非线性误差.

非线性误差.
非线性误差.

1. 非线性误差

磁电式传感器产生非线性误差的主要原因是: 由于传感器线圈内有电流I 流过时, 将产生一定的交变磁通ΦI, 此交变磁通叠加在永久磁铁所产生的工作磁通上, 使恒定的气隙磁通变化如图7 - 3所示。 当传感器线圈相对于永久磁铁磁场的运动速度增大时, 将产生较大的感生电势E 和较大的电流I, 由此而产生的附加磁场方向与原工作磁场方向相反, 减弱了工作磁场的作用, 从而使得传感器的灵敏度随着被测速度的增大而降低。

当线圈的运动速度与图7 - 3所示方向相反时, 感生电势E 、 线圈感应电流反向, 所产生的附加磁场方向与工作磁场同向, 从而增大了传感器的灵敏度。其结果是线圈运动速度方向不同时, 传感器的灵敏度具有不同的数值, 使传感器输出基波能量降低, 谐波能量增加。即这种非线性特性同时伴随着传感器输出的谐波失真。显然,传感器灵敏度越高, 线圈中电流越大, 这种非线性越严重。

为补偿上述附加磁场干扰, 可在传感器中加入补偿线圈, 如图7 - 2(a )所示。 补偿线圈通以经放大K 倍的电流, 适当选择补偿线圈参数, 可使其产生的交变磁通与传感线圈本身所产生的交变磁通互相抵消, 从而达到补偿的目的。

7.2 霍尔式传感器

霍尔传感器是基于霍尔效应的一种传感器。1879年美国物理学家霍尔首先在金属材料中发现了霍尔效应, 但由于金属材料的霍尔效应太弱而没有得到应用。随着半导体技术的发展, 开始用半导体材料制成霍尔元件, 由于它的霍尔效应显著而得到应用和发展。 霍尔传感器广泛用于电磁测量、压力、加速度、振动等方面的测量。

一、 霍尔效应及霍尔元件

二、 1. 霍尔效应

置于磁场中的静止载流导体, 当它的电流方向与磁场方向不一致时, 载流导体上平行于电流和磁场方向上的两个面之间产生电动势, 这种现象称霍尔效应。该电势称霍尔电势。

图 7 - 8 所示, 在垂直于外磁场B 的方向上放置一导电板, 导电板通以电流I, 方向如图所示。导电板中的电流是金属中自由电子在电场作用下的定向运动。此时, 每个电子受洛仑磁力fm 的作用,fm 大小为

fm =eBv

式中: e ——电子电荷;

v ——电子运动平均速度;

B ——磁场的磁感应强度。

fm 的方向在图 7 - 8 中是向上的, 此时电子除了沿电流反方向作定向运动外, 还在fm 的作用下向上漂移, 结果使金属导电板上底面积累电子, 而下底面积累正电荷, 从而形成了附加内电场EH, 称霍尔电场, 该电场强度为

EH=

式中UH 为电位差。霍尔电场的出现, 使定向运动的电子除了受洛仑磁力作用外, 还受到霍尔电场的作用力, 其大小为eEH ,此力阻止电荷继续积累。 随着上、下底面积累电荷的增加, 霍尔电场增加, 电子受到的电场力也增加, 当电子所受洛仑磁力与霍尔电场作用力大小相等、 方向相反时, 即 eEH=evB

EH=vB

此时电荷不再向两底面积累, 达到平衡状态

若金属导电板单位体积内电子数为n, 电子定向运动平均速度为v, 则激励电流I=nevbd, 则

b U H

v=

EH

UH =

式中令RH =1/(ne ), 称之为霍尔常数, 其大小取决于导体载流子密度,则

UH =RH

式中KH=RH/d 称为霍尔片的灵敏度。由式(7 - 16)可见, 霍尔电势正比于激励电流及磁感应强度,其灵敏度与霍尔常数RH 成正比而与霍尔片厚度d 成反比。为了提高灵敏度, 霍尔元件常制成薄片形状。

对霍尔片材料的要求, 希望有较大的霍尔常数RH, 霍尔元件激励极间电阻R=ρL/(bd ), 同时R=UI/I=EIL/I=vL/(μnevbd ), 其中UI 为加在霍尔元件两端的激励电压,EI 为霍尔元件激励极间内电场,v 为电子移动的平均速度。 则

解得

RH=μρ

从式(7 - 18)可知, 霍尔常数等于霍尔片材料的电阻率与电子迁移率μ的乘积。若要霍尔效应强, 则RH 值大, 因此要求霍尔片材料有较大的电阻率和载流子迁移率。

一般金属材料载流子迁移率很高, 但电阻率很小; 而绝缘材料电阻率极高, 但载流子迁移率极低。故只有半导体材料适于制造霍尔片。目前常用的霍尔元件材料有: 锗、 硅、砷化铟、 锑化铟等半导体材料。 其中N 型锗容易加工制造, 其霍尔系数、 温度性能和线性度都较好。N 型硅的线性度最好, 其霍尔系数、 温度性能同N 型锗相近。锑化铟对温度最敏感, 尤其在低温范围内温度系数大,

但在室温时其霍尔系数较大。砷化铟的霍尔系数较小, 温度系数也较小, 输出特性线性度好。 表 7 - 1 为常用国产霍尔元件的技术参数。

2. 霍尔元件基本结构

霍尔元件的结构很简单, 它由霍尔片、 引线和壳体组成, 如图 7 - 9(a)所示。 霍尔片是一块矩形半导体单晶薄片, 引出四个引线。1、1′两根引线加激励电压或电流,称为激励电极;2、2′引线为霍尔输出引线,称为霍尔电极。 霍尔元件壳体由非导磁金属、陶瓷或环氧树脂bdae 1bdae IB ned IB nebd L bd L

μρ=

封装而成。 在电路中霍尔元件可用两种符号表示,如图7- 9(b)所示。

3. 霍尔元件基本特性

1) 额定激励电流和最大允许激励电流

当霍尔元件自身温升10℃时所流过的激励电流称为额定激励电流。 以元件允许最大温升为限制所对应的激励电流称为最大允许激励电流。因霍尔电势随激励电流增加而性增加, 所以, 使用中希望选用尽可能大的激励电流, 因而需要知道元件的最大允许激励电流, 改善霍尔元件的散热条件, 可以使激励电流增加。

2) 输入电阻和输出电阻

激励电极间的电阻值称为输入电阻。霍尔电极输出电势对外电路来说相当于一个电压源, 其电源内阻即为输出电阻。以上电阻值是在磁感应强度为零且环境温度在20℃±5℃时确定的。

