钮,按下AN2,J失电释放,J1-1断开,整个控制电路失电。 制作本电路时,一般可取继电器的额定电压为电源电压的1.5倍左右,一般情况下,任何型号的单向可控硅(或双向可控硅)皆可满足本电路需要。V2、C1、C3的耐压视电源电压的高低选取。C2耐压最好不低于电源电压的两倍。 继电器的三种附加电路 继电器是电子电路中常用的一种元件,一般由晶体管、继电器等元器件组成的电子开关驱动电路中,往往还要加上一些附加电路以改变继电器的工作特性或起保护作用。继电器的附加电路主要有如下三种形式: 1.继电器串联RC电路: 电路形式如图1,这种形式主要应用于继电器的额定工作电压低于电源电压的电路中。当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈中电流的增大,从而延长了吸合时间,串联上RC电路后则可以缩短吸合时间。原理是电路闭合的瞬间,电容C两端电压不能突变可视为短路,这样就将比继电器线圈额定工作电压高的电源电压加到线圈上,从而加快了线圈中电流增大的速度,使继电器迅速吸合。电源稳定之后电容C不起作用,电阻R起限流作用。 2.继电器并联RC电路: 电路形式见图2,电路闭合后,当电流稳定时RC电路不起作用,断开电路时,继电器线圈由于自感而产生感应电动势,经RC电路放电,使线圈中电流衰减放慢,从而延长了继电器衔铁释放时间,起到延时作用。 3.继电器并联二极管电路: 电路形式见图3,主要是为了保护晶体管等驱动元器件。当图中晶体管VT由导通变为截止时,流经继电器线圈的电流将迅速减小,这时线圈会产生很高的自感电动势与电源

SchneiderBA电源自动切换控制器说明书

BA/UA BA/UA controller Compact NS100-630 Masterpact MT Merlin Gerin Installation manual

This equipment should only be mounted by professionals.The manufacturer shall not be held responsible for any failure to comply with the instructions given in this manual RISK OF ELECTROCUTION,BURNS OR EXPLOSION the device should only be installed and serviced by professionals switch off the general power supply to the device prior to any work on or in the device always use an appropriate voltage detection device to confirm the absence of voltage replace all interlocks,doors and covers before energising the device. Failure to take these precautions could expose intervener and people round to serious corporal injuries which could cause death.

继电器控制电路模块设计及原理图

继电器控制电路模块设计及原理图 能直接带动继电器工作的CMOS集成块电路 在电子爱好者认识电路知识的的习惯中,总认为CMOS集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-DC12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066 CMOS集成块带动继电器的工作原理分析如下: CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的通断。当SCR1接高电平时,集成块①、②脚导通,+12V→K1→集成块①、②脚→电源负极使K1吸合;反之当SCR1输入低电平时,集成块①、②脚开路,K1失电释放,SCR2~SCR4输入高电平或低电平时状态与SCR1相同。 本电路中,继电器线圈的两端均反相并联了一只二极管,它是用来保护集成电路本身的,千万不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。 低电压下继电器的吸合措施 常常因为电源电压低于继电器的吸合电压而使其不能正常工作,事实上,继电器一旦吸合,便可在额定电压的一半左右可靠地工作。因此,可以在开始时给继电器一个启动电压使其吸合,然后再让其在较低的电源电压下工作,如图所示的电路便可实现此目的。 工作原理:

如图所示。V1为单结晶体管BT33C,它与R1、R2、R3和C1组成一个张弛式振荡器,SCR 为单向可控硅,按下启动按钮AN1后,电路通电,因为SCR无触发电压,所以不导通,继电器J不动作,电源通过R4和VD1给电容C2迅速充电至接近电源电压(Vcc-VD1压降)。同时,电源经R1给电容C1充电。数秒后,C1上电压充到V1的触发电压,C1立即通过V1放电,在R3上形成一个正脉冲,该脉冲一路加到V2基极,使V2迅速饱和导通,V2集电极也即电容C2正极近于接地。由于此时C2上充有上正下负的正极性电压,所以C2负极也即J 线圈一端呈负电位。R3上的正脉冲另一路经VD2、C3去触发可控硅导通,SCR阴极也即J 线圈另一端接近电源电压。这时,J线圈实际上承受约两倍的电源电压,所以J1-1闭合,松开AN1后,J1-1自保。J1-2将V1、V2供电切断,继电器在接近电源电压下工作。图中,AN2为停止按钮,按下AN2,J失电释放,J1-1断开,整个控制电路失电。 制作本电路时,一般可取继电器的额定电压为电源电压的1.5倍左右,一般情况下,任何型号的单向可控硅(或双向可控硅)皆可满足本电路需要。V2、C1、C3的耐压视电源电压的高低选取。C2耐压最好不低于电源电压的两倍。 继电器的三种附加电路 继电器是电子电路中常用的一种元件,一般由晶体管、继电器等元器件组成的电子开关驱动电路中,往往还要加上一些附加电路以改变继电器的工作特性或起保护作用。继电器的附加电路主要有如下三种形式: 1.继电器串联RC电路: 电路形式如图1,这种形式主要应用于继电器的额定工作电压低于电源电压的电路中。当电路闭合时,继电器线圈由于自感现象会产生电动势阻碍线圈中电流的增大,从而延长了吸合时间,串联上RC电路后则可以缩短吸合时间。原理是电路闭合的瞬间,电容C两端电压不能突变可视为短路,这样就将比继电器线圈额定工作电压高的电源电压加到线圈上,从而加快了线圈中电流增大的速度,使继电器迅速吸合。电源稳定之后电容C不起作用,电阻R起限流作用。 2.继电器并联RC电路: 电路形式见图2,电路闭合后,当电流稳定时RC电路不起作用,断开电路时,继电器线圈由于自感而产生感应电动势,经RC电路放电,使线圈中电流衰减放慢,从而延长了继电器衔铁释放时间,起到延时作用。 3.继电器并联二极管电路: 电路形式见图3,主要是为了保护晶体管等驱动元器件。当图中晶体管VT由导通变为截止时,流经继电器线圈的电流将迅速减小,这时线圈会产生很高的自感电动势与电源电压叠加后加在VT的c、e两极间,会使晶体管击穿,并联上二极管后,即可将线圈的自感电动势钳位于二极管的正向导通电压,此值硅管约0.7V,锗管约0.2V,从而避免击穿晶体管等

施耐德万高D型控制器使用说明

D型控制器 用户手册 控制器功能介绍 控制器安装及接线说明 控制器设置操作 附录1 通讯协议 施耐德万高(天津)电气设备有限公司Schneider Wingoal (Tianjin) Electric Equipment Co., Ltd

下面的符号将用于本手册的说明,提醒您注意潜在的危险,或者请您注意那些阐述、简化过程和关键操作。 !:安全警示标志,提示您如果违规操作可能造成人身安全危险或本开关的不可恢复性损坏。 : 关键性操作,提示您使用不当时,可能使控制器工作于非正常状态。 :提供另外的信息或简化的操作方法。 请注意: 电气设备应该让有资格的专业人员进行安装、操作、使用、维护。未按使用手册操作而造成的不良后果,施耐德电气公司将不负任何责任。 控制器功能介绍 本控制器工作电压为AC380V,工作频率为50Hz,主要功能是进行电压采集,根据电压的实时值进行故障判断(三相断相、欠压、过压和失压),并控制转换开关进行相应的转换动作。用户还可根据实际需要选配电流模块实现实时电流、有功功率和有功电能的显示。另外,控制器提供多组无源节点的输入和输出,包括故障输出、负荷卸载、发电机启动、动作无源输出、远程投备(无源输入)、消防联动(无源输入)以及通讯接口,具体接线参见第节。 控制器安装及接线说明 1.1.控制器外形尺寸

图1 D型控制器外形尺寸

1.2. 控制器二次接线 1.2.1. 控制器端子说明 1.2.2. A1-A3备A4-D2,A5-RJ,A6-OUT,A7-D3,A8-D1,A9-NJ,A10-12,主 A2A3A4A5A6A7A8A9A10 A11A12OUT B1B2B3B4B5B6B7B8B9B10B11B12 故障输出 负荷卸载 主转备备转主 发电机启动 C1C2C3C4C5C6C7C8C9C10 空 D3 NB RB 空 远程投备 消防联动 D1D2D3D4D5D6D7D8D9D10D11D12 A B A`B` G 空 IC*IB*IA*动作输出 RS485 IC IB IA 动作输出:当机构中电机转动时,常开触点闭合; 故障输出:当常用或备用电源故障时,常开触点闭合; 负荷卸载:在电网-发电机模式下,常用电源故障,常开触点闭合; 发电机启动:在电网-发电机模式下,常用电源正常,常开触点闭合,常用电源故障,常开触点打开; RS485:通信用端口,A’ B’为通信预留端口; IA~IC :电流互感器输入端口I*为输入端,I 为输出端;(输入额定电流5A ) 远程投备(无源):短接此两点,机构转到备用位置,开关状态主分备合;(可靠距离10m) 消防联动(无源):短接此两点,机构转到双分位置,开关状态主分备分;(可靠距离10m,WTS-D800~5000系列不具备该项功能) : 控制器的发电机启动端子在常用电源正常时常闭触点断开,当常用电源故障时常闭触点闭合以接通发电机启动电路;常开触点与之相反,请用户注意。 : 两台断路器的主回路相序必须一致。 : 非标产品使用,连接等应按照非标产品实际定制情况而定 ! 接地线必须可靠,以确保操作人员使用安全。 端子名称 额定电压 额定电流 动作及故障输出(无源) 250VAC/ 30VDC 5A 发电机启动及卸载端子(无 源)* 250VAC/ 30VDC 3A 此处指无源触点的额定负载电压及额定负载电流值

