《量子力学导论》习题答案(曾谨言版-北京大学)1
曾谨言量子力学第一卷习题答案解析3第三章.docx

第三章:一维定态问题[1]对于无限深势阱屮运动的粒子(见图3・1)证明…上(1—亠212 / 兀 2并证明当"T 00时上述结果与经典结论一致。
[解]写出归一化波函数:(1)先计算坐标平均值:x=「|屮「曲=「dn 2竺曲显「(l — cos 込)xdx Jo X a agJo a 利用公式:. xcos px sin px xs in pxax — --------------------- 1 -------- ;—P P—f 1T/ 2 2 / f 2 2 - 2 MX J 1 f" 2/1 2勿才、, x - 屮才 ax- —x sin 〜 ---------- ax-— 才Pl — cos ---------- ) axJo J a a a利用公式 [才2cos pxdx-—x 1 sin /zr +丄7才cos/zr —— sin pxJp矿p2/77LV(2)才 cos pxdx -xs in px cos px(3)(5) nnx得计算均方根值用s-$2 = 7-pj 2 J 以知,可计算7/__/ 12 ~ 2/72^2在经典力学的一维无限深势阱问题中,因粒子局限在(0, a )范围中运动,各点的几率密度看作 相同,由于总几率是1,几率密度CD=-.a_ f" 」r z, 1 , a x - coxar = —xax=—Jo Jo a 2[解](甲法):根据波函数标准条件,设定各区间的波函数如下:(x<0 区):屮=(x>a 区):H 7 = De~kyX但仏三寸2腻人一Q 丨Hk 、三 J2同匕 _ Z )/ 1i 写出在连接点x=0处连续条件(0<x<a 区):屮=BdJC 沙(2) (1) (3)/c 2 三 J2/〃Z7力故当/?—> oo 时二者相一致。
#[2]试求在不对称势力阱屮粒子的能f 4= B+CI k\A = ikAB—C} x=a处连续条件Be ikl<i + Ce ikia = De kyi (6)Bd® - C严=竺De kyi(7)(4)(5)二式相除得k x B-Cik[ B + C(6)(7)二式相除得ik、_ B" _ C严石一Bd^ + C严从这两式间可消去B, C,得到一个k&出间的关系ik、_ (心 + 右 + ik石+%2)/"+(一£ +%2)才®k、cos k^a-k2 sin k、a/(心sin k’a* k z cos k z a\解出tgkg得tgk、a = /"J + ")+ 〃兀(〃=0,1,2,...)〜k;-心最后一式用E表示吋,就是能量得量子化条件:個〃〃 + 一夕)tg --------- a -- ------ -- 彳、,〜卉夕-JW-勾“一刀(乙法)在0<x<a区间屮波函数表示为(8)屮(才)=2?sin (禺才+§)现在和前一法相同写出边界条件:力=2?sin 5(在x=0处) (9)(在x=a处) k x A-局〃cos5 (10)(11) 一(2 方cos/a+M = k^De(12)(9) (10)相除得加 3+»)=写出(13) (14)的反正切关系式,得到:E------- + mn V x -E EF Z77T V x -EE V z -E前述两法的结果形式不同,作为一种检验,可以用下述方法来统一。
量子力学第四版卷一(曾谨言著)知识题目解析第4章

量⼦⼒学第四版卷⼀(曾谨⾔著)知识题⽬解析第4章4.29——6.14.29证明在zL ?的本征态下,0==y x L L 。
(提⽰:利⽤x y z z y L i L L L L =-,求平均。
)证:设ψ是z L 的本征态,本征值为 m ,即ψψm L z=[]x L i =-=y z z y z y L L L L L ,L ,[]y L i =-=z x x z x z L L L L L ,L ,()()()0111 =-=-=-=∴ψψψψψψψψψψψψy y y z z y y z z y x L m L m i L L L L i L L L L i L同理有:0=y L 。
附带指出,虽然x l ?,y l ?在x l ?本征态中平均值是零,但乘积x l ?yl ?的平均值不为零,能够证明:,212y x y x l l i m l l -==说明y x l l ??不是厄密的。
2?x l ,2?y l 的平均值见下题。
4.30 设粒⼦处于()?θ,lm Y 状态下,求()2x L ?和()2yL ?解:记本征态lm Y 为lm ,满⾜本征⽅程()lm l l lm L 221 +=,lm m lm L z =,lm m L lm z =,利⽤基本对易式 L i L L =?,可得算符关系 ()()x y z x z y x y z z y x x x L L L L L L L L L L L L L i L i -=-== 2 ()x y z z x y y x y z y z x y L L L L L L L i L L L L i L L L -+=-+=2将上式在lm 态下求平均,使得后两项对平均值的贡献互相抵消,因此 22yxLL =⼜()[]222221 m l l L L L zy x -+=-=+()[]2222121m l l L L yx-+==∴上题已证 0==y x L L 。
曾谨言量子力学练习题答案

曾谨言量子力学练习题答案量子力学是物理学中描述微观粒子行为的一门基础理论,它在20世纪初由普朗克、爱因斯坦、波尔、薛定谔、海森堡等科学家共同发展起来。
曾谨言教授的量子力学练习题是帮助学生深入理解量子力学概念和计算方法的重要工具。
以下是一些练习题及其答案的示例:练习题1:波函数的归一化某粒子的波函数为 \( \psi(x) = A \sin(kx) \),其中 \( A \) 和\( k \) 是常数。
求波函数的归一化常数 \( A \)。
答案:波函数的归一化条件为 \( \int |\psi(x)|^2 dx = 1 \)。
将\( \psi(x) \) 代入归一化条件中,得到:\[ \int |A \sin(kx)|^2 dx = 1 \]\[ A^2 \int \sin^2(kx) dx = 1 \]利用三角恒等式 \( \sin^2(kx) = \frac{1 - \cos(2kx)}{2} \),积分变为:\[ A^2 \int \frac{1 - \cos(2kx)}{2} dx = 1 \]\[ A^2 \left[ \frac{x}{2} - \frac{\sin(2kx)}{4k} \right] = 1 \]由于波函数在 \( x = 0 \) 到 \( x = \frac{\pi}{k} \) 之间归一化,所以:\[ A^2 \left[ \frac{\pi}{2k} - 0 \right] = 1 \]\[ A = \sqrt{\frac{2k}{\pi}} \]练习题2:薛定谔方程的解考虑一个一维无限深势阱,其势能 \( V(x) = 0 \) 当 \( 0 < x < a \),\( V(x) = \infty \) 其他情况下。
求粒子的能级。
答案:在无限深势阱中,薛定谔方程为:\[ -\frac{\hbar^2}{2m} \frac{d^2\psi(x)}{dx^2} = E\psi(x) \]设 \( \psi(x) = \sin(kx) \),其中 \( k = \frac{n\pi}{a} \),\( n \) 为正整数。
曾谨言--量子力学习题及解答

