含氮化合物代谢习题与答案

含氮化合物代谢习题与答案
含氮化合物代谢习题与答案

11 含氮化合物代谢

一、知识要点

蛋白质和核酸是生物体中有重要功能的含氮有机化合物,它们共同决定和参与多种多

样的生命活动。在自然界的氮素循环中,大气是氮的主要储库,微生物通过固氮酶的作用

将大气中的分子态氮转化成氨,硝酸还原酶和亚硝酸还原酶也可以将硝态氮还原为氨,在

生物体中氨通过同化作用和转氨基作用等方式转化成有机氮,进而参与蛋白质和核酸的合成。

(一)蛋白质和氨基酸的酶促降解

在蛋白质分解过程中,蛋白质被蛋白酶和肽酶降解成氨基酸。氨基酸用于合成新的蛋

白质或转变成其它含氮化合物(如卟啉、激素等),也有部分氨基酸通过脱氨和脱羧作用产生其它活性物质或为机体提供能量,脱下的氨可被重新利用或经尿素循环转变成尿素排出

体外。

(二)氨基酸的生物合成

转氨基作用是氨基酸合成的主要方式。转氨酶以磷酸吡哆醛为辅酶,谷氨酸是主要的

氨基供体,氨基酸的碳架主要来自糖代谢的中间物。不同的氨基酸生物合成途径各不相同,但它们都有一个共同的特征,就是所有氨基酸都不是以CO2和NH3为起始原料从头合成的,而是起始于三羧酸循环、糖酵解途径和磷酸戊糖途径的中间物。不同生物合成氨基酸的能

力不同,植物和大部分微生物能合成全部20种氨基酸,而人和其它哺乳动物及昆虫等只能合成部分氨基酸,机体不能合成的氨基酸称为必须氨基酸,人有八种必需氨基酸,它们是:Lys、Trp、Phe、Val、Thr、Leu、Ile和Met。

(三)核酸的酶促降解

核酸通过核酸酶降解成核苷酸,核苷酸在核苷酸酶的作用下可进一步降解为碱基、戊

糖和磷酸。戊糖参与糖代谢,嘌呤碱经脱氨、氧化生成尿酸,尿酸是人类和灵长类动物嘌

呤代谢的终产物。其它哺乳动物可将尿酸进一步氧化生成尿囊酸。植物体内嘌呤代谢途径

与动物相似,但产生的尿囊酸不是被排出体外,而是经运输并贮藏起来,被重新利用。

嘧啶的降解过程比较复杂。胞嘧啶脱氨后转变成尿嘧啶,尿嘧啶和胸腺嘧啶经还原、

水解、脱氨、脱羧分别产生β-丙氨酸和β-氨基异丁酸,两者经脱氨后转变成相应的酮酸,进入TCA循环进行分解和转化。β-丙氨酸还参与辅酶A的合成。

(四)核苷酸的生物合成

生物能利用一些简单的前体物质从头合成嘌呤核苷酸和嘧啶核苷酸。嘌呤核苷酸的合

成起始于5-磷酸核糖经磷酸化产生的5-磷酸核糖焦磷酸(PRPP)。合成原料是二氧化碳、

甲酸盐、甘氨酸、天冬氨酸和谷氨酰氨。首先合成次黄嘌呤核苷酸,再转变成腺嘌呤核苷

酸和鸟嘌呤核苷酸。嘧啶核苷酸的合成原料是二氧化碳、氨、天冬氨酸和PRPP,首先合

成尿苷酸,再转变成UDP、UTP和CTP。

在二磷酸核苷水平上,核糖核苷二磷酸(NDP)可转变成相应的脱氧核糖核苷二磷酸。催化此反应的酶为核糖核苷酸还原酶系,此酶由核苷二磷酸还原酶、硫氧还蛋白和硫氧还

蛋白还原酶组成。脱氧胸苷酸(dTMP)的合成是由脱氧尿苷酸(dUMP)经甲基化生成的。

二、习题

(一)名词解释

1.蛋白酶(Proteinase)

2.肽酶(Peptidase)

3.氮平衡(Nitrogen balance)

4.生物固氮(Biological nitrogen fixation)

5.硝酸还原作用(Nitrate reduction)

6.氨的同化(Incorporation of ammonium ions into organic molecules)

7.转氨作用(Transamination)

8.尿素循环(Urea cycle)

9.生糖氨基酸(Glucogenic amino acid)

10.生酮氨基酸(Ketogenic amino acid)

11.核酸酶(Nuclease)

12.限制性核酸内切酶(Restriction endonuclease)

13.氨基蝶呤(Aminopterin)

14.一碳单位(One carbon unit)

(二)英文缩写符号

1.GOT 2.GPT 3.APS 4.PAL

5.PRPP 6.SAM 7.GDH 8.IMP

(三)填空

1.生物体内的蛋白质可被和共同作用降解成氨基酸。

2.多肽链经胰蛋白酶降解后,产生新肽段羧基端主要是和氨基酸残基。

3.胰凝乳蛋白酶专一性水解多肽链由族氨基酸端形成的肽键。

4.氨基酸的降解反应包括、和作用。

5.转氨酶和脱羧酶的辅酶通常是。

6.谷氨酸经脱氨后产生和氨,前者进入进一步代谢。

7.尿素循环中产生的和两种氨基酸不是蛋白质氨基酸。

8.尿素分子中两个N原子,分别来自和。

9.生物固氮作用是将空气中的转化为的过程。

10.固氮酶由和两种蛋白质组成,固氮酶要求的反应条件是、和。

11.硝酸还原酶和亚硝酸还原酶通常以或为还原剂。

12.芳香族氨基酸碳架主要来自糖酵解中间代谢物和磷酸戊糖途径的中间代谢物。

13.组氨酸合成的碳架来自糖代谢的中间物。

14.氨基酸脱下氨的主要去路有、和。

15.胞嘧啶和尿嘧啶经脱氨、还原和水解产生的终产物为。

16.参与嘌呤核苷酸合成的氨基酸有、和。

17.尿苷酸转变为胞苷酸是在水平上进行的。

18.脱氧核糖核苷酸的合成是由酶催化的,被还原的底物是。19.在嘌呤核苷酸的合成中,腺苷酸的C-6氨基来自;鸟苷酸的C-2氨基来自。

20.对某些碱基顺序有专一性的核酸内切酶称为。

21.多巴是经作用生成的。

22.生物体中活性蛋氨酸是,它是活泼的供应者。

(四)选择题

1.转氨酶的辅酶是:

A.NAD+B.NADP+ C.FAD D.磷酸吡哆醛

2.下列哪种酶对有多肽链中赖氨酸和精氨酸的羧基参与形成的肽键有专一性:A.羧肽酶B.胰蛋白酶

C.胃蛋白酶D.胰凝乳蛋白酶

3.参与尿素循环的氨基酸是:

A.组氨酸B.鸟氨酸C.蛋氨酸D.赖氨酸

4.γ-氨基丁酸由哪种氨基酸脱羧而来:

A.Gln B.His C.Glu D.Phe

5.经脱羧后能生成吲哚乙酸的氨基酸是:

A.Glu B.His C.Tyr D.Trp

6.L-谷氨酸脱氢酶的辅酶含有哪种维生素:

A.V B1B.V B2C.V B3D.V B5 7.磷脂合成中甲基的直接供体是:

A.半胱氨酸B.S-腺苷蛋氨酸C.蛋氨酸D.胆碱8.在尿素循环中,尿素由下列哪种物质产生:

A.鸟氨酸B.精氨酸C.瓜氨酸D.半胱氨酸9.需要硫酸还原作用合成的氨基酸是:

A.Cys B.Leu C.Pro D.Val

10.下列哪种氨基酸是其前体参入多肽后生成的:

A.脯氨酸B.羟脯氨酸C.天冬氨酸D.异亮氨酸11.组氨酸经过下列哪种作用生成组胺的:

A.还原作用B.羟化作用

C.转氨基作用D.脱羧基作用

12.氨基酸脱下的氨基通常以哪种化合物的形式暂存和运输:

A.尿素B.氨甲酰磷酸C.谷氨酰胺D.天冬酰胺13.丙氨酸族氨基酸不包括下列哪种氨基酸:

A.Ala B.Cys C.Val D.Leu 14.组氨酸的合成不需要下列哪种物质:

A.PRPP B.Glu C.Gln D.Asp 15.合成嘌呤和嘧啶都需要的一种氨基酸是:

A.Asp B.Gln C.Gly D.Asn 16.生物体嘌呤核苷酸合成途径中首先合成的核苷酸是:

A.AMP B.GMP C.IMP D.XMP 17.人类和灵长类嘌呤代谢的终产物是:

A.尿酸B.尿囊素C.尿囊酸D.尿素

18.从核糖核苷酸生成脱氧核糖核苷酸的反应发生在:

A.一磷酸水平B.二磷酸水平

C.三磷酸水平D.以上都不是

19.在嘧啶核苷酸的生物合成中不需要下列哪种物质:

A.氨甲酰磷酸B.天冬氨酸

C.谷氨酰氨D.核糖焦磷酸

20.用胰核糖核酸酶降解RNA,可产生下列哪种物质:

A.3′-嘧啶核苷酸B.5′-嘧啶核苷酸

C.3′-嘌呤核苷酸D.5′-嘌呤核苷酸

(五)是非判断题

()1.蛋白质的营养价值主要决定于氨基酸酸的组成和比例。

()2.谷氨酸在转氨作用和使游离氨再利用方面都是重要分子。

()3.氨甲酰磷酸可以合成尿素和嘌呤。

()4.半胱氨酸和甲硫氨酸都是体内硫酸根的主要供体。

()5.生物固氮作用需要厌氧环境,是因为钼铁蛋白对氧十分敏感。

()6.磷酸吡哆醛只作为转氨酶的辅酶。

()7.在动物体内,酪氨酸可以经羟化作用产生去甲肾上腺素和肾上腺素。

()8.固氮酶不仅能使氮还原为氨,也能使质子还原放出氢气。

()9.芳香族氨基酸都是通过莽草酸途径合成的。

()10.丝氨酸能用乙醛酸为原料来合成。

()11.限制性内切酶的催化活性比非限制性内切酶的催化活性低。

()12.尿嘧啶的分解产物β-丙氨酸能转化成脂肪酸。

()13.嘌呤核苷酸的合成顺序是,首先合成次黄嘌呤核苷酸,再进一步转化为腺嘌呤核苷酸和鸟嘌呤核苷酸。

()14.嘧啶核苷酸的合成伴随着脱氢和脱羧反应。

()15.脱氧核糖核苷酸的合成是在核糖核苷三磷酸水平上完成的。

(六)反应方程式

1. 谷氨酸+ NAD(P)+ + H2O 一→()+ NAD(P)H +NH3

催化此反应的酶是:()

2.谷氨酸+ NH3 + ATP 一→()+ ()+ Pi + H2O

催化此反应的酶是:()

3.谷氨酸+ ()一→()+ 丙氨酸

催化此反应的酶是:谷丙转氨酶

4.5′磷酸核糖+ ATP 一→()+()

催化此反应的酶是:PRPP合成酶:

5.NMP + ATP →()+ ADP

催化此反应的酶是:()

1.1.dUMP + N5,10亚甲四氢叶酸→()+ ()

催化此反应的酶是:胸腺嘧啶核苷酸合酶:

(七)问答题

1.举例说明氨基酸的降解通常包括哪些方式?

2.用反应式说明α-酮戊二酸是如何转变成谷氨酸的,有哪些酶和辅因子参与?

3.什么是尿素循环,有何生物学意义?

4.什么是必需氨基酸和非必需氨基酸?

5.为什么说转氨基反应在氨基酸合成和降解过程中都起重要作用?

6.核酸酶包括哪几种主要类型?

7.嘌呤核苷酸分子中各原子的来源及合成特点怎样?

8.嘧啶核苷酸分子中各原子的来源及合成特点怎样?

参考答案

(一)名词解释

1.蛋白酶:以称肽链内切酶(Endopeptidase),作用于多肽链内部的肽键,生成较原来含氨基酸数少的肽段,不同来源的蛋白酶水解专一性不同。

2.肽酶:只作用于多肽链的末端,根据专一性不同,可在多肽的N-端或C-端水解下氨基酸,如氨肽酶、羧肽酶、二肽酶等。

3.氮平衡:正常人摄入的氮与排出氮达到平衡时的状态,反应正常人的蛋白质代谢情况。4.生物固氮:利用微生物中固氮酶的作用,在常温常压条件下将大气中的氮还原为氨的过程(N2 + 3H2→ 2 NH3)。

5.硝酸还原作用:在硝酸还原酶和亚硝酸还原酶的催化下,将硝态氮转变成氨态氮的过程,植物体内硝酸还原作用主要在叶和根进行。

6.氨的同化:由生物固氮和硝酸还原作用产生的氨,进入生物体后被转变为含氮有机化合物的过程。

7.转氨作用:在转氨酶的作用下,把一种氨基酸上的氨基转移到α-酮酸上,形成另一种氨基酸。

8.尿素循环:尿素循环也称鸟氨酸循环,是将含氮化合物分解产生的氨转变成尿素的过程,有解除氨毒害的作用。

9.生糖氨基酸:在分解过程中能转变成丙酮酸、α-酮戊二酸乙、琥珀酰辅酶A、延胡索酸和草酰乙酸的氨基酸称为生糖氨基酸。

10.生酮氨基酸:在分解过程中能转变成乙酰辅酶A和乙酰乙酰辅酶A的氨基酸称为生酮氨基酸。

11.核酸酶:作用于核酸分子中的磷酸二酯键的酶,分解产物为寡核苷酸或核苷酸,根据作用位置不同可分为核酸外切酶和核酸内切酶。

12.限制性核酸内切酶:能作用于核酸分子内部,并对某些碱基顺序有专一性的核酸内切酶,是基因工程中的重要工具酶。

13.氨基蝶呤:对嘌呤核苷酸的生物合成起竞争性抑制作用的化合物,与四氢叶酸结构相似,又称氨基叶酸。

14.一碳单位:仅含一个碳原子的基团如甲基(CH3-、亚甲基(CH2=)、次甲基(CH≡)、甲酰基(O=CH-)、亚氨甲基(HN=CH-)等,一碳单位可来源于甘氨酸、苏氨酸、丝氨酸、组氨酸等氨基酸,一碳单位的载体主要是四氢叶酸,功能是参与生物分子的修饰。

(二)英文缩写符号

1.GOT(Glutamate-oxaloacetate transaminase):谷草转氨酶,

2.GPT(Glutamate-pyruvate transaminase):谷丙转氨酶

3.APS(Adenosine phosphosulfate):腺苷酰硫酸

4.PAL(Pheny-lalanine ammonia lyase):苯丙氨酸解氨酶

5.PRPP(Phosphoribosyl pyrophosate):5-磷酸核糖焦磷酸

6.SAM (S-adenoymethionine):S-腺苷蛋氨酸

7.GDH (Glutamate drhyddrogenase):谷氨酸脱氢酶

8.IMP(Inosinic acid):次黄嘌呤核苷酸

(三)填空

1.蛋白酶;肽酶

2.赖氨酸;精氨酸

3.芳香;羧基

4.脱氨;脱羧;羟化

5.磷酸吡哆醛

6.α-酮戊二酸;三羧酸循环;

7.鸟氨酸;瓜氨酸

8.氨甲酰磷酸;天冬氨酸

9.N2;HN3

10.钼铁蛋白;铁蛋白;还原剂;ATP;厌氧环境

11.NAD(P);铁氧还蛋白

12.磷酸烯醇式丙酮酸;4-磷酸赤藓糖

13.核糖

14.生成尿素;合成谷氨酰胺;再合成氨基酸

15.β-丙氨酸

16.甘氨酸;天冬氨酸;谷氨酰胺

17.尿苷三磷酸

18.核糖核苷二磷酸还原酶;核苷二磷酸

19.天冬氨酸;谷氨酰胺

20.限制性核酸内切酶

21.酪氨酸;羟化

22.S-腺苷蛋氨酸;甲基

(四)选择题

1.(D)A、B和C通常作为脱氢酶的辅酶,磷酸吡哆醛可作为转氨酶、脱羧酶和消旋酶的辅酶。

2.(B)胰蛋白酶属于肽链内切酶,专一水解带正电荷的碱性氨基酸羧基参与形成的肽键;

羧肽酶是外肽酶,在蛋白质的羧基端逐个水解氨基酸;胰凝乳蛋白酶能专一水解芳香族氨基酸羧基参与形成的肽键;胃蛋白质酶水解专一性不强。

3.(B)氨基酸降解后产生的氨累积过多会产生毒性。游离的氨先经同化作用生成氨甲酰磷酸,再与鸟氨酸反应进入尿素循环(也称鸟氨酸循环),产生尿素排出体外。4.(C)

5.(D)

6.(D)谷氨酸脱氢酶催化的反应要求NAD+和NADP+,NAD+和NADP+是含有维生素B5(烟酰胺)的辅酶。焦磷酸硫胺素是维生素B1的衍生物,常作为α-酮酸脱羧酶和转酮酶的辅酶。FMN和FAD是维生素B2的衍生物,是多种氧化还原酶的辅酶。辅酶A 是含有维生素B3的辅酶,是许多酰基转移酶的辅酶。

7.(B)S-腺苷蛋氨酸是生物体内甲基的直接供体。

8.(B)尿素循环中产生的精氨酸在精氨酸酶的作用下水解生成尿素和鸟氨酸。

9.(A)半胱氨酸的合成需要硫酸还原作用提供硫原子。半胱氨酸降解也是生物体内生成硫酸根的主要来源。

10.(B)羟脯氨酸不直接参与多肽合成,而是多肽形成后在脯氨酸上经脯氨酸羟化酶催化形成的。是胶原蛋白中存在的一种稀有氨基酸。

11.(D)组氨是组氨酸经脱羧基作用生成的。催化此反应的酶是组氨酸脱羧酶,此酶与其它氨基酸脱羧酶不同,它的辅酶不是磷酸吡哆醛。

12.(C)谷氨酰胺可以利用谷氨酸和游离氨为原料,经谷氨酰胺合酶催化生成,反应消耗一分子ATP。

13.(B)

14.(D)

15.(A)

16.(C)在嘌呤核苷酸生物合成中首先合成次黄嘌呤核苷酸(IMP),次黄嘌呤核苷酸氨基化生成嘌呤核苷酸,次黄嘌呤核苷酸先氧化成黄嘌呤核苷酸(XMP),再氨基化生成鸟嘌呤核苷酸。

17.(A)人类、灵长类、鸟类及大多数昆虫嘌呤代谢的最终产物是尿酸,其它哺乳动物是尿囊素,某些硬骨鱼可将尿囊素继续分解为尿囊酸,大多数鱼类生成尿素。18.(B)脱氧核糖核苷酸的合成,是以核糖核苷二磷酸为底物,在核糖核苷二磷酸还原酶催化下生成的。

19.(C)

20.(A)胰核糖核酸酶是具有高度专一性的核酸内切酶,基作用位点为嘧啶核苷-3′磷酸基与下一个核苷酸的-5′羟基形成的酯键。因此,产物是3′嘧啶核苷酸或以3′嘧啶核苷酸结尾的寡核苷酸。