3) 不等位电势和不等位电阻

当霍尔元件的激励电流为I 时, 若元件所处位置磁感应强度为零, 则它的霍尔电势应该为零, 但实际不为零。 这时测得的空载霍尔电势称不等位电势。 产生这一现象的原因有: ① 霍尔电极安装位置不对称或不在同一等电位面上;

② 半导体材料不均匀造成了电阻率不均匀或是几何尺寸不均匀;

③ 激励电极接触不良造成激励电流不均匀分布等。

不等位电势也可用

不等位电阻表示

式中: U0——不等位电势;

r0——不等位电阻;

IH ——激励电流。

由上式(7 - 19)可以看出, 不等位电势就是激励电流流经不等位电阻r0所产生的电压。

4) 寄生直流电势

在外加磁场为零#, 霍尔元件用交流激励时, 霍尔电极输出除了交流不等位电势外, 还有一直流电势, 称寄生直流电势。 其产生的原因有:

① 激励电极与霍尔电极接触不良, 形成非欧姆接触, 造成整流效果;

② 两个霍尔电极大小不对称, 则两个电极点的热容不同, 散热状态不同形成极向温差电势。寄生直流电势一般在 1mV 以下, 它是影响霍尔片温漂的原因之一。

5) 霍尔电势温度系数

在一定磁感应强度和激励电流下, 温度每变化1℃时, 霍尔电势变化的百分率称霍尔电势温度系数。它同时也是霍尔系数的温度系数。

4. 霍尔元件不等位电势补偿

不等位电势与霍尔电势具有相同的数量级, 有时甚至超过霍尔电势, 而实用中要消除不等位电势是极其困难的, 因而必须采用补偿的方法。 由于不等位电势与不等位电阻是一致的, 可以采用分析电阻的方法来找到不等位电势的补偿方法。如图 7 - 10 所示, 其中A 、B 为激励电极, C 、D 为霍尔电极, 极分布电阻分别用R1、 R2、 R3、 R4表示。理想情况下, R1=R2=R3=R4, 即可取得零位电势为零(或零位电阻为零)。 实际上, 由于不等位电阻的存在, 说明此四个电阻值不相等, 可将其视为电桥的四个桥臂, 则电桥不平衡。为使其达到平H

I

U r 00

衡,可在阻值较大的桥臂上并联电阻(如图7 - 10(a)所示), 或在两个桥臂上同时并联电阻(如图7 - 10(b)所示)。

二、霍尔式传感器的应用

2. 霍尔式转速传感器

图7 - 13 是几种不同结构的霍尔式转速传感器。磁性转盘的输入轴与被测转轴相连, 当被测转轴转动时, 磁性转盘随之转动, 固定在磁性转盘附近的霍尔传感器便可在每一个小磁铁通过时产生一个相应的脉冲, 检测出单位时间的脉冲数, 便可知被测转速。磁性转盘上小磁铁数目的多少决定了传感器测量转速的分辨率。

3. 霍尔计数装置

霍尔开关传感器SL3501是具有较高灵敏度的集成霍尔元件, 能感受到很小的磁场变化, 因而可对黑色金属零件进行计数检测。图7 - 14 是对钢球进行计数的工作示意图和电路图当钢球通过霍尔开关传感器时, 传感器可输出峰值20mV的脉冲电压, 该电压经运算放大器A (μA741)放大后, 驱动半导体三极管VT(2N5812)工作, VT输出端便可接计数器进行计数, 并由显示器显示检测数值。

matlab处理非线性误差估计

用matlab拟和模型参数和计算参数误差 Matlab用以建立数学模型是一个很好的工具。对模型函数的评价,一个很重要的方法就是最小二乘(Least squares)由least mean squares这个方法得到。假如有点集P(X, Y),每一个点 P(i) 由X(i), Y(i) , i = 1 ~ m组成;模型 Y_fit = F( A, X ), Y_fit(i) = F(A, X(i) ); 其中A= A(1) A(2) … A(n)是模型的n个参数。least mean squares = (1/m) * sum ((Y(i) - Y_fit(i) ).^2) (i = 1 ~ m)。 一个好的模型,least mean squares就小;而另一方面,如何得到模型参数A,使得least mean squares有最小值,就是所谓的,最小二乘拟合(least squares curve fitting)了。 简介: 模型有线性和非线性之分。对于线性模型,求参数,其实就是求一步矩阵的逆(稍候我们可以看到)。而非线性模型,往往不能一步就得到结果,所以就需要多步逼近。就这样,在众多的多步逼近的方法中,最快收敛于最佳参数值的方法就比较垂青。这中间,最强的当然就是Newton 法: A: n+1 = A: n + (Hessen ( L ))^-1 * grad(L) 这里Hessen ( L )是被拟合的模型函数的least mean squares方法的Hessen 矩阵。grad(L)是她的梯度矩阵。参数矩阵A的当前值是A:n和下一步值A: n+1。 这个方法包含了一个求hessen矩阵的逆的运算。其实,这个方法难的不是这个逆,而是如何得到Hessen矩阵和梯度矩阵。梯度矩阵还好说,就是least mean squares方法的对各个参数的一介偏导数。而Hessen矩阵包含了一介偏导数的组合(主要是相乘),和二介偏导数。当然,许多模型的二介偏导数相对于一介偏导数的组合是一个比较小的量,特别是线性模型,就没有二介偏导(所以,线性模型可以直接求出参数)。于是,新的方法就利用这个特点,将逼近限制在一介偏导数构成的伪Hessen矩阵上。这就诞生了两个比较著名的方法 Gauss-Newton 法和Levenberg-Marquardt法。 Gauss-Newton 法直接用Jacobian 行列式代替 Hessen矩阵,用least squares 值代替梯度(注意,不是least mean squares,因为当用Jacobian 行列式代替Hessen矩阵时,中间有一个自由度的差别)这里的拟合就变成了 A: n+1 = A: n + (Jacobian ( L ))^-1 * L (对L的定义会在下文中给出) 因为越是接近最佳值(或者临界值),Jacobian ( L )就越是畸形,所以在实际的计算机运算中,求逆这一步都用所谓的帽子运算符 (假如 J= Jacobian

