正弦波振荡器总结要点

正弦波振荡器总结要点
正弦波振荡器总结要点

正弦波振荡器总结

模块参数要求:设计制作20MHZ 石英晶体振荡器、30MHZ 克拉泼(串联改进型电容三点式振荡器)震荡器,40MHZ 西勒(并联改进型电容三点式振荡器)震荡器频率,工作电压+5V 。

模块完成情况:设计制作了20MHZ 石英晶体振荡器、24.1MHZ--38.7MHZ 克拉泼震荡器、38.9MHZ--40.5MHZ 西勒震荡器。

模块涉及的理论知识:

振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路,它无需外加激励信号。

为了使振荡器在接通直流电源后能够自动起振,要求反馈电压在相位上与放大器输入电压同相在幅度上则要求U f >Ui ,即

π??n F A 2=+ n=0,1,2,…

1

0>F A

式中,A0为振荡器起振时放大器工作于甲类状态时的电压放大倍数。 振荡建立起来之后,振荡幅度会无限制地增长下去吗?不会的,因为随着振荡幅度的增长,放大器的动态范围就会延伸到非线性区,放大器的增益将随之下降,振荡幅度越大,增益下降越多,最后当反馈电压正好等于原输入电压时,振荡幅度不再增大而进入平衡状态。

1=AF

综上所述,为了确保振荡器能够起振,设计的电路参数必须满足A 0F>1的条件。而后,随着振荡幅度的不断增大,A 0就向A 过渡,直到AF=1时,振荡达到平衡状态。显然,A 0F 越大于1,振荡器越容易起振,并且振荡幅度也较大。但A 0F 过大,放大管进入非线性区的程度就会加深,那么也就会引起放大管输出电流波形的严重失真。所以当要求输出波形非线性失真很小时,应使A 0F 的值稍大于1。

当振荡器受到外部因素的扰动(如电源电压波动、 温度变化、噪声干扰等),将引起放大器和回路的参数发生变化破坏原来的平衡状态。如果通过放大和反馈的不断循环,振荡器越来越偏离原来的平衡状态,从而导致振荡器停振或突变到新的平衡状态,则表明原来的平衡状态是不稳定的。反之,如果通过放大和反馈

的不断循环,振荡器能够产生回到原平衡点的趋势,并且在原平衡点附近建立新的平衡状态,则表明原平衡状态是稳定的。

一个振荡器除了它的输出信号要满足一定的幅度和频率外,还必须保证输出信号的幅度和频率的稳定,而频率稳定度更为重要。

评价振荡器频率的主要指标有两个,即准确度和稳定度。

LC振荡器振荡频率主要取决于谐振回路的参数,也与其它电路元器件参数有关。因此,任何能够引起这些参数变化的因素,都将导致振荡频率的不稳定。这些因素有外界的和电路本身的两个方面。其中,外界因素包括:温度变化、电源电压变化、负载阻抗变化、机械振动、湿度和气压的变化、外界磁场感应等。这些外界因素的影响,一是改变振荡回路元件参数和品质因数;二是改变晶体管及其它电路元件参数,而使振荡频率发生变化的。因此要提高振荡频率的稳外界因素定度可以从两方面入手:一是尽可能减小外界因素的变化;二是尽可能提高振荡电路本身抵御外界因素变化影响的能力。

设计考虑:

1.振荡器电路选择

LC振荡器一般工作在几百千赫兹至几百兆赫兹范围。振荡器线路主要根据工作的频率范围及波段宽度来选择。在短波范围,电感反馈振荡器、电容反馈振荡器都可以采用。在中、短波收音机中,为简化电路常用变压器反馈振荡器做本地振荡器。

2.晶体管选择

从稳频的角度出发,应选择f

T

较高的晶体管,这样晶体管内部相移较小。

通常选择f

T >(3~10) f

max

。同时希望电流放大系数β大些,这既容易振荡,也便

于减小晶体管和回路之间的耦合。

3.直流馈电线路的选择

为保证振荡器起振的振幅条件,起始工作点应设置在线性放大区;从稳频出发,稳定状态应在截止区,而不应在饱和区,否则回路的有载品质因数Q

L

将降低。所以,通常应将晶体管的静态偏置点设置在小电流区,电路应采用自偏压。

4.振荡回路元件选择

从稳频出发,振荡回路中电容C应尽可能大,但C过大,不利于波段工作;

电感L 也应尽可能大,但L 大后,体积大,分布电容大,L 过小,回路的品质因数过小,因此应合理地选择回路的L 、C 。在短波范围,C 一般取几十至几百pF ,L 一般取0.1至几十μH 。

5.反馈回路元件选择

由前述可知,为了保证振荡器有一定的稳定振幅以及容易起振,在静态工作点通常应按下式选择

5

~3|

|0==

F g y F A f

当静态工作点确定后,yf 的值就一定,对于小功率晶体管可以近似为

m V I g y CQ m f 26=

=

反馈系数的大小应在下列范围选择

F=0.01-0.5 克拉泼振荡器:

图2.4.1 (a) 为克拉泼振荡器原理电路,(b)为其交流等效电路。它的特点是在前述的电容三点式振荡谐振回路电感支路中增加了一个电容C3,其取值比较小,要求C3<< C1,C3<< C2。

图2.4.1 克拉泼振荡器

先不考虑各极间电容的影响,这时谐振回路的总电容量C Σ为C1、C2 和C3的串联,即

4

3

211111

C C C C C ≈++=

(2-9)

于是,振荡频率为

4

021

21LC LC f ππ≈

∑ (2-10)

(a ) 原理电路 (b ) 交流等效电 3

3

使式(2-10)成立的条件是C1和C2都要选得比较大,由此可见,C1、C2对振荡频率的影响显著减小,那么与C1、C2并接的晶体管极间电容的影响也就很小了,提高了振荡频率的稳定度。 西勒振荡器:

4

33

2141111

C C C C C C C +≈+++

=∑

所以振荡频率

()43021

21

C C L LC f +≈

∑ππ

L 为谐振放大器电路的电感线圈的电感量;C 为谐路的总电容。在LC 谐振回路中,电感L (H )/电容C (F )=105

~106,可达到较好的效果。

并联晶体振荡:

模拟电子技术基础(第三版)书中P408页上有振荡电路图8.1.29如图2所示,是并联型石英晶体振荡电路,该并联型石英晶体振荡电路中,石英晶体必须等效为电感,否则振荡电路就无意义了,图2

的等效电路如图3所示.则振荡电路的振荡频率为

图2.4.2 西勒振荡器

L

(a ) 原理电路

(b ) 交流等效电路

4

所以,并联型石英晶体振荡电路的振荡频率为

设计制作过程:

克拉泼振荡器:

克拉泼振荡器

由上理论知识可知:当要求输出波形非线性失真很小时,应使A

F的值稍大

于1。因此使用50K的可调电阻RES1,调节RES1,致使三极管静态工作点发生

变化,影响三极管的放大倍数A

C1、C2的选择较为重要,并非是比例合适就可以。经试验:C1、C2过大、过小时,放大器的电压增益都会降低,振幅下降,甚至会停振。最终选择C1=110pF,C2=1000pF,反馈系数F=110/1000(未考虑三极管节电容)。

由于设定振荡频率为30MHZ左右,因此电感L=1uH(可调),电容C=20pF(可调)。

振荡器输出波形有些失真,这是因为其含有多次谐波,为使输出波形较理想,输出我使用谐振放大器。

振荡器输出加了谐振放大器,跟随器或者谐振放大器的输入阻抗不可过小,应尽量大一些,否则会影响振荡器的工作。调板过程总,我修改谐振放大器发射极电阻R7,不接谐振放大器发射极电阻放大倍数最大。

西勒振荡器:

西勒振荡器

设计思路与方法与克拉泼振荡器一样,在此不重复。

并联晶体振荡:

同理,可以使用50K的可调电阻RES1,调节RES1,致使三极管静态工作点

发生变化,影响三极管的放大倍数A

使用20MHZ无源晶振,调节CL6,可以微调振荡电路的振荡频率,使振荡频率刚好达到20MHZ。

频率稳定,但可能由于电路参数设计问题,波形不理想,输出失真比较大。克拉泼振荡器:

参数测量:

由表可知,频率可调范围为34.1MHZ-38.7MHZ ,不同频率,其最佳工作点电压不一样。所以在调节频率过程中,要调节电阻RES1,使放大器工作在最佳的状态,达到最好的效果。如若不调节电阻RP1,达到一定频率时,有可能使振荡器停振。

测试图:

克拉泼24.1MHZ 时输出

克拉泼30MHZ时输出

克拉泼38.7MHZ时输出

西勒振荡器:

参数测量:

从表格可以看出,振荡频率范围21.5MHZ-32.2MHZ,各静态工作点电压基本一样。由此可知,西勒振荡器效果比克拉泼差了许多。在调节频率过程中,仍需调节电阻RES2,使放大器工作在最佳的状态,达到最好的效果。可能参数设计有问题修改L、C的参数,对调节提高振荡器的频率效果不大。

测试图:

西勒40.0MHZ时输出

并联晶体振荡

从表格可以看出,并联晶体振荡并不是频率一样放大倍数就一样大,输出越大的,并不一定是你想要的。需调节电阻RES1,使放大器工作在最佳的状态,达到最好的效果。 测试图:

并联晶体振荡20.0MHZ 输出

总结以及心得体会:

本次设计花费一周多,快两周的时间,虽然波形已经出来了,但是还有许多地方还需要改进,但是时间已经不应许了。如一级幅度并不是很大,加了二级之

后一级的振荡幅值也下降了许多,这是因为二级输入电阻变成了一级的输出电阻,与一级输出电阻相连分压。尤其是西勒加了二级之后看到的就是十几毫伏的杂波了,只有放大输出才能看到好的波形。带负载能力差,加上负载,波形就会变得很小很乱,需要在以后的实践中加一个缓冲级,以提高带负载能力。