(五)是非判断题

1.对:摄入蛋白质的营养价值,在很大程度上决定于蛋白质中必需氨基酸的组成和比例,必需氨基酸的组成齐全,且比例合理的蛋白质营养价值高。

2.对:在转氨基作用中谷氨酸是最主要的氨基供体,用于合成其它氨基酸;谷氨酸也可在谷氨酰氨合成酶的催化下结合游离氨形成谷氨酰氨,谷氨酰氨再与α-酮戊二酸反应生成二分子谷氨酸,使游离氨得到再利用。

3.错:氨甲酰磷酸可以经尿素循环生成尿素,也参与嘧啶核苷酸的合成,但与嘌呤核苷酸的合成无关。

4.错:半胱氨酸体内硫酸根的主要供体,甲硫氨酸是体内甲基的主要供体。

5.错:固氮酶包括钼铁蛋白和铁蛋白二种蛋白质组分,其中铁蛋白对氧十分敏感,要求严格厌氧环境,以便有较低的氧化还原电位还原钼铁蛋白。

6.错:磷酸吡哆醛徐作为转氨酶的辅酶外,还可作为脱羧酶和消旋酶的辅酶。

7.对:酪氨酸在酪氨酸酶催化下发生羟化生成多巴(3,4-二羟苯丙氨酸),多巴脱羧生成多巴胺(3,4-二羟苯乙胺),多巴和多巴胺可进一步生成去甲肾上腺素和肾上腺素。8.对:固氮酶能还原质子(H+)而放出氢(H2),氢在氢酶的作用下将电子传给铁氧还蛋白,使氢作为还原氮的电子供体。

9.对:磷酸烯醇式丙酮酸和磷酸赤藓糖首先形成莽草酸,进而形成色氨酸、苯丙氨酸和酪氨酸,反应过程称为莽草酸途径。

10.对:在光合生物中,由光呼吸产生的乙醛酸经转氨作用可生成甘氨酸,二分子甘氨酸脱羧脱氨形成一分子丝氨酸。

11.错:限制性内切酶比非限制性内切酶专一性高,与酶活力高低无关。

12.对:尿嘧啶分解产生的β-丙氨酸脱氨后生成甲酰乙酸,再脱羧生成乙酸,进而转化成乙酰辅酶A,参与脂肪酸合成。

13.对:生物体可以利用二氧化碳、甲酸盐、甘氨酸、天冬氨酸、谷氨酰胺和磷酸核糖合成嘌呤核苷酸,首先合成次黄嘌呤核苷酸,再经转氨基作用形成腺嘌呤核苷酸和鸟嘌呤核苷酸。

14.对:在嘧啶合成过程中,氨甲酰磷酸和天冬氨酸合成的氨甲酰天冬氨酸首先脱氢生成乳清酸,氢受体是NAD+,乳清酸与PRPP结合形成乳清酸核苷酸,后者脱羧形成尿苷酸。

15.错:脱氧核糖核苷酸的合成是在核糖核苷二磷酸水平上由核糖核苷二磷酸还原酶催化完成的,反应需要还原剂,大肠杆菌中为硫氧还蛋白和NADPH。

(六)反应方程式

1. 谷氨酸+ NAD(P)+ + H2O →(α-酮戊二酸)+ NAD(P)H +NH3

催化此反应的酶是:(谷氨酸脱氢酶)

2.谷氨酸+ NH3 + ATP →(谷氨酰胺)+ (ADP)+ Pi + H2O

催化此反应的酶是:(谷氨酰胺合酶)

3.谷氨酸+ (丙酮酸)→(α-酮戊二酸)+ 丙氨酸

催化此反应的酶是:谷丙转氨酶

4.5′磷酸核糖+ ATP →(5′磷酸核糖焦磷酸)+(AMP)

催化此反应的酶是:PRPP合成酶:

5.NMP + ATP →(NDP)+ ADP

催化此反应的酶是:(核苷酸激酶)

6.dUMP + N5,10亚甲四氢叶酸→(dTMP)+ (二氢叶酸)

催化此反应的酶是:胸腺嘧啶核苷酸合酶:

(七)问答题(答题要点)

1.答:(1)脱氨基作用:包括氧化脱氨和非氧化脱氨,分解产物为α-酮酸和氨。

(2)脱羧基作用:氨基酸在氨基酸脱羧酶的作用下脱羧,生成二氧化碳和胺类化合物。

(3)羟化作用:有些氨基酸(如酪氨酸)降解时首先发生羟化作用,生成羟基氨基酸,再脱羧生成二氧化碳和胺类化合物。

2.答:(1)谷氨酸脱氢酶反应:

α-酮戊二酸+ NH3 +NADH →谷氨酸+ NAD+ + H2O

(2)谷氨酸合酶-谷氨酰胺合酶反应:

谷氨酸+ NH3 +ATP →谷氨酰胺+ADP + Pi + H2O

谷氨酰胺+α-酮戊二酸+ 2H → 2谷氨酸

还原剂(2H):可以是NADH、NADPH和铁氧还蛋白

3.答:(1)尿素循环:尿素循环也称鸟氨酸循环,是将含氮化合物分解产生的氨经过一系列反应转变成尿素的过程。有解除氨毒害的作用

(2)生物学意义:有解除氨毒害的作用

4.答:(1)必需氨基酸:生物体本身不能合成而为机体蛋白质合成所必需的氨基酸称为必需氨基酸,人的必需氨基酸有8种。

(2)非必需氨基酸:生物体本身能合成的蛋白质氨基酸称为非必需氨基酸,人的非必需氨基酸有12种。

5.答:(1)在氨基酸合成过程中,转氨基反应是氨基酸合成的主要方式,许多氨基酸的合成可以通过转氨酶的催化作用,接受来自谷氨酸的氨基而形成。

(2)在氨基酸的分解过程中,氨基酸也可以先经转氨基作用把氨基酸上的氨基转移到α-酮戊二酸上形成谷氨酸,谷氨酸在谷氨酸脱羟酶的作用上脱去氨基。6.答:(1)脱氧核糖核酸酶(DNase):作用于DNA分子。

(2)核糖核酸酶(DNase):作用于RNA分子。

(3)核酸外切酶:作用于多核苷酸链末端的核酸酶,包括3′核酸外切酶和5′核酸外切酶。

(4)核酸内切酶:作用于多核苷酸链内部磷酸二酯键的核酸酶,包括碱基专一性核酸内切酶和碱基序列专一性核酸内切酶(限制性核酸内切酶)

7.答:(1)各原子的来源:N1-天冬氨酸;C2和C8-甲酸盐;N7、C4和C5-甘氨酸;C6-二氧化碳;N3和N9-谷氨酰胺;核糖-磷酸戊糖途径的5′磷酸核糖

(2)合成特点:5′磷酸核糖开始→5′磷酸核糖焦磷酸(PRPP)→5′磷酸核糖胺(N9)→甘氨酰胺核苷酸(C4、C5、N7)→甲酰甘氨酰胺核苷酸(C8)→5′氨基咪唑核苷酸(C3)→5′氨基咪唑-4-羧酸核苷酸(C6)5′氨基咪唑甲酰胺核苷酸

(N1)→次黄嘌呤核苷酸(C2)。

8.答:(1)各原子的来源:N1、C4、C5、C6-天冬氨酸;C2-二氧化碳;N3-氨;核糖-磷酸戊糖途径的5′磷酸核糖。

(2)合成特点:氨甲酰磷酸+ 天冬氨酸→乳清酸

乳清酸+ PRPP →乳清酸核苷-5′-磷酸→尿苷酸

第12章含氮化合物

第12章 含氮化合物 12-1 命名下列化合物或写出结构式。 (1)2-甲基-3-硝基己烷 (2)N-甲基间甲苯胺 (3)3-甲氨基戊烷 (4)N-乙基苯磺酰胺 (5)氯化三甲基对氯苯铵 (6)氢氧化二甲基二乙基铵 (7)氯化重氮苯 N C O COOC 2H 5 2 CH 3CHCH 2CHCH 2CH 3 NH 2NHCH 3N N H 2NCH 2(CH 2)3CHCH 2NH 2 3 (8) (9) (10)(11) (12) 知识点:含氮化合物的命名。 12-2 比较下列各对化合物的酸性强弱。 CH 2NH 3 (1)(3)(2)NH 3 CH 3NH 3 NH 3 NH 3 3 NH 3 2 A. B. A. B. A. B. (1)B >A ; (2)A >B ; (3)B >A 。 知识点:胺的活性。 12-3 将下列各组化合物按碱性由强至弱的次序排列。 (CH 3)4NOH CH 3CONH 2(1)(2)NH 2 2 A. B. C.D. E. CH 3NH 2 NH 2 SO 2NH 2 (CH 3)3N NH 2 3 NH 2 2 NO 2 (CH 3)2NH A. D. B. E.C. (1)A >C >D >B >E ; (2)E >A >B >C >D 。 知识点:胺的碱性。 12-4 完成下列反应。

(1) HCOOEt NO 2 EtONa CH 3 +NO 2 CH 2CHO (2) NaOCH 3 CH 3OH NO 2 +Cl NO 2 OCH 3 Cl (3) CH 2CH 2NH 2 CH 3COCl (1)LiAlH 4 (2)CH 3OH CH 2CH 2NHCCH 3O CH 2CH 2NHCH 2CH 3 (4) NaNO 2/H 2SO 4 NH 2NO 2 NO 2 室温 N 2HSO 4 2 NO 2 2 2 (5)NaNO 2Ph C CH 2NH 2 OH 3 H 3C C CH 2Ph O (6) N 2 CH 2I +Ag 2O 2CN N CN CH 3 H 3C I N CN CH 3 H 3C OH (7) KOH H 2O,OH, △ NH O O NK O O H 2C PhCH 2NH 2 H N N H (8) H CH 3 H 3C 2N H 3C CH 3 NH 2