误差理论与数据处理试题范文

误差分析与数据处理 一.填空题 1. ______(3S或莱以特)准则是最常用也是最简单的判别粗大误差的准则。 2. 随机误差的合成可按标准差和______(极限误差)两种方式进行。 3. 在相同测量条件下,对同一被测量进行连续多次测量所得结果之间的一致性称为 ______(重复)性。 4. 在改变了的测量条件下,同一被测量的测量结果之间的一致性称为______(重现)性。 5. 测量准确度是指测量结果与被测量______(真值)之间的一致程度。 6. 根据测量条件是否发生变化分类,可分为等权测量和______(不等权)测量。 7. 根据被测量对象在测量过程中所处的状态分分类,可分为静态测量和_____(动态) 测量。 8. 根据对测量结果的要求分类,可分为工程测量和_____(精密)测量。 9. 真值可分为理论真值和____(约定)真值。 10. 反正弦分布的特点是该随机误差与某一角度成_____(正弦)关系。 11. 在相同条件下,对同一物理量进行多次测量时,误差的大小和正负总保持不变,或按一定的规律变化,或是有规律地重复。这种误差称为______(系统误差)。 12. 在相同条件下,对某一物理量进行多次测量时,每次测量的结果有差异,其差异的大小和符号以不可预定的方式变化着。这种误差称为______(偶然误差或随机误差)。 13. 系统误差主要来自仪器误差、________(方法误差)、人员误差三方面。 14. 仪器误差主要包括_________(示值误差)、零值误差、仪器机构和附件误差。 15. 方法误差是由于实验理论、实验方法或_________(实验条件)不合要求而引起的误差。 16. 精密度高是指在多次测量中,数据的离散性小,_________(随机)误差小。 17. 准确度高是指多次测量中,数据的平均值偏离真值的程度小,_________(系统)误差小。 18. 精确度高是指在多次测量中,数据比较集中,且逼近真值,即测量结果中的 _________(系统)误差和_________(随机)误差都比较小。 19. 用代数方法与未修正测量结果相加,以补偿其系统误差的值称为_____(修正值)。 20. 标准偏差的大小表征了随机误差的_____(分散)程度。 21. 偏态系数描述了测量总体及其误差分布的_____(非对称)程度。 22. 协方差表示了两变量间的_____(相关)程度。 23. 超出在规定条件下预期的误差称为_____(粗大)误差。 24. +=_____() 25. ++=_____() 26. () 28. pH=的有效数字是____(2)位。 29. 保留三位有效数字,结果为____。 30. 为补偿系统误差而与未修正测量结果相乘的数字因子称为______(修正因子)。 一、检定一只5mA、级电流表的误差。按规定,要求所使用的标准仪器产生的误差不大于受检仪器允许误差的1/3。现有下列3 只标准电流表,问选用哪一只最为合适,为什么? (本题10 分) (1)15mA级(2)10mA级(3)15mA级

自抗扰算法介绍报告

自抗扰算法(ADRC )介绍报告 自抗扰控制器自PID 控制器演变过来,采取了PID 误差反馈控制的核心理念。传统PID 控制直接引取输出于参考输入做差作为控制信号,导致出现响应快速性与超调性的矛盾出现。自抗扰控制器主要由三部分组成:跟踪微分器(tracking differentiator),扩展状态观测器 (extended state observer) 和非线性状态误差反馈控制律(nonlinear state error feedback law)。跟踪微分器的作用是安排过渡过程,给出合理的控制信号,解决了响应速度与超调性之间的矛盾。扩展状态观测器用来解决模型未知部分和外部未知扰动综合对控制对象的影响。虽然叫做扩展状态观测器,但与普通的状态观测器不同。扩展状态观测器设计了一个扩展的状态量来跟踪模型未知部分和外部未知扰动的影响。然后给出控制量补偿这些扰动。将控制对象变为普通的积分串联型控制对象。设计扩展状态观测器的目的就是观测扩展出来的状态变量,用来估计未知扰动和控制对象未建模部分,实现动态系统的反馈线性化,将控制对象变为积分串联型。非线性误差反馈控制律给出被控对象的控制策略。系统结构框图如图1 图1 过程和扩张状态观测器方程: 1y x =22302220(1)()*(()*(,,)*())z k z k h z k fal b u k βεαδ+=+-+1120111(1)()*(()*(,,))z k z k h z k fal βεαδ+=+-12212;()();()(,,,)x x x a t u t a t f x x t ω==+= 330312(1)**(,,) z k z h fal βεαδ+=-

罗盘误差修正

罗盘的检验和误差纠正 “风水罗盘的校验和误差纠正”这是当今所有风水大师和所有风水爱好者的必修课。很多“风水大师”和“风水写书人”都会说:“一度之差,天壤之别,吉、凶两重天”,但你能肯定你的罗盘没有“角度指示误差”吗?你是如何认定的呢?你如果不知道罗盘会有什么样的经常被人们忽略了的但却是“很重要的误差”,你那“大师”怎么当的?都是忽悠罢了? 在当今,中国传统文化的光辉重新普照大地之时,风水设计和风水勘测已经被更广大的民众所了解和认可,很多人也开始学习并涉足于其中。风水学,在其实际使用中,最关键之处就在于“对坐向方位的勘测”,所必需的首要工具,当然首选专业的“风水罗盘”。 但在用罗盘来进行实地勘测操作时,很多风水师(或者风水学学习爱好者)会发现,对同一个被勘测的对象,在同一个位置,以同样的方法,用不同的罗盘进行测量时,往往几个罗盘所测得的结果相互之间的坐向角度值(度数)总会有些不一样,存在一些误差,到底以哪一个罗盘的数据为准呢?大家都莫终于是,即便换人来测也是如此,而且往往在很多时候就这么一两度之差,就是“吉”、“凶”两重天,到底该如何来评判呢?这常常会给人一种不好的印象,似乎只能由风水大师各说各有理了,谁说了都算又都不算,让人们无所适从了。这种现象势必会影响风水学的可靠信和可信度了。 这个问题出在哪里呢?我们先不论个人操作方法的对错以及技术上的熟练和否,先来谈一谈罗盘本身。 在我们忽略了使用者个人的人为误差之后,问题的主要根源也就在于“罗盘的“制造误差”上”了。理论上,一个精准的罗盘,它的外盘(正方形底座)上的“十字型指标线的十字心(交叉点)”和内盘(转盘)的旋转轴心线应该是能重合的,以此同时,内盘中央的“指南针表盘”之“米字线”之中心点也应该和内盘(转盘)之“旋转轴心线”重合,而且指南针的“指针之转轴”也应该和“转盘的旋转轴心线”重合,指南针表盘内的米字线之“北、东、南、西正十字线”要正对内盘(转盘)360度分度的“0°”、“90°”、“180°”、“270°”刻度,不仅如此,旋转内盘时,还要求外盘(正方形底盘)上的“十字形指标线”必须能够同时正压在内盘(转盘)圆周360度分度的“0°”、“90°”、“180°”、“270°”刻度线上,不能有偏差,无论从哪个方向旋转内盘,无论旋转多少次都必须如此能够回到这样的状态。 然而,这仅仅是理论上的一个标准,实际在罗盘的生产制造和零部件安装过程中,“误差”始终是难免的,完全百分之百符合标准的“绝对精准的罗盘”几乎是不存在的,即便是有,在概率上也差不多只能是“万里挑一”甚至“十万里挑一”。如果一定要求“绝对精准”的话,所有的生产也就只能停工了,因为没有人能做得到。在电脑上进行图形设计可以做得非常精准,但这并不能保证生产加工没有误差。 那么,既然如此,我们是否就没有办法克服生产加工造成的罗盘误差对实际勘测工作的影响了呢?也并非如此。我们只需要做好以下这几步准备工作,就