时间继电器原理图及其作用

时间继电器原理图及其作用 时间继电器是一种使用在较低的电压或较小电流的电路上,用来接通或切断较高电压、较大电流的电路的电气元件,也许可以这样说:用来控制较高电压或较大功率的电路的电动开关:给继电器工作线圈一个控制电流,继电器就吸合,对应的触点就接通或断开。在供电电路中,继电器也被称为接触器。 从驱动时间继电器工作的电源要求(驱动线包工作电压)来分,一般继电器分交流继电器与直流继电器,分别用于交流电路和直流电路,另外,依据其工作电压的高低,有6、9、12、24、36、110、220、380等不同的工作电压,使用于不同的控制电路上。时间继电器另一个区分点是它的触点(执行接通或断开被控制电路的开关),分别有常开、常闭、转换的区别,另外还有触点多少的区别,可以控制多大的工作电压及电流(即触点允许控制的功率)的区别,供不同用途选用;另外特殊触点还有带自锁(动作后即使控制电压消失,触点自己保持失去控制时的状态),带延时吸合或延时释放功能等种类,供特殊情况下使用。 从继电器外形来区分,有密封、小型、微型等区别。有时候,比如说,一个控制电路从按钮控制开始,到最后控制负荷的时间继电器中间,还使用了其他继电器,因为这些继电器只起控制其他继电器工作的作用,其触点负荷不需要很大,用在这些部位的继电器,常称为中间继电器。比如,使用三个按钮与继电器(交流接触器)及热保护等可以组成控制三相电动机的正、翻转及停止电路。洗衣机内,继电器在微电脑控制下,接合、断开控制电机使波轮正、反转等,都是继电器的任务,因为微电脑的输出不能直接驱动洗衣机马达工作,所以请了“继电器”。使用各种传感器检测的电路检测温度、压力、时间等不同物理量,检测的输出接上继电器,就分别组成所谓电压继电器、压力继电器等等。这类继电器,实际上是包含继电器在内的电子器件,并非独立的继电器。 补充部分特殊继电器,这些继电器不需要其他电路,可以对不同的讯号作出不同的反应(接通不同的触点): 步进继电器:以前自动电话总机使用很多,继电器本身就可以根据输入控制线圈的脉冲个数自动将动触点移动到相应的位置,比如输入6个脉冲,动触点就接通6号定触点,输入9个脉冲,就接到9号触点,这样。电话就自动根据拨号脉冲数字转接到需要的线路; 谐振继电器:继电器本身有多个不同长短、厚薄的、如簧片的动触点,各触点本身的谐振频率不同且合理分布,当输入继电器线圈的电流频率正好与某一簧片触点的谐振频率相同时,由于共振,该簧片产生大震动,从而与对应的定触点闭合,输入另一频率信号时,可以使另一触点动作,这相当于将不同频率的信号翻译成对应的电路连接动作,这与现在电子译码完全不同,是通过机械原理实现的。 另外,还有比例继电器,能够区分输入线包驱动继电器工作的脉冲信号占空比,并自动调整输出(接通不同的触点);等等。现在使用可控硅元件构成的开关电路,独立封装起来,称固态继电器(无触点继电器),在使用上部分可替代传统继电器,但也有其不足之处。所以普通继电器还大量被应用。 时间继电器的主要功能是作为简单程序控制中的一种执行器件,当它接受了启动信号后开始计时,计时结束后它的工作触头进行开或合的动作,从而推动后续的电路工作。一般来说,时间继电器的延时性能在设计的范围内是可以调节的,从而方便调整它的延时时间长短。单凭一只时间继电器恐怕不能做到开始延时闭合,闭合一段时间后,再断开,先实现延时闭合后延时断开,但总体上说,通过配置一定数量的时间继电器和中间继电器都是可以做到的。

