铁磁性材料

铁磁性材料
铁磁性材料

铁磁性材料

铁磁性物质属强磁性材料,

它在电工设备和科学研究中的

应用非常广泛,按它们的化学成

分和性能的不同,可以分为金属

磁性材料和非金属磁性材料(铁

氧体)两大族。

1 金属磁性材料

金属磁性材料是指由金属合

金或化合物制成的磁性材料,绝

大部分是以铁、镍或钴为基础,再加入其他元素经过高温熔炼、机械加工热处理而制成,这种磁性材料在高温、低频、大功率等条件下,有广泛的应用,但在高频范围,它的应用则受到限制。金属磁性材料还可分为硬磁、软磁和压磁材料等,实验表明,不同铁磁性物质的磁滞回线形状有很大差异,图示给出了三种不同铁磁材料的磁滞回线,其中,软磁性材料的面积最小;硬磁材料的矫顽力较大,剩磁也较大;而铁氧体材料的磁滞回线则近似于矩形,故亦称矩磁材料。

软磁材料的特点是相对磁导率r 和饱和磁感强度max B 一般都比较大,但矫顽力c H 比硬磁质小得多 ,磁滞回线所包围的面积很小,磁滞特性不显著如图(a),软磁材料在磁场中很容易被磁化,而由于它的矫顽力很小,所以也容易去磁,因此,软磁材料是很适宜于制造电磁铁、变压器、交流电动机、交流发电机等电器中的铁心的另一个原因。

硬磁材料又称永磁材料,它的特点是剩磁r B 和矫顽力c H 都比较大,磁滞回线所包围的面积也就大,

磁滞特性非常显著如图(b),所以把硬磁材料放在外磁场中充磁后,仍能保留较强的磁性,并且这种剩余磁性不易被消除,因此硬磁材料适宜于制造永磁体。在各种电表及其他一些电器设备中,常用永磁铁来获得稳定的磁场。1998年6月3日,由美国“发现者号”航天飞机携带的、美籍华裔物理学家丁肇中教授组织领导的阿尔法磁谱仪上所用的永磁体,就是由中国科学院电工研究所等单位研制的稀土材料钕铁硼永磁体,其磁感强度高达0. 14T ,该永磁体的直径为1. 2m ,高0. 8m ,而阿尔法磁谱仪是用来探测宇宙中反物质和暗物质的,这是人类第一次将大型永磁铁送入宇宙空间,对宇宙中的带电粒子进行直接观测,它极有可能给人类开拓一个全新的科学领域而带来一次新的科学突破。

压磁材料具有强的磁致伸缩性能,所谓磁致伸缩是指铁磁性物体的形状和体积在磁场变化时也会发生变化,特别是改变物体在磁场方向上的长度。当交变磁场作用在铁磁性物体上时,它随着磁场的增强,可以伸长,或者缩短,如钴钢是伸长,而镍则缩短,不过长度的变化是十分微小的,约为其原长的1/100000,磁致伸缩在技术上有重要的应用,如作为机电换能器用于钻孔、清洗,也可作为声电换能器用于探测海洋深度、鱼群等。

2 非金属磁性材料——铁氧体

铁氧体,又叫铁淦氧,是一族化合物的总称,它由三氧化二铁(Fe 2O 3)和其他二价的金属氧化物(如

铁磁材料居里点的测定实验报告

铁磁材料居里点的测定实验报告

铁磁材料居里点的测定实验报告 一、实验目的与实验仪器 1.实验目的 (1)了解示波器测量动态磁滞回线的原理和方法; (2)学会一种测量铁磁材料居里点的方法。 2.实验仪器 用于测量环状磁性介质样品的JLD-Ⅲ居里点测量仪(含五种样品)。 二、实验原理 1.铁磁材料和居里点 铁磁材料在很小的磁场作用下就被磁化到饱和,不但磁化率大于零,而且达到 χ~10 —106 数量级,当铁磁性物质的温度高于临界温度Tc(居里点温度)时,铁磁性物质

转变成为顺磁性。即在居里点附近,材料的磁性发生突变。 反复磁化铁磁材料时会出现磁滞现象。另一重要的特点就是磁滞。磁滞现象是材料磁化时,材料内部的磁感应强度B 不仅与当时的磁场强度 H 有关,而且与以前的磁化状态有关。 2.示波器测量磁滞回线的原理 如图所示,给待定铁心线圈(N匝)通50Hz交流电,次级线圈产生的感应电动势为 ε = - WS dB ,次级回路电压方程为ε = Ri + u C,dt

当R >> 1 2πfC 时,Ri >> u C,则 i = ε R =- WS R dB dt . t时刻, u C =q C = q0 C +1 C ∫idt t =(q0 C +WS RC B0 ) -WS RC B 上式中,前一项为t = 0 时,电容初始状态和铁芯初始状态决定的直流电压值,若其为0,则 u C = -WS RC B,即u C∝B,将u C输入示波器y轴,则水平方向偏转与B成正比。 在初级线圈中,u H = R H i H,而H = ni H,则u H = R H n H,将u H输入示波器x轴,则竖直方向偏转与H成正比。 综上,示波器上能够显示出稳定的B-H曲线。 三、实验步骤 测量环状磁性介质的居里点 1.接线:将加热接口与居里点测试仪接口用专线相连;将铁磁材料样品与居里点测试仪用专线

铁、铝化学方程式(全)

铁、铝化学方程式 一、铁 1.与O 2反应:3Fe+2O 2??→?点燃 Fe 3O 4 2.与Cl 2反应:2Fe+3Cl 2??→?点燃 2FeCl 3 3.与Br 2反应:2Fe+3Br 2??→?点燃 2FeBr 3 4.与I 2反应:Fe+I 2??→?点燃 FeI 2 5.与S 反应:Fe+S ?→?? FeS +Q 6.加热下与浓H 2SO 4反应:2Fe+6H 2SO 4(浓)?→?? 2Fe 2(SO 4)3+3SO 2↑+6H 2O 7.加热下与稀HNO 3反应:Fe+4HNO 3?→? ? Fe(NO 3)3+NO ↑+2H 2O 8.高温下与水蒸气反应:3Fe+4H 2O(g)??→?高温Fe 3O 4+4H 2↑ 二、铁的氢氧化物 (一)Fe(OH)2 8.被氧气氧化:4Fe(OH)2+O 2+2H 2O →4Fe(OH)3 9.制取:FeSO 4+2NaOH →Na 2SO 4+Fe(OH)2↓ (二)Fe(OH)3 10.受热分解:2Fe(OH)3?→? ? Fe 2O 3+3H 2O 11.制取:Fe 3++OH —→Fe(OH)3↓ 三、铁盐和亚铁盐 (一)Fe 2+ 12.和Cl 2反应:Fe 2++ Cl 2→2Fe 3++2Cl — 13.和H 2O 2反应:2H ++2Fe 2++H 2O 2→2Fe 3++2H 2O (二)Fe 3+ 14.和Fe 反应:2Fe 3++Fe →3Fe 2+ 15.和Cu 反应:Fe 3++Cu →Cu 2++Fe 2+ 16.和I —反应:2Fe 3++2I —→2Fe 2++I 2