dv , 1
(1) (2) (3)
v c , v dv v d ,
dv d c d v ( ) d ( ) v c
8hc 5
1 e
hc kT
, 1
1
这里的 的物理意义是黑体内波长介于λ与λ+dλ之间的辐射能量密度。 本题关注的是λ取何值时, 取得极大值,因此,就得要求 对λ的一阶导数为零, 由此可求得相应的λ的值,记作 m 。但要注意的是,还需要验证 对λ的二阶导数在 m 处的取值是否小于零,如果小于零,那么前面求得的 m 就是要求的,具体如下:
2
k
2 E
2
k
cos 2d (2 ) cos d ,
2 E
k
这里 =2θ,这样,就有
2
A B E
k
d sin 0
(2)
根据式(1)和(2) ,便有
A E
这样,便有
k n h 2
E
k
E
n h 2 k
nh
其中 h
k
,
h 2
最后,对此解作一点讨论。首先,注意到谐振子的能量被量子化了;其次,这量子化的 能量是等间隔分布的。 (2)当电子在均匀磁场中作圆周运动时,有
R p qBR
2
qB
这时,玻尔——索末菲的量子化条件就为
又因为动能耐 E
p2 ,所以,有 2
2
2 如果所考虑的粒子是非相对论性的电子( E 动 e c ) ,那么
曾谨言《量子力学导论》第二版的课后答案

(
)
d d 3 rψ 1* r ,.t ψ 2 r , t = 0 。 ∫ dt
( ) ( )
2.4)设一维自由粒子的初态ψ ( x,0 ) = e
⎛ p2 ⎞ i ⎜ p0 x − 0 t ⎟ / ℏ ⎜ 2 m ⎟ ⎝ ⎠
ip0 x / ℏ
, 求ψ ( x, t ) 。
解:
ψ ( x, t ) = e
∫p
即
x
⋅ dx = n x h ,
(n x
= 1, 2 , 3 , ⋯)
p x ⋅ 2a = n x h
∴ p x = n x h / 2a ,
( 2a :一来一回为一个周期)
同理可得,
p y = n y h / 2b ,
p z = n zห้องสมุดไป่ตู้h / 2c ,
n x , n y , n z = 1, 2 , 3 , ⋯
(4)
E = ∫ d 3r ⋅ w 。
(b)由(4)式,得
. . ⎤ . ∂w ℏ 2 ⎡ . * * * = ∇ ψ ⋅ ∇ ψ + ∇ ψ ⋅ ∇ ψ + ψ Vψ + ψ *V ψ ⎢ ⎥ ∂t 2m ⎣ ⎦
=
. . . . ⎛ .* 2 ℏ2 ⎡ ⎛ .* *⎞ 2 * ⎞⎤ * * ⎜ ⎟ ⎜ ⎟ ∇ ⋅ ψ ∇ ψ + ψ ∇ ψ − ψ ∇ ψ + ψ ∇ ψ + ψ V ψ + ψ V ψ ⎢ ⎟ ⎜ ⎟⎥ 2m ⎣ ⎜ ⎝ ⎠ ⎝ ⎠⎦
. ⎛ ⎞ ⎞ * ℏ2 2 � . ⎛ ℏ2 2 ⎟ ⎜ = −∇ ⋅ s + ψ * ⎜ − ∇ + V ψ + ψ − ⎜ 2m ⎟ ⎜ 2m ∇ + V ⎟ ⎟ψ ⎝ ⎠ ⎝ ⎠ . . ⎛ * � *⎞ = −∇ ⋅ s + E ⎜ ⎜ψ ψ + ψ ψ ⎟ ⎟ ⎝ ⎠ ∂ � ( ρ :几率密度) = −∇ ⋅ s + E ρ ∂t � = −∇ ⋅ s (定态波函数,几率密度 ρ 不随时间改变)
量子力学_答案_曾谨言

E nx n y nz
π2 2 1 2 2 = + py + p z2 ) = ( px 2m 2m
n x , n y , n z = 1, 2 , 3 ,
2 2 ⎞ ⎛ nx n2 ⎜ + y + nz ⎟ ⎜ a2 b2 c2 ⎟ ⎝ ⎠
1.3 设质量为 m 的粒子在谐振子势 V ( x) = 提示:利用
(1)
V = ∫ d 3 rψ *Vψ
2 ⎞ ⎛ ⎜ T = ∫ d rψ ⎜ − ∇2 ⎟ ⎟ψ ⎠ ⎝ 2m 3 *
(势能平均值)
(2)
(动能平均值)
=−
2m ∫
2
d 3r ∇ ⋅ ( ψ *∇ψ ) − (∇ψ * ) ⋅ (∇ψ )
[
]
其 中 T 的 第 一 项 可 化 为 面 积 分 , 而 在 无 穷 远 处 归 一 化 的 波 函 数 必 然 为 0 。 因 此
1 mω 2 x 2 中运动,用量子化条件求粒子能量 E 的可能取值。 2 p = 2m[ E − V ( x)]
∫ p ⋅ d x = nh,
n = 1, 2 ,
,
V ( x)
1
解:能量为 E 的粒子在谐振子势中的活动范围为
x ≤a
其中 a 由下式决定: E = V ( x) x = a = 由此得
(2)
ψ * × (1)-ψ × (2),得
i
2 ∂ * ( ( ψ ψ )= − ψ *∇ 2ψ − ψ∇ 2ψ * ) + 2iψ *V2ψ ∂t 2m
=−
2
2m
∇⋅( ψ *∇ψ − ψ∇ψ * ) + 2iV2ψ *ψ
∴
量子力学导论习题答案(曾谨言)

