周期性边界条件

周期性边界条件
周期性边界条件

2.3.4周期性流动与换热

如果我们计算的流动或者热场有周期性重复,或者几何边界条件周期性重复,就形成了周期性流动。FLUENT 可以模拟两类周期性流动问题。第一,无压降的周期性平板问题(循环边界);第二,有压降的周期性边界导致的完全发展或周期性流向流动问题(周期性边界)。 流向周期性流动模拟的条件: 1, 流动是不可压的

2, 几何形状必须是周期性平移

3, 如果用coupled solver 求解,则只能给定压力阶跃;如果是Segregated solver ,可以给定

质量流率或者压力阶跃。

4, 周期性流动中不能考虑进口和出口有质量差,也不考虑过程中的额外源项或者稀疏相源

项。

5, 只能计算进口出口没有质量流率变化的组分问题。但不能考虑化学反应。 6, 不能计算稀疏相或者多相流动问题。

如果在这过程中计算有换热问题,则还必须满足以下条件: 1, 必须用segregated solver 求解

2, 热边界条件必须是给定热流率或者给定壁面温度。对于一个具体的问题,热边界条件只

能选择一个,而不能是多热边界条件问题。对于给定温度热边界条件,所有壁面的温度必须相同(不能有变化)。对于给定热流率边界条件,不同壁可以用不同值或曲线来模拟。

3, 对于有固体区域的问题,固体区域不能跨越周期性平板。

4, 热力学和输运特性(热容,热导系数,粘性系数,密度等)不能是温度的函数(所以不

能模拟有化学反应流动问题)。但输运特性(有效导热系数,有效粘性系数)可以随空间有周期性变化,因此可以对有周期性湍流输运特性不同的流动问题有模拟能力。

2.3.5 计算流向周期性流动问题的步骤:

通常,可以先计算周期性流动到收敛,这时候不考虑温度场。下一步,冻结速度场而计算温度场。步骤如下:

1, 建立周期性边界条件网格

2, 输入热力学和分子输运特性参数

3, 指定周期性压力梯度或者确定通过周期性边界的质量流量 4, 计算周期性流动场。求解连续,动量(湍流量)方程。 5, 指定热边界条件(等温或者给定热流密度) 6, 给定进口体平均温度

7, 求解能量方程(其它方程不求解,只求解能量方程),得到周期性温度场。

2.3.5.1流向周期性流动理论

周期性速度定义

对于位置矢量r

,周期性速度定义为:

...)2()()(=+=+=L r u L r u r u

2-17

...)2()()(=+=+=L r v L r v r v

2-18

...)2()()(=+=+=L r w L r w r w

2-19

其中,L

是计算区域内周期性长度矢量。

2.3.5.2 周期性流向周期压力

上面方程中压力不是周期性的,而压力降是周期性的。即:

...)2()()()(=--+=+-=?L r p L r p L r p r p p

2-20

如果选择coupled solver ,压降p ?是常数;但对Segregated solver 方法求解,计算区域内的压力梯度可以分解为两部分:梯度的周期性分量,)(~r p

?,梯度的线性变化量,L

L β。

即:

)(~)(r p L

L

r p

?+=?β 2-21

周期性压力()(~r p

)是但压力减去线性变化压力得到的值。压力的线性变化分量r

β是导致一个力作用于流体的动量方程。由于β并不能事先知道,只有通过在给定区域积分求出的流量与给定的的质量流量一致,才能确定。在压力修正的SIMPLE, SIMPLEC 和PISO 运算法则中都出现β,根据计算得到的质量流量与实际流量之差得到。

2.3.5.3 用Segregaed solver 求解流向周期性流动的用户设置

要计算给定质量流量或压降的空间周期性流动问题,首先要建立计算网格。网格要求有平移周期性边界条件。在define-periodic conditions 面板上第一如下参数:

1, 决定是给定质量流量还是压力梯度。(Specify mass flow, Specify pressure Gradient ) 2, 给出质量流量或压力梯度。如果你选择了给定质量流量,你也可以给出压力梯度(假

定值),但不是必须的。如果给定值合理,可以加速流动场收敛速度。对计算结果

也没有影响。对于轴对称问题,质量流量是2π弧度的质量流量。

3, 通过定义流向的X ,Y ,Z 点来(或者二维时候的X ,Y )定义流动方向。流动方向

是从初始点到指定点的方向上,该方向必须和周期性平移边界平行。 4, 如果确定了质量流量,FLUENT 需要计算出压力梯度β。可以通过改变Relaxation

Factor 和Number of Iterations (压力修正方程迭代次数)或者给出估计的β用以控制计算过程,这些都在define-periodicty conditions 面板上做。

用Coupled solver 方法求解周期性流动场

网格处理和前面类似,参数设置方面,需要: 1, define-boundary condition 2, 给定周期性压降

2.3.6对周期性流动问题计算过程的监视

如果是给定质量流量问题,可以在计算过程中观察压力降β(Statistic Monitors panel )