17.和SCN—反应:Fe3++3SCN— Fe(SCN)3

1铝的物理性质和用途

1铝的物理性质和用途 铝是银白色的轻金属,较软,密度2.7g/cm3,熔点660.4℃,沸点2467℃,铝和铝的合金具有许多优良的物理性质,得到了非常广泛的应用。 1铝对光的反射性能良好,反射紫外线比银还强,铝越纯,它的反射能力越好,常用真空镀铝膜的方法来制得高质量的反射镜。真空镀铝膜和多晶硅薄膜结合,就成为便宜轻巧的太阳能电池材料。铝粉能保持银白色的光泽,常用来制作涂料,俗称银粉。 2纯铝的导电性很好,仅次于银、铜,在电力工业上它可以代替部分铜作导线和电缆。铝是热的良导体,在工业上可用铝制造各种热交换器、散热材料和民用炊具等。 3铝有良好的延展性,能够抽成细丝,轧制成各种铝制品,还可制成薄于0.01mm 的铝箔,广泛地用于包装香烟、糖果等。 4铝合金具有某些比纯铝更优良的性能,从而大大拓宽了铝的应用范围。例如,纯铝较软,当铝中加入一定量的铜、镁、锰等金属,强度可以大大提高,几乎相当于钢材,且密度较小,不易锈蚀,广泛用于飞机、汽车、火车、船舶、人造卫星、火箭的制造。当温度降到-196℃时,有的钢脆如玻璃,而有些铝合金的强度和韧性反而有所提高,所以是便宜而轻巧的低温材料,可用来贮存火箭燃料液氧和液氢。 2铝对人体的危害 铝不是人体的必需元素,人体缺乏铝时,不会给人体带来什么损害,反之,铝盐能致人体中毒。 1.摄入过量的铝对骨骼有害。铝能直接损害成骨细胞的活性,从而抑制骨的基质合成。 2.摄入过量的铝,能够对大脑造成损伤。研究证实,脑组织对铝元素有亲和性,铝一旦进入人体,首先沉积在大脑内脑组织中的铝沉积过多,可使人记忆力减退、智力低下、行动迟钝、催人衰老。如果随时间推移,铝在脑中逐渐积累,就会杀死神经原,使人的记忆力丧失。近年来又发现老年痴呆症的出现也与平时过多摄入铝元素有关。 3.铝元素吸收多了,会积聚在肝、脾、肾等部位,当积聚量超过5~6倍时,就会对消化道吸收磷发生抑制作用,还会抑制胃蛋白酶的活性,妨碍人体的消化吸收功能。因此,摄入过量的铝还会使人食欲不振和消化不良,影响肠道对磷、锶、铁、钙等元素的吸收。 3铝对动植物的危害 1可溶性铝化合物对大多数植物都是有毒的。酸性土壤的水分里溶解的铝化合物,使一般作物难以正常生长。通常当溶解的铝达到10-20PPM以上时,植物

铁磁材料居里温度测试实验

铁磁材料居里温度测试实验 【实验目的】 1.了解铁磁物质由铁磁性转变为顺磁性的微观机理。 2.利用交流电桥法测定铁磁材料样品的居里温度。 3.分析实验时加热速率和交流电桥输入信号频率对居里温度测试结果的影响。 【实验仪器】 FD-FMCT-A铁磁材料居里温度测试实验仪,示波器检 【实验原理】 一、概述:磁性材料在电力、通讯、电子仪器、汽车、计算机和信息存储等领域有着十分广泛的应用,近年来已成为促进高新技术发展和当代文明进步不可替代的材料,因此在大学物理实验开设关于磁性材料的基本性质的研究显得尤为重要。 铁磁性物质的磁特性随温度的变化而改变,当温度上升至某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称为居里温度,居里温度是表征磁性材料基本特性的物理量,它仅与材料的化学成分和晶体结构有关,几乎与晶粒的大小、取向以及应力分布等结构因素无关,因此又称它为结构不灵敏参数。测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。 本实验仪根据铁磁物质磁矩随温度变化的特性,采用交流电桥法测量铁磁物质自发磁化消失时的温度,该方法具有系统结构简单,性能稳定可靠等优点,通过对软磁铁氧体材料居里温度的测量,加深对这一磁性材料基本特性的理解。仪器配有自动采集系统,可以通过计算机自动扫描分析, 二、实验原理 1.铁磁质的磁化规律 由于外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性,物质的磁性可分为反铁磁性(抗磁性)、顺磁性和铁磁性三种,一切可被磁化的物质叫做磁介质,在铁磁质中相邻电子之间存在着一种很强的”交换耦合“作用,在无外磁场的情况下,它们的自旋磁矩能在一个个微小区域内“自发地”整齐排列起来而形成自发磁化小区域,称为磁畴。在未经磁化的铁磁质中,虽然每一磁畴内部都有确定的自发磁化方向,有很大的磁性,但大量磁畴的磁化方向各不相同因而整个铁磁质不显磁性。如图1所示,给出了多晶磁畴结构示意图。当铁磁质处于外磁场中时,那些自发磁化方向和外磁场方向成小角度的磁畴其体积随着外加磁场的增大而扩大并使磁畴的磁化方向进一步转向外磁场方向。另一些自发磁化方向和外磁场方向成大角度的磁畴其体积则逐渐缩小,这时铁磁质对外呈现宏观磁性。当外磁场增大时,上述效应相应增大,直到所有磁畴都沿外磁场排列好,介质的磁化就达到饱和。

高中化学镁铝铁知识归纳

高中化学镁铝铁知识归纳【知识网络】 一、镁及其化合物 相关化学方程式 2Mg+O 2 =2MgO 3Mg+N 2Mg 3 N 2 Mg+Cl 2MgCl 2 Mg+2H+=Mg2++H 2 ↑ Mg+2H 2O Mg(OH) 2 +H 2 ↑ 2Mg+CO 2 2MgO+C MgO+H 2O=Mg(OH) 2 MgO+2HCl=MgCl 2+H 2 O MgCl 2(熔融) Mg+Cl 2 ↑

Mg2++CO 32-=MgCO 3 ↓ MgCO 3+2H+=Mg2++CO 2 ↑+H2O MgCO 3+CO 2 +H 2 O=Mg(HCO 3 ) 2 MgCO 3+H 2 O Mg(OH) 2 +CO 2 ↑ Mg(OH) 2+2H+=Mg2++H 2 O Mg(OH) 2MgO+H 2 O Mg 3N 2 +6H 2 O=3Mg(OH) 2 ↓+2NH3↑ 二、铝及其化合物 相关化学方程式 4Al+3O 2=2Al 2 O 3 3S+2Al Al 2S 3 2Al+3Cl 22AlCl 3 2Al+6HCl=2AlCl 3+3H 2 ↑