电感的制作很重要,我绕电感的技术不行,要1uH的电感,我绕了几个都不好,波形差(最后我拿焊台上别人绕好的电感用,效果好很多)。

克拉泼、西勒的二级发射级段,已过测试发现发射级电阻越小越好,太大容易失真变形。

最重要的是我切身认识的画图很重要,本次设计失败了四、五块板,但是原理图是一样的,参数也一样,究其原因只是PCB不同而已,今后要加强自己画板的能力。

(完整版)高频电子线路杨霓清答案第三章-正弦波振荡器.doc

思考题与习题 3.3 若反馈振荡器满足起振和平衡条件,则必然满足稳定条件,这种说法是否正确?为什 么? 解:不正确。因为满足起振条件和平衡条件后,振荡由小到大并达到平衡。但当外界因素(温度、电源电压等)变化时,平衡条件受到破坏。若不满足稳定条件,振荡起就不 会回到平衡状态,最终导致停振。 3.4 分析图 3.2.1(a)电路振荡频率不稳定的具体原因? 解:电路振荡频率不稳定的具体原因是晶体管的极间电容与输入、输出阻抗的影响,电路的工作状态以及负载的变化,再加上互感耦合元件分布电容的存在,以及选频回路接在基极回路中,不利于及时滤除晶体管集电极输出的谐波电流成分,使电路的电磁干扰大,造成频率不稳定。 3.7 什么是振荡器的起振条件、平衡条件和稳定条件?各有什么物理意义?振荡器输出信号 的振幅和频率分别是由什么条件决定的? 解:( 1)起振条件: 振幅起振条件A0 F 1 相位起振条件 A F 2n (2) 平衡条件: 振幅平衡条件AF=1 相位平衡条件 A F 2n ( 3)平衡的稳定条件:(n=0,1, )(n=0,1,) A 振幅平衡的稳定条件0 U 0 相位平衡的稳定条件Z0 振幅起振条件A0F 1 是表明振荡是增幅振荡,振幅由小增大,振荡能够建立起来。振幅平衡条件AF=1 是表明振荡是等幅振荡,振幅保持不变,处于平衡状态。 相位起振条件和相位平衡条件都是 馈,是构成反馈型振荡器的必要条件。 A F2n(n=0,1,),它表明反馈是正反 振幅平衡的稳定条件A/U0<0表示放大器的电压增益随振幅增大而减小,它能 保证电路参数发生变化引起 A 、F 变化时,电路能在新的条件下建立新的平衡,即振幅 产生变化来保证AF=1 。相位平衡的稳定条件Z /<0 表示振荡回路的相移Z 随频率增大而减小是负斜率。它能保证在振荡电路的参数发生变化时,能自动通过频率的变 化来调整 A F = YF Z =0,保证振荡电路处于正反馈。 显然,上述三个条件均与电路参数有关。A是由放大器的参数决定,除于工作点 I

正弦波振荡器总结

正弦波振荡器总结 模块参数要求:设计制作20MHZ石英晶体振荡器、30MHZ克拉泼(串联改进型电容三点式振荡器)震荡器,40MHZ西勒(并联改进型电容三点式振荡器)震荡器频率,工作电压+5V。 模块完成情况:设计制作了20MHZ石英晶体振荡器、克拉泼震荡器、西勒震荡器 模块涉及的理论知识:振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路,它无需外加激励信号。 为了使振荡器在接通直流电源后能够自动起振,要求反馈电压在相位上与放 大器输入电压同相在幅度上则要求U f >Ui,即 F 2n n=0 ,1,2, A0F 1 式中,A0为振荡器起振时放大器工作于甲类状态时的电压放大倍数。振荡建立起来之后,振荡幅度会无限制地增长下去吗不会的,因为随着振荡幅度的增长,放大器的动态范围就会延伸到非线性区,放大器的增益将随之下降,振荡幅度越大,增益下降越多,最后当反馈电压正好等于原输入电压时,振荡幅度不再增大而进入平衡状态。 AF 1 综上所述,为了确保振荡器能够起振,设计的电路参数必须满足A0F>1 的条件。而后,随着振荡幅度的不断增大,A0就向A 过渡,直到AF=1时,振荡达到平衡状态。显然,A0F 越大于1,振荡器越容易起振,并且振荡幅度也较大。但A0F 过大,放大管进入非线性区的程度就会加深,那么也就会引起放大管输出电流波形的严重失真。所以当要求输出波形非线性失真很小时,应使A0F 的值稍大于1 。 当振荡器受到外部因素的扰动(如电源电压波动、温度变化、噪声干扰等),将引起放大器和回路的参数发生变化破坏原来的平衡状态。如果通过放大和反馈的不断循环,振荡器越来越偏离原来的平衡状态,从而导致振荡器停振或突变到新的平衡状态,则表明原来的平衡状态是不稳定的。反之,如果通过放大和反馈的不断循环,振荡器能够产生回到原平衡点的趋势,并且在原平衡点附近建立新的平衡状态,则表明原平衡状态是稳定的。 一个振荡器除了它的输出信号要满足一定的幅度和频率外,还必须保证输出信号的幅度和频率的稳定,而频率稳定度更为重要。

正弦波振荡器设计multisim(DOC)

摘要 自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论 (1) 2、方案的确定 (2) 3、工作原理、硬件电路的设计和参数的计算 (3) 3.1 反馈振荡器的原理和分析 (3) 3.2. 电容三点式振荡单元 (4) 3.3 电路连接及其参数计算 (5) 4、总体电路设计和仿真分析 (6) 4.1组建仿真电路 (6) 4.2仿真的振荡频率和幅度 (7) 4.3误差分析 (8) 5、心得体会 (9) 参考文献 (10) 附录 (10) 附录Ⅰ元器件清单 (10) 附录Ⅱ电路总图 (11)

1、绪论 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持 下去。选频网络则只允许某个特定频率0f能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压 U和输入电压i U要相等,这是振幅平衡条件。二是f U和i U必须相位相同,这是相位f 平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 本次课程设计我设计的是电容反馈三点式振荡器,电容三点式振荡器,也叫考毕兹振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。电容三点式振荡器是由串联电容与电感回路及正反馈放大器组成。因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。 本课题旨在根据已有的知识及搜集资料设计一个正弦波振荡器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容按照课设报告文档模版的要求进行,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析等。 主要技术指标:输出频率9 MHz,输出幅度(有效值)≥5V。

正弦波振荡器归纳

正弦波振荡器总结 模块参数要求:设计制作20MHZ 石英晶体振荡器、30MHZ 克拉泼(串联改进型电容三点式振荡器)震荡器,40MHZ 西勒(并联改进型电容三点式振荡器)震荡器频率,工作电压+5V 。 模块完成情况:设计制作了20MHZ 石英晶体振荡器、24.1MHZ--38.7MHZ 克拉泼震荡器、38.9MHZ--40.5MHZ 西勒震荡器。 模块涉及的理论知识: 振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路,它无需外加激励信号。 为了使振荡器在接通直流电源后能够自动起振,要求反馈电压在相位上与放大器输入电压同相在幅度上则要求U f >Ui ,即 π??n F A 2=+ n=0,1,2,… 10>F A 式中,A0为振荡器起振时放大器工作于甲类状态时的电压放大倍数。 振荡建立起来之后,振荡幅度会无限制地增长下去吗?不会的,因为随着振荡幅度的增长,放大器的动态范围就会延伸到非线性区,放大器的增益将随之下降,振荡幅度越大,增益下降越多,最后当反馈电压正好等于原输入电压时,振荡幅度不再增大而进入平衡状态。 1=AF

