1-《机械振动基础》大作业,基于matlab的多自由度振动讲解

1-《机械振动基础》大作业,基于matlab的多自由度振动讲解
1-《机械振动基础》大作业,基于matlab的多自由度振动讲解

多自由度系统振动分析典型教案

第2章多自由度系统的振动 基本要点: ①建立系统微分方程的几种方法; ②固有频率、固有振型的概念以及固有振型关于质量和刚度矩阵的加权正交性; ③多自由度系统运动的解耦—模态坐标变换及运用模态叠加法求解振动系统的响应。 引言 多自由度振动系统的几个工程实例;多自由度系统振动分析的特点;多自由度系统振动分析与单自由度系统的区别与联系。 §2.1多自由度系统的振动方程 ●方程的一般形式:质量矩阵、阻尼矩阵、刚度矩阵和激振力 §2.2建立系统微分方程的方法 ●影响系数:刚度影响系数、柔度影响系数 ●刚度矩阵法、柔度矩阵法及这两种方法的特点;Lagrange方程法 §2.3无阻尼系统的自由振动 ●二自由度系统的固有振动:固有频率、固有振型。 ●二自由度系统的自由振动 ●二自由度系统的运动耦合与解耦 弹性耦合,惯性耦合; 振动系统的耦合取决于坐标系的选择; ●多自由度系统的固有振动 固有振动的形式及条件:特征值、特征向量、模态质量、模态刚度; 固有振型的性质:关于质量矩阵和刚度矩阵的加权正交性; 刚体模态; ●运动的解耦:模态坐标变换(主坐标变换)。 ●多自由度系统的自由振动 §2.4无阻尼系统的受迫振动 ●频域分析:动刚度矩阵和频响函数矩阵,频响函数矩阵的振型展开式,系统反 共振问题。 ●时域分析:单位脉冲响应矩阵,任意激励下的响应,模态截断问题,模态加速 度法。 §2.5比例阻尼系统的振动 ●多自由度系统的阻尼:Rayleigh比例阻尼。 ●自由振动 ●受迫振动:频响函数矩阵,单位脉冲响应矩阵,任意激励下的响应。 §2.6一般粘性阻尼系统的振动

●自由振动:物理空间描述,状态空间描述。 ●受迫振动:脉冲响应矩阵,频响函数矩阵,任意激励下的响应。 思考题: ①刚度矩阵和柔度矩阵在什么条件下是互逆的两个矩阵?从物理上和数学两方面加以解 释? ②为什么说模态质量、模态刚度的数值大小没有直接意义? ③证明固有振型关于质量矩阵和刚度矩阵的加权正交性,并讨论其物理意义。 ④在实际的多自由度系统振动分析中,为什么要进行模态截断? 参考书目 1.胡海岩,机械振动与冲击,航空工业出版社,2002 2.故海岩,机械振动基础,北京航空航天大学出版社,2005 3.季文美,机械振动,科学出版社,1985。(图书馆索引号:TH113.1/1010) 4.郑兆昌主编, 机械振动上册,机械工业出版社,1980。(图书馆索引号: TH113.1/1003-A) 5.Singiresu S R, Mechanical vibrations,Longman Prentice Hall, 2004(图书馆索引 号:TH113.1/WR32)

单自由度振动分析

结构动力学三级项目 班级:冶金五班 小组成员:邱林凯李海洋 张富张富增 指导老师:王健 2017年4月18日

目录 摘要 (2) 单自由度系统的振动 (3) 单自由度振动系统数学模型的建立 (3) 参数设定与求解 (5) 单自由度系统的强迫振动 (8) 本章小结 (17) 总结与心得 (17)