2Al+6H 2O 2Al(OH)3+3H 2↑ 2Al+Fe 2O 3 Al 2O 3+2Fe 2Al+2NaOH+2H 2O =2NaAlO 2+3H 2↑ Al 2O 3+6HCl =2AlCl 3+3H 2O Al 2O 3+2NaOH =2NaAlO 2+2H 2O 2Al 2O 3(熔融) 4Al+3O 2↑ Al 3++3H 2O=Al(OH)3+3H + Al 3++3NH 3·H 2O=Al(OH)3↓+3NH 4+ Al 3++3OH -=Al(OH)3↓ Al 3+ +4OH -=AlO 2- +2H 2O Al 2S 3+6H 2O=2Al(OH)3↓+3H 2S ↑ Al(OH)3+3H + =Al 3+ +3H 2O Al(OH)3+OH -=AlO 2-+2H 2O AlO 2-+CO 2+2H 2O=Al(OH)3↓+HCO 3- AlO 2-+H ++H 2O=Al(OH)3↓ AlO 2-+4H +=Al 3++2H 2O 3AlO 2-+Al 3++6H 2O=4Al(OH)3↓ 三、铁及其化合物

金属及其性质

T-常见的金属材料 一.温故知新 1. 金属共同的物理性质, a. 大多数金属:①都具有光泽,不透明; ②常温下除了外,大多数金属都是固体。 ③具有良好的性和______性; ④有良好的______(可以展成薄片,可以拉成细丝); ⑤密度_____ ,熔点_____ 。 b .金属的物理性质差异(特性)

不同金属在金属导电性、导热性、密度、熔点、硬度等方面差异较大。 例题:1. 根据上表,以及学过知识完成下列问题: 地壳中含量最多的金属元素是____ 人体中含量最多的金属元素是 ____ 导电性最好的金属是________,常见导线的材料主要是_______和________。 熔点最低的金属是________,熔点最高的金属是____________(常温下为液体)。 2. 填一填 C . 相关补充: 铅(Pb):有毒性,硬度1.5,质地柔软。 银(Ag):银在地壳中的含量很少,是导电性和导热性最好的金属。 钨(W):是一种银白色金属,外形似钢,钨的熔点高,化学性质很稳定。 锡(Sn):银白色,质软,易弯曲,熔点231.89℃,富延展性。 铬(Cr):银白色,质硬,有很高的耐腐蚀性,铬镀在金属上可以防锈,坚固美观。 金(Au):很柔软,容易加工,化学性质非常稳定;熔点较高,任凭火烧;也不会锈蚀。 2 .合金 a.定义:在一种________中加热融合其他________或________而形成的具有金属特性的物质。生活中大量使用的是____________(选填“纯金属”或“合金”),合金属于_______物。 例如,不锈钢中包含______,_______和_______。

铁磁材料居里温度测试

铁磁材料居里温度的测试 1.实验数据表格 表9-1磁滞回线消失时所对应的温度值: 表9-2感应电动势积分值ε'及其对应的温度T值: 样品编号1(室温)初始(输出)感应电压328mV,磁滞回线消失时所对应的温度值63.2℃ 样品编号2 (室温)初始(输出)感应电压425mV,磁滞回线消失时所对应的温度值91.7℃ 2.各样品的U~T曲线 图1 样品1的U—T曲线

I n d u c e d v o l t a g e (m v ) 示波器法测得Tc= 图2 样品2的U —T I n d u c e d v o l t a g e (m V ) 示波器法测得Tc=91.7℃(室温25℃);U~T 曲线用切线法测得Tc=92.8℃ 3.实验结果分析: 从数据处理的结果可以看出,用示波器观察样品磁滞回线消失温度来确定的居里点Tc 和通过感应电动势随温度变化的曲线来推断居里点温度略有出入,但基本上相等。

4.思考题: (1)、样品的磁化强度在温度达到居里点时发生的微观机理是什么? 答:由于外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性,物质的磁性可分为反铁磁性(抗磁性)、顺磁性和铁磁性三种,一切可被磁化的物质叫做磁介质,在铁磁质中相邻电子之间存在着一种很强的“交换耦合”作用,在无外磁场的情况下,它们的自旋磁矩能在一个个微小区域内“自发地”整齐排列起来而形成自发磁化小区域,称为磁畴。在未经磁化的铁磁质中,虽然每一磁畴内部都有确定的自发磁化方向,有很大的磁性,但大量磁畴的磁化方向各不相同因而整个铁磁质不显磁性。当铁磁体受到强烈的震动,或在高温下由于剧烈运动的影响,磁畴便会瓦解,这时与磁畴联系的一系列铁磁性质(如高磁导率、磁滞等)全部消失。对于任何铁磁物质都有这样一个临界温度,高过这个温度铁磁性就消失,变为顺磁性,这个临界温度叫做铁磁质的居里点。 (2)、通过测定感应电动势随温度变化的曲线来推断居里点温度时,为什么要由曲线上斜率最大处的切线与温度轴的交点来确定T C,而不是由曲线与温度轴的交点来确定T C? 答:因为温度升高到居里点时,铁磁性材料的磁性才发生突变,所以要在斜率最大处作切线;又因为在居里点附近时,铁磁性已基本转化为顺磁性,故曲线不可能与横坐标相交。 (3)、为什么尽可能选择高的“激励电压”,以得到尽可能高的(室温)初始(输出)感应电压(“电压测量”框中显示的数值),可以提高测试结果的精度? 答:因为高的“激励电压” 有利于抵抗由互感引起的感应电压的影响,提高测试结果的精度。另外,由于随温度的升高,感应电动势是减小的,如果初始电压小,则不易观察到温度升高时,电压降低的幅度变化,影响居里温度的确定,因此选择高的“激励电压”有利于获得全面准确的数据,并在绘制U~T 曲线时易观察到随温度的降低,感应电动势降低的幅度的变化,有利于作图的准确性和确定居里温度以提高测试结果的精度。

高中化学方程式钠,铝,铁全部(精选课件)

高中化学方程式钠,铝,铁全 部 钠及其化合物的化学方程式 一、钠 1、钠在氧气中燃烧:2Na+O2Na2O2...文档交流仅供参考... 2、钠在氯气中燃烧:2Na+Cl22NaCl...文档交流仅供参考... 3、钠常温条件下和氧气反应:4Na+O22Na2O...文档交流仅供参考... 4、钠和硫共热:2Na+SNa2S 5、钠和水反应:2Na+2H2O2NaOH+H2↑...文档交流仅供参考... 6、钠和稀盐酸反应:2Na+2HCl2NaCl+H2↑...文档交流仅供参考... 7、钠投入到硫酸铜溶液中:2Na+CuSO4+2H2ONa2SO4+Cu(OH)2↓+H2↑...文档交流仅供参考... 8、向氯化铝溶液中加入少量的钠:6Na+2AlCl3+6H2O6NaCl+2Al(OH)3↓+3H2↑...文档交流仅供参考... 9、向氯化铝溶液中加入足量的钠:4Na+AlCl3+2H2O NaAlO2+3NaCl+2H2↑...文档交流仅供参考... 10、钠在高温条件下与四氯化钛反应:4Na+TiCl44NaCl+Ti...文档交流仅供参考...