综上所述,为了确保振荡器能够起振,设计的电路参数必须满足A0F>1的条件。而后,随着振荡幅度的不断增大,A0就向A过渡,直到AF=1时,振荡达到平衡状态。显然,A0F越大于1,振荡器越容易起振,并且振荡幅度也较大。但A0F过大,放大管进入非线性区的程度就会加深,那么也就会引起放大管输出电流波形的严重失真。所以当要求输出波形非线性失真很小时,应使A0F的值稍大于1。 当振荡器受到外部因素的扰动(如电源电压波动、温度变化、噪声干扰等),将引起放大器和回路的参数发生变化破坏原来的平衡状态。如果通过放大和反馈的不断循环,振荡器越来越偏离原来的平衡状态,从而导致振荡器停振或突变到新的平衡状态,则表明原来的平衡状态是不稳定的。反之,如果通过放大和反馈的不断循环,振荡器能够产生回到原平衡点的趋势,并且在原平衡点附近建立新的平衡状态,则表明原平衡状态是稳定的。 一个振荡器除了它的输出信号要满足一定的幅度和频率外,还必须保证输出信号的幅度和频率的稳定,而频率稳定度更为重要。 评价振荡器频率的主要指标有两个,即准确度和稳定度。 LC振荡器振荡频率主要取决于谐振回路的参数,也与其它电路元器件参数有关。因此,任何能够引起这些参数变化的因素,都将导致振荡频率的不稳定。这些因素有外界的和电路本身的两个方面。其中,外界因素包括:温度变化、电源电压变化、负载阻抗变化、机械振动、湿度和气压的变化、外界磁场感应等。这些外界因素的影响,一是改变振荡回路元件参数和品质因数;二是改变晶体管及其它电路元件参数,而使振荡频率发生变化的。因此要提高振荡频率的稳外界因素定度可以从两方面入手:一是尽可能减小外界因素的变化;二是尽可能提高

RC正弦波振荡器电路设计及仿真

《电子设计基础》 课程报告 设计题目: RC正弦波振荡器电路设计及仿真学生班级: 学生学号: 学生姓名: 指导教师: 时间: 成绩: 西南xx大学 信息工程学院

一.设计题目及要求 RC正弦波振荡器电路设计及仿真,要求: (1)设计完成RC正弦波振荡器电路; (2)仿真出波形,并通过理论分析计算得出频率。 二.题目分析与方案选择 在通电瞬间电路中瞬间会产生变化的信号且幅值频率都不一样,它们同时进入放大网络被放大,其中必定有我们需要的信号,于是在选频网络的参与下将这个信号谐振出来,进一步送入放大网络被放大,为了防止输出幅值过大所以在电路中还有稳幅网络(如图一中的两个二极管),之后再次通过选频网络送回输入端,经过多次放大稳定的信号就可以不断循环了,由于电路中电容的存在所以高频阻抗很小,即无法实现放大,且高频在放大器中放大倍数较小。 三.主要元器件介绍 10nf电容两个;15kΩ电阻一个;10kΩ电阻三个;滑动变阻器一个;2.2k Ω电阻一个;二极管两个;运算放大器;示波器 四.电路设计及计算 电路震荡频率计算: f=1/2πRC

起振的复制条件:R f/R i>=2 其中R f=R w+R2+R3/R d 由其电路元件特性 R=10KΩ C=10nF 电路产生自激震荡,微弱的信号1/RC 经过放大,通过反馈的选频网络,使输出越来越大,最后经过电路中非线性器件的限制,使震荡幅度稳定了下来,刚开始时A v=1+R f/R i >3。 平衡时A v=3,F v=1/3(w=w0=1/RC) 五.仿真及结果分析 在multisim中进行仿真,先如图一连接好电路,运行电路,双击示波器,产生波形如下图 图2 刚开始运行电路时,输出波形如图2,几乎与X轴平行,没有波形输出。

实验2正弦波振荡器(LC振

实验2 正弦波振荡器(LC振荡器和晶体振荡器) 一.实验目的 1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能; 2.掌握LC振荡器幅频特性的测量方法; 3.熟悉电源电压变化对振荡器振荡幅度和频率的影响; 4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。二.实验内容 1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值,并以频率计测量振荡频率; 2.测量LC振荡器的幅频特性; 3.测量电源电压变化对振荡器的影响; 4.观察并测量静态工作点变化对晶体振荡器工作的影响。 三.实验步骤 1.实验准备 插装好LC振荡器和晶体振荡器模块,接通实验箱电源,按下模块上电源开关,此时模块上电源指示灯点亮。 2.LC 振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即将3W03顺时针调到底。) (1)西勒振荡电路幅频特性的测量 3K01拨至LC振荡器,示波器接3TP02,频率计接振荡器输出口3P02。调整电位器3W02,使输出最大。开关3K05拨至“P”,此时振荡电路为西勒电路。四位拨动开关3SW01分别控制3C06(10P)、3C07(50P)、3C08(100P)、3C09(200P)是否接入电路,开关往上拨为接通,往下拨为断开。四个开关接通的不同组合,可以控制电容的变化。例如开关“1”、“2”往上拨,其接入电路的电容为10P+50P=60P。按照表2-1电容的变化测出与电容相对应的振荡频率和输出电压(峰-峰值V P-P),并将测量结果记于表中。 表2-1 根据所测数据,分析振荡频率与电容变化有何关系,输出幅度与振荡频率有何关系,并