摘要 振动系统问题是个比较虚拟的问题,比较抽象的理论分析,对于问题的分析可以实体化建立数学模型,通过MATLAB可以转化成为图像。单自由度频率、阻尼、振型的分析,我们可以建立数学模型,最后通过利用MATLAB编程实现数据图形;多自由度主要研究矩阵的迭代求解,我们在分析抽象的理论的同时根据MATLAB编程实现数据的迭代最后可以得到所要的数据,使我们的计算更加简便。 关键词:振动系统;单自由度;MATLAB;多自由度 前言 振动系统是研究机械振动的运动学和动力学,研究单自由系统的振动有着实际意义,因为工程上有许多问题通过简化,用单自由度系统的振动理论就能得到满意的结果。模态是振动系统的一种固有振动特性,模态一般包含频率、振型、阻尼。 利用MATLAB编程并验证程序的正确性。通过程序的运行,能快速获得多自由度振动系统的固有频率以及主振型,为设计人员提供了防止系统共振的理论依据,也为初步分析各构件的振动情况以及解耦分析系统响应奠定了基础。 在结构动力学中,单自由度系统的振动是最简单的运动,但这部分又十分重要。因为从中可得到有关振动理论的一些基本的概念和解决问题的方法,同时它也适用于更为复杂的振动问题,是分析多自由度体系振动问题的基础。因此,搞清楚了单自由度系统的振动,将有助于我们提高分析和解决其他各种振动问题的能力。另外在实际工程中,确实有许多振动问题,可简化为单自由度问题,或近似地用单自由度理论去分析解决。

第4章多自由度系统的振动题解

习 题 4-1 在题3-10中,设m 1=m 2=m ,l 1=l 2=l ,k 1=k 2=0,求系统的固有频率和主振型。 解:由题3-10的结果 22121111)(l g m l g m m k k +++ =,2 221l g m k -=,2212l g m k - =,2 2222l g m k k += 代入m m m ==21,021==k k ,l l l ==21 可求出刚度矩阵K 和质量矩阵M ??? ???=m m M 00;?? ?? ??????- - =l mg l mg l mg l mg K 3 由频率方程02=-M p K ,得 0322 =????? ??? ? ?-- - -=mp l mg l mg l mg mp l mg B 0242 2 2224 2 =+-∴l g m p l g m p m l g p ) 22(1-=∴ ,l g p )22(2+= 为求系统主振型,先求出adjB 的第一列 ???? ? ? ?? ??-=l mg mp l mg adjB 2 分别将频率值21p p 和代入,得系统的主振型矩阵为 ??????-=112) 1(A ?? ????+=112)2(A 题4-1图

4-2 题4-2图所示的均匀刚性杆质量为m 1,求系统的频率方程。 解:设杆的转角θ和物块位移x 为广义坐标。利用刚度影响系数法求刚度矩阵k 。 设0,1==x θ,画出受力图,并施加物体力偶与力 2111,k k ,由平衡条件得到, 222111a k b k k +=, a k k 221-= 设1,0==x θ,画出受力图,并施加物体力偶与力2212,k k ,由平衡条件得到, 12k a k 2-=, a k k 222= 得作用力方程为 ?? ? ???=??????????? ?--++????????????? ?00003122222 2122 1x a k a k a k a k b k x m a m θθ 由频率方程02=-M K p ,得 031 2 22222 212221=----+p m a k a k a k p a m a k b k 4-3 题4-3图所示的系统中,两根长度为l 的均匀刚性杆的质量为m 1及m 2,求系统的刚度矩阵和柔度矩阵,并求出当m 1=m 2=m 和 k 1=k 2=k 时系统的固有频率。 解:如图取21,θθ为广义坐标,分别画受力图。由动量矩定理得到, l l k l l k I 4 34343432 11111θθθ+-= 2 2434343432 2211122l l k l l k l l k I θθθθ--= 题4-3图 题4-2图

单自由度系统(自由振动)

第二章 单自由度系统的自由振动 本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。 §2-1 无阻尼系统的自由振动 无阻尼单自由度系统的动力学模型如图1.1所示。设质量为m ,单位是kg 。弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。弹簧在自由状态位置如图中虚线所示。当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形?:,同时也产生弹簧恢复力K ?,当其等于重力W 时,则处于静平衡位置,即 W=K ?? 若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。现设质量m 向下运动 到x ,此时弹簧恢复力为K(?+x),显然大于重力W , 由于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘 积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx x m (1-1-1 令 m k p = 2 (1-1-2) 单自由度无阻尼系统自由振动运动方程为 02=+x p x (1-1-3) 设方程的特解为 st e x = 将上式代入(1-1-3)处特征方程及特征根为 ip s p s ±==+2,1220 则(1-1-3)的通解为 pt D pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4) C 、 D 为任意积分常数,由运动的初始条件确定,设t=0时 00,x x x x == (1-1-5) ()x m x k W F =+?-= ∑量位静平衡位置 一自由度弹簧—质量系统 ? ==k mg W x x )