二、氧化钠 1、氧化钠和水反应:Na2O+H2O=2NaOH 2、氧化钠与二氧化碳反应:Na2O+CO2Na2CO3...文档交流仅供参考... 3、氧化钠与盐酸反应:Na2O+2HCl2NaCl+H2O 4、向硫酸铜溶液中加入氧化钠:Na2O+CuSO4+H2OCu(OH)2↓+Na2SO4...文档交流仅供参考... 5、向氯化铝溶液中加入少量的氧化钠:3Na2O+2AlCl3+3H2O2Al(OH)3↓+6NaCl...文档交流仅供参考... 6、向氯化铝溶液中加入足量的氧化钠:2Na2O+AlC l3NaAlO2+3NaCl...文档交流仅供参考... 三、过氧化钠 1、过氧化钠与水反应:2Na2O2+2H2O4NaOH+O2↑...文档交流仅供参考... 2、过氧化钠与二氧化碳反应:2Na2O2+2CO22Na2CO3+O2↑...文档交流仅供参考... 3、过氧化钠与盐酸反应:2Na2O2+4HCl4NaC l+2H2O+O2↑...文档交流仅供参考... 4、向硫酸铜溶液中加入过氧化钠:2Na2O2+2CuS O4+2H2O===2Cu(OH)2↓+2Na2SO4+O2↑...文档交流仅供参考... 5、向氯化铝溶液中加入少量的过氧化钠: 6Na2O2+4AlCl3+6H2O4Al(OH)3↓+12

钠、铝、铁的化学性质

金属单质的通性 1、能氧气(氧化剂)反应 所有金属单质都具备的性质。 2、与酸发生反应 活波金属(活动性顺序表H之前)与酸发生反应。 3、与盐发生反应(置换) (1)Na之前的金属,若与盐溶液反应,则先与H2O反应生成碱,再与盐反应。若与熔融状态的盐反应,则置换出盐中活泼性较弱的金属。 (2)Na之后的金属,无论是与盐溶液还是熔融状态的盐,均可置换盐中活泼性较弱的金属。 4、和水发生反应 (1)Na之前的金属,反应剧烈,现象明显。 (2)Na之后的金属,通常情况下,反应不明显,可视为不反应。但满足相应条件时仍可发生反应, 如Al在强碱溶液中。 碱性氧化物的通性 1、与酸性氧化物反应,生成盐和水。[超活波金属碱性氧化物] 2、与酸反应,生成且只生成盐和水。 3、一般不与正盐(Na2CO3)、碱式盐(Cu2(OH)2CO3)反应,但可以跟酸式盐(NaHCO3)反应。 4、比较活波的金属氧化物能与水反应生成碱。[超活波金属碱性氧化物] 碱的通性 1、使酸碱指示剂变色。[超活波金属碱] 2、碱与酸性氧化物反应生成盐和水。[超活波金属碱] 3、碱与酸发生中和反应生成盐和水。 4、碱与某些盐发生复分解反应生成新盐和新碱。[超活波金属碱] 盐的通性 1、某些盐与较活波的金属反应生成新的盐和金属(置换)。 = 金属单质通性3 2、某些盐能与某些酸反应生成新的盐和新的酸(复分解)。 3、某些盐能与某些碱反应生成新的盐和新的碱(复分解)。 =碱的通性4 4、有些不同的盐之间能反应生成两种新的盐。 钠 一、钠Na 1、与非金属单质反应

与O2反应:常温:4Na+O2=2Na2O 点燃:2Na+O2=Na2O2 与Cl2反应: 2Na+Cl2=2NaCl 与 S 反应 : 2Na+S=Na2S 2、与H2O(l)反应 实验现象:“浮、熔、游、响、红” 2Na+2H2O=2NaOH+H2↑可看做是Na置换出H2O中的H+ (额外知识)Na在空气中的反应:先与氧气反应: 4Na+O2=2Na2O 在与气态水反应: Na2O+H2O(g)=2NaOH 最后与二氧化碳反应: 2NaOH+CO2=Na2CO3+H2O 3、与某些盐的反应 (1)与盐溶液反应 与硫酸铜溶液反应: 2Na+2H2O+CuSO4=Cu(OH)2↓+Na2SO4+H2↑ 2Na+2H2O=2NaOH+H2↑第一步:Na先与H2O反应得到NaOH 反应实质 2NaOH+CuSO4=Cu(OH)2↓+Na2SO4 第二步:NaOH与CuSO4↓反应 (2)与熔融状态的盐反应 Na+TiCl4(熔融)=4NaCl+Ti 直接置换 4、与酸的反应 与HCl反应: 2Na+2HCl=2NaCl2+H2↑ 与H2SO4反应: 2Na+H2SO4=Na2SO4+H2↑ 离子反应: 2Na+2H+=2Na++ H2↑ 二、钠的氧化物(NaO和Na2O2) 三、钠的氢氧化物NaOH 1、使酸碱指示剂变色 2、与盐的复分解反应 与硫酸铜反应:2NaOH +CuSO4=Cu(OH)2↓+Na2SO4 与氯化铁反应:3NaOH+FeCl3=Fe(OH)3↓+3NaCl 3、与酸性氧化物反应(生成盐和水) CO2(少量)+2NaOH=Na2CO3+H2O CO2(少量)+2NaOH=Na2CO3+H2O 第一步