固态继电器应用电路图大全

固态继电器应用电路图大全 发布时间:12-02-22 来源:点击量:17326 更多 固态继电器应用电路图大全 ■应用电路图 1. 与传感器的连接 SSR可直接连接接近开关、光电开关等传感器。 2. 白炽灯的闪烁控制 3.电气炉的温度控制 4. 单相感应电动机的正反运转 注1. SR1、SSR2其中一个为断开侧SSR的LOAD端子间电压,由于通过 LC结合,电压约为电源电压的2倍, 请务必使用具备电源电压2倍以上的输出额定电压的SSR (例)电源电压交流100V的单相感应电动机的正反运转,应使用有交流200V以上输出电压的SSR

注2. 切换SW1和SW2时,请务必确保有30ms以上的时滞。 5. 三相感应电动机的接通、断开控制 6. 三相电机的正反运转 SSR三相电机正反运转时,请注意SSR的输入信号。如右上图所示,同时切换SW1和SW2时,负载侧发生相间短路,会损坏SSR 的输出元件。这是由于即使没有至SSR输入端子的输入信号,输出元件(三端双向可控硅开关)仍处于导通状态,直至负载电流为0。因此,切换SW1和SW2时,请务必设定30ms以上的时滞。 另外,由于至SSR输入电路的干扰等导致的SSR误动作,也会导致相间短路、SSR损坏。作为此时的对策例,在电路中接入防止产生短路事故的保护电阻R。对于保护电阻R,请根据SSR的浪涌接通电流容量确定。例如, G3NA-220B的浪涌接通电流容量为 220Apeak,因此为R>220V×√2/220A=1.4Ω。另外,考虑到电路电流、通电时间等,请插到消耗功率较小的一侧。 另外,对于电阻的功率,请根据P=I2R×安全率进行计算。 (I=负载电流、R=保护电阻、安全率3~5)

基于单片机的继电器控制

目录 0 前言 (1) 1 总体方案设计 (1) 2 硬件电路设计 (2) 2.1单片机系统 (2) 2.1.1 晶振时钟电路 (2) 2.1.2 复位电路 (3) 2.2电流驱动系统 (3) 2.3发光二极管演示系统 (5) 2.4独立键盘系统 (5) 3 软件设计 (6) 3.1软件执行过程 (6) 3.2子程序模块 (6) 4 调试分析 (8) 5 结论及进一步设想 (9) 参考文献 (9) 课设体会 (10) 附录1 电路原理图 (11) 附录2 程序清单 (12)

基于单片机的继电器控制系统设计 胡启洋沈阳航空航天大学自动化学院 摘要:本文设计了一种基于单片机的继电器控制系统,由单片机、继电器、驱动电路、发光二极管、独立键盘等部分组成,主要使用了单片机开发板上STC公司生产的89C54RD+型号单片机及其最小系统、ULN2003A达林顿管驱动芯片、JQC-3F-05VDC-1ZS 型号继电器、四个发光二极管,运用定时器精准定时对继电器开关进行控制,并在继电器输出端使用发光二极管显示。在以上基础上,实现了8路继电器的循环控制功能。 关键词:单片机;继电器;驱动电路。 0 前言 继电器是当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。它可分为电气量(如电流、电压、频率、功率等)继电器及非电气量(如温度、压力、速度等)继电器两大类。继电器具有动作快、工作稳定、使用寿命长、体积小等优点。广泛应用于电力保护、自动化、运动、遥控、测量和通信等装置中。 继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等。 电磁继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸合的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用下返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,可以这样来区分:继电器线圈为通电时处于断开状态的静触点,成为“常开触点”;处于接通状态的静触点称为“常闭触点”。 1 总体方案设计 针对本课题的设计任务,进行分析得到:本次设计通过单片机I/O口输出高低电平控制继电器的输入端,采用ULN2003A型号的达林顿管驱动芯片加大输入电流,使用内部定时器中断进行精准计时,实现继电器通断时间分别为1秒、2秒的精准控制,并实现通过继电器进行八路发光二级管循环1秒的控制。 该继电器控制系统的设计,在总体上大致可分为以下几个部分组成:1.单片机及其最小系统电路,为了使单片机正常工作,需要加入晶振电路,为了使单片机方便使用,需要

相关文档
最新文档