第四章 力学量用算符表达与表象变换 4.1)设A 与B 为厄米算符,则()BA AB +21和()BA AB i-21也是厄米算符。
由此证明,任何一个算符F 均可分解为-++=iF F F ,+F 与-F 均为厄米算符,且()()+++-=+=F F iF F F F 21 ,21 证:ⅰ)()()()()BA AB AB BA B A A B BA AB +=+=+=⎥⎦⎤⎢⎣⎡++++++21212121()BA AB +∴21为厄米算符。
ⅱ)()()()()BA AB i AB BA i B A A B i BA AB i -=--=--=⎥⎦⎤⎢⎣⎡-+++++21212121()BA AB i-∴21也为厄米算符。
ⅲ)令AB F =,则()BA A B AB F ===++++,且定义 ()()+++-=+=F F iF F F F 21 ,21 (1) 由ⅰ),ⅱ)得-+-+++==F F F F ,,即+F 和-F 皆为厄米算符。
则由(1)式,不难解得 -++=iF F F4.2)设),(p x F 是p x ,的整函数,证明[][]F ,F,,pi F x x i F p ∂∂=∂∂-=整函数是指),(p x F 可以展开成∑∞==,),(n m n m mnp x Cp x F 。
证: (1)先证[][]11, ,,--=-=n n m mp ni p x xmi xp 。
[][][][][][][][]()()[]()111111331332312221111,1,3,,2,,,,,------------------=---=+--==+-=++-=++-=+=m m m m m m m m m m m m m m m m m mx m i x i x i m xxp x i m x x p x i x x p x x p x x i x x p x x p x x i xx p x p x x p同理,[][][][][][]1221222111,2,,,,,--------==+=++=+=n n n n n n n n np ni ppx pi p p x p p x p p i pp x p x p p x现在,[][]()∑∑∑∞=-∞=∞=-==⎥⎦⎤⎢⎣⎡=0,1,0,,,,n m nm mnn m n m mn n m n m mn px m i C p x p C p x C p F p而 ()∑∞=--=∂∂-0,1n m n m mn p x mi C x Fi 。
曾谨言量子力学练习题答案

曾谨言量子力学练习题答案曾谨言量子力学练习题答案量子力学作为现代物理学的重要分支,是研究微观世界的基本理论。
在学习量子力学的过程中,练习题是不可或缺的一部分。
本文将为大家提供一些曾谨言量子力学练习题的答案,希望能对大家的学习有所帮助。
1. 考虑一个自旋1/2的粒子,其自旋矢量可以表示为:S = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。
对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|其中,i为虚数单位。
根据这些泡利矩阵,我们可以计算自旋矢量在不同方向上的期望值。
2. 对于一个自旋1/2的粒子,其自旋矢量的模长可以表示为:|S| = √(S·S)其中,S·S表示自旋矢量的内积。
根据泡利矩阵的定义,可以计算出自旋矢量在不同方向上的内积。
3. 考虑一个自旋1/2的粒子,其自旋矩阵可以表示为:J = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。
对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|根据这些泡利矩阵,我们可以计算自旋矩阵在不同方向上的期望值。
4. 对于一个自旋1/2的粒子,其自旋矩阵的模长可以表示为:|J| = √(J·J)其中,J·J表示自旋矩阵的内积。
根据泡利矩阵的定义,可以计算出自旋矩阵在不同方向上的内积。
5. 考虑一个自旋1/2的粒子,其自旋算符可以表示为:S = (h/2π) * σ其中,h为普朗克常数,σ为泡利矩阵。
对于自旋1/2的粒子,其泡利矩阵可以表示为:σx = |0 1||1 0|σy = |0 -i||i 0|σz = |1 0||0 -1|根据这些泡利矩阵,我们可以计算自旋算符在不同方向上的期望值。
6. 对于一个自旋1/2的粒子,其自旋算符的模长可以表示为:|S| = √(S·S)其中,S·S表示自旋算符的内积。
量子力学曾谨严 第1章作业答案

教材P25 ~27:1、2、3、4(1)、7 1.解:(a)证明能量平均值公式()[]()⎰⎰⎰⎰⎰⎰∞∞∞∞∞⋅ψ∇ψ-⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇=⎭⎬⎫⎩⎨⎧ψψ+ψ∇⋅ψ∇-ψ∇ψ⋅∇-=⎭⎬⎫⎩⎨⎧ψψ+ψ∇ψ-=ψ⎪⎪⎭⎫ ⎝⎛+∇-ψ=sd r r m r r V r r r m r d r r V r r r r r m r d r r V r r r m r d r r V m r r d E)()(2)()()()()(2)()()()()()()(2)()()()()(2)()(2)(*2**23***23*2*2322*3粒子在势场中运动的波函数平方可积()0)()(2*2=⋅ψ∇ψ⎰⎰∞s d r r m因此)()()()()()(23**23r w r d r r V r r r m r d E⎰⎰∞∞=⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇= 其中能量密度为)()()()()(2)(**2r r V r r r mr wψψ+ψ∇⋅ψ∇=(b)证明能量守恒公式S tr i t r t r i t r S r H t r r H t r S tr r V r r r V t r r t r r t r r t r r t r m tr r V r V t r t r r r t r m t w⋅-∇=∂ψ∂∂ψ∂-∂ψ∂∂ψ∂+⋅-∇=ψ∂ψ∂+ψ∂ψ∂+⋅-∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂⋅∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧∂ψ∂∇⋅ψ∇+ψ∇⋅∂ψ∂∇=∂∂)()()()()(ˆ)()(ˆ)()()()()()()()()()()()()()()(2)()()()()()()()(2*******22***2****2即0=⋅∇+∂∂S tw这表明能量守恒,其中能流密度为⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-=)()()()(2**2r t r r t r mS2.解:(a)证明概率不守恒{}{}()()⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+⋅∇-∇-=+∇-∇⋅∇-=+∇-∇-=-=⎭⎬⎫⎩⎨⎧∂∂+∂∂==τττττττττψψψψψψψψψψψψψψψψψψψψψψψψψψψψρ2*3**2*3**32*3*22*3***3**3*33222222)ˆ(ˆ1)(V r dS d imV r dr d im V r dr d im H H r d i t t r d r d dtdr r d dt dS⎰⎰⎰⎰⎰ψψ+⋅∇-=ψψ+⋅-=τττ2*332*322V r dj r d V r d S d j S⎰=τρ)(3r r d dtd⎰⎰+⋅∇-ττψψ2*332V r dj r d即022*≠ψψ=⋅∇+∂∂V j tρ这表明概率不守恒。
量子力学曾谨言练习题答案