1998_HJQ_Auto-distubance rejection control and applications

自抗扰控制器及其应用 X 韩京清 (中国科学院系统科学研究所?北京,100080)摘 要 自抗扰控制器是自动检测系统的模型和外扰实时作用并予以补偿的新型控制器。介绍 自抗扰控制器对时变系统、多变量系统、最小相位系统等不同对象的使用方法。 关键词 自抗扰控制,鲁棒控制,不确定系统 分类号 O 157.21 1 引 言 我们曾在文献[1]中提出了“非线性误差反馈”(NLSEF)控制器结构和数值仿真结果。在这个非线性误差反馈律中有一个补偿分量,它是自动检测系统模型和外扰实时作用并予以补偿的分量。若把系统的模型作用当作系统的内扰,那么它同系统的外扰一起,均可作为对系统的扰动。这个补偿分量并不区分内扰和外扰,直接检测并补偿它们的总合作用——对系统的总扰动。由于这个分量的补偿作用,被控对象实际上被化成积分器串联型而易于构造出理想的控制器,这个补偿分量的作用实质上是一种抗扰作用。因此,我们将此控制器称为“自抗扰控制器”(ADRC)。 本文介绍自抗扰控制器在时变系统、多变量系统、最小相位系统中的使用方法,并给出相应数值仿真例子。 2 自抗扰控制器的应用 对带有未知扰动的不确定对象 y ¨=f (y ,y a ,w (t ))+b 0u (1) 其中,f (x ,y ,z )及w (t )均未知。文献[1]提出了图1所示的“非线性状态误差反馈”(NLSEF)控制方案,其中虚线所框部分为“自抗扰控制器”(ADRC)。 图1中,T D 的作用是安排过渡过程并给出此过程的微分信号;ESO 给出对象状态变量的 图1 自抗扰控制器结构 第13卷第1期V ol.13N o.1 控 制 与 决 策 CON T R OL A N D DE CI S I ON 1998年1月Jan. 1998X 国家自然科学基金资助课题 1996-10-11收稿,1996-12-20修回 DOI :10.13195/j.cd.1998.01.19.hanjq.004

坐标误差修正技术

坐标误差修正技术 汤文骏 段敏谟 张玉坤 方仲彦 (清华大学精密仪器系精密测试技术及仪器国家重点实验室,北京100084) 摘 要 随着对产品加工和测量准确度的要求越来越高,利用误差修正技术实现低成本精度升级的方法已成为一个非常重要的研究领域。本文介绍了误差修正技术的特点、内容以及最新的发展情况。关键词 误差修正 坐标误差 实时修正 一、综 述 许多加工和测量设备都是三坐标机构,比如坐标测量机、加工中心等。坐标误差(或空间误差)指刀具或测头在空间的实际位置与名义位置之间的误差。坐标误差是机构误差、热误差、形变误差等许多误差因素的合成,它直接体现了设备的精度。 常用的提高精度的方法是避免误差,这种方法成本高,对环境要求也很苛刻。另一种提高设备精度的途径是误差修正技术,它是在已有设备基础上, 根据实际的误差在机器的控制 小,这是由于两种测量方法都是接触测量,存在变形而产生测量误差。而智能化电容测厚仪更能反应实际厚度值,并且是数字显示,消除了读数误差,又是非接触测量,便于在线使用。本系统适用于片状材料厚度的测量和控制,若改用不同直径的传感器,可以得到仪器的不同分辨力。由于实现了智能化,测量结果既可以显示尺寸值,又可以显示平方米克重值等便于操作者读取需要的数值。改变材质,只需改变键盘输入的系数。并且由于设置了初距键,避免了零点漂移带来的麻烦,使用非常方便。 图3 计量器具测 量 数 据 (单位:L m)千分尺25222326212522242126电感测微仪21191922182119191822电容测微仪 25.4 22.2 23.0 26.2 21.4 25.4 23.0 25.4 21.4 26.2 参考文献 [1]郑义忠.运算法电容测微仪原理及其应用,天津大学  1988年6月 [2]李勋,李新民.M CS —51单片微型计算机,天津科技翻译 出版公司

DDS的误差分析

DDS 的误差分析 摘要:随着电子技术的不断发展,被测系统的工作频率、复杂程度不断提高,对激励信号源的输出信号带宽、输出波形的复杂度提出了更高的要求。基于直接数字合成技术的任意波形合成方法,以其信号产生方式灵活、频率分辨率高、频率切换速度快等诸多优点,在现代时域测试中得到了广泛的应用。 可是DDS 的杂散分量较多,严重影响了基于 DDS 的任意波形合成输出信号的波形质量,限制了任意波形合成技术的更广泛应用。针对 DDS 输出信号杂散分析与抑制一直是研究的热点,也有大量的技术被提出。本文将从相位截断、幅度量化误差和DAC 非线性等三个方面来讨论误差的产生以及一些基本的消除方法。 关键词:直接数字合成 任意波形合成 相位截断 幅度量化 DAC 非线性 1 DDS的原理 1.1 DDWS DDWS 主要由地址发生器、波形查找表、数模转换器和可变时钟发生器组成。根据预定的采样频率、所需信号的时域特征、波形长度等参数,由信号的数学表达式计算出各信号点幅度值,经过量化后按采样顺序预先存储在波形查找表中。可变时钟发生器按照用户设置的采样频率输出相应的时钟信号。每一个时钟信号的上升沿,地址发生器的输出地址加 1,地址发生器的输出地址对波形查找表寻址,逐点读出波形数据,经数模转换后生成相应的输出信号。设可变时钟频率为f S,若周期波形每个周期由 n 个采样点构成。 1.2 DDFS 由于 DDWS 产生新的频率必须通过更改采样时钟的频率或波形存储器中的数据点数来实现,作为振荡器应用具有较大的局限性。因此提出了如图 2-2 所示基于相位累加器的改进模型,即直接数字频率合成(DDFS)。DDFS 系统主要由固定时钟发生器、相位累加器、波形查找表、数模转换器和低通滤波器等组成。在采样时钟的控制下,N 位的相位累加器以频率控制字 K 进行累加,截取高 M 位作为相位地址对波形查找表进行寻址,输出相应的 D 位幅度信息,完成波形相位到幅度的转换。输出的波形幅度信息通过数模转换器得到相应的模拟信号输出,低通滤波器滤除杂散分量,保证输出波形的纯度。 DDFS 的输出频率f o 和采样时钟f S之间的关系为: s N o f K f 2