居里温度的测量

实验十一 居里温度的测量 居里温度是表征磁性材料性质和特征的重要参量,测量磁导率和居里温度的仪器很多,例如磁天平、振动样品磁强计、磁化强度和居里温度测试仪等,测量方法有感应法、谐振法、电桥法等. 【实验目的】 1. 初步了解铁磁性物质由铁磁性转变为顺磁性的微观机理. 2. 学习JZB-1型居里温度测试仪测定居里温度的原理和方法. 3. 学会测量不同铁磁样品居里点的方法. 【实验原理】 磁性是物质的一种基本属性,从微观粒子到宏观物体,以至宇宙天体,无不具有某种程度的磁性,只是其强弱程度不同而已,这里说的磁性是指物质在磁场中可以受到力或力矩作用的一种物理性质。使物质具有磁性的物理过程叫做磁化,一切可以被磁化的物质都叫做磁介质.磁介质的磁化规律可用磁感应强度B 、磁化强度M 、磁场强度H 来描述,当介质为各向同性时,它们满足下列关系: ()()H H H M H B r m μμμχμμ==+=+=0001 (1) 其中m r χμ+=1,r μ称为相对磁导率,是个无量纲的量.为了简便,常把r μ简称为介质磁导率,m χ称为磁化率,m H /1047 0-?=πμ称为真空磁导率,r μμμ0=称为绝对磁导率.H M m χ=. 在真空中时0=M ,H 和B 中只需一个便可完全描述场的性质.但在介质内部,H 和B 是两个不同的量,究竟用H 还是用B 来作为描述磁场的本征量,根据磁场的性质有各种不同的表现来选择.因为H 和B 两者描述了不同情况下磁场的性质,它们都是描述磁场性质的宏观量,都是真正的物理量.在某些问题中,比如在电磁感应、霍尔效应、测量地磁水平分量等问题中,由于起作用的是磁通量的时间变化率,牵涉到的是B ;而如果考虑材料内部某处磁矩所受的作用时,起作用的就是H ,比如求退磁能及磁矩所做的功等。 从H B r μμ0=的关系看,表面上B 与H 是线性的,但实际上,由于r μ是一个与m χ值有关的量,而m χ值又与温度、磁化场有关,所以r μ是一个复杂的量,不能简单地从B 与H 的形式上来判断它们之间是线性的,或是非线性的关系. 磁体在磁性质上有很大的不同,从实用的观点,可以根据磁体的磁化率大小和符号来分为五个种类。 (1)抗磁性:是一种原子系统在外磁场作用下,获得与外磁场方向反向的磁矩的现象。某些物质当它们受到外磁场H 作用后,感生出与H 方向相反的磁化强度,其磁化率0m χ,但数值很小,仅显示微弱磁性。这种磁性称为顺磁性。多数顺磁性物质的m χ与温度T 有密切关系,服从居里定律,即

高二化学铁和铝化学方程式整理

高二化学铁铝化学方程式整理 一、铁 1.与O 2反应:3Fe+2O 2??→?点燃Fe 3O 4 2.与Cl 2反应:2Fe+3Cl 2??→?点燃2FeCl 3 3.与Br 2反应:2Fe+3Br 2??→?点燃2FeBr 3 4.与I 2反应:Fe+I 2??→?点燃FeI 2 5.与S 反应:Fe+S ?→??FeS +Q 6.加热下与浓H 2SO 4反应:2Fe+6H 2SO 4(浓)?→?? 2Fe 2(SO 4)3+3SO 2↑+6H 2O 7.加热下与稀HNO 3反应:Fe+4HNO 3?→?? Fe(NO 3)3+NO ↑+2H 2O 8.高温下与水蒸气反应:3Fe+4H 2O(g)??→?高温Fe 3O 4+4H 2↑ 二、铁的氢氧化物 (一)Fe(OH)2 8.被氧气氧化:4Fe(OH)2+O 2+2H 2O →4Fe(OH)3 9.制取:FeSO 4+2NaOH →Na 2SO 4+Fe(OH)2↓ (二)Fe(OH)3 10.受热分解:2Fe(OH)3?→?? Fe 2O 3+3H 2O 11.制取:Fe 3++OH —→Fe(OH)3↓ 三、铁盐和亚铁盐 (一)Fe 2+ 12.和Cl 2反应:Fe 2++ Cl 2→2Fe 3++2Cl — 13.和H 2O 2反应:2H ++2Fe 2++H 2O 2→2Fe 3++2H 2O (二)Fe 3+ 14.和Fe 反应:2Fe 3++Fe →3Fe 2+ 15.和Cu 反应:Fe 3++Cu →Cu 2++Fe 2+ 16.和I —反应:2Fe 3++2I —→2Fe 2++I 2 17.和SCN —反应:Fe 3++3SCN —?Fe(SCN)3

FD-FMCT-A型铁磁材料居里温度测试实验仪仪器使用说明解读

仪器使用指导 TEACHER'S GUIDEBOOK FD-FMCT-A 铁磁材料居里温度测试实验仪 中国.上海复旦天欣科教仪器有限公司Shanghai Fudan Tianxin Scientific_Education Instruments Co.,Ltd.

FD-FMCT-A铁磁材料居里温度测试实验仪仪器说明 一、概述 磁性材料在电力、通讯、电子仪器、汽车、计算机和信息存储等领域有着十分广泛的应用,近年来已成为促进高新技术发展和当代文明进步不可替代的材料,因此在大学物理实验开设关于磁性材料的基本性质的研究显得尤为重要。 铁磁性物质的磁特性随温度的变化而改变,当温度上升至某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称为居里温度,居里温度是表征磁性材料基本特性的物理量,它仅与材料的化学成分和晶体结构有关,几乎与晶粒的大小、取向以及应力分布等结构因素无关,因此又称它为结构不灵敏参数。测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。 本实验仪根据铁磁物质磁矩随温度变化的特性,采用交流电桥法测量铁磁物质自发磁化消失时的温度,该方法具有系统结构简单,性能稳定可靠等优点,通过对软磁铁氧体材料居里温度的测量,加深对这一磁性材料基本特性的理解。仪器配有自动采集系统,可以通过计算机自动扫描分析,该仪器可以用于普通物理电磁学实验或者近代物理实验。 二、仪器简介 FD-FMCT-A型铁磁材料居里温度测试实验仪主要包括实验主机两台、手提实验箱一个,如下所示: 1 2 3 4 图1 实验主机(信号发生器和频率计)

铁和铝化学方程式整理

铁、铝化学方程式整理 一、铁 1.与O 2反应:3Fe+2O 2??→?点燃Fe 3O 4 2.与Cl 2反应:2Fe+3Cl 2??→?点燃2FeCl 3 3.与Br 2反应:2Fe+3Br 2??→?点燃2FeBr 3 4.与I 2反应:Fe+I 2??→?点燃FeI 2 5.与S 反应:Fe+S ?→??FeS +Q 6.加热下与浓H 2SO 4反应:2Fe+6H 2SO 4(浓)?→?? 2Fe 2(SO 4)3+3SO 2↑+6H 2O 7铁和过量的稀硝酸反应 Fe + 4HNO3(稀) ==Fe(NO3)3 + NO↑+ 2H2O 过量的铁和稀硝酸反应 3Fe + 8HNO3(稀) == 3Fe(NO3)2 + 2NO↑+ 4H2O 8.高温下与水蒸气反应:3Fe+4H2O(g)??→?高温Fe3O4+4H2↑ 二、铁的氢氧化物 (一)Fe(OH)2 8.被氧气氧化:4Fe(OH)2+O 2+2H 2O →4Fe(OH)3 9.制取:FeSO 4+2NaOH →Na 2SO 4+Fe(OH)2↓ (二)Fe(OH)3 10.受热分解:2Fe(OH)3?→?? Fe 2O 3+3H 2O 11.制取:Fe 3++OH —→Fe(OH)3↓ 三、铁盐和亚铁盐 (一)Fe 2+ 12.和Cl 2反应:Fe 2++ Cl 2→2Fe 3++2Cl — 13.和H 2O 2反应:2H ++2Fe 2++H 2O 2→2Fe 3++2H 2O (二)Fe 3+ 14.和Fe 反应:2Fe 3++Fe →3Fe 2+ 15.和Cu 反应:Fe 3++Cu →Cu 2++Fe 2+ 16.和I —反应:2Fe 3++2I —→2Fe 2++I 2