单自由度系统的振动

第2章 单自由度(SDOF)系统振动 (Single Degree of freedom) 如果振动系统任意时刻的空间位置只需要一个独立参数来表达,则称为单自由度系统。本章介绍单自由度系统运动方程的建立,以及自由振动的特点和动力响应的计算问题。 2.1 运动方程的建立 此处分别应用基于达朗贝尔原理的直接平衡法、虚位移原理和哈密顿原理建立振动微分方程。 2.1.1 直接平衡法 承受动力荷载作用的任何单自由度系统均可以由图2—1所示的模型来代表。图2—1(a)中,m 为质量块的质量(kg ),是为弹簧的刚度(m N /),c 为粘滞阻尼系数(m s N /?),)(t P 为干扰力(N )。 将坐标原点设在质量块的静平衡位置处, 坐标y 即为相对于静平衡位置产生的质量块的 动位移。在任意瞬时取质量块的隔离体,如图 2—1(b)所示,作用于质量块上的力有下列四 种: (1)弹性恢复力(它等于弹簧刚度k 与位 移y 的乘积),ky f s =,与位移的方向相反; (2)阻尼力(假设为粘滞阻尼机理,它 等于阻尼常数c 与速度y 的乘积),y c f D =,与速度的方向相反; (3)惯性力(根据d ’Alembert 原理,它等于质量m 与加速度y 的乘积), y m f I =,与加速度的方向相反; (4)干扰力,)(t P .(根据竖向力的动平衡条件即直接平衡法得出) )(t P ky y c y m =++ (2—1) 在振动的任意时刻,这四种力都保持着平衡,只是各个力所占的比例不同而

已。由方程(2—1)可知,相对于动力系统的静力平衡位置所建立的运动方程是不受重力影响的。换言之,此类情况可以不考虑重力影响建立方程。由于这个原因,建立方程时,位移都以静力平衡位置作为坐标原点,由此方程仅能得到系统的动位移,而总的位移应该是动力位移响应和静力位移值的叠加。 2.1.2 虚位移原理 以图2—1所示的结构系统说明如何应用虚位移原理建立方程。令质量m 发生虚位移y δ,则作用在质量m 上的四个力所作的总虚功应该等于零,即 0)(=+---y t P y f y f y f s D I δδδδ 式中的负号是因为力的方向和虚位移的方向相反。因为上式中的虚位移不等于零,很容易得到式(2—1)所示的振动方程。 0)(=+---y t P y f y f y f s D I δδδδ, ?0)]([=+---y t P f f f s D I δ, 因为0≠y δ,将四种力的表达式代入前式可推出)12(-?式 在结构系统中某些结构具有这样的特点:弹性变形完全限定于局部的弹簧元件中发生,而结构本身没有弹性变形, 称此为刚体集合系统。现在介绍采用虚 位移原理建立这类振动系统的运动方 程。 例2.1 图2—2所示的系统由两根 刚性杆组成,两根杆用铰连接在一起。在O 点和D 点分别受到阻尼器和弹簧的约束,AD 杆的单位长度的质量m 是均匀的,在无重刚杆DB 中点有一个质量m ,并且m 上作用一个集中力)(t P ,现用虚位移原理建立该系统的振动方程。 解 因为两个杆都是刚性的,所以整个系统仅一个自由度,故其动力响应可以用一个方程来表达。该体系可以用直接平衡法建立方程,但是用虚位移原理更简便。 选择铰的垂向位移)(t y 为基本自由度,而其他的一切位移均可以通过它来表达。例如阻尼器处的位移为2y ,质量m 处的位移为2 y ,作用于结构上的全部力为:

1 单自由度体系的自由振动

y s y(t) s=-k(y+y s )w=mg F(t)=-m y §1 单自由度体系的自由振动 一、无阻尼的自由振动: 如下图,以单自由度体系为例,设此梁上的集中质量为m ,其重量为W mg =, 梁由于质量的重力引起的质量处的静力位移用s y 表示,与s y 相 应的质量位置称为质量的静力平衡位置。若此质量受到扰动离开了静力平衡位置,当扰动除去后,则体系将发生振动,这样的振动称为体系的自由振动。由于振动的方向与梁轴垂直,故称为横向振动。在此,只讨论微小振幅的振动,由振动引起的内力限于材料的弹性极限以内,用以表示质量运动的方程将为线性微分方程。 1、建立运动方程 建立运动方程常用的基本原理是达朗伯原理(亦称惯性力法或动静法)。 今考虑在振动过程的某一瞬时t ,设质量在此瞬时离开其平衡位置的位移为y ,取质量为隔离体,则在质量上作用有三种力:质量的重量W ,杆件对质量的弹性恢复力S 和惯性力F(t)。根据达朗伯原理,这三个力应成平衡,即 W+S+F(t)=0 (1) 在弹性体系中,弹性恢复力S 为 ()s k y y s =-+