高频答案第五章

第五章 正弦波振荡器 5-1 把题图5-1所示几个互感反馈振荡器交流等效电路改画成实际电路,并注明变压器的同名端(极性)。 5-9 用相位平衡条件的判断规则说明题5-2所示几个三点振荡器交流等效电路中,哪个电路是正确的(可能振荡),哪个电路是错误的(不可能振荡)。 [解]: (a )、(b )、(c )不能振荡。(d )、(e )、(f )可能振荡,但(e )应满足 11011C L g = >ωω (f )应满足11221 1 C L C L > 使0201ωωω<>; (2)332211C L C L C L <<; (3 ) 332211C L C L C L ==; (4 ) 332211C L C L C L >=; (5 ) <11C L ;3322C L C L = (6 ) ;113322C L C L C L << 试问哪个情况可能振荡?等效为哪种类型的振荡器?其振荡频率与个回路的固有频率之间有什么关系? [解]: (1)、(2)、(4)可能振荡;(3)、(5)、(6)不可能振荡。 (1)321ωωωω<<

实验14 RC正弦波振荡器

实验十四 RC 正弦波振荡器 一. 实验目的 1.掌握RC 正弦波振荡器的电路结构及其工作原理。 2.熟悉正弦波振荡器的测试方法。 3.观察RC 参数对振荡器的影响,学习振荡器频率的测定方法。 二. 实验仪器 双踪示波器 低频信号发生器 频率计 毫伏表 直流电源 三. 实验原理 正弦振荡电路一般包括两部分,放大电路A 和反馈网络F ,如图5-14-1所示。 由于振荡电路不需要外接输入信号,因此,通过反馈网络输出的反馈信号f X 就是基本放大电路的输入信号id X 。该信号经基本放大电路放大后,输出为0X ,若能使f X 和id X 大小相等,极性相同,构成正反馈电路,那么这个电路就能维持稳定的输出。因而,f X =id X 可引出正弦振荡条件。由方框图5-14-1可知: 0id X AX = 而0f X AX =当f id X X =时,则有 AF=1 上述条件可写成|AF|=1,称幅值平衡条件。 即放大倍数A 与反馈系数F 乘积的模为1,表明振荡电路已经达到稳幅振荡,但若要求电路能够自行振荡,开始时必须要求|AF|>1的起振条件。 由f X 与id X 极性相同,可得:1A B φφ+= 称相位平衡条件 即放大电路的相角和反馈网络的相角之和为2n π,其中n 为整数。 要使振荡电路输出确定频率的正弦波信号,电路还应包含选频网络和稳幅电路两部分。选频电路的作用使单一频率的信号满足振荡条件,稳幅电路能保证电路的输出幅度是稳定不失真的,这两部分电路通常可以是反馈网络,或放大电路的一部分。 RC 正弦振荡电路也称为文氏桥振荡电路。它的主要特点是利用RC 串并联网络作为选频和反馈网络。如图5-14-2所示:

高频电子线路实验正弦波振荡器

. 太原理工大学现代科技学院 高频电子线路课程实验报告 专业班级信息13-1 学号2013101269 姓名 指导教师颖

实验名称 正弦波振荡器(LC 振荡器和晶体振荡器) 专业班级 信息13-1 学号 2013100 0 成绩 实验2 正弦波振荡器(LC 振荡器和晶体振荡器) 2-1 正弦波振荡器的基本工作原理 振荡器是指在没有外加信号作用下的一种自动将直流电源的能量变换为一定的波形的交变振荡能量的装置。 正弦波振荡器在电子领域中有着广泛的应用。在信息传输系统的各种发射机中,就是把主振器(振荡器)所产生的载波,经过放大、调制而把信息发射出去。在超外差式的各种接收机中,是由振荡器产生的一个本地振荡信号,送入混频器,才能将高频信号变成中频信号。 振荡器的种类很多。从所采用的分析方法和振荡器的特性来看,可以把振荡器分为反馈式振荡器和负阻式振荡器两大类。我们只讨论反馈式振荡器。根据振荡器所产生的波形,又可以把振荡器氛围正弦波振荡器和非正弦波振荡器。我们只介绍正弦波振荡器。 常用正弦波振荡器主要是由决定振荡频率的选项网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。按照选频网络所采用的元件不同,正弦波振荡器可以分为LC 振荡器、RC 振荡器和晶体振荡器等类型。 一、反馈型正弦波自激振荡器基本工作原理 以互感反馈振荡器为例,分析反馈型正弦自激振荡器的基本原理,其原理电路如图2-1所示; 当开关K 接“1”时,信号源Vb 加到晶体管输入端,这就是一个调谐放大器电路,集电极回路得到了一 ……………………………………装………………………………………订…………………………………………线………………………………………

第三章正弦波振荡器习题剖析

第三章 正弦波振荡器习题解 3-5 (a) 不振。不满足正反馈;(b)能振。变压器耦合反馈振荡器;(c)不振。不满足三点式振荡电路的组成法则;(d)能振。当ω1<ωosc <ω2(ω1、ω2分别L 1C 1、L 2C 2谐振频率),即L 2C 2回路呈感性,L 1C 1回路呈容性,组成电感三点式振荡电路;(e)能振。计入结电容e 'b C ,组成电容三点式振荡电路;(f)能振。 (b) 当ω1、ω2<ωosc (ω1、ω2分别L 1C 1并联谐振回路、L 2C 2串联谐振回路谐振频率)时,L 1C 1回路呈容性,L 2C 2回路呈感性,组成电容三点式振荡电路。 3-6 交流通路如图3-6所示。 (a)、(c)、(f)不振;不满足三点式振荡电路的组成法则;(b)、(d)、(e)、(g)能振。(b)、(d)为电容三点式振荡电路,其中(d)的管子发射结电容e 'b C 成为回路电容之一,(e)为电感三点式振荡电路,(g)LC 1o osc = ω≈ω,电路 同时存在两种反馈。由于LC 串联谐振回路在其谐振频率o ω上呈现最小的阻抗,正反馈最强,因而在o ω上产生振荡。 L 图3-7 C L 2 L 1 T C R C L 1 L 2 M T R E L C 2 C 1 T C L 1 L 2 R D T R E1 R E3 C L R C1 R C2 R T 1 T 2 C 2 C 1 L T (a) (b) (c) (d) (e) (f) (g)