最新14-第十四章-含氮有机化合物习题答案(第四版)

第十四章含氮有机化合物(P125-129) 1.给出下列化合物的名称或写出结构式: (1)(2)(3)(4)(5)(6) (7)对硝基氯化苄 (9)(8) (10)苦味酸(11)1,4,6-三硝基萘 2.按其碱性的强弱排列下列各组化合物,并说明理由: (1) NH2NH 2 NH2 O2N H3C (2) 乙酰胺、甲胺和氨 3.比较正丙醇、正丙胺、甲乙胺、三甲胺和正丁烷的沸点高低并说明理由: 4.如何完成下列转变: (1) (2)由到 (3) 由到 (4) 由到

5.完成下列反应,并指出最后产物的构型是(R)或 (S): (1) SOCl 23 2- 6.完成下列反应: (1) N H CH 3 322? 加热 ? ? (1) CH 3I (2)Ag 2O,H 2O (3) 加热 CH 3CH 3 O 2N Fe+HCl ?(CH 3CO)2O ? ? H +,H 2O ? NaNO 2,HCl ?? O 2N CH 3 (2) (3) OCH 3 OCH 3 H 2N (4) (5) 2 (6) CH 3 CH 2CH 2NH 2 (7) NH-COCH 3 Br HNO AcOH ? (8) NO 2F O 2N + N H CH 3O 2 ?

(9) N H + CH 3 H + ? CH 2=CHCOOEt ? H + ? (10) N + 3 CH3 H 3 C - ? 加热 7.指出下列重排反应的产物: (1) (2) (3 (4) (5) (6) ? ? ?

(7) ? ? (8) 8.解释下述实验现象: (1) 对溴甲苯与NaOH在高温下反应,生成几乎等量的对和间甲苯酚。 (2) 2,4-二硝基氯苯可以由氯苯硝化得到,但如果反应产物用NaHCO3水溶液洗 涤除酸则得不到产品。 9.请判断下述霍夫曼重排反应能否实现,为什么? 9. 完成下列反应,并为该反应提供一个合理的反应机理。 (3) 解:

含氮有机化合物练习及答案

第十四章含氮有机化合物 1. 给出下列化合物名称或写出结构式。 对硝基氯化苄苦味酸 1,4,6-三硝基萘 答案: 3-氨基戊烷异丙胺二甲乙胺 N-乙基苯胺 3-甲基-N-甲基苯胺 2-氰-4-硝基氯化重氮苯 2. 按其碱性的强弱排列下列各组化合物,并说明理由。 (1) (2) 答案: (1)吸电子基使碱性降低,供电子基使碱性增强,所以有:b > a > c (2)吸电子基使碱性降低,供电子基使碱性增强,所以有:b > c > a 3.比较正丙醇、正丙胺、甲乙胺、三甲胺和正丁烷的沸点高低并说明理由。 答案: 五种化合物中,按形成氢键的可能、能力可推知其沸点从高到低的次序是: 正丙醇 > 正丙胺 > 甲乙胺 > 三甲胺 > 正丁烷 分子间形成分子间氢键沸点高,醇分子中的羟基极性强于胺的官能团,胺三级大于二级又大于一级。 4. 如何完成下列的转变: (1) (2) (3) (4) 答案: (1) (2) (3) (4) 5. 完成下列各步反应,并指出最后产物的构型是(R)或(S)。 答案: 反应的前两步都不涉及到手性碳,反应的第三步为Hofmann重排,转移基团在分子内转移,其构型保持不变。由于分子组成而变了,旋光性可能改变,也可能不变,此处测定结果为左旋。

6. 完成下列反应: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 答案: (1) (注:书中有误,改为) (2) (3) (4) (5) 利用Hofmann重排反应(降级反应)来完成缩碳。 (6) 利用卤代烃的氰解来增加一个碳原子。 (7) (8)芳环上的亲核取代反应,先加成后消去。 (9)不对称酮形成烯胺后,再进行烃基化时,烃基化主要发生在取代基较少的α位。与普通碱催化反应正好相反。 (10) 含β-H的氧化叔胺在加热时发生顺式消除反应(协同反应)生成烯烃和R2NOH。 7. 指出下列重排反应的产物: (1) (2)

含氮化合物代谢

第9章含氮化合物代谢 学习目标 1.了解个别氨基酸的代谢、先天性氨基酸代谢缺陷、核苷酸的合成代谢 2.理解蛋白质的腐败作用、氨基酸一般代谢过程、核苷酸的分解代谢 3.掌握蛋白质的消化、吸收 我们已经知道,蛋白质和核酸是人体内最为重要的物质之一,在结构上同属于高分子含氮化合物。在人体内的含氮化合物除蛋白质和核酸外,几乎都是蛋白质或核酸的水解产物,或者是由这些产物衍生而来的物质。所以在含氮化合物代谢中,我们主要以蛋白质和核酸的分解代谢为线索,帮助大家充分了解人体内重要含氮化合物的情况。 组成蛋白质的基本单位是氨基酸,虽然游离氨基酸仅为蛋白质总量的2%左右,但由于蛋白质在体内要首先分解成为氨基酸,尔后再进一步代谢,所以氨基酸代谢是蛋白质分解代谢的中心内容。另外,氨基酸还可转变为很多具有重要生理功能的其它含氮化合物。组成核酸基本结构的核苷酸并不一定需要依靠食物供给,在体内可以由氨基酸、核糖等小分子物质合成,且核酸在体内也是首先降解为核苷酸然后进一步进行分解代谢的。故本章将重点讨论蛋白质的消化、吸收与腐败作用,氨基酸代谢及核苷酸代谢,至于蛋白质与核酸的生物合成,将在以后的内容中专门讨论。 第一节蛋白质的消化、吸收与腐败 一、蛋白质的消化 食物中蛋白质的消化、吸收是人体氨基酸的主要来源。一般说来,食物蛋白质水解为氨基酸及小肽后才能被机体吸收、利用。食物蛋白质的消化自胃中开始,但主要在小肠中进行。 进入体内的食物蛋白质首先在胃中经胃蛋白酶作用,将其分解为多肽及少量氨基酸。胃蛋白酶是蛋白水解酶,除了可以催化蛋白质进行水解外,它的另一个功能是对乳中的酪蛋白(casein)有凝乳作用,通过凝乳作用使乳液凝成乳块,延长其在胃中停留的时间,有利于充分消化,这种作用对乳儿相当重要。 蛋白质经胃消化的产物及未被消化的蛋白质进入小肠,在小肠中,主要依靠胰液中

第十三章 含氮有机化合物

第十三章 含氮有机化合物 含氮有机化合物是指含有碳氮键的有机化合物,它们在生物体中起着重要的作用。 第一节 胺 一、胺的分类和命名 胺是氨的烃基衍生物,它可看作是氨分子中的1个氢或几个氢原子被烃基取代后的产物。 (一)胺的分类 1.根据胺分子中氮原子上所连烃基的数目不同,可分为伯胺、仲胺和叔胺。 R —NH 2 R —NH —R ′ R R ′ R ″ 伯胺 肿胺 叔胺 2.根据胺分子中氮原子上所连的烃基种类不同,可分为脂肪胺和芳香胺。 R —NH 2 Ar —NH 2 脂肪胺 芳香胺 氮原子与脂肪烃基直接相连为脂肪胺,与芳环直接相连为芳香胺。 3.根据胺分子中氨基的数目不同,可分为一元胺、二元胺和多元胺。 一元胺:CH 3—CH 2—NH 2 二元胺:H 2N —CH 2—CH 2—NH 2 例如: 脂肪胺 芳香胺 CH 3NH 2 苯胺 甲胺 伯胺: NH 2 NH CH 2 仲胺:二苯胺 甲乙胺 CH 3 CH 3 NH 叔胺:三苯胺 甲乙丙胺 CH 2CH 2CH 2 N CH 3CH 3 CH 3

请注意:伯胺、仲胺、叔胺与伯醇、仲醇、叔醇的区别,胺是根据氮原子上所连烃基数目来分为伯胺、仲胺、叔胺,而醇则是根据羟基所连的烃基来分为伯醇、仲醇、叔醇。例如: C NH 2 CH 3 CH 3 C OH CH 3CH 3 伯胺叔醇 CH 3 CH 3 (二)胺的命名 1.简单的胺以胺为母体,按烃基的名称称为某胺。例如: CH 2 丙胺 CH 2 NH 2 CH 3NH 2 苯胺 甲胺NH 2 CH 3 2.仲胺和叔胺的氮原子上连的烃基相同时,用二或三标明烃基的数目,写在烃基名称前;烃基不同时,从简单到复杂依次写出烃基的名称。例如: (CH 3)2NH (CH 3CH 2)3N (C 6H 5)3N 二甲胺 三乙胺 三苯胺 NH CH 2 甲乙胺CH 3 CH 3 甲乙丙胺 CH 2 CH 2 CH 2 CH 3CH 3 CH 3 3.芳香仲胺和叔胺的氮原子上连有烃基时,以芳香胺为母体,在烃基前标上“N-”,以区别连接在芳环上的烃基。例如: N-甲基苯胺 N ,N-二甲基苯胺 N-甲基-N-乙基苯胺NHCH 3 N (CH 3)2 N CH 3 CH 2CH 3 4.多元胺可参照多元醇命名,二元胺称为某二胺。例如: H 2N —CH 2—CH 2—NH 2 H 2N —CH 2—CH 2—CH 2—CH 2—NH 2 乙二胺 1,4-丁二胺 5.对于结构复杂的胺,则以烃为母体,氨基用为取代基命名。例如:

生物化学习题-含氮化合物代谢

第八章含氮化合物代谢 一、知识要点 蛋白质和核酸是生物体中有重要功能的含氮有机化合物,它们共同决定和参与多种多样的生命活动。在自然界的氮素循环中,大气是氮的主要储库,微生物通过固氮酶的作用将大气中的分子态氮转化成氨,硝酸还原酶和亚硝酸还原酶也可以将硝态氮还原为氨,在生物体中氨通过同化作用和转氨基作用等方式转化成有机氮,进而参与蛋白质和核酸的合成。(一)蛋白质和氨基酸的酶促降解 在蛋白质分解过程中,蛋白质被蛋白酶和肽酶降解成氨基酸。氨基酸用于合成新的蛋白质或转变成其它含氮化合物(如卟啉、激素等),也有部分氨基酸通过脱氨和脱羧作用产生其它活性物质或为机体提供能量,脱下的氨可被重新利用或经尿素循环转变成尿素排出体外。 (二)氨基酸的生物合成 转氨基作用是氨基酸合成的主要方式。转氨酶以磷酸吡哆醛为辅酶,谷氨酸是主要的氨基供体,氨基酸的碳架主要来自糖代谢的中间物。不同的氨基酸生物合成途径各不相同,但它们都有一个共同的特征,就是所有氨基酸都不是以CO2和NH3为起始原料从头合成的,而是起始于三羧酸循环、糖酵解途径和磷酸戊糖途径的中间物。不同生物合成氨基酸的能力不同,植物和大部分微生物能合成全部20种氨基酸,而人和其它哺乳动物及昆虫等只能合成部分氨基酸,机体不能合成的氨基酸称为必须氨基酸,人有八种必需氨基酸,它们是:Lys、Trp、Phe、Val、Thr、Leu、Ile和Met。 (三)核酸的酶促降解 核酸通过核酸酶降解成核苷酸,核苷酸在核苷酸酶的作用下可进一步降解为碱基、戊糖和磷酸。戊糖参与糖代谢,嘌呤碱经脱氨、氧化生成尿酸,尿酸是人类和灵长类动物嘌呤代谢的终产物。其它哺乳动物可将尿酸进一步氧化生成尿囊酸。植物体内嘌呤代谢途径与动物相似,但产生的尿囊酸不是被排出体外,而是经运输并贮藏起来,被重新利用。 嘧啶的降解过程比较复杂。胞嘧啶脱氨后转变成尿嘧啶,尿嘧啶和胸腺嘧啶经还原、水解、脱氨、脱羧分别产生β-丙氨酸和β-氨基异丁酸,两者经脱氨后转变成相应的酮酸,进入TCA循环进行分解和转化。β-丙氨酸还参与辅酶A的合成。 (四)核苷酸的生物合成 生物能利用一些简单的前体物质从头合成嘌呤核苷酸和嘧啶核苷酸。嘌呤核苷酸的合成起始于5-磷酸核糖经磷酸化产生的5-磷酸核糖焦磷酸(PRPP)。合成原料是二氧化碳、甲酸盐、甘氨酸、天冬氨酸和谷氨酰氨。首先合成次黄嘌呤核苷酸,再转变成腺嘌呤核苷酸和鸟嘌呤核苷酸。嘧啶核苷酸的合成原料是二氧化碳、氨、天冬氨酸和PRPP,首先合成尿苷酸,再转变成UDP、UTP和CTP。 在二磷酸核苷水平上,核糖核苷二磷酸(NDP)可转变成相应的脱氧核糖核苷二磷酸。催化此反应的酶为核糖核苷酸还原酶系,此酶由核苷二磷酸还原酶、硫氧还蛋白和硫氧还蛋白还原酶组成。脱氧胸苷酸(dTMP)的合成是由脱氧尿苷酸(dUMP)经甲基化生成的。 二、习题 (一)名词解释 1.蛋白酶(Proteinase) 2.肽酶(Peptidase) 3.氮平衡(Nitrogen balance) 4.生物固氮(Biological nitrogen fixation) 5.硝酸还原作用(Nitrate reduction) 6.氨的同化(Incorporation of ammonium ions into organic molecules) 7.转氨作用(Transamination)

第十四章 含氮有机化合物练习及答案

第十四章 含氮有机化合物 1. 给出下列化合物名称或写出结构式。 (CH 3)2CH NH 2 (CH 3)2NCH 2CH 3 NH CH 2CH 3 CH 3 NH CH 3 O 2N NC N + NCl - O 2N N N OH OH H 32H 对硝基氯化苄 苦味酸 1,4,6-三硝基萘 答案: 3-氨基戊烷 异丙胺 二甲乙胺 N -乙基苯胺 3-甲基-N -甲基苯胺 2-氰-4-硝基氯化重氮苯 O 2N CH 2CL NO 2 O 2N NO 2 OH NO 2 NO 2 NO 2 2. 按其碱性的强弱排列下列各组化合物,并说明理由。 (1) a b c NH 2 NH 2NH 2 NO 2CH 3 (2) CH 3C O NH 2 CH 3NH 2NH 3 a b c 答案: (1)吸电子基使碱性降低,供电子基使碱性增强,所以有:b > a > c (2)吸电子基使碱性降低,供电子基使碱性增强,所以有:b > c > a 3.比较正丙醇、正丙胺、甲乙胺、三甲胺和正丁烷的沸点高低并说明理由。 答案: 五种化合物中,按形成氢键的可能、能力可推知其沸点从高到低的次序是:

正丙醇 > 正丙胺 > 甲乙胺 > 三甲胺 > 正丁烷 分子间形成分子间氢键沸点高,醇分子中的羟基极性强于胺的官能团,胺三级大于二级又大于一级。 4. 如何完成下列的转变: (1)CH 2 CHCH 2Br CH 2CHCH 2NH 2 (2) NHCH 3 O (3) (CH 3)3C C OH O O C (CH 3)3C CH 2Cl (4) CH 3CH 2CH 2CH 2Br CH 3CH 2CHCH 3 NH 2 答案: (1)CHCH 2Br CH 2 NaCN CH 3CH 2OH CH 2CHCH 2CN LiAlH 4CHCH 2NH 2 CH 2 (2) O NH 3+(H) NH 2 CH 3Br NHCH 3 (3) (4) CH 3CH 2CH 2CH 2Br KOH,CH 3CH 2OH CH 3CH 2CH CH 2 HBr CH 3CH 2CHCH 3 Br 3 CH 3CH 2CHCH 3 NH 2 5. 完成下列各步反应,并指出最后产物的构型是(R )或(S )。 C 6H 5CH 2CHCOOH CH 3 (1)SOCl (2)NH 3 (3)Br 2,OH - C 6H 5CH 2CHNH 2 CH 3 S-(+) (-)

第十三章有机含氮化合物2

分子量较小的胺,如甲胺、二甲胺、乙胺等在常温下是气体,其余胺为液体或固体。低级胺可溶于水,这是因为氨基可以与水形成氢键。但随胺中烃基碳原子数的增多,水溶性减小,甚至不溶。 伯胺、仲胺都可以形成分子间氢键,故沸点较分子量相近的烷烃高,但比相应的醇低。而叔胺的沸点则与烃相近。 常见的胺的物理常数见表13-1 表13-1 胺的物理常数 名称结构简式沸点/℃熔点/℃ 氨NH3-33.35 -77.7 甲胺CH3NH2-6.3 -93.5 二甲胺(CH3)2NH 7.4 -93 三甲胺(CH3)3N 2.9 -117.2 乙胺C2H5NH216.6 -81 二乙胺(C2H5)2NH 56.3 -48 三乙胺(C2H5)3N 89.3 -114.7 苯胺C6H5NH2184 -6.3 N-甲基苯胺C6H5NHCH3196.3 -57 N,N-二甲基苯胺C6H5N (CH3)2194 2.45 邻甲基苯胺o-CH3C6H4NH2200.2 -14.7 间甲基苯胺m-CH3C6H4NH2203.3 -30.4 对甲基苯胺p-CH3C6H4NH2200.5 44 邻硝基苯胺o-NO2C6H4NH2284 71.5 间硝基苯胺m-NO2C6H4NH2305 114 对硝基苯胺p-NO2C6H4NH2331.7 148 红外吸收光谱:在3500~3300cm-1的N-H伸缩振动区,伯胺有双峰,仲胺有单峰,叔胺因无N-H键,故在此频区无吸收。伯胺在1650~1590cm-1有强的N-H面内弯曲振动吸收峰,而仲胺在1650~1550cm-1的峰很弱,只可用于参考。正丁胺和苯胺的红外光谱见图13-4和图13-5。

第十四章 含氮有机化合物答案

第十四章含氮有机化合物 1.给出下列化合物名称或写出结构式。 (CH3)2CH NH2(CH3)2NCH2CH3 NH CH2CH3 CH3 NH CH3O2N NC N+NCl- O2N N N OH OH H32 H 对硝基氯化苄苦味酸 1,4,6-三硝基萘 答案: 3-氨基戊烷异丙基胺二甲基乙基胺 N-乙基苯胺N-甲基-3-甲基苯胺氯化-3-氰-5-硝基重氮苯 4-硝基-2,4-二羟基偶氮苯顺-4-甲基-1-环己胺 2.按其碱性的强弱排列下列各组化合物,并说明理由。 (1)

a b c NH 2 NH 2NH 2 NO 2 3 (2) CH 3C O NH 2 CH 3NH 2NH 3 a b c 答案: (1)c > a > b 苯环上存在推电子基团如甲基,可增加N 原子上的电子云密度,使其碱性增强;当苯环上连有拉电子基团如硝基,则降低N 上的电子云密度,使其碱性降低。 (2)b > c > a 在CH 3NH 2中由于—CH3的推电子作用,增强了碱性。在CH 3CONH 2中,由于p -π共轭而降低了N 上的电子云密度,使其碱性减弱。 3.比较正丙醇、正丙胺、甲乙胺、三甲胺和正丁烷的沸点高低并说明理由。 答案: 正丙醇 > 正丙胺 > 甲乙胺 > 三甲胺 > 正丁烷 分子间的氢键导致沸点升高。由于氧的电负性大于氮的电负性,因而正丁醇分子间能形成较强的氢键,沸点较高;正丙胺的氮原子上有两个氢可以形成氢键,甲已胺只有一个,而三甲胺氮原子上没有氢原子,因而不能形成氢键;正丁烷是非极性分子,分子间只存在较弱的色散力,因而沸点最低。 4. 如何完成下列的转变: (1) CH 2 CHCH 2Br CH 2 CHCH 2NH 2