上式中的K 为一常数,称为刚度系数,代表简支梁上使质量在运动方向产生单位位移时需要加在质量上的沿质量运动方向的集中力的量值。式中负号表示s 的指向和位移的方向相反。 而 1y s W k =? 即 y s W k =? 因此,将()s k y y s =-+和y s W k =?代入式(1)得 ()0 F t ky =-+ (2) 上式表明,如果以静力平衡位置作为计算位移的起点,则建立体系的运动方程时,可以不考虑重力W 的影响。这对其他体系的振动(包括受迫振动)也同样适用。 将2 2 ()d y F t m dt =-代入式(2)得: 2 2()0d y m ky t dt += 令2 k m ω= dy y dt = (速度) 2 2 d y y dt = (加速度) 则 2 2 ()0d y m ky t dt += 可变为 2 y y ω+= (3) 此为单自由度体系无阻尼自由振动的运动方程,它反映了这种振动的一般规律。 若采用柔度法建立运动方程(建立位移方程),以静力平衡位置作为计算位移的起点,则梁在质量m 处除惯性力2 2()d y F t m dt =-这个假想的 外荷载作用外,再无其他外力作用。所以由达朗伯原理可知,梁在集中质量m 处任一运动瞬时的位移为

07210第四章--多自由度系统振动(讲1)

第3次作业题: 1、如图所示起重机小车,其质量为m 1=2220kg,在质心A 处用绳悬挂一重物B ,其质量为m 2=2040kg 。绳长l=14m,左侧弹簧是缓冲器,刚度系数k=852.6kN/m 。设绳和弹簧质量均忽略不计,当车连同重物B 以匀速v 0=1m/s 碰上缓冲器后,求小车和重物的运动。 2、两个质量块m 1和m 2用一弹簧k 相连,m 1的上端用绳子拴住,放在一个与水平面成а角的光滑斜面上,如习题下图所示。若t=0时突然割断绳子,两质量块将沿斜面下滑。试求瞬时t 两质量块的位置。 答案: α ωsin ]) (cos 2)([21222 221221g m m k t m t m m k m x +-++= αωsin ]) (cos 2)([21222 221222g m m k t m t m m k m x ++++= 3.如图,已知m 2=2×m 1=m ,k 3=2k 1=2k 2=2k ,x 10=1.2,x 20=10x =20x =0,试求系统的固有频率,主振型以及相应。 答案:利用程序,易得 固有频率: ωn 1=3.162277rad/s ,ωn 2=5 rad/s 主振型: m 1 m 2 k 3 k 2 k 1

系统相应: t x 5cos 8.03.1622777t cos 4.01+= t x 5cos 4.03.1622777t cos 4.02-= 4.已知:?? ? ???=11009][m ,[c ]= ??????--11.01.01,][k =??????--905050110,)}({t f =? ?? ???21,激振力频率 ω=3rad/s,试求系统的稳态响应。 答案:利用给定程序,输入给定数据,即获得系统的稳态响应。 第四章 多自由度系统振动 §4-1 多自由度系统运动方程的建立 (引言:问题的提出。)工程中的机械振动问题,有一些可以简化成一个或两个自由度系统的振动问题,因此可以用前面几章中介绍的方法进行分析计算。但是也有很多问题不能采用这种过于简化的力学模型来进行分析。一般来说,各种机器及其零部件的质量和刚度都具有分布的性质,因此理论上都是无限多自由度系统,即为弹性体。但由于机器的结构比较复杂,若都按无限多自由度来处理,在数学上有很大的,甚至目前还无法解决的困难。因此,只好将系统的结构用一些离散的结构来理想化。这样就把弹性体变成数目有限个的离散单元组成的有限多自由度系统。 如前所述,振动系统有多少个自由度就有多少个固有频率和主振型,也就有多少阶主振动,因此弹性体就有无穷多阶主振动。但有意

相关文档
最新文档