误差理论与数据处理期末判断

三、判断题 1、研究误差的目的之一是正确组织实验,合理设计或选项用仪器和测量方法,以获得经济合理测量结果。 ( F ) 2、测量不确定度是客观存在的,且不以人的认识程度而改变。(T) 3、在近似数乘除运算时,最后结果应与有效位数最少的数据位数相同。(T ) 4、标准不确定度的评定方法有A类评定和B类评定,其中A类评定精度比B类评定精度高。( F ) 5、电视歌手大奖赛中去除最高分与最低分的做法是为了排除系统误差的影响。( F ) 6、用贝塞尔公式计算标准不确定度者属于B类评定。( F ) 7、不确定度的可信程度与其自由度有密切关系,自由度越大,则不确定度越可信。(T ) 8、残余误差较核法可以发现固定系统误差和变化系统误差。(F )y x,y x i?1,2.....n(的一组数据和9、根据两个变量,),由最小二乘法得到回归直线,ii y x线性关系密切。由此可以推断和(T ) 10、观察数据本身的精度越高,则所得到的回归方程越稳定。(F ) 一、判断题(本大题共10小题,每小题1分,共10分) 判断下列各题,正确的在题后括号内打“√”,错的打“×”。 1.研究误差的意义之一就是为了分析误差产生的原因,以消除或减小误差。(√) P1 2.绝对误差的大小反映了测量的精度。(×) P2 3.环境对测量结果没有影响。(×) P3 4.精确度反映了测量误差的大小。(√) P4 5.在测量结果中,小数点后的位数越多越好。(×) P6 6.单次测量的标准差σ就是测量列中任何一个测得值的随机误差。(×) P14 7.只要是系统误差,就可以进行修正。(×) P40 8.测量不确定度,就是测量值还不能确定的意思。(×) P79 9.不确定度与误差的概念具有相同的内涵。(×) P80 10.系统误差的大小,反映了测量的准确度。(√) P4 二、是非题(每小题1分,共10分,对的打√,错的打×) (F )1.由于误差是测量结果减去被测量的真值,所以误差是个准确值。 ( F )2.测量不确定度是说明测量分散性的参数。 ( F )3.标准不确定度是以测量误差来表示的。 ( F )4.误差与不确定度是同一个概念,二种说法。 4 / 1. ( T)5. 半周期法能消除周期性系统误差 ( T )6.A类评定的不确定度对应于随机误差。 ( T )7.A类不确定度的评定方法为统计方法。 ( T )8.B类不确定度的评定方法为非统计方法。 ( T )9.测量不确定度是客观存在,不以人的认识程度而改变。 ( T )10.标准不确定度是以标准偏差来表示的测量不确定度。 ( T )11.数学模型不是唯一的,如果采用不同的测量方法和不同的测量程序,就可能有不同的数学模型。

一种单神经元自抗扰控制器

第36卷增刊(I ) 2006年7月  东南大学学报(自然科学版)JOURNA L OF S OUTHE AST UNIVERSITY (Natural Science Edition ) V ol 136Sup (I )July 2006 一种单神经元自抗扰控制器 张兆靖1 杨慧中1 姜永森2 (1江南大学控制科学与工程研究中心,无锡214122) (2北华大学科研处,吉林132013) 摘要:针对自抗扰控制器可调参数多且不易整定的问题,提出了一种用单神经元改进非线性状态误差反馈控制律的算法.利用神经网络的自学习能力,采用一个单神经元构造自适应参数,使参数依据系统误差的变化自动作相应地调整,从而完成参数的在线自整定.仿真结果表明,改进后的控制器调整参数大大减少,而且具有更强的适应性和鲁棒性. 关键词:自抗扰控制器(ADRC );单神经元;非线性状态误差反馈控制律(N LSEF ) 中图分类号:TP273 文献标识码:A 文章编号:1001-0505(2006)增刊(I )20132203 Active disturbance rejection controller based on mono neuron Zhang Zhaojing 1 Y ang Huizhong 1 Jiang Y ongsen 2(1Research Center of C ontrol Science and Engineering ,S outhern Y angtze University ,Wuxi 214122,China ) (2O ffice of Scientific Research ,Beihua University ,Jilin 132013,China )Abstract : Arming at the problem of too many parameters to be turned in the active disturbance rejection con 2troller (ADRC ),a new alg orithm to im prove nonlinear states error feedback control laws (N LSEF )is present 2ed.M ono neuron is adopted to create the adaptive parameters by means of the self 2learning ability of neural netw orks ,which makes parameters automatically adjust in accordance with system error ,and then com plete the parameters online self 2adjustment.The simulation result indicates that the developed controller can greatly re 2duce the adjusted parameters ,and increase its adaptability and robustness. K ey w ords : active disturbance rejection controller ;m ono neuron ;nonlinear states error feedback control laws  收稿日期:2006204220.  作者简介:张兆靖(1976— ),男,硕士生;杨慧中(联系人),女,教授,博士生导师,yhz @https://www.360docs.net/doc/8410392117.html,.自抗扰控制器(ADRC )是一种新型的非线性控制器.由于其适应性强,鲁棒性好,控制性能优良[1],已成为工业界和控制理论领域里十分关注的研究热点.然而,由于其可调参数较多且不易整定,严重影响了ADRC 的推广和应用.本文受单神经元PI D 调节器[2]的启发,以二阶自抗扰控制器为例,利用神经元具有的自学习、自适应能力来改进自抗扰控制器(ADRC )中的非线性状态误差反馈环节,从而使得该环节的参数实现在线自整定.仿真结果表明改进后的ADRC 有更好的适应性和鲁棒性. 1 二阶ADRC 结构 图1 ADRC 原理框图ADRC 由3部分组成[3],二阶ADRC 的结构如图1所示.其 中,跟踪微分器(T D )的作用是安排过渡过程并提取过渡过程的 导数.扩张状态观测器(ES O )的作用是一方面把系统的各阶状态 变量估计出来,另一方面通过被扩张的状态变量对“未知扰动” 的“实时作用量”作出估计.非线性状态误差反馈控制律(N LSEF ) 是通过选取适当的非线性误差函数来更好地抑制扰动.以下为 非线性状态误差组合方程(N LSEF 方程):