3-7 按并联谐振回路相频特性可知:在电感三点式振荡电路中ωo3<ωosc <ωo1、ωo2,在电容三点式振荡电路中ωo1、ωo2<ωosc <ωo3。振荡电路如图3-7所示,图中 1C C 、2C C 、B C 、E C 对交流呈短路。设1B R 、2B R 阻抗较大,对回路影响不大。 3-8 改正后的电路如图3-8所示。 说明,图(c)中可在2B R 两端并联旁路电容B C 。 3-9 图(a)满足正反馈条件,LC 并联回路保证了相——频特性负斜率,因而满足相位稳定条件,电路可振。图(b)不满足正反馈条件,将1T 基极开路,反馈电压f V 比1i V 滞后一个小于 90的相位。图(c)不满足正反馈条件,不振。 3-10 用万用表测量发射极偏置电阻E R 上的直流电压:先使振荡器停振(例如回路线 (a) B C C R B1 R B2 E CC C CC R B1 R B2 (b) (c) (e) (f) (g) R f

正弦波振荡器实验报告(高频) (2)

高频电子线路实验 随堂实验报告 学院计算机与电子信息学院 专业电子信息工程班级电信11-2 姓名梁景友学号 11034030223 指导教师谢胜 实验报告评分:_______

正弦波振荡器仿真实验 实验目的: 1、进一步熟悉正弦波振荡器的组成原理; 2、观察输出波形,分析影响振荡器起振、稳定的条件; 3、比较改进型正弦波振荡器与克拉泼振荡器的性能,分析电路结构及元件参数的变化对振荡器性能的影响。 实验内容: 实验电路1:西勒振荡器 (1)设置各元件参数,打开仿真开关,从示波器上观察振荡波形,读出振荡频率f0,并作好记录。 (2)改变电容C7的容量,分别为最大或最小(100%或0%)时,观察振荡频率变化,并作好记录。 (3)改变电容C4的容量,分别为0.33μF和0.001μF,从示波器上观察起振情况和振荡波形的好坏(与C4为0.033μF时进行比较),并分析原因。 (4)将C4恢复为0.033μF,分别调节R P为最大和最小时,观察输出波形振幅的变化,并说明原因。 实验分析: 1、电路的直流电路图和交流电路图分别如下: (1):直流通路图 (2)交流通路图

2、改变电容C 7的值时所测得的频率f 的值如下: (1)、当C4=0.033uF 时: C6=270pF 时,f=1/T=1000000/2.0208=494853.5HZ C6=470pF 时,f=1/T=1000000/2.4768=403746.8HZ C6=670pF 时,f=1/T=1000000/2.6880=372023.8HZ (2)、当C4=0.33uF 时: C6=270pF 时,f=1/T=1000000/30.5280=32756.8H C6=470uF 时,f=1/T=1000000/30.5921=32688.2HZ C6=670uF 时,f=1/T=1000000/30.4744=32814.4HZ

第三章 正弦波振荡器习题解答

3-1 若反馈振荡器满足起振和平衡条件,则必然满足稳定条件,这种说法是否正确?为什么? 解:否。因为满足起振与平衡条件后,振荡由小到大并达到平衡。但当外界因素(T 、V CC )变化时,平衡条件受到破坏,若不满足稳定条件,振荡器不能回到平衡状态,导致停振。 3-2 一反馈振荡器,欲减小因温度变化而使平衡条件受到破坏,从而引起振荡振幅和振荡频率的变化,应增大 i osc )(V T ??ω和ω ω???) (T ,为什么?试描述如何通过自身调节建立新平衡状态的过程(振幅和相位)。 解:由振荡稳定条件知: 振幅稳定条件: 0) (iA i osc

3-5 试判断下图所示交流通路中,哪些可能产生振荡,哪些不能产生振荡。若能产生振荡,则说明属于哪种振荡电路。 解: (a) 不振。同名端接反,不满足正反馈; (b) 能振。变压器耦合反馈振荡器;

正弦波振荡器的设计

第一章 设计内容 第一节:设计题目:正弦波振荡电路的设计与实现 第二节:设计指标 振荡频率: f=7MHZ ; 频率稳定度:小时/105/30-?≤?f f ; 电源电压:V=12V ; 波形质量 较好; 第三节: 方案设计与选择 LC 振荡器的电路种类比较多,根据不同的反馈方式,又可分为互感反馈振荡器,电感反馈三点式振荡器,电容反馈三点式振荡器,其中互感反馈易于起振,但稳定性差,适用于低频,而电容反馈三点式振荡器稳定性好,输出波形理想,振荡频率可以做得较高。 所以选择电容反馈三点式振荡器是不容置疑的,而电容反馈三点式振荡器又分为考毕兹振荡器,克拉波振荡器,西勒振荡器。本次课程设计我们选择考毕兹振荡器,因为此振荡电路适用于较高的工作频率。 第二章 设计原理 第一节 自激振荡的工作原理 正弦波振荡器:一种不需外加信号作用,能够输出不同频率正弦信号的自激振荡电路。 LC 回路中的自由振荡如图1(a)所示。 自由振荡——电容通过电感充放电,电路进行电能和磁能的转换过程。 阻尼振荡——因损耗等效电阻R 将电能转换成热能而消耗的减幅振荡。图1(b)所示。