铁磁性材料居里温度的测试

铁磁性材料居里温度的测试 铁磁性物质的磁性随温度的变化而改变。温度上升到某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称之为居里 表示。居里温度是磁性材料的本征参量之一,它仅与材料的化学成分和晶体结温度,以T c 构有关,几乎与晶粒的大小、取向以及应力分布等组织结构因素无关,为组织和结构不敏感参量。测定铁磁性材料的居里温度不仅对磁性材料、磁性器件的研究和研制,而且对工程技术应用都具有十分重要的意义。 一、数据记录、处理及误差分析 1、实验前应列出记录数据的表格(参见表9—1、9—2),记录时准确定出有效数字位数。注意:要求记录不同样品的(室温)初始(输出)感应电压值。 表9-1磁滞回线消失时所对应的温度值及初始(输出)感应电压值 表9-2感应电动势积分值ε'及其对应的温度T值

2、绘出每个样品的U~T 曲线,按照图9—5的方法确定各自的居里点Tc ,并与通过示波器观察样品磁滞回线消失温度来确定居里点Tc 方法得到的结果进行比较,并加以分析讨论。 20 30 40 50 60 70 80 90 050100150200250300 350400 i n d u c e d v o l t a g e (m V ) temperature(℃) 图1-1 试样一的U~T 曲线 示波器法测得Tc=85℃(室温26℃) U~T 曲线用切线法测得Tc=85.2℃ 050100150200250300 350400i n d u c e d v o l t a g e (m V ) temperature(℃) 图1-2 试样二的U~T 曲线 示波器法测得Tc=130.6℃(室温25℃) U~T 曲线用切线法测得Tc=130.2℃

铁磁材料居里温度的测量

铁磁材料居里温度的测量 一、实验目的 1、了解物质由铁磁性转变为顺磁性的微观机理。 2、学会一种测量铁磁材料居里点的实验方法。 3、测定铁磁环样品的居里温度。 二、实验原理 1、磁介质与物质的磁性 在磁场的作用下发生变化并反过来影响磁场的物质叫磁介质。磁介质在磁场作用下发生变化的过程叫磁化(任何物质都就是磁介质) 2、磁化的微观机制 安培的分子电流假说:每个分子内部电荷运动的总效果相当于一个圆形电流——分子电流 物质磁性的根源:原子内部电荷运动。 温度对磁性有显著影响。分子热运动,对磁畴磁矩有序排列有破坏作用,温度升高到一定数值,铁磁性消失。 居里点——铁磁材料失去磁性或者从铁磁相转变为顺磁相的温度(相变)。 测量原理: 给绕在待测样品磁环上的线圈L1通交变电流i(励磁电流),产生交变磁场H,使铁磁环反复磁化。样品中B与H的关系B=f(H)为磁滞回线。 由于H正比于L1的电流,因此可以用电流的信号代表H的信号。 在励磁电路中串接采样电阻R1,将其两端的电压讯号(与电流正比)经放大后, 送至示波器的X轴输入以表示H。

B就是通过副线圈L2中因磁通量变化而产生的感应电动势来测定的。 所以,磁环中B与L2上感应电动势积分成正比。将L2上经过R2C积分电路,从积分电容上取出B值,放大处理送至示波器Y轴输入。 示波器x轴输入反映H,Y轴输入反映B,示波器显示磁滞回线。当磁环被加热到一定温度,磁滞回线消失。对应温度即居里点。 三、实验仪器 JHD-Ⅱ型居里点测试仪: 1、电源箱(电源部分,温度设置控制,H、B信号处理部分); 2、加热炉 3、铁磁材料样品; 4、示波器。 四、注意事项 1、实验过程中适当调节X衰减,以显示较理想的磁滞回线。 2、每次须让加热炉降至常温再放入样品,以免温度传感器响应时间不同引起测量误差。 3、谨慎换放样品,不能拉扯金属插头外导线。 4、测800以上样品,小心高温烫伤。 5、观察磁滞回线时,两线圈有互感,故始终有感应电压。因此,当磁滞回线变为直线时,不能将Y轴输入衰减无限减小。 五、实验内容 一、观察材料升温过程中磁滞回线消失及居里点 1、连线、放样品。连线加热炉与电源箱面板;样品与电源箱专用线连接,放入

高中化学方程式钠铝铁全部

钠及其化合物的化学方程式 一、钠 1、钠在氧气中燃烧:2Na+O2Na2O2 2、钠在氯气中燃烧:2Na+Cl22NaCl 3、钠常温条件下和氧气反应:4Na+O22Na2O 4、钠和硫共热:2Na+S Na2S 5、钠和水反应:2Na+2H2O2NaOH+H2↑ 6、钠和稀盐酸反应:2Na+2HCl2NaCl+H2↑ 7、钠投入到硫酸铜溶液中:2Na+CuSO4+2H2O Na2SO4+Cu(OH)2↓+H2↑ 8、向氯化铝溶液中加入少量的钠:6Na+2AlCl3+6H2O6NaCl+2Al(OH)3↓+3H2↑ 9、向氯化铝溶液中加入足量的钠:4Na+AlCl3+2H2O NaAlO2+3NaCl+2H2↑ 10、钠在高温条件下与四氯化钛反应:4Na+TiCl44NaCl+Ti 二、氧化钠 1、氧化钠和水反应:Na2O+H2O=2NaOH 2、氧化钠与二氧化碳反应:Na2O+CO2Na2CO3 3、氧化钠与盐酸反应:Na2O+2HCl2NaCl+H2O 4、向硫酸铜溶液中加入氧化钠:Na2O+CuSO4+H2O Cu(OH)2↓+Na2SO4 5、向氯化铝溶液中加入少量的氧化钠:3Na2O+2AlCl3+3H2O2Al(OH)3↓+6NaCl 6、向氯化铝溶液中加入足量的氧化钠:2Na2O+AlCl3NaAlO2+3NaCl 三、过氧化钠 1、过氧化钠与水反应:2Na2O2+2H2O4NaOH+O2↑ 2、过氧化钠与二氧化碳反应:2Na2O2+2CO22Na2CO3+O2↑ 3、过氧化钠与盐酸反应:2Na2O2+4HCl4NaCl+2H2O+O2↑ 4、向硫酸铜溶液中加入过氧化钠:2Na2O2+2CuSO4+2H2O===2Cu(OH)2↓+2Na2SO4+O2↑