第十五章硝基化合物和胺

·· 162 第十四章 含氮有机化合物 学习要求: 1、掌握芳香族硝基化合物的制法,性质。理解硝基对苯环邻对位取代基(X 、OH )性质的影响。 2、掌握胺的分类、命名和制法。 3、熟练掌握胺的性质及胺的碱性强弱次序,理解影响胺的碱性强弱的因素。 4、掌握区别伯、仲、叔胺的方法及氨基保护在有机合成中的应用。 5、掌握重氮盐的反应和偶联反应在有机合成中的应用。 6、了解季铵盐、季铵碱的性质和应用,初步了解偶氮染料。 7、学习、掌握重要的分子重排反应。 分子中含有C-N 键的有机化合物称为含氮有机化合物。含氮有机化合物种类很多,本章简单讨论硝基化合物,重点讨论胺、重氮盐和分子重排反应。 §14-1 硝基化合物 硝基化合物一般写为R-NO 2 ,Ar-NO 2 ,不能写成R-ONO (R-ONO 表示硝酸酯)。 一、分类、命名、结构 1、分类 (略) 2、命名 (与卤代烃相次似) 3、硝基的结构 一般表示为 (由一个N=O 和一个N →O 配位键组成) 物理测试表明,两个N —O 键键长相等,这说明硝基为一P-π共轭体系(N 原子是以sp 2 杂化成键的,其结构表示如下: 二、硝基化合物的制备 见P 430。 1、卤代烃与亚硝酸盐反应。 2、芳烃的硝化。 三、硝基化合物的性质 1、物理性质 (略) 2、脂肪族硝基化合物的化学性质 1)还原 硝基化合物可在酸性还原系统中(Fe 、Zn 、Sn 和盐酸)或催化氢化为胺。 2)酸性 硝基为强吸电子基,能活泼α- H ,所以有α- H 的硝基化合物能产生假酸式 -酸式互变异构,从而具有一定的酸性。 例如硝基甲烷、硝基乙烷、硝基丙烷的pKa 值分别为: 10.2、8.5、7.8 。 N O R R CH 2 N O O R CH N OH O NaOH R CH N O O Na 假酸式酸式(主)(较少)

胺和其他含氮化合物

第十四章 胺和其他含氮化合物 1. 写出下列化合物的结构式: (1)三丁基胺 (2)碘化二甲基二乙基铵 (3)N-甲基苯胺 (4)对氨基苯甲酸乙酯 (5)肾上腺素 2. 命名下列化合物: (CH 3)2CHNH 2(1) CH 3CH 2 (2)H C NH 2 CH 2CH 3 NHC 2H 5 (3) (C 2H 5)2NH 2OH -(4) O 2N N(CH 3)2 (5) Br — N 2 CH 3 (6) N H (7) NH 2 (8) H 3C OCH 3 CH 2CHCH 2OH NH 2 (9) H 2NCH 2CH CH 3 CH 2NH 2 (10) 3.比较下列各组化合物的碱性,按碱性增强的次序排列: NH 3, CH 3NH 2, NH 2 ,H 3C O NH 2 , (CH 3)4NOH — (1) NH 2 NH 2 2 NH 2 CH 3(2) CH 3CH 2NH 2, CH 3CH 2—O -, CH 3COO -, NH 2-(3) 4.如何完成下列反应: CH 3CH 2CH 2Br CH 3CH 2CH 2CH 2NH 2(1) NH 2 COOH (2) (CH 3)3CCH 2Br (3)(CH 3)3CCH 2NH 2 CHCO 2C 2H 5 (4) H 2N(CH 2)4N(CH 3)2CH 2

O NH 2 (5) O CH 3 NHCH 3 CH 3 (6) (CH 3)3CCOCl (CH 3)3CCCH 2Cl O (7) CH 2COOH CH 2COOH N CH 3 (8) CH 3CH 2NO 2 H 2N CH CH 3 H C OH C 2H 5 (9) C C H H 3H CH 3C C H 2N OH CH 3H (10) CH 3 O HO CH 2NH 2 (11) CH CH 2CH 3 O CN N H CH 3 (12) O N H O CH 2CH 2COOH (13) N H N CH 2CH 3(14) CH 3 NH 2 Br CH 3 (15) (R)-2-辛醇 (S)-2-辛胺 辛胺(16)

第十三章含氮化合物(6学时)

第十三章含氮化合物(6学时) 目标要求 1.掌握硝基化合物的性质 2.了解硝基化合物的制备 3.掌握季铵盐的性质及霍夫曼规则 4.了解胺的制法 5.掌握重氮化合物和偶氮化合物的结构 6.掌握重氮盐的取代反应和偶联反应及其在有机合成上的应用 7.掌握各类分子重排机理 教学重点: 硝基化合物、胺类化合物、重氮化合物,分子偶联反应、分子重排机理 教学难点: 硝基化合物、胺类化合物、重氮化合物,分子重排机理 主要内容 1.硝基化合物的性质及制备 2.胺的分类、结构和重要的化学性质 3.季铵盐的性质及霍夫曼规则 4.胺的制法 5.重氮化合物和偶氮化合物的结构 6.重氮盐的取代反应和偶联反应及其在有机合成上的应用 7.各类分子重排机理 胺可以看作是氨中的氢被烃基取代的衍生物。胺类和它们的衍生物是十分重要的化合物,其与生命活动有密切的关系。 第一节胺的分类和命名 一、胺的分类 1、根据胺分子中氮上连接的烃基不同,分为脂肪胺与芳香胺。 2、根据胺分子中与氮相连的烃基的数目,可分为一级、二级或三级胺。 3、根据胺分子中所含氨基的数目,可以有一元、二元或多元胺。 胺盐或氢氧化胺中的四个氢被烃基取代而生成的化合物称为季铵盐或碱。 NH2 CH3NH2 甲胺苯胺CH2CH2 NH2 NH2 乙二胺 [R4N]+ X-[R4N]+OH- 季胺盐季胺碱 二、胺的命名 1、简单的胺的命名可以用它们所含的烃基命名。 2、比较复杂的胺的是以烃基作为母体,氨基作为取代基来命名。 3、胺盐可看作是铵的衍生物。

(CH 3)2CHCH CH 3 2 CH 3CH 2CH CHCH 3 2H 5)2 CH 32-氨-3-甲基丁烷 2-(N,N-二乙氨基)-3-甲基戊烷 第二节 胺的物理性质 氨和胺分子具有四面体棱锥形结构。状态:甲胺、二甲胺、三甲胺是气体。低级胺是液体。 高级胺是固体。有氨的刺激性气味及腥臭味。芳胺的毒性很大。伯、仲胺能形成分子间氢键,也能与水形成氢键。 一、 溶解性 低级易溶于水,随烃基的增大,水溶解度降低。 二、 熔沸点 沸点:比相应的醇、酸低,并且伯胺 > 仲胺 > 叔胺;芳胺是高沸点液体或低熔点固体。 三、 光谱性质 (1)、红外光谱: N-H 键:在3500~3600cm-1有伸缩吸收峰。叔胺没有N-H 键,所以在该区域没有吸收峰。 C-N 键:1350~1000 cm-1有伸缩吸收峰。 (2)、核磁共振谱 : 胺的核磁共振特征类似于醇和醚。 氨基质子: δ 0.6~5.0,可变,不易鉴定。 α-碳上质子:δ 2.7~3.1 β-碳上质子:δ 1.1~1.7 第三节 胺的反应 一、 碱性 ?路易斯酸碱的定义:碱是电子对的给予体,酸是电子对的接受体。 N 原子有未共用的电子对,能接受质子,胺是路易斯碱,是亲核试剂。胺是弱碱,所以胺盐遇强碱则释放出游离胺,可分离提纯胺。 RNH 2+RNH 3Cl - H 2O NaCl +NaOH RNH 2++ 1、 胺的碱性: (1)Kb 值越大,或pKb 越小,碱性越强。 (2)从电子效应考虑,烷基愈多碱性愈强。 (3)从溶剂化考虑,烷基愈多碱性愈弱。 (4)还有立体效应的影响。 2、碱性秩序: (1) 脂肪胺 气态: Me 3N > Me 2NH > MeNH 2 > NH 3 水溶液中:Me 2NH > MeNH 2 > Me 3N > NH 3 (2)芳胺 < NH 3 < 脂肪胺 (3)芳胺:

药用有机化学试题(第九章:含氮化合物(胺类)附答案 )

第九章:含氮化合物(胺类)223.下列化合物中,低温下能生成稳定重氮盐的是?[1分] A苄胺B苯胺CN-甲基苯胺DN-甲基苄胺 参考答案:B 224.下列化合物中,沸点最高的是?[1分] A乙酸B乙胺C二乙胺D乙醇 参考答案:A 225.下列化合物中碱性最强的是?[1分] A NH3 B CH3NH2 C C 6H5CH2NH2 D CH3NHCH3 参考答案:D 226.的正确名称为?[1分] A苯乙胺B乙苯胺CN-苯基乙胺DN-乙基苯胺 参考答案:D 227.下列化合物属于芳香胺的是?[1分] A