量子力学曾谨言练习题答案量子力学是一门研究微观粒子行为的物理学分支,它与经典力学有着根本的不同。
曾谨言教授的《量子力学》教材是许多学生和学者学习量子力学的重要参考书籍。
以下是一些量子力学练习题的答案,供参考:1. 波函数的归一化条件:波函数的归一化条件是为了保证概率的守恒。
一个归一化的波函数满足以下条件:\[ \int |\psi(x)|^2 dx = 1 \]这意味着粒子在空间中任意位置出现的概率之和等于1。
2. 薛定谔方程:薛定谔方程是量子力学中描述粒子波函数随时间演化的基本方程。
对于一个非相对论性的单粒子系统,薛定谔方程可以写为:\[ i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m}\nabla^2 \psi + V\psi \]其中,\( \hbar \) 是约化普朗克常数,\( m \) 是粒子质量,\( V \) 是势能,\( \nabla^2 \) 是拉普拉斯算子。
3. 不确定性原理:海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。
其数学表达式为:\[ \Delta x \cdot \Delta p \geq \frac{\hbar}{2} \]这里,\( \Delta x \) 和 \( \Delta p \) 分别是位置和动量的不确定性。
4. 氢原子的能级:氢原子的能级是量子化的,并且可以用以下公式表示:\[ E_n = -\frac{13.6 \text{ eV}}{n^2} \]其中,\( n \) 是主量子数,\( E_n \) 是对应于 \( n \) 能级的能级能量。
5. 泡利不相容原理:泡利不相容原理指出,一个原子中的两个电子不能具有完全相同的四个量子数。
这意味着在同一个原子中,没有两个电子可以同时具有相同的主量子数、角量子数、磁量子数和自旋量子数。
6. 量子隧道效应:量子隧道效应是指粒子在经典力学中不可能穿越的势垒下,由于量子效应,粒子有一定的概率穿越势垒。
量子力学 第四版 卷一 (曾谨言 著)习题答案

第二章:函数与波动方程P69 当势能)(r V 改变一常量C 时,即c r V r V +→)()(,粒子的波函数与时间无关部分变否?能量本征值变否?(解)设原来的薛定谔方程式是0)]([2222=-+ψψx V E mdx d将方程式左边加减相等的量ψC 得:0]})([]{[2222=+-++ψψC x V C E mdx d这两个方程式从数学形式上来说完全相同,因此它们有相同的解)(x ψ, 从能量本征值来说,后者比前者增加了C 。
(证)E =υT = = =用高斯定理 中间一式的第一项是零,因为ψ假定满足平方可积条件,因而0>T 因此 V V T E >+=,能让能量平均值V V min >因此V E min >令ψψn=(本征态)则EnE =而VE nmin>得证2.1设一维自由粒子的初态()/00,x ip ex =ψ, 求()t x ,ψ。
解: () /2200,⎪⎪⎭⎫ ⎝⎛-=t m p x p i et x ψ2.2对于一维自由运动粒子,设)()0,(x x δψ=求2),(t x ψ。
(解)题给条件太简单,可以假设一些合理的条件,既然是自由运动,可设粒子动量是p ,能量是E ,为了能代表一种最普遍的一维自由运动,可以认为粒子的波函数是个波包(许多平面波的叠加),其波函数: p d ep t x i E px ip )()(21),(-∞-∞=⎰=φπψ (1)这是一维波包的通用表示法,是一种福里哀变换,上式若令0=t 应有 ex px i∞)0,(ψx δ)(将(2)(3(ψ,代入(4)(ψ p d eet x p i mx p m it timx ⎰∞-∞=--=)2(22221),(πψ利用积分απξαξ=⎰∞∞--d e 2: ti m et x ti m x ππψ221),(22=写出共轭函数(前一式i 变号):ti m et x timx -=-ππψ221),(22 t mt m t x πππψ22)2(1),(22=⨯=本题也可以用Fresnel 积分表示,为此可将(6)式积分改为:dp tmx p m t i dp t mx p m t 22)](2[sin )](2[cos ---⎰⎰∞∞-∞∞-用课本公式得timxetm i t x t x 2*2)1(21),(),(ππψψ=,两者相乘,可得相同的结果。
量子力学 第四版 卷一(曾谨言 著) 答案----第3章-1

2 2 α ⋅ e − α x 2 ⋅ H n+ 1 (α x ) n π ⋅ 2 ⋅ n!
α π ⋅2
n− 1
⋅ ( n − 1) !
⋅ ⋅
n − α 2x2 2 ⋅e ⋅ H n− 1 (α x ) 2 n + 1 − α 2x2 2 ⋅e ⋅ H n+ 1 (α x ) 2
n+ 1
π ⋅ 2 n+ 1 ⋅ ( n + 1) !
(1)
其中,归一化常数
α , π ⋅ 2 n ⋅ n!
α =
mω
(2)
H n (α x) 的递推关系为 ∴ xψ n ( x ) = An e − α = = = + =
2 2
H n + 1 (α x) − 2α xH n (α x) + 2nH n − 1 (α x) = 0. ⋅ xH n (α x ) =
1 mω 2 x 2 − qε x 2
( 1)
p2 1 H= + mω 2 x 2 − qε x = H 0 − qε x 2m 2 = An e − α
2 2
(2)
H 0 的本征函数为ψ
x 2
n
1 ( 0) H n (α x) ,本征值 E n = n + ω 2
现将 H 的本征值记为 E n ,本症函数记为 ϕ n ( x) 。 式(1)的势能项可以写成 其中 如作坐标平移,令 由于
3 2
sin
π ny y π nx x πn y sin sin z a a a
n x = n y = n z 时,能级不简并; n x , n y , n z 三者中有二者相等,而第三者不等时,能级一般为三重简并的。 n x , n y , n z 三者皆不相等时,能级一般为 6 度简并的。
量子力学习题答案(曾谨言版)