铁和铝的物理化学性质

学习基础知识与技能 金属键和金属晶体 1.金属键:金属阳离子和自由电子之间所形成的强作用力就是金属键。 2.金属晶体:通过金属键所形成的晶体叫金属晶体。 (1)构成微粒:金属阳离子和自由电子 (2)元素种类:金属 (3)微粒子作用力:金属键 (4)熔沸点:一般较高 (5)典型实例:Cu 、Fe 等金属以及合金 3.金属的物理通性 (1)金属表面一般都有光泽,黄金、白银、铂金等饰品就是利用了这一性质 (2)金属具有导电性。在外加电场条件下,金属晶体中的自由电子发生定向移动,形成电流。利用此性质制成铜、铝等电线、电缆,为我们的生活带来了方便。 (3)金属具有导热性。 (4)金属具有良好的延展性。 铁单质的物理性质及化学性质 1.物理性质 纯净的铁是银白色金属,密度7.86g/cm 3,熔点1535℃,沸点2750℃,具有良好的导电、传热、延展性;有杂质的铁易生锈。 2.化学性质 1) 铁在一定条件下能跟非金属反应 43223O Fe O Fe ??→?+点燃;42232Cl Fe Cl Fe ??→?+点燃 FeS S Fe ?→?+? (铁与弱氧化性物质反应生成低价铁的化合物) 2) 与盐酸、稀硫酸的置换反应 Fe+2HCl →FeCl 2+H 2↑ Fe+H 2SO 4 (稀)→Fe SO 4+H 2↑ 3) 与强氧化性酸反应 ① 铁的钝化:铁在冷的浓H 2SO 4 、浓HNO 3中,表面会形成一层致密的氧化膜,发生钝化现象。 ② Fe 与稀HNO 3的反应: ()()O H NO NO Fe HNO Fe 233324+↑+?→?+稀 ()()O H NO NO Fe HNO Fe 223342383+↑+?→?+稀 ③ Fe 与浓H 2SO 4 、浓HNO 3在加热下的反应的反应 ()()()O H SO SO Fe SO H Fe 22342426362+↑+?→?+? 浓少量 ()()O H SO FeSO SO H Fe 2244222+↑+?→?+? 浓过量

钠、铁、铝知识系统及重要化学方程式再书写

钠、铁、铝知识系统及重要化学方程式再书写 1.钠及其重要化合物 (1)知识网络构建 (2)重要反应必练 写出下列反应的化学方程式,是离子反应的写出离子方程式。 ①Na 和H 2O 的反应 2Na +2H 2O===2Na ++2OH -+H 2↑; ②Na 在空气中燃烧 2Na +O 2=====点燃 Na 2O 2; ③Na 2O 2和H 2O 的反应 2Na 2O 2+2H 2O===4Na ++4OH -+O 2↑; ④Na 2O 2和CO 2的反应 2Na 2O 2+2CO 2===2Na 2CO 3+O 2; ⑤向NaOH 溶液中通入过量CO 2 OH -+CO 2===HCO -3; ⑥将Na 2CO 3溶液与石灰乳混合 CO 2-3+Ca(OH)2===CaCO 3+2OH -; ⑦向Na 2CO 3稀溶液中通入过量CO 2 CO 2-3+CO 2+H 2O===2HCO -3; ⑧将NaHCO 3溶液和NaOH 溶液等物质的量混合 HCO -3+OH -===CO 2-3+H 2O ; ⑨将NaHCO 3溶液与澄清石灰水等物质的量混合 HCO -3+Ca 2++OH -===CaCO 3↓+H 2O ; ⑩将NaHCO 3溶液与少量澄清石灰水混合 2HCO -3+Ca 2++2OH -===CaCO 3↓+CO 2-3+2H 2O 。

2.铁及其化合物 (1)知识网络构建 (2)重要反应必练 写出下列反应的化学方程式,是离子反应的写离子方程式。 ①Fe 和过量稀HNO 3的反应 Fe +4H ++NO -3===Fe 3++NO ↑+2H 2O ; ②Fe 高温下和水蒸气的反应 3Fe +4H 2O(g)=====高温Fe 3O 4+4H 2; ③铝与氧化铁的铝热反应 Fe 2O 3+2Al=====高温2Fe +Al 2O 3; ④用赤铁矿冶炼铁的原理 Fe 2O 3+3CO=====高温 2Fe +3CO 2; ⑤Fe(OH)2长时间露置于空气中 4Fe(OH)2+O 2+2H 2O===4Fe(OH)3; ⑥FeO 和稀HNO 3的反应 3FeO +10H ++NO -3===3Fe 3++NO ↑+5H 2O ; ⑦Fe(OH)3和HI 的反应 2Fe(OH)3+6H ++2I -===2Fe 2++I 2+6H 2O ; ⑧FeBr 2溶液和少量Cl 2的反应 2Fe 2++Cl 2===2Fe 3++2Cl -; ⑨FeBr 2溶液和等物质的量的Cl 2反应 2Fe 2++2Br -+2Cl 2===2Fe 3++Br 2+4Cl -; ⑩FeBr 2溶液和过量Cl 2的反应 2Fe 2++4Br -+3Cl 2===2Fe 3++2Br 2+6Cl -。

铁磁材料居里温度测量

铁磁材料居里温度测量 1、实验目的 1.了解铁磁物质由铁磁性转变为顺磁性的围观机理。 2.利用交流电桥法测定铁磁材料样品的居里温度。 3.分析实验时加热速率和交流电桥输入信号频率对居里温度测试结果的影响. 2、实验仪器 1.FD-FMCT-A铁磁材料居里温度测试实验仪; 2.多种居里温度点的铁氧体样品。 3.JLD-Ⅱ型居里温度测试仪 4.10M或20M示波器 3、实验原理 1.铁磁质的磁化规律 由于外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性,物质的磁性可分为反铁磁性(抗磁性)、顺磁性和铁磁性三种,一切可被磁化的物质叫做磁介质,在铁磁质中相邻电子之间存在着一种很强的“交换耦合”作用,在无外磁场的情况下,它们的自旋磁矩能在一个个微小区域内“自发地”整齐排列起来而形成自发磁化小区域,称为磁畴。在未经磁化的铁磁质中,虽然每一磁畴内部都有确定的自发磁化方向,有很大的磁性,但大量磁畴的磁化方向各不相同因而整个铁磁质不显磁性。如图1所示,给出了多晶磁畴结构示意图。当铁磁质处于外磁场中时,那些自发磁化方向和外磁场方向成小角度的磁畴其体积随着外加磁场的增大而扩大并使磁畴的磁化方向进一步转向外磁场方向。另一些自发磁化方向和外磁场方向成大角度的磁畴其体积则逐渐缩小,这时铁磁质对外呈现宏观磁性。当外磁场增大时,上述效应相应增大,直到所有磁畴都沿外磁场排列好,介质的磁化就达到饱和。