传感器作业——非线性误差分析

学生:XXX 学号:XXXXXXXXXXX 传感器的非线性误差 仪器仪表等测量工具的输入、输出(测量、结果)分别作为直角坐标系的纵轴、横轴,选择适合的坐标轴,并将理想的输入输出对应点标入坐标,可以得到一条理想输入输出关系曲线。将实际的输入输出对应点标入坐标,可以得到一条实际输入输出关系曲线。最理想的情况下这两条曲线应该重合,实际上是不可能做到的,这时两条曲线之间的距离就是非线性误差。 一、输入输出曲线的拟合方式: 1)直线拟合: 直线拟合大致想到以下几种方式: 1.以最大△y值判断最佳拟合直线: 由于只需要在传感器工作范围内拟合,故只在其工作范围内进行输入输出直线的拟合。用直线段在其范围内对其拟合,每段拟合直线段都将对应得到一个最大△y值,拟合直线不同,各自最大△y值也不同。其中最大△y值最小的直线,即为此种拟合方式下对应的最佳拟合直线。 2.以最小二乘法的方式得到最佳拟合直线: 以最小二乘方式拟合即为用其误差的平方和判断。在传感器工作范围内,用直线段对其进行拟合,每段拟合直线段都将对应得到一个误差的平方和值,拟合直线不同,各自误差的平方和也不同。其中误差的平方和最小的直线,即为此种拟合方式下对应的最佳拟合直线。 2)离散的方式拟合: 用阶梯型的曲线在工作范围内对其进行拟合。每两个阶梯之间的距离即为所用硬件计算的最小时间(或最小时间的2N倍),则最大误差△y由硬件的运算速度决定。 二、常用的非线性传感器的误差补偿方法: 非线性传感器的误差补偿方法从硬件方面讲,有补偿电路;从软件方面讲,有神经网络法、数据融合法等;此外也有将软件硬件技术结合起来的方法。 1)硬件补偿: 采用传感器电桥电路非线性误差的反馈补偿法。

误差修正模型实例(精)

一、误差修正模型的构造 对于yt的(1,1阶自回归分布滞后模型: 在模型两端同时减yt-1,在模型右端,得: 其中,,,。 记(5-5) 则(5-6) 称模型(5-6)为“误差修正模型”,简称ECM。 二、误差修正模型的含义 如果yt ~ I(1,x t ~ I(1,则模型(5-6)左端,右端,所以只有当yt和x t协整、即yt和x t之间存在长期均衡关系时,式(5-5)中的ecm~I(0,模型(5-6)两端的平稳性才会相同。 当yt和x t协整时,设协整回归方程为:

它反映了yt与x t的长期均衡关系,所以称式(5-5)中的ecm t-1是前一期的“非均衡误差”,称误差修正模型(5-6) 中的是误差修正项,是 修正系数,由于通常 ,这样;当ecm t-1 >0时(即出现正误差),误差修正项< 0,而ecm t-1 < 0时(即出现负误差), > 0,两者的方向恰好相反,所以,误差修正是一个反向 调整过程(负反馈机制)。 误差修正模型有以下几个明确的含义: 1.均衡的偏差调整机制 2.协整与长期均衡的关系 3.经济变量的长期与短期变化模型 长期趋势模型: 短期波动模型: 三、误差修正模型的估计 建立ECM的具体步骤为: 1.检验被解释变量y与解释变量x(可以是多个变量)之间的协整性; 2.如果y与x存在协整关系,估计协整回归方程,计算残差序列e t:

3.将e t-1作为一个解释变量,估计误差修正模型: 说明: (1)第1步协整检验中,如果残差是确定趋势过程,可以在第2步的协整回归方程中加入趋势变量; (2)第2步可以估计动态自回归分布滞后模型: 此时,长期参数为: 协整回归方程和残差也相应取成: , (3)第2步估计出ECM之后,可以检验模型的残差是否存在长期趋势和自相关性。如果存在长期趋势,则在ECM中加入趋势变量。如果存在自相关性,则在ECM的右端加入 误差修正项的滞后期一般也要作相应 调整。 如取成以下形式:

6误差分析与标定

6 MIMU 误差分析、标定 - 第六章 惯性测量组合误差分析及其标定技术 微型速率捷联惯性测量组合(陀螺仪、加速度计 )性能的好坏直接影响惯性测量的精度。因此,研究惯性测量组合误差源,建立误差模型方程,准确评价其性能精度,加强惯性器件的标定技术,利用软件通过误差补偿措施来进一步提高使用时的实际精度,已成为其使用过程中的重要环节,对惯性测量组合的误差分析和标定,有下列三种目的: (1)评价惯性测量组合性能、精度,考核是否满足规定的要求。 (2)建立惯性测量组合模型方程,利用计算机按使用条件计算出仪表的规律性误差,并给予补偿,来提高仪表的实际使用精度。 (3)确定仪表误差的随机散布规律,作为使用规范的依据。 6.1 误差分析 惯性测量组合测量仪表的输出包含有对敏感的物理量的正确反映、由仪表本身制造缺陷引起的误差(标度因数误差和不对称性误差)、安装误差(交叉耦合误差)、漂移误差、随机误差以及由外界因素影响而产生的误差等。用数学形式来表示输出、输入和误差间的关系称为仪表的误差模型方程。 影响惯性测量组合误差的外界因素很多,如电压、频率、温度、气压、周围的电场、载体的线运动、角运动及时间等。对外界力学和电学环境造成的误差可以采取屏蔽、隔离的措施,使之难以影响到仪器的内部。对于安装误差,来源于制造工艺上,采用精密测量仪器测试该小角度,其误差一般限制在一定的范围。其它不能被抑制的外界因素就只剩下仪表本身缺陷误差、漂移误差、随机误差和飞行体的线运动、角运动引起的误差,它们之间是相关的,可通过误差标定或进行补偿可消除其影响。 1、误差模型方程的建立 对于陀螺仪,有r t a f D D D D D D ++++=ω (6-1) 对于加速度计,有r t a f A A A A A A ++++=ω (6-2) 式中 A D ,---分别为陀螺仪、加速度计输出;

误差 偏差 修正值

误差偏差修正值 摘要:本文主要是通过实例说明对几个术语的理解,共四个部分、12例,内容涉及: 1 术语的概念、定义的理解;偏差对于不同对象的适用性; 2 术语间的关系与区别,特别是误差与偏差。在特定条件下、二者在数值或绝对值上相等(但概念不同); 3 误差与偏差的应用,主要说明误差、偏差检定结果计算(简便的也是常用的)方法的依据; 4 修正值与修正因数的关系和应用。 0 引言 术语是一个学科的专用语。它概念清楚,定义准确、严格,在文字、语言表述交流中可以简单明确地反映所要传递的内容。因此,各个学科都有自己的术语。误差、偏差、修正值是计量领域最通用、使用频率很高的术语,在计量技术规范JJF1001—1998《通用计量术语及定义》(,以下简称“术语”)中有明确定义。正确使用这几个术语有助于反映、处理有关量值之间的关系。但由于对定义理解的不同(如“偏差”的定义)或历史上的、习惯上的认识,有时难免在