B C D 参考答案:B 228.能与乙酰氯发生酰化反应的胺是?[1分] A异丙胺B二乙丙胺CN,N-二甲基苯胺D甲乙丙胺 参考答案:A 229.下列化合物中,沸点最高的是?[1分] A CH3NH2 B CH3CH2CH2NH2 C(CH3)3N D CH3NHCH2CH3 参考答案:B 230.关于苯胺性质的叙述错误的是?[1分] A易被空气中氧气氧化B能与盐酸所用生成季铵盐C能与羧酸反应生成酰胺D 能与溴水反应生成白色沉淀 参考答案:B 231.与亚硝酸反应可放出氮气的是?[1分]

ACH3NH2BCH3NHCH3C(CH3)3NDCH3NHCH2CH3 参考答案:A 232.与NaNO2和盐酸反应,能生成黄色油状物的是?[1分] AC6H5NH2BCH3CH2NH2CCH3NHCH2CH3D(CH3)3N 参考答案:C 233.芳香胺的碱性一般较脂肪胺弱。[1分] 参考答案:T 234.在实验室合成乙酰苯胺时,可采用苯胺和乙酸进行制备。[1分] 参考答案:T 235.所有的胺及其衍生物均呈碱性。[1分] 参考答案:F 236.胺的碱性取决于氮原子上电子云密度,电子云密度越大,碱性越强。[1分] 参考答案:T 237.胺的盐类属于离子型化合物,具有强酸性。[1分] 参考答案:T 238.利用伯、仲、叔胺与HNO2的不同反应性能,可以鉴别伯、仲、叔胺。[1分] 参考答案:T

第十四章 含氮有机化合物 习题

第十四章 含氮有机化合物 1、给出下列化合物名称或写出结构式。 三氨基戊烷 异丙基胺 NHCH 2CH 3 N-乙基苯胺 CH 3NHCH 3 N-甲基-3-甲基苯胺 NC N NCl O 2N 氯化-3-氰基-5-硝基重氮苯 O 2N N N HO OH 4`-硝基-2,4-二羟基偶氮苯 2H 3顺-4-甲基-1-环己烷 对硝基氯化苄 O 2N CH 2Cl 苦味酸 O 2N O 2N HO NO 2 1,4,6-三硝基萘 O 2N NO 2 NO 2 2、按其碱性的强弱排列下列各组化合物,并说明理由。

(1) NH2 NO2 NH2NH2 CH3 解: NH2 NO2 NH2 NH2 CH3 >> 因为甲基是供电子基,使氮上的电子云密度能增加,故胺的碱性增大,而硝基是吸电子基,使氮上的孤对电子密度减少,故碱性减小。 (2) CH3CONH2CH3NH2NH3 解: CH3CONH2 CH3NH2NH3 >> 在甲胺中,由于甲基供电子效应,使氮的电子云密度增大,碱性增强。在酰胺 中,由于氮上的孤对电子与羰基共轭,使氮上的电子云密度减小,从而碱性减弱。 3、比较正丙醇、正丙胺、甲乙胺、三甲胺和正丁烷的沸高低并说明理由。 解:正丙醇>正丙胺>甲乙胺>三甲胺>正丁烷 分子间的氢键导致沸点升高。由于氧的电负性大于氮的电负性,因而正丙醇分子间能形成较强的氢键,沸点最高;正丙胺的氮原子上有两个氢可以形成氢键,甲乙胺只有1个,而三甲胺氮原子上没有氢原子,因而不能形成氢键;正丁烷是非极性分子,分子间只存在较弱的色散力,因而沸点最低。 4、如何完成下列的转变: (1) CH2=CHCH2Br CH2=CHCH2CH2NH2 解:CH2=CHCH2Br CH2=CHCH2CH2NH2 4 CH2=CHCH2CN (2) 3 O 解:O 32 NCH3NHCH 3 2 (3) (CH3)3CCOOH(CH3)3COCH2Cl

基础有机化学第12章 有机含氮化合物习题答案

第十三章 有机含氮化合物习题答案 1. 命名下列化合物或写出构造式 (1)(2) (3) NHCH 3 CH 3 (CH 3)2CHNH 2 NHCH 2CH 3 (4)对硝基苄胺 (5)2,4,7-三硝基萘酚 (8) β-苯基丙胺 解: (1) 异丙基胺 (2) N-乙基苯胺 (3)N-甲基间甲苯胺 CH 2NH 2O 2N OH NO 2 NO 2 O 2N CHCH 2NH 2CH 3 (6) (5) (4) 2. 用化学方法鉴别下列各组化合物:乙醇、乙醛、乙酸、乙胺 乙醇乙醛乙酸 乙胺 NaHCO 3 气泡 乙酸 无气泡 银氨溶液 银镜 乙醛 无银镜乙醇 乙胺 乙醇 乙醛乙胺 NaNO 2乙胺 无气体 HCl 气体 乙醇 3. 按碱性强弱次序排列下列各组化合物 (1) A. 苯胺 B. 对甲基苯胺 C. 对甲氧基苯胺 D. 对硝基苯胺 (2) A. 苄胺 B. 间氯苄胺 C. 间甲苄胺 D. N 甲基苄胺 (1) C>B>A>D (2) D>C>A>B 4. 完成反应式。 (1) CH 3 (CH 3CO)2O CH 3 NO 2混酸 ,60℃ Fe +HCl CH 3NH 2 CH 3 NHCOCH 3 HNO 3 + H 2SO 4 CH 3 NHCOCH 3 NO 2 OH -/H 2O CH 3 NH 2 NO 2 CH 3 N 2+Cl -NO 2 CH 3 NO 2 NaNO 2/HCl 0-5℃ H 3PO 2 (2)CH 3CH 2CN (1)OH -/H 2O (2)H + CH 3CH 2COOH SOCl 2 CH 3CH 2COCl CH 3CH 2CO-NH(CH 2CH 2CH 3)2LiAlH 4(CH 3CH 2CH 2)2NH CH 3CH 2CH 2NH(CH 2CH 2CH 3)2 O 2N Cl Cl CH 3ONa/CH 3OH (3)O 2N Cl OCH 3 5. 完成下列转变

含氮与含磷化合物习题答案

第十章含氮与含磷化合物 一、学习要求 1.掌握胺、酰胺及有机含磷化合物结构和命名。 2.掌握胺、酰胺化学性质。 3.熟悉酰胺化合物及有机磷化合物性能与生物活性。 4.了解生源胺及生物学意义。 5.了解有机磷农药的中毒机制和解毒机制。 二、本章要点 (一)胺可以看成氨分子中的氢被烷基或芳基取代的衍生物。 1.结构、分类和命名 (1)分类: 另外NH4+中的四个氢原子被烃基取代后的化合物有季铵盐和季铵碱两种。 (2)命名: 简单胺以胺作母体,烃基作取代基,称某胺;当氮上同时连有芳基和脂肪烃基时,以芳胺作母体,在脂肪烃基前加“N”字表示脂肪烃基连在氮原子上;比较复杂的胺采用氨基作取代基;季铵类化合物和胺的离子型化合物可作为NH4+的衍生物来命名,“负离子”化“正离子”,烷基依基团顺序写在“铵”字的前面。命名时“氨”用于表示取代基,“胺”表示氨的烃基衍生物,“铵”用于季铵类化合物和胺的离子型化合物,在使用时需特别注意。 (3)结构: 胺分子中的氮原子是不等性sp3杂化,其中三个sp3杂化轨道与烃基或氢相连,构成棱锥型,另外一个sp3杂化轨道上有一对未成键电子在棱锥形顶端,空间排布近似于碳的正四体结构。 23R1、R2、R3可以是烃基或氢 胺所连烃基种类 所连烃基数目 氨基数目 脂肪胺;芳香胺 伯胺;仲胺;叔胺 一元胺;二元胺;多元胺

因此氮原子上所连的三个原子或基团不同时,应存在对映异构现象和两个具有光学活性的对映异构体,但是对映体之间相互转化需要的能量很低,能很快相互转化而自动外消旋化。 苯胺分子中由于氮原子上的未成键电子对能与苯环的π电子形成共轭,因而其 占据的sp3杂化轨道虽还保留一部分s轨道的性质似呈棱锥形,但具有更多的P轨道性质,四面体结构比脂肪胺要扁平一些。 2.物理性质低分子胺具有特殊的不愉快的气味。氮原子有氢的胺能形成分子间氢键,因此相对分子质量相近的胺的沸点顺序是伯胺>仲胺>叔胺。由于胺分子中的氮氢间的氢键不如醇、羧酸间氧氢间氢键强。胺的沸点比相对分子质量相近的醇和羧酸低。低级脂肪胺一般能溶于水,但随着胺分子中烃基的增大溶解性迅速降低。 芳香胺是无色的高沸点的液体或低熔点的固体,具有特殊气味,一般难溶于水,毒性较大,使用时应注意防护。 3.化学性质胺分子的氮是sp3杂化,其中一个sp3杂化轨道上有一对未成键电子。 (1)碱性: 胺中的氮原子有一对未成键电子能结合质子,形成铵离子,因此具有碱性,结合质子能力越强碱性越强。其平衡关系如下: R+R N H 在水溶液中,胺的碱性强弱是由电子效应、溶剂化效应、空间效应综合作用的结果。其碱性强弱大致为:季铵碱>脂肪氨>氨>芳香胺 (2)亲核性:伯胺和仲胺中氮原子作为亲核中心可以与酰卤、酸酐等发生亲核取代反应而生成N-取代或N,N-二取代酰胺。叔胺氮原子上没有氢原子,因此不能发生酰化反应。人们常利用酰化反应修饰具氨基化合物为酰胺。 人们常利用苯磺酰氯来分离和鉴别伯、仲、叔胺,称Hinsberg反应。伯胺生成的苯磺酰胺氮原子上的氢显弱酸性,能溶于过量的碱变成盐而溶于水。仲胺生成不溶于水的苯磺酰胺,叔胺不能发生磺酰化反应。 (3)胺与HNO2的反应:胺能与亚硝酸反应,产物与胺的种类和反应条件有关。伯、仲、叔胺各有不同的反应的结果和现象;脂肪胺和芳香胺的反应也有所不同。因此可利用胺与HNO2的反应鉴别胺类化合物。