等幅振荡——利用电源对电容充电,补充电容对电感放电的振荡过程,图1(c) 所示。这种等幅正弦波振荡的频率称为LC 回路的固有频率,即 LC f π= 210 图1 LC 回路中的电振荡 一、自激振荡的条件 振荡电路如图2所示。 振荡条件:相位平衡条件和振幅平衡条件。 1.相位平衡条件 反馈信号的相位与输入信号相位相同,即为正反馈,相位差是180?的偶数倍,即 ?=2n π 。其中,? 为vf 与vi 的相位差,n 是整数。vi 、vo 、vf 的相互关系参见图3。 2.振幅平衡条件 反馈信号幅度与原输入信号幅度相等。即 AVF=1 图2 变调谐放大器为振荡器 图3 自激振荡器方框图 二、自激振荡建立过程 自激振荡器:在图2中,去掉信号源,把开关S 和点“2”相连所组成的电路。

rc正弦波振荡器测量数据试验报告

rc正弦波振荡器测量数据试验报告 一、实验目的 1、学习RC正弦波振荡器的组成及其振荡条件; 2、学会测量、调试振荡器。 二、实验原理 从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。若用R、C元件组成选频网络,就称为RC振荡器,一般用来产生1HZ~1MHz的低频信号。 1、RC移相振荡器:电路如右图1所示,选择R>>Ri。 起振条件:放大器A的电压放大倍数|A|>29 电路特点:简便,但选频作用差,振幅不稳,频率调节不便,一般用于频率固定且稳定性要求不高的场合。 频率范围:几赫~数十千赫。 2、RC串并联网络(文氏桥)振荡器: 本实验电路图如下面的图2所示。

电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。 3、双T选频网络振荡器:本实验电路如下图3所示: 电路特点:选频特性好,调频困难,适用于产生单-窄带频率的振荡。 三、实验器材 1、+12V直流电源; 2、函数信号发生器;

3、双踪示波器; 4、频率计; 5、直流电压表; 6、数字万用表; 7、15K电阻2个、103电容4个、10电位器1个。 四、实验内容 1、RC串并联选频网络振荡器: (1)按图2连接线路。 (2)断开RC串并联网络(即电路图A处断开),Rw调到9-10K,测量放大器静态工作点Ie1(0.86毫安)、IE2(1.1毫安)及不失真电压放大倍数Ao(9倍,信号源500-1000HZ范围内)。 (3)关闭信号源,接通RC串并联网络(即电路图A处接通),使电路起振,调小Rw,看停振现象。再调大Rw(顺时针拧)使刚好不失真,用示波器观测输出电压uo波形,并测量此情况下的电压放大倍数 A(3.2倍,要断开RC串并联网络测量)。 (4)用频率表测量振荡频率(893HZ),并与计算值进行比较。 (5)两个电容C分别并联103电容,观察和记录振荡频率变化情况(520HZ)。 2、双T选频网络振荡器: (1)按图3组接线路。其中T2单级放大器由实验台上的“单级/负反馈两级放大器”的末级构成。 (2)断开双T网络(即电路图A处断开),调Rw2使T2静态工作

高频电子线路杨霓清答案第三章正弦波振荡器汇总

思考题与习题 3.3 若反馈振荡器满足起振和平衡条件,则必然满足稳定条件,这种说法是否正确?为什 么? 解:不正确。因为满足起振条件和平衡条件后,振荡由小到大并达到平衡。但当外界因素(温度、电源电压等)变化时,平衡条件受到破坏。若不满足稳定条件,振荡起就不会回到

平衡状态,最终导致停振。 3.4 分析图3.2.1(a)电路振荡频率不稳定的具体原因? 解:电路振荡频率不稳定的具体原因是晶体管的极间电容与输入、输出阻抗的影响,电路 的工作状态以及负载的变化,再加上互感耦合元件分布电容的存在,以及选频回路接在基极回路中,不利于及时滤除晶体管集电极输出的谐波电流成分,使电路的电磁干扰大,造成频率不稳定。 3.7 什么是振荡器的起振条件、平衡条件和稳定条件?各有什么物理意义?振荡器输出信号 的振幅和频率分别是由什么条件决定的? 解:(1) 起振条件: 振幅起振条件 01A F > 相位起振条件 2A F n ??π+=(n=0,1,…) (2) 平衡条件: 振幅平衡条件 AF=1 相位平衡条件2A F n ??π+=(n=0,1,…) (3) 平衡的稳定条件: 振幅平衡的稳定条件 0A U ?是表明振荡是增幅振荡,振幅由小增大,振荡能够建立起来。振幅平 衡条件AF=1是表明振荡是等幅振荡,振幅保持不变,处于平衡状态。 相位起振条件和相位平衡条件都是2A F n ??π+=(n=0,1,…),它表明反馈是正反馈,是 构成反馈型振荡器的必要条件。 振幅平衡的稳定条件A ?/0U ?<0表示放大器的电压增益随振幅增大而减小,它能保证电 路参数发生变化引起A 、F 变化时,电路能在新的条件下建立新的平衡,即振幅产生变化来保证AF=1。相位平衡的稳定条件Z ??/ω?<0表示振荡回路的相移Z ?随频率增大而减小是负斜率。它能保证在振荡电路的参数发生变化时,能自动通过频率的变化来调整A F ??+=YF Z ??+=0,保证振荡电路处于正反馈。 显然,上述三个条件均与电路参数有关。0A 是由放大器的参数决定,除于工作点eQ I 有关外,还与晶体管的参数有关,而反馈系数F 是由反馈元件的参数值有关。对电容三点式与反馈电容1C 、2C 有关,对于电感三点式与反馈电感有关。 3.8 反馈型LC 振荡器从起振到平衡,放大器的工作状态是怎样变化的?它与电路的哪些参 数有关?