图1 未加磁场多晶磁畴结构 图2 加磁场时多晶磁畴结构 由于在每个磁畴中元磁矩已完全排列整齐,因此具有很强的磁性。这就是为什么铁磁质的磁性比顺磁质强得多的原因。介质里的掺杂和内应力在磁化场去掉后阻碍着磁畴恢复到原来的退磁状态,这是造成磁滞现象的主要原因。铁磁性是与磁畴结构分不开的。当铁磁体受到强烈的震动,或在高温下由于剧烈运动的影响,磁畴便会瓦解,这时与磁畴联系的一系列铁磁性质(如高磁导率、磁滞等)全部消失。对于任何铁磁物质都有这样一个临界温度,高过这个温度铁磁性就消失,变为顺磁性,这个临界温度叫做铁磁质的居里点。 在各种磁介质中最重要的是以铁为代表的一类磁性很强的物质,在化学元素中,除铁之外,还有过度族中的其它元素(钴、镍)和某些稀土族元素(如镝、钬)具有铁磁性。然而常用的铁磁质多数是铁和其它金属或非金属组成的合金,以及某些包含铁的氧化物(铁氧体),铁氧体具有适于更高频率下工作,电阻率高,涡流损耗更低的特性。软磁铁氧体中的一种是以Fe2O3为主要成分的氧化物软磁性材料,其一般分子式可表示为MO·Fe2O3(尖晶石型铁氧体),其中M为2价金属元素。其自发磁化为亚铁磁性。现在以Ni—Zn铁氧体等为中心,主要作为磁芯材料。

铁和铝的知识总结

铁和铝的知识总结 铝及其化合物 一. 金属铝 1. 铝的原子结构及其对化学性质的影响 核内质子数:13;核外电子数:13;核电核数:13;最外层电子数:3 化学性质较稳定,不易失最外层电子。 2. 铝的主要物理性质 一种金属元素,符号AI ,银白色,有光泽,质地坚韧而轻,有延展性。 3. 铝的主要化学性质 和氧气反应:铝粉可燃铙4Al+3O 2→2Al2O3(发强白光) 和非金属反应:2Al+3S →Al2S3 和热水反应:2Al+6H2O →2Al(OH)3+3H2↑(反应缓慢) 和较不活动金属氧化物反应:3Fe3O4+8A l →9Fe+4Al2O3 和酸反应:在常温下浓硫酸和浓硝酸可使铝钝化。盐酸和稀硫酸可跟铝发生置换反应,生成盐并放出氢气。 2Al+6H2O →2AlCl3+3H2↑ 2Al+3H2SO4(稀)→Al2(SO4)3+3H2↑ 和盐溶液反应:2Al+3Hg(NO3)2 →3Hg+2Al(NO3)3 和碱溶液反应:主要和NaOH 、KOH 强碱溶液反应,可看做是碱溶液先溶解掉铝表面氧化铝保护膜 Al2O3+2NaOH →2NaAlO2+H2O 铝和水发生置换反应: 2Al+6H2O →2Al(OH)3+3H2↑ Al(OH)3溶解在强碱溶液中, Al(OH)3+NaOH →NaAlO2+2H2O 一般可用下列化学方程式或离子方程式表示这一反应 2Al+2NaOH+2H2O →2NaAlO2+3H2↑ 2Al+2OH- +2H2O →2AlO2- +3H2↑ 4. 铝的冶炼 以铝土矿为基本原料制铝的基本过程及相关反应方程式 5. 铝的用途

铝可以从其它氧化物中置换金属(铝热法)。其合金质轻而坚韧,是制造飞机、火箭、汽车的结构材料。纯铝大量用于电缆。广泛用来制作日用器皿。 二. 氧化铝 1. 氧化铝在自然界中的存在 铝土矿、刚玉、红宝石等,纯氧化铝为白色固体。 2. 氧化铝的主要化学性质 属于两性氧化物 (1)不与水化合 无 (2)与盐酸反应 Al2O3+6H+→2Al3++3H2O (3)与NaOH溶液反应 Al2O3+2OH-→2AlO2-+H2O 三. 氢氧化铝 1. 颜色和状态 白色固体,不溶于水。 2. 主要化学性质 表现有两性,在水中的电离方程式: 1.Al(OH)3→Al3+ + 3OH-(碱式电离) 2.Al(OH)3→AlO2- + H+ + H2O (酸式电离) (1) 两性 与盐酸反应:Al(OH)3+3HCl→→AlCl3+3H2O Al(OH)3+3H+=Al3++3H2O 与NaOH溶液反应:Al(OH)3+OH-=AlO2-+2H2O 【说明】氢氧化铝不溶于过量氨水(或CO2) (2)受热分解(方程式)2Al(OH)3→加热→Al2O3+3H2O 3. 氢氧化铝的用途 氢氧化铝是用量最大和应用最广的无机阻燃添加剂。氢氧化铝作为阻燃剂不仅能阻燃,而且可以防止发烟、不产生滴下物、不产生有毒气体,因此,获得较广泛的应用,使用量也在逐年增加。使用范围:热固性塑料、热塑性塑料、合成橡胶、涂料及建材等行业。 四. 铝盐和偏铝酸盐 1. 铝盐 明矾(化学式:KAl(SO4)2?12H2O) 明矾净水的作用原理: 明矾在水中可以电离出两种金属离子: KAl(SO4)2→K+ + Al3+ + 2SO4 2- 而Al3+很容易水解,生成胶状的氢氧化铝Al(OH)3: Al3+ + 3H2O →Al(OH)3+ 3H+ (可逆) 氢氧化铝胶体的吸附能力很强,可以吸附水里悬浮的杂质,并形成沉淀,使水澄清。 泡沫灭火器原理(相关方程式) Al2(SO4)3+6NaHCO3→→3Na2SO4+2Al(OH)3↓+6CO2↑ 向硫酸铝溶液中滴加过量NaOH溶液的现象及离子方程式: Al3+ +3OH-→Al(OH)3沉淀;Al+4OH-→AlO2-+2H2O 1 硫酸铝滴加氢氧化钠先生成Al(OH)3沉淀 后Al(OH)3沉淀被过量的OH-溶解。故澄清

相关文档
最新文档