和任意,所以
ˆ ˆ ) BA ˆ ˆ ( AB
P74 习题3.3
解答:利用
[ p, x ] i mx
m
m1
[ x, pn ] i npn1
[ p, F ]
mn 0 m n C [ p , x ] p mn
i
mn 0
C
mn
mx
m 1
p i F x
Rnl ( r ) N nl l e 2F ( n l 1, 2l 2, )
园轨道(l = n-1)下的径向概率分布函数
n,n1 ( r ) Cr e
2 d n,n1 ( r ) 0 dr
2
2 n 2 Zr na
最概然半径 rn 由下列极值条件决定:
(b) 对两个全同的Femi子,体系波函数必须满足交换 反对称要求。
对Femi子不允许两个粒子处于相同的单态,因 此它们只能处于不同的单态,此时反对称化的体系 波函数: 1 (1, 2) [i (1) j (2) i (2) j (1)], i j 2 2 可能态数目 C3 3 所以,两个全同Femi子总的可能态数目3 (b) 对两个经典的粒子(可区分),其体系波函数无对称 性要求,即 (1, 2) i (1) j (2), i, j 1, 2, 3 可能态数目3 3 9
dp
( x, t ) (2 )
利用
1
e
t m 2 mx 2 [( p x) ] 2t 2m 2t i
dp
e d e
m 2 t e
i 2
i
4
所以
( x, t )
量子力学导论习题答案(曾谨言)

第十章 定态问题的常用近似方法10-1) 设非简谐振子的Hamilton 量表为'0H H H +=222220212x u dx d u H ω+-= 3'x H β=(β为实常数)用微扰论求其能量本征值(准到二级近似)和本征函数(准到一级近似)。
解:已知)0()0(0n n n E H ψψ=,()x H e N n x n n αψα2)0(22-=,()ω 21)0(+=n E n ,ωαu =()[]11121+-++=n n n n n x x ψψαψ ()()()()()[]22222112121+-++++++=n n n n n n n n n x x ψψψαψ()()()()()()()[]311333321113321221++--++++++++--=n n n n n n n n n n n n n n n x x ψψψψαψ计算一级微扰:n n n H E ψψ')1(=03==n n x ψψβ。
(也可由()⎰+∞∞-⋅==dx x x H En nn n32')1(βψ0=(奇)直接得出)计算二级微扰,只有下列四个矩阵元不为0:()()',33332122n n n n H n n n x --=--=αβψβψ',1331322n n n n H n n x --=⋅=αβψβψ ()',133111322n n n n H n n x ++=++⋅=αβψβψ ()()()',333332122n n n n H n n n x ++=+++⋅=αβψβψ计算2'knH:()()622',3821αβ--=-n n n Hnn6232',19αβn H n n =- 6232',189αβn H nn =+()()()622',38321αβ+++=+n n n Hnn又ω 3)0(3)0(=--n n E E ,ω =--)0(1)0(n n E E , ω -=-+)0(1)0(n n E E ,ω 3)0(3)0(-=-+n n E E ,∑-++=++=∴kk n knnnnnnnn E E HHEEEEE )0()0(2''')0()2()1()0(43222811303021ωβωu n n n ⋅++-⎪⎭⎫ ⎝⎛+=)0()0()0('')0()1()0(k kkn knnnnn E E H ψψψψψ∑-+=+=()()()()()()⎥⎦⎤⎢⎣⎡+++-+--+---=++--)0(3)0(1)0(1)0(33)0(321311133213122n n n n n n n n n n n n n n n ψψψψωαβψ10-2) 考虑耦合振子,'0H H H += 参 书.下册§9.2()2221222221220212x x u x x u H ++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-=ω 21'x x H λ-=(λ为实常数,刻画耦合强度) (a )求出0H 的本征值及能级简并度。
量子力学曾谨言习题答案第一章