高频电容三点式正弦波振荡器课程设计报告

课程设计任务书 学生姓名:***专业班级:电子 指导教师:吴皓莹工作单位:信息工程学院 题目:高频电容三点式正弦波振荡器 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务: 1.采用晶体三极管或集成电路,场效应管构成一个正弦波振荡器; 2.额定电源电压5.0V ,电流1~3mA; 输出中心频率 6 MHz (具一定的变化范围); 3.通过跳线可构成发射极接地、基极接地及集电极接地振荡器; 4.有缓冲级,在100欧姆负载下,振荡器输出电压≥ 1 V (D-P); 5.完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 1.2011年6月3日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。 2.2011年6月4日至2011年6月9日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。 3. 2011年6月10日提交课程设计报告,进行课程设计验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要............................................................................................................. 错误!未定义书签。Abstract ........................................................................................................... 错误!未定义书签。 1 绪论............................................................................................................. 错误!未定义书签。 2.1 反馈振荡器的原理........................................................................... 错误!未定义书签。 2.1.1 原理分析................................................................................. 错误!未定义书签。 2.1.2 平衡条件................................................................................. 错误!未定义书签。 2.1.3 起振条件................................................................................. 错误!未定义书签。 2.1.4 稳定条件................................................................................. 错误!未定义书签。 2.2 电容三点式振荡器........................................................................... 错误!未定义书签。 3 设计思路及方案......................................................................................... 错误!未定义书签。 3.1 总体思路........................................................................................... 错误!未定义书签。 3.2 设计原理........................................................................................... 错误!未定义书签。 3.3 单元设计........................................................................................... 错误!未定义书签。 3.3.1 电容三点式振荡单元............................................................. 错误!未定义书签。 3.3.2 输出缓冲级单元..................................................................... 错误!未定义书签。 4 电路仿真与实现......................................................................................... 错误!未定义书签。 4.1 基于................................................................................................... 错误!未定义书签。 4.2 硬件调试........................................................................................... 错误!未定义书签。 5 心得体会..................................................................................................... 错误!未定义书签。参考文献......................................................................................................... 错误!未定义书签。附录Ⅰ总电路图......................................................................................... 错误!未定义书签。附录Ⅱ元件清单......................................................................................... 错误!未定义书签。

第5章 正弦波振荡器习题参考答案

第5章正弦波振荡器习题参考答案 5-2为什么晶体管LC振荡器总是采用固定偏置与自生偏置混合的偏置电路? 答:晶体管LC振荡器采用固定的正向偏置是为了使振荡器起振时为软激励状态,在无需外加激励信号时就能起振,也不致停振。而采用自生反向偏置则可以稳幅。若两者不结合,则两者优点不可兼而有之。 5-6LC振荡器的静态工作点应如何选择?根据是什么? 5-9试用相位条件的判断准则,判明题图5-1所示的LC振荡器交流等效电路,哪个可以振荡?哪个不可以振荡?或在什么条件下才能振荡? 答:题图5-1(a):可以起振。 题图5-1(b):不能起振(晶体管be与bc电抗性质相同了)。 题图5-1(c):考虑管子的极间电容C i时可能起振。 题图5-1(d):当L2C2>L1C1时可以起振。 5-12 试画出题图5-2各振荡器的交流等效电路,并判断哪些电路可以振荡?哪些电路不能产生振荡?若不能振荡,请改正。 答:题图5-2各振荡器的交流等效电路如图5-12所示。 5-14 已知某振荡器的电路如题图5-4所示,Lc是扼流圈,设L=1.5μH,振荡频率为49.5MHz,试求: (1)说明各元件的作用; (2)画出交流等效电路;

(3)求C 4的大小(忽略管子极间电容的影响); (4)若电路不起振应如何解决? 答:R b1、R b2是基极偏置电阻;R e 是射极偏置电阻;C 1、 C 2、C 3、C 4、L 是振荡回路的元件,C p 是输出耦合电路。 (2)交流等效电路如题图5-14所示。 (3) ()4321C C L f o +≈π ()4366105.121 105.49C C +?≈?-π 解得 ()pF C C 12431091.6-?=+ ()pF pF C 91.3391.64=-= (4)若电路不起振,可以改变偏置或加大C 3。 5-17 题图5-6(a )(b )分别为10MHz 和25MHz 的晶体振荡器。试画出交流等效电路,说明晶体在电路中的作用,并计算反馈系数。 答:题图5-6的交流等效电路分别如解题图5-17(a )、(b )所示,图5-17(a )中晶体等效为电感,反馈系数,5.0300150 == F 图5-17(b )中晶体等效为短路元件,反馈系数 16.027043 ==F 。

实验五-三点正弦振荡电路

三点式正弦波振荡器 一、实验目的 1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。 2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。 3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、熟悉振荡器模块各元件及其作用。 2、进行LC振荡器波段工作研究。 3、研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、测试LC振荡器的频率稳定度。 三、实验仪器 1、模块3 1块 2、频率计模块1块 3、双踪示波器1台 4、万用表1块 四、基本原理 将开关S1 的1 拨下2 拨上,S2 全部断开,由晶体管N1 和C3、C10、C11、C4、CC1、L1 构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。

振荡器的频率约为4.5MHz(计算振荡频率可调范围) 振荡电路反馈系数 振荡器输出通过耦合电容C5(10P)加到由N2组成的射极跟随器的输入端,因C5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。 五、实验步骤 1、根据图5-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 1)将开关S1拨为“01”,S2拨为“00”,构成LC振荡器。 2)改变上偏置电位器W1,记下N1发射极电流Ieo(=Ve/R11 ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量VE),并用示波测量对应点TP4的振荡幅度VP-P,填于表5-1中,分析输出振荡电压和振荡管静态工作点的关系。 表5-1 分析思路:静态电流ICQ会影响晶体管跨导gm,而放大倍数和gm是有关系的。在饱和状态下(ICQ过大),管子电压增益AV会下降,一般取ICQ=(1~5mA)为宜。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频 六、实验报告

相关文档
最新文档