实用中使用不当、混淆、歧义甚至错误以及有的技术文献解释上的矛盾。本文准备对这几个术语的定义、相互关系的理解和应用谈一些看法。 1 对定义的理解 1.1 误差 1.1.1 〔测量〕误差 其定义为:“测量结果减去被测量的真值。”由于真值的不可确知,“术语”定义中是用约定真值替代真值。被测量的真值可以理解为被测量的实际值。测量误差一般是由多个随机效应与系统效应所导致,所以在排除粗大误差条件下,误差包括随机误差和系统误差。 1.1.2 测量仪器的〔示值〕误差 测量仪器的〔示值〕误差与〔测量〕误差的定义不同,它是指“仪器的示值与对应输入量的真值之差”。虽然根据“术语”中“测量结果”的说明,仪器的示值属于“测量结果”,但“被测量”有别于“对应输入量”。“被测量”通常包括一组输入量,而“对应输入量”应是指和仪器示值同种量(可以相互比较并按大小排序的量),一般为校准和检定中上级标准器的复现量。测量仪器的误差是系统误差,它是测量误差的主要分量。在特定条件下仪器的示值误差就是测量误差。 1.2 偏差 “术语”中这一术语的定义为:“一个值减去参考值。” 为了说明、表达两个量值间的关系,根据实际需要规定的可用于比较的量值都可作为一个值的参考值。例如: 1.2.1〔实物〕量具偏差 量具的标称值就是实际值的参考值。因此, 偏差=实际值—标称值。 例1 标称值m B为500g的砝码,经校准实际值mH为500.015g,则其偏差dm为: dm=mH-m B=500.015

新adrc自抗扰控制技术

3.3自抗扰控制技术的MATLAB仿真 自抗扰控制技术是由韩京清教授根据多年实际控制工程经验提出的新的控制理论。在传统的工业和其他控制领域,PID一直占据主导地位。目前,PID 在航空航天、运动控制及其他过程控制领域,仍然占据90%以上的份额。但是,PID自身还是存在缺陷,而韩京清教授正是出于对P1D控制算法的充分认知,尤其是对其缺陷的清晰分析,提出了自抗扰控制技术。 3.3.1自抗扰控制技术概述 自抗扰控制技术的提出是根据对PID控制技术的充分认知,扬其优点,抑其缺点而提出的。传统PID控制技术应用领域很广泛,其控制结构如图3-9所示。 图3-9 传统PID结构 其中, ? + + ? =e k e k d e k u t 2 1 ) (τ τ。众所周知,PID控制原理是基于误差来生成 消除误差控制策略:用误差的过去、现在和变化趋势的加权和消除误差。其优点有:靠控制目标与实际行为之间的误差来确定消除此误差的控制策略,而不是靠被控对象的“输入一输出”关系,即不靠被控对象的“输入-输出”模型来决定控制策略,简单易行,只要选择PID增益使闭环稳定,就能使对象达到静态指标。当然PID控制仍有缺点,其缺点如下 1、采用PID校正系统闭环动态品质对PID增益的交化太敏感,当被控对象处于变化的环 境中时,根据环境的变化经常需要变动PID的增益。 2、“基于误差反馈消除误差”是PID控制技术的精髓,但实际情况中直接取目标与实际 行为之间的误差常常会使初始控制力太大而使系统行为出现超调,而这正是导致使用PID控制技术的闭环系统产生“快速性”和“超调”不可调和矛盾的主要原因。3、PID是用误差的比例、积分、微分的加权和形式来形成反馈控制量的,然而在很多场 合下,由于没有合适的微分器,通常采用PI控制规律,限制了PID的控制能力。 4、PID是用误差的过去、现在和将来的适当组合来产生程制量的。经典PID一般采用线 性取和方法,但是实际系统多为非线性系统,所以非线性拉制器更适合实际情况。5、PID中的误差积分反馈对抑制常值扰动确实有效,但在无扰动作用时,误差积分反馈

误差分析与数据处理

误差理论与数据处理 一.绪论 当你能对世界进行测量的时候,就可以把世界变成数据来了解。 1.研究误差的意义 分析误差产生原因,从而消除误差; 正确处理所得数据,从而接近真值; 选择合理的方法,设计合理的系统。 2.误差的基本概念 误差=测量值—真值 约定真值:对于给定用途具有适当不确定度的、赋予特定量的值。 绝对误差=|测量值—真值| 相对误差=绝对误差/|真值|=绝对误差/|测量值| 修正值:与误差大小近似相等,但方向相反。修正值本身还有误差。 引用误差=示值误差/测量范围上限 3.误差来源 测量装置误差:标准量具的误差、一起误差、附件误差 环境误差:温度、湿度、气压、振动、照明、加速度、电磁场等。 方法误差 人员误差 4.误差分类 系统误差:在相同条件下,多次测量同一量值时,该误差的绝对值和符号保持不变,或者在条件改变时,按某一确定规律变化的误差。(均值和真值之差)系统误差分类:已定系统误差、未定系统误差、不变系统误差、变化系统误差(线性、周期性、复杂规律) 随机误差:大小、方向均随机不定,不可预见,不可修正。(抑制、统计分布规律) 粗大误差:明显超出统计规律预期值的误差。(异常因素或疏忽) 5.精度 准确度:系统误差的大小(偏移程度)

精密度:随机误差的大小(分散程度) 精确度:测量结果与被测量真值之间的一致程度 精确度(精度)在数值上一般多用相对误差来表示,但不用百分数。如某一测量结果的相对误差为0.001%,则其精度为10-5。 重复性:指在相同条件下在短时间内对同一个量进行多次测量所得测量结果之间的一致程度,一般用测量结果的分散性来定量表示。 复现性:指在变化条件下,对同一个量进行多次测量所得测量结果之间的一致程度,一般用测量结果的分散性来定量表示。 稳定性:测量仪器保持其计量特性随时间恒定的能力。 示值误差:指测量仪器的示值与对应输入量的真值之差。由于真值不能确定,故在实际应用中常采用约定真值。 偏移:指系统误差 最大允许误差:给定的测量仪器,规范、规程等所允许的误差极限值。有时也称为允许误差限。 不确定度:与测量结果相关联的、用于合理表征被测量值分散性大小的参数。 6.有效数字 最末一位数字是不可靠的,而倒数第二位数字是可靠的。在进行重要的测量时,测量结果和测量误差可再多取一位数字作为参考。 二.误差基本性质与处理 1.随机误差产生原因 测量装置、环境因素、人为因素。 随机误差整体具有统计学规律,多数随机误差服从正态分布。(单峰、对称、有界、均值趋于零) 2.算术平均值 由于实际上都是有限次测量,因此,我们只能把算术平均值近似地作为被测量的真值。 一般情况下,被测量的真值为未知,这时可用算术平均值代替被测量的真值进行计算。此时的随机误差称为残余误差,简称残差 残余误差代数和为零这一性质,可用来校核算术平均值及其残余误差计算的