量子力学常用积分公式 (1)dx e x an e x a dx e x axn ax n ax n ⎰⎰--=11 )0(>n (2) )cos sin (sin 22bx b bx a ba e bxdx e axax-+=⎰ (3) =⎰axdx e axcos )sin cos (22bx b bx a ba e ax++ (4)ax x a ax aaxdx x cos 1sin 1sin 2-=⎰ (5) =⎰axdx x sin 2ax a xaax a x cos )2(sin 2222-+(6)ax a xax aaxdx x sin cos 1cos 2+=⎰ (7ax a a x ax ax axdx x sin )2(cos 2cos 3222-+=⎰))ln(2222c ax x a ac c ax x ++++ (0>a ) (8)⎰=+dx c ax 2)arcsin(222x c a ac c ax x --++ (a<0) ⎰20sin πxdx n2!!!)!1(πn n - (=n 正偶数)(9) =⎰20cos πxdx n!!!)!1(n n - (=n 正奇数) 2π(0>a ) (10)⎰∞=0sin dx xax2π- (0<a )(11))1!+∞-=⎰n n ax a n dx x e (0,>=a n 正整数) (12)adx e ax π2102=⎰∞-(13) 121022!)!12(2++∞--=⎰n n ax n an dx e x π(14)1122!2+∞-+=⎰n ax n an dx e x (15)2sin 022adx xax π⎰∞= (16)⎰∞-+=222)(2sin b a abbxdx xe ax (0>a )⎰∞-+-=022222)(c o s b a b a b x d x xeax(0>a )第二章:函数与波动方程[1] 试用量子化条件,求谐振子的能量[谐振子势能2221)(x m x V ω=] (解)(甲法)可以用Wilson-Sommerfeld 的量子化条件式:⎰=nh pdq在量子化条件中,令⋅=x m p 为振子动量,x q = 为振子坐标,设总能量E则 22222x m m P E ω+= )2(222x m E m p ω-=代入公式得:nh dx x m E m =-⎰)2(222ω量子化条件的积分指一个周期内的位移,可看作振幅OA 的四倍,要决定振幅a ,注意在A 或B 点动能为0,2221a m E ω=,(1)改写为:nh dx x a m aa=-⎰-222ω (2)积分得:nh a m =πω2遍乘πω21得 ωπω n h E ==2[乙法]也是利用量子化条件,大积分变量用时间t 而不用位移x ,按题意振动角频率为ω,直接写出位移x ,用t 的项表示:t a x q ωsin ==求微分:tdt a dx dq ωωcos == (4) 求积分:t ma x m p ωωcos ==⋅(5) 将(4)(5)代量子化条件:nh tdt ma pdq T==⎰⎰0222cos ωω T 是振动周期,T=ωπ2,求出积分,得 nh a m =πω2 ωπωn n h E ==2 3,2,1=n 正整数#[2]用量子化条件,求限制在箱内运动的粒子的能量,箱的长宽高分别为.,,c b a(解)三维问题,有三个独立量子化条件,可设想粒子有三个分运动,每一分运动是自由运动.设粒子与器壁作弹性碰撞,则每碰一次时,与此壁正交方向的分动量变号(如ppxx-→),其余分动量不变,设想粒子从某一分运动完成一个周期,此周期中动量与位移同时变号,量子化条件:p p n q p xax xxxadx h d 220===⎰⎰ (1)ppn q p yby y yyb dy h d 220===⎰⎰ (2)p pn q p zcz z zzc dz hd 220===⎰⎰(3)p p p zyx,,都是常数,总动量平方222z y x p p p p ++=总能量是:)(2122222z y x p p p mm p E ++===])2()2()2[(21222ch b h a h m n n n z y x ++ =])()()[(82222cb a m h n n n z y x ++ 但3,2,1,,=n n n z y x 正整数.#[3] 平面转子的转动惯量为I ,求能量允许值.(解)解释题意:平面转子是个转动体,它的位置由一坐标(例如转角ϕ)决定,它的运动是一种刚体的平面平行运动.例如双原子分子的旋转.按刚体力学,转子的角动量I ω,但⋅=ϕω是角速度,能量是221ωI =E 利用量子化条件,将p 理解成为角动量,q 理解成转角ϕ,一个周期内的运动理解成旋转一周,则有nh d pdq =I =I =⎰⎰ωπϕωπ220(1)(1) 说明ω是量子化的(2) I=I =n nh πω2 (3,2,1=n ……..) (2) (3) 代入能量公式,得能量量子化公式:I=I I =I =2)(2212222 n n E ω (3)#[4]有一带电荷e 质量m 的粒子在平面内运动,垂直于平面方向磁场是B,求粒子能量允许值.(解)带电粒子在匀强磁场中作匀速圆周运动,设圆半径是r ,线速度是v ,用高斯制单位,洛伦兹与向心力平衡条件是:rm v c Bev 2= (1) 又利用量子化条件,令=p 电荷角动量 =q 转角ϕnh mrv mrvd pdq ===⎰⎰πϕπ220(2)即 nh mrv = (3) 由(1)(2)求得电荷动能=mcnBe mv 2212 = 再求运动电荷在磁场中的磁势能,按电磁学通电导体在磁场中的势能=cBr ev c c *****2π==场强线圈面积电流场强磁矩,v 是电荷的旋转频率, r v v π2=,代入前式得运动电荷的磁势能=mcnBe 2 (符号是正的) 点电荷的总能量=动能+磁势能=E=mcnBe 2 ( 3,2,1=n )#[5]对高速运动的粒子(静质量m )的能量和动量由下式给出:2221c v mc E -=(1)2221c v mv p -=(2)试根据哈密顿量 2242p c c m E H +== (3)及正则方程式来检验以上二式.由此得出粒子速度和德布罗意的群速度相等的关系.计算速度并证明它大于光速.(解)根据(3)式来组成哈氏正则方程式组:pqiiH ∂∂=⋅,本题中v qi=⋅,p p i=,因而224222242pc c m p c p c c m pv +=+∂∂= (4)从前式解出p (用v 表示)即得到(2).又若将(2)代入(3),就可得到(1)式. 其次求粒子速度v 和它的物质波的群速度vG间的关系.运用德氏的假设: k p =于(3)式右方, 又用ω =E 于(3)式左方,遍除h :)(22242k k c c m ωω=+=按照波包理论,波包群速度vG是角频率丢波数的一阶导数:22242k c c m kv G +∂∂==22422222422pc c m p c k c c m k c +=+最后一式按照(4)式等于粒子速度v ,因而v vG=。
量子力学导论习题答案曾谨言

第九章 力学量本征值问题的代数解法9—1) 在8.2节式(21)中给出了自旋(21)与轨迹角动量(l )耦合成总角动量j 的波函数j ljm φ,这相当于21,21===s j l j 的耦合。
试由8.2节中式(21)写出表9.1(a )中的CG 系数jm m m j 21121解:8.2节式(21a )(21b ):()21),0( 21+=≠-=m ml l j jjljm φ⎪⎪⎭⎫ ⎝⎛-+++=+11121lm lm Y m l Y m l l ()⎪⎪⎪⎭⎫⎝⎛-++---+=+=21,2121,212121,21j j m j j m j j Y m j Y m j j m j m l j (21a ) ()21-=j ljljm φ⎪⎪⎭⎫⎝⎛++---=+11121lm lm Y m l Y m l l ()⎪⎪⎪⎭⎫⎝⎛+++--+++-++=≠-=21,2121,211122121),0( 21j j m j j m j j Y m j Y m j j m j m l l j (21b )()21++j l此二式中的l 相当于CG 系数中的1j ,而212==s j ,21,~,,~21±=m m m m j 。
因此,(21a )式可重写为jm ∑=222112211m jm m j m j m j m j212121212121212111111111--+=m j jm m j m j jm m j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛++-⎪⎪⎭⎫ ⎝⎛++++=+=212112212121122111211111211121121),21(m j j m j m j j m j j l j a (21a ’) 对照CG 系数表,可知:当21121+=+=j j j j ,212=m 时 ,21111112212121⎪⎪⎭⎫ ⎝⎛++=+j m j jm m j 而212-=m 时,21111112212121⎪⎪⎭⎫ ⎝⎛+-=-+j m j jm m j 对于21211-=-=j l j 的(21b )式,有21111111221,212121⎪⎪⎭⎫ ⎝⎛+--=-+j m j m j m j21111111221,212121⎪⎪⎭⎫ ⎝⎛++=--+j m j m j m j9-2)设两个全同粒子角动量21j j j ==,耦合成总角动量J ,JMj2ψ()()21212121jm jm m m JM m j jm ψψ∑=(1)利用CG 系数的对称性,证明()JMjJj JM j p 22212ψψ--=由此证明,无论是Bose 子或Fermi 子,J 都必须取偶数证:由式(1),JM j p 212ψ()()12212121jm jm m m JM jm jm ψψ∑=把21m m ↔, ()()12122112jm jm m m JM jm jm ψψ∑=利用CG 系数的对称性 ()()()21212112212jm jm m m Jj JM m j m j ψψ∑--=()JMjJj 22ψ--= (2)对于Fermi 子,=j 半奇数,=j 2奇数,但要求ψψ-=12p , 即要求()12-=--Jj ,所以J 必须为偶数。
《量子力学导论》习题答案(曾谨言版-北京大学)1