第十四章含氮有机化合物

·168· 第十四章 含氮有机化合物 学习要求 1.掌握芳香族硝基化合物的制法,性质。理解硝基对苯环邻对位取代基(X 、OH )性质的影响。 2.掌握胺的分类、命名和制法。 3.熟练掌握胺的性质及胺的碱性强弱次序,理解影响胺的碱性强弱的因素。 4.掌握区别伯、仲、叔胺的方法及氨基保护在有机合成中的应用。 5.掌握重氮盐的反应和偶联反应在有机合成中的应用。 6.了解季铵盐、季铵碱的性质和应用,初步了解偶氮染料。 7.学习、掌握重要的分子重排反应。 分子中含有C-N 键的有机化合物称为含氮有机化合物。含氮有机化合物种类很多,本章简单讨论硝基化合物,重点讨论胺、重氮盐和分子重排反应。 §14-1 硝基化合物 硝基化合物一般写为R-NO 2 ,Ar-NO 2 ,不能写成R-ONO (R-ONO 表示硝酸酯)。 一、分类、命名、结构 1. 分类 (略) 2. 命名 (与卤代烃相次似) 3. 硝基的结构 一般表示为 (由一个N=O 和一个N →O 配位键组成) 物理测试表明,两个N —O 键键长相等,这说明硝基为一P-π共轭体系(N 原子是以sp 2 杂化成键的,其结构表示如下: 二、硝基化合物的制备 见P 430。 1. 卤代烃与亚硝酸盐反应。 2. 芳烃的硝化。 三、硝基化合物的性质 1.物理性质 (略) 2.脂肪族硝基化合物的化学性质 (1)还原 硝基化合物可在酸性还原系统中(Fe 、Zn 、 Sn 和盐酸)或催化氢化为胺。 (2)酸性 硝基为强吸电子基,能活泼α- H ,所以有α- H 的硝基化合物能产生假酸式-酸式互变异构,从而具有一定的酸性。 例如硝基甲烷、硝基乙烷、硝基丙烷的pKa 值分别为:10.2、8.5、7.8 。 N O R

第十五章 硝基化合物和胺 课后答案

第十五章 硝基化合物和胺 一、命名下列化合物: 1. CH 3CH 2CHCH(CH 3)2 NO 2 2. CH 3CH 2CH 2NH 2 3. CH 3NHCH(CH 3)2 4. NHC 2H 5 CH 3 5 H 2N NHC 6H 5 6. 7. C 6H 5SO 2NHC 6H 5 8. Br N + (CH 3)3Cl - (CH 3)2CHN +(CH 3)3Cl - 9. (CH 3)2N NO 10. CH 2=CHCN N.N -二甲基-4-亚硝基苯胺 丙烯腈 二、写出下列化合物的构造式: 1, 间硝基乙酰苯胺 2,甲胺硫酸盐 3,N -甲基-N -乙基苯胺 NO 2 NHCOCH 3 [CH 3NH 2]2.H 2SO 4 NCH 3 CH 3CH 2 4,对甲基苄胺 5, 1,6-己二胺 6,异氰基甲烷 CH 2NH 2 CH 3 NH 2CH 2CH 2CH 2CH 2CH 2CH 2NH 2 CH 3NC 7,β-萘胺 8,异氰酸苯酯

NH 2 NCO 三、用化学方法区别下列各组化合物: 1 2、邻甲苯胺 N -甲基苯胺 N,N -二甲基苯胺 解:分别与亚硝酸钠+盐酸在低温反应, 邻甲苯胺 反应产物溶解, N -甲基苯胺生成黄色油状物, N,N -二甲基苯胺生成绿色固体。 3,乙胺和乙酰胺 解:乙胺溶于盐酸,乙酰胺不溶。 4,环己烷与苯胺。 解:苯胺溶于盐酸,环己烷不溶。 四、试用化学方法分离下列化合物: 1. CH 3(CH 2)3NO 2(CH 3)3CNO 2 CH 3CH 2CH 2NH 2 NaOHaq CH 3(CH 2)3NO 2 (CH 3)3CNO 2 CH 3CH 2CH 2HCl CH 3CH 2CH 2NH 2.HCl NaOHaq CH 3CH 2CH 2NH 2 2,苯酚,苯胺和对氨基苯甲酸 解:用氢氧化钠水溶液处理,苯酚和对氨基苯甲酸溶于碱溶液,分出有机相。有机相为含苯胺。 向水相通入二氧化碳,游离出苯酚,对氨基苯甲酸在水相中,酸化得到对氨基苯甲酸。 3,正己醇,2-己酮,三乙胺和正己胺 解:加入亚硫酸氢钠饱和水溶液,2-己酮生成晶体分出,然后用稀酸处理这个晶体又得到2-己酮。分理处2-己酮。 向正己醇,三乙胺和正己胺混合物中加入稀盐酸,正己醇不溶,分出。

第七章 含氮化合物代谢

第七章含氮化合物代谢 一、知识要点 蛋白质和核酸是生物体中有重要功能的含氮有机化合物,它们共同决定和参与多种多样的生命活动。在自然界的氮素循环中,大气是氮的主要储库,微生物通过固氮酶的作用将大气中的分子态氮转化成氨,硝酸还原酶和亚硝酸还原酶也可以将硝态氮还原为氨,在生物体中氨通过同化作用和转氨基作用等方式转化成有机氮,进而参与蛋白质和核酸的合成。(一)蛋白质和氨基酸的酶促降解 在蛋白质分解过程中,蛋白质被蛋白酶和肽酶降解成氨基酸。氨基酸用于合成新的蛋白质或转变成其它含氮化合物(如卟啉、激素等),也有部分氨基酸通过脱氨和脱羧作用产生其它活性物质或为机体提供能量,脱下的氨可被重新利用或经尿素循环转变成尿素排出体外。 (二)氨基酸的生物合成 转氨基作用是氨基酸合成的主要方式。转氨酶以磷酸吡哆醛为辅酶,谷氨酸是主要的氨基供体,氨基酸的碳架主要来自糖代谢的中间物。不同的氨基酸生物合成途径各不相同,但它们都有一个共同的特征,就是所有氨基酸都不是以CO2和NH3为起始原料从头合成的,而是起始于三羧酸循环、糖酵解途径和磷酸戊糖途径的中间物。不同生物合成氨基酸的能力不同,植物和大部分微生物能合成全部20种氨基酸,而人和其它哺乳动物及昆虫等只能合成部分氨基酸,机体不能合成的氨基酸称为必须氨基酸,人有八种必需氨基酸,它们是:Lys、Trp、Phe、Val、Thr、Leu、Ile和Met。 (三)核酸的酶促降解 核酸通过核酸酶降解成核苷酸,核苷酸在核苷酸酶的作用下可进一步降解为碱基、戊糖和磷酸。戊糖参与糖代谢,嘌呤碱经脱氨、氧化生成尿酸,尿酸是人类和灵长类动物嘌呤代谢的终产物。其它哺乳动物可将尿酸进一步氧化生成尿囊酸。植物体内嘌呤代谢途径与动物相似,但产生的尿囊酸不是被排出体外,而是经运输并贮藏起来,被重新利用。 嘧啶的降解过程比较复杂。胞嘧啶脱氨后转变成尿嘧啶,尿嘧啶和胸腺嘧啶经还原、水解、脱氨、脱羧分别产生β-丙氨酸和β-氨基异丁酸,两者经脱氨后转变成相应的酮酸,进入TCA循环进行分解和转化。β-丙氨酸还参与辅酶A的合成。 (四)核苷酸的生物合成 生物能利用一些简单的前体物质从头合成嘌呤核苷酸和嘧啶核苷酸。嘌呤核苷酸的合成起始于5-磷酸核糖经磷酸化产生的5-磷酸核糖焦磷酸(PRPP)。合成原料是二氧化碳、甲酸盐、甘氨酸、天冬氨酸和谷氨酰氨。首先合成次黄嘌呤核苷酸,再转变成腺嘌呤核苷酸和鸟嘌呤核苷酸。嘧啶核苷酸的合成原料是二氧化碳、氨、天冬氨酸和PRPP,首先合成尿苷酸,再转变成UDP、UTP和CTP。 在二磷酸核苷水平上,核糖核苷二磷酸(NDP)可转变成相应的脱氧核糖核苷二磷酸。催化此反应的酶为核糖核苷酸还原酶系,此酶由核苷二磷酸还原酶、硫氧还蛋白和硫氧还蛋白还原酶组成。脱氧胸苷酸(dTMP)的合成是由脱氧尿苷酸(dUMP)经甲基化生成的。 二、习题 (一)名词解释 1.蛋白酶(Proteinase) 2.肽酶(Peptidase) 3.氮平衡(Nitrogen balance) 4.生物固氮(Biological nitrogen fixation) 5.硝酸还原作用(Nitrate reduction) 6.氨的同化(Incorporation of ammonium ions into organic molecules) 7.转氨作用(Transamination)

相关文档
最新文档