一种脉动压力比对校准误差修正数据处理方法,中国科学消息.doc

一种脉动压力比对校准误差修正数据处理 方法,中国科技信息, :阎玲 摘要:依据行业规程,为了满足某型飞机垂尾抖振科目试飞测试要求,基于脉动压力传感器测试中,针对产生的误差原因分析,提出了飞行试验中比对校准误差修正数据处理方法。 关键词:脉动压力;测试;校准;标定;数据处理 1 引言 随着航空技术的不断进步,动态压力测量技术得到迅猛发展,使得动态压力测试技术在测试脉动压力时,可以获得准确结果。在被测量的物理量随时间变化的情况下,传感器的输出能否良好地跟随输入量变化是一个很重要的问题,有时传感器尽管其静态性能非常好,但由于不能很好地跟随输入量变化而导致误差。在脉动压力测试中,测量误差大小直接影响飞行测试结果,如果不能保证脉动压力传感器的精度,就无法满足飞机垂尾抖振科目试飞测试要求。因此,对于飞行中所使用的脉动压力传感器,必须定期对其各项技术性能指标进行校准,以此来确定其灵敏度和误差范围,最终达到整个测试系统的可靠精度,如何保证飞行试验数据准确可靠,可靠的校准方法和数据处理至关重要。 2误差原因分析 通常飞行试验中稳态压力传感器测试用标准压力源进行内场校准,由于脉动压力传感器安装在垂尾壁面无法进行内场校准,传感器未装机前由于传感器结构限制也不能进行实验室内场校准。测试精度的主要部分是压力传感器校准,传统方法是沿用

厂家出厂时标定的传感器灵敏度进行计算给出校线, 这种方法在试飞试验中发现误差较大,其误差原因是: (1).传感器本身漂移使出厂后传感器灵敏度有变化,使用出厂时的灵敏度已不可行。脉动压力传感器测试中,桥压的精确度直接决定了动态压力传感器的信号输出精度,由于动态压力传感器的输出信号较小,灵敏度大致为4 mv/psi,信号满量程输出也仅为100mV左右,桥压的微小波动,也会引起灵敏度的改变。 (2).传感器制造中自身零位存在,传感器的零位一致性差,变化范围可达-12mv/psi --12mv/psi,造成了误差的存在。一直以来未能对压力传感器误差提出相应的改进方法,测试精度就无法保证。不解决误差的存在将导致测试系统测量不准确,无法获取可靠的飞行试验数据。 根据以上两点导致的误差原因分析,在无标定方法借鉴的情况下,针对误差 的存在,在实验的基础上,依据行业规范,提出了比对校准误差修正数据处理方法的研究,首次用于飞行试验中。 3.一般常用标校方法 3.1静态校准 依据测量和监控装置对比校准规程(BMI.QEMS)比对是在规定条件下,对相同准确度等级的同类基准标准或工作计量器具之间的量值进行比较,校准:是指被校的计量器具与高一等级的计量标准相比较,以确定被校计量的示值误差。静态校准主要是利用压力标准器按照传感器的测量范围,均匀地施加标准压力来测量传感器灵敏度,非线性以及重复性,迟滞等静态误差指标。 3.2 动态校准 动态校准是建立在静态校准的基础上,动态校准主要是测

自抗扰技术开题报告1

一、综述本课题国内外研究动态,说明选题的依据和意义 1.风力发电技术概述及其研究意义 目前随着石化能源的逐渐枯竭以及对环保的日益重视,迫切需要人们开发清洁的再生能源,因此,对可再生能源的开发利用,特别是对风能的开发应用已经受到世界的高度重视。风力资源丰厚,风力发电的潜力很大,但是风能能量密度较低,目前风力发电面临的一个急待解决的问题是风能利用效率的提高。风力机捕获的风能取决于风速、叶片浆距角和风轮转速,通过控制机构调节浆距角和风轮转速,使风力机捕获的风能跟踪最大功率曲线,可以有效地提高风力发电系统的发电效率。20年来风力发电技术领域有了很大的成就,中国从八十年代才开始发展风力发电,但是规模远不及欧美等国,尚处于探索时期,因此,风力发电在中国能源发展中的地位及发展的前景预测这一课题有重大的战略意义和社会意义。 但是风能在利用中存在很多的问题,风能是一种存在很多不确定性的能源,风力发电系统处于自然界中,外部的干扰很多且不易预知和控制,怎样实现风能的最大捕获成为一个我们在现实风力发电时首要考虑的问题。 在现在的风力发电中,我们运用到实际的控制方法有很多,有古典控制理论部分的应用,也有PID控制的应用,且其在控制界曾处于很高的位置,但是PID使用的范围有限制,对线性系统或者能线性化的系统,其控制效果还是很好的,但是由于风能的并不确定因素很多,这样导致PID在风里发电系统中便显示出了很多的缺点。图1所示为传统PID的控制图。 图 1 PID控制结构

从这个框图可以概括出PID控制技术的如下四个方面的缺陷: 第一,误差取法不合理。系统输入信号常常是不光滑、不连续的,而输出信号通常是光滑的,因而导致系统超调或振荡;第二,微分信号的实现需要改进。现场微分信号的实现通常采用差分或超前网络,这种方式对噪声放大作用很大,使微分信号失真而不能使用;第三,误差信号采用的线性组合不一定最合适,这种线性组合不易解决快速性和超调的矛盾;第四,积分反馈的作用主要是消除稳念误差,但它的引入也带来很多副作用,增加了系统的不稳定性以及积分饱和现象的出现。 面对这样的问题,我们也曾提出很多控制方法,比如自适应的应用,鲁棒控制和模糊控制,这些的控制效果也很好,但是由于这些的算法相对比较复杂,有些系统不易建立精确的数学模型,导致这些应用过程中会复杂。这时自抗扰技术的发展就为我们更好的利用风能提供了一个很好的方法。 自抗扰控制理论是我国学者韩京清先生首先提出的一种利用简单非线性部件对非线性系统的状态量及其所受干扰进行检测,进而利用非线性误差反馈规律进行总体补偿的非线性控制策略。其控制结构由跟踪微分器(TD),扩张状态观测器(ESO)和非线性反馈组成,如图2所示。 图 2 自抗扰控制结构 TD用来实现对系统输入信号的快速无超调跟踪,并给出其“广义”微分

相关文档
最新文档