第一章 量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动, ⎩⎨⎧<<><∞=ax ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系 λ/h p = (2) 而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量 ⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。
提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:221()2x a E V x m a ω===。
量子力学-第四版-卷一-(曾谨言-著)习题答案第5章-2

t'=t⑴
势能在K'K两坐标系中的表示式有下列关系
V'(x',t')=V'(x-vt,t)=V(x,t)⑵
证明若在K'中薛定谔方程式是
则在K'中:
其中: ⑶
[证明]从伽利略变换定义可知,在⑴式中当t=0时,x=x',t=t',因此在时刻t=0一点的波函数 与 相重合,这个关系和§5.1⑵的海森伯,薛定谔表象变换:
沿 方向运动的自由粒子,在伽利略变换下,动量、能量的变换关系为
(14)
据此, 系和 系中相应的平面波波函数为
, (15)
(1)、(14)代入(15),即得
此即(13)式,由于这个变换关系仅取决于 和 系的相对速度 ,而与粒子的动量 无关,所以上式适用于任何自由粒子。它正是所求的变换关系。
5.16——2.1
5.17——2.2
5.17设Hamilton量 。证明求和规则
是 的一个分量, 是对一切定态求和, 是相应于 态的能量本征值, 。
证: ( )
又
,
。
不难得出,对于 分量,亦有同样的结论,证毕。
5.18——2.4
5.18设 为厄米算符,证明能量表象中求和规则为
(1)
证:式(1)左端
(2)
计算中用到了公式 。
5.15——参考7.17
5.15证明schrödinger方程变换在Galileo变换下的不变性,即设惯性参照系 的速度 相对于惯性参照系 运动(沿 轴方向),空间任何一点两个参照系中的坐标满足下列关系:
。(1)
势能在两个参照系中的表示式有下列关系
(2)
证明schrödinger方程在 参照系中表为
本题和三维自由场类似,差别在于均匀二维势场,但它不影响力学量的守恒.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动, ⎩⎨⎧<<><∞=ax ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系 λ/h p = (2) 而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量 ⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。
提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:221()2x a E V x m a ω===。
a - 0 a x由此得 2/2ωm E a =, (2)a x ±=即为粒子运动的转折点。
有量子化条件2222222aaap dx dx m m a m a nhωπωωπ++--⋅===⋅==⎰⎰⎰得ωωπm nm nh a 22==(3) 代入(2),解出 ,3,2,1,==n n E n ω (4)积分公式:c au a u a u du u a ++-=-⎰arcsin 22222221.4设一个平面转子的转动惯量为I ,求能量的可能取值。
提示:利用,,2,1,20==⎰n nh d p πϕϕ ϕp 是平面转子的角动量。
转子的能量I p E 2/2ϕ=。
解:平面转子的转角(角位移)记为ϕ。
它的角动量.ϕϕI p =(广义动量),ϕp 是运动惯量。
按量子化条件,3,2,1,220===⎰m mh p dx p ϕπϕπmh p =∴ϕ,因而平面转子的能量I m I p E m 2/2/222==ϕ,,3,2,1=m第二章 波函数与Schrödinger 方程2.1设质量为m 的粒子在势场)(r V中运动。
(a )证明粒子的能量平均值为 ω⋅=⎰r d E 3,ψψψψωV m**22+∇= (能量密度)(b )证明能量守恒公式 0=⋅∇+∂∂s t w ⎪⎪⎭⎫ ⎝⎛∇∂∂+∇∂∂-=**22ψψψψt t m s (能流密度) 证:(a )粒子的能量平均值为(设ψ已归一化)V T r d V m E +=⎪⎪⎭⎫ ⎝⎛+∇-=⎰322*2ψψ (1)⎰=ψψV r d V *3 (势能平均值) (2)()()()[]⎰⎰∇⋅∇-∇⋅∇-=⎪⎪⎭⎫⎝⎛∇-=ψψψψψψ**3222*32)(2动能平均值r d mm r d T 其中T 的第一项可化为面积分,而在无穷远处归一化的波函数必然为0。
因此ψψ∇⋅∇=⎰*322r d m T (3)结合式(1)、(2)和(3),可知能量密度,2**2ψψψψωV m+∇⋅∇= (4) 且能量平均值 ⎰⋅=ωr d E 3 。
(b )由(4)式,得...2**.....2*22**..2222*2222V V t m t t t tV V m t t t t t t s V V t m t m s E ωψψψψψψψψψψψψψψψψψψψψψψψψ⎡⎤∂∂*∂∂*∂⎢⎥=∇⋅∇+∇⋅∇++∂⎢∂∂⎥∂∂⎣⎦⎡⎤⎛⎫⎛⎫∂*∂∂*∂∂*∂⎢⎥ ⎪ ⎪=∇⋅∇+∇-∇+∇++⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫∂*∂=-∇⋅+-∇++-∇+ ⎪ ⎪∂∂⎝⎭⎝⎭=-∇⋅+..*t t ψψψψ⎛⎫∂*∂ ⎪+ ⎪∂∂⎝⎭ρt E s ∂∂+⋅-∇=(ρ :几率密度)s⋅-∇= (定态波函数,几率密度ρ不随时间改变)所以0=⋅∇+∂∂s tw。
2.2考虑单粒子的Schrödinger 方程()()()()[]()t r r iV r V t r mt r t i ,,2,2122ψψψ++∇-=∂∂ (1) 1V 与2V 为实函数。
(a )证明粒子的几率(粒子数)不守恒。
(b )证明粒子在空间体积τ内的几率随时间的变化为()⎰⎰⎰⎰⎰⎰⎰⎰+⋅∇-∇-=ττψψψψψψψψ*32***322r d V S d im r d dt d S证:(a )式(1)取复共轭, 得()*21*22*2ψψψiV V mt i -+∇-=∂∂- (2) ⨯*ψ(1)-⨯ψ(2),得()()()ψψψψψψψψψψψψψψ*2**22**22*2*2222iV mV i mt i +∇-∇⋅∇-=+∇-∇-=∂∂ ()()()ψψψψψψψψ*2***22V im t +∇-∇⋅∇-=∂∂∴(3) 即 022≠=⋅∇+∂∂ρρV j t , 此即几率不守恒的微分表达式。
(b )式(3)对空间体积τ积分,得()()()()ψψψψψψψψψψψψψψττττ*23***233***32222rV d S d im rV d r d im r d t S ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+⋅∇-∇-=+∇-∇⋅∇-=∂∂上式右边第一项代表单位时间内粒子经过表面进入体积τ的几率(S d j⋅-=⎰⎰ ) ,而第二项代表体积τ中“产生”的几率,这一项表征几率(或粒子数)不守恒。
2.3 设1ψ和2ψ是Schrödinger 方程的两个解,证明()()0,,2*13=⎰t r t r r d dt d ψψ。
证: 12212ψψ⎪⎪⎭⎫ ⎝⎛+∇-=∂∂V m t i (1) 22222ψψ⎪⎪⎭⎫ ⎝⎛+∇-=∂∂V m t i (2) 取(1)之复共轭: *122*12ψψ⎪⎪⎭⎫ ⎝⎛+∇-=∂∂-V m t i (3) ⨯2ψ(3)⨯-*1ψ(2),得()()22*1*12222*12ψψψψψψ∇-∇-=∂∂-mt i 对全空间积分:()()[]⎰⎰∇-∇-=-22*1*122322*132,,ψψψψψψr d m t r t r r d dt d i()()()()()[]⎰∇⋅∇+∇⋅∇-∇-∇⋅∇-=2*1*122*1*12322ψψψψψψψψr d m()[]⎰∇-∇⋅∇-=2*1*12322ψψψψr d m()022*1*122=⋅∇-∇-=⎰S d mψψψψ,(无穷远边界面上,0,21→ψψ) 即 ()()0,,.2*13=⎰t r t r r d dtd ψψ。
2.4)设一维自由粒子的初态()/00,x ip ex =ψ, 求()t x ,ψ。
解: () /2200,⎪⎪⎭⎫⎝⎛-=t m p x p i e t x ψ2.5 设一维自由粒子的初态()()x x δψ=0,,求()2,t x ψ。
提示:利用积分公式()()2sin cos 22πξξξξ==⎰⎰+∞∞-+∞∞-d d或 [][]4exp exp 2ππξξi d i =⎰+∞∞-。
解:作Fourier 变换: ()()⎰+∞∞-=dp e p x ipxϕπψ210,, ()()πδπϕπϕ21)(210,21===⎰⎰+∞∞--+∞∞--dx e x dx ex p ipx ipx ,()()()⎰+∞∞--=∴dp e p t x Et px i/21,ϕπψ (m p E 22=) ⎰∞+∞-⎪⎪⎭⎫⎝⎛--=dp e px t mp i 2221π (指数配方)⎰+∞∞-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=dp t mx p m it e timx222ex p 212π 令 222⎪⎭⎫⎝⎛-=t mx p m t ξ,则()⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=⋅⋅=⋅=-+∞∞--⎰42exp 2221221,24/22222ππππξπψπξt mx i t me e tm d e t m et x i t imx i timx()tmt x πψ2,2=。
2.6 设一维自由粒子的初态为()0,x ψ,证明在足够长时间后,()[]⎪⎭⎫⎝⎛⋅⎥⎦⎤⎢⎣⎡⋅-=t mx t imx i t m t x ϕπψ2exp 4exp ,2式中 ()()⎰+∞∞--=dx ex k ikx0,21ψπϕ是()0,x ψ的Fourier 变换。
提示:利用 ()x e e xi i δπααπα=-∞→24/lim。
证:根据平面波的时间变化规律()t kx i ikx e e ω-→ , m k E 22 ==ω,任意时刻的波函数为()()()dk e k t x mtkkx i 2/221, -+∞∞-⎰=ϕπψ()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⋅=⎰∞+∞-22/2ex p 212t mx k m t i k dk etimx ϕπ(1)当时间足够长后(所谓∞→t ) ,上式被积函数中的指数函数具有δ函数的性质,取m t 2 =α , ⎪⎭⎫⎝⎛-=t mx k u , (2) 参照本题的解题提示,即得()()⎰+∞∞--⎪⎭⎫ ⎝⎛-⋅≈k d t mx k k e t m et x i timx δϕππψπ4/2221,2 ⎪⎭⎫⎝⎛=-t mx e e t m t imx i ϕπ2/4/2 (3) ()22,⎪⎭⎫ ⎝⎛≈t mx t m t x ϕψ (4) 物理意义:在足够长时间后,各不同k 值的分波已经互相分离,波群在x 处的主要成分为t mx k =,即m kt x =,强度()2k ϕ∝,因子t m 描述整个波包的扩散,波包强度t 12∝ψ。
设整个波包中最强的动量成分为0k ,即0k k =时()2k ϕ最大,由(4)式可见,当t 足够大以后,2ϕ的最大值出现在0k t mx = 处,即m t k x 0 =处,这表明波包中心处波群的主要成分为0k 。