2.3.7 给定温度边界条件下的周期性传热计算

要计算周期性流动中的传热问题,必须选用Segregated solver 方法。对于给定壁面温度条件,现在我们假设壁面温度是常数,则温度为:[L119]

wall

inlet

bulk

wall T T T r T --=

,)(

θ 2-22

进口体温定义为:????=A

A inlet

bulk

A

d V A

d V T T

ρρ,,积分在周期性边界的进口上(A ), 这里的θ在计算区域的L 长度上满足周期性变化条件。

2.3.8 壁面温度确定周期性传热设置

1, 求解能量方程(define-models-Energy )

2, 给出壁面温度。所有固体边界的温度相同,所有边界(除了周期性边界)必须用该温度

的壁面封闭。Define-boundary conditions 3, 定义固体区域和固体温度。固体区域内不能有热源。Define-boundary conditions 4, 设定流体物性(密度,热容,粘性系数,导热系数等),但不能随温度变化。Define-Materials 5, 给定周期性进口上游的进口体平均温度(不能和壁面温度相同)define-periodic conditions

有了以上设置后就可以迭代求解了。最好的方法是先求解流场,等流场收敛后,再冻结流场只求解温度场。再给定处温度场时,温度值在壁温与进口体平均温度之间。 可以通过监视进出口平均体温度之比e x i t

b

u l k w

a l l

i n l e t b u l k w a l l

T T T T ,,--=θ。Define-statistic

monitors-per/bulk-temp-ratio

关于周期性边界条件,《固体物理学》的能带理论这章有详细介绍,容易明白的,

你去图书馆借一下吧。

简单来说,比如材料的二维原子平面的排列具有周期性,即可以看成一个单元四边形平移就能得到这个原子平面;这样,你在分析问题时,就可以只研究这个小

单元四边形了,因为它有代表性,重复性,而它的四条边对应的条件就是周期性边界条件了。

这是简化问题的手段,缩小要计算处理的数据量。

作者:plum888

我来瞅瞅:)

作者:liqinggang

你首先要定义区域,域中需要指定流体或者固体的种类;然后再定义边界条件(入口、出口、开放式、壁面或者对称面),当然定义边界条件要满足能量守恒和质量守恒!

作者:shuangqingx

周期性边界在gambit里先使用wall代替,并且生成网格时记得是要link mesh 的;

在fluent里,使用text-command进行如下操作:

grid...modify-zones... 可以接下来利用list-zones显示所有cell的ID,因为接下来的操作需要对应cell的ID进行;

make-periodic...

提示,creat periodic zone [],输入周期性边界其中一个边的ID;

提示,shadow zone [],输入周期性边界另一个边的ID;

提示,rotational? [If not, transitional],输入yes/no,回车/或者直接回车;

OK了。

TOP

2#大中小发表于 2011-5-31 10:19 只看该作者

问题:为什么能量方程的残差曲线震荡很大,不能收敛?试着把能量方程的松弛因子调到0.9,虽然曲线不再震荡,但算出的结果明显与经验公式结果不符合,一般来说能量方程的松弛因子都是用1比较合理,如果说是受舍入误差影响,那么我尝试把壁面和流体的进口温度温差增大到150K,结果还

是震荡,版主帮我看看问题出在哪里?谢谢啦

2011-5-31 10:19

QQ截图未命名.jpg (9.75 KB)

2011-5-31 10:20

QQ截图未命名.jpg (80.74 KB)

2011-5-31 10:21

QQ截图未命名.jpg (54.22 KB)

2011-5-31 10:23

QQ截图未命名.jpg (37.19 KB)

2011-5-31 10:23

QQ截图未命名.jpg (62.77 KB)

2011-5-31 10:24

QQ截图未命名.jpg (67.07 KB)

2011-5-31 10:25

请问fluent周期性边界条件和对称边界条件的区别

按照说明,对称边界条件的特点是边界上速度为零,其他物理量梯度为零。周期性边界条件特点是物理模型和物理量具有周期性重复的特点。

有几个问题没搞清楚

1.有些周期性边界条件是不是也可以设定为对称性边界条件?对下面图中的情况(只画了端面的小孔,是进口),是采用周期性边界条件还是对称性边界条件呢?是否可以采用四分之一圆柱的周期性边界条件?或者采用八分之一圆柱的对称性边界条件?

2.fluent的周期性边界条件传热算例中,流动方向应该有压降的,为什么采用无压降的周期性边界条件呢?

谢谢!

Abaqus学习笔记.

Abaqus 使用日记 Abaqus标准版共有“部件(part)”、“材料特性(propoterty)”、“装配(assemble)”、“计算步骤(step)”、“交互(interaction)”、“加载(load)”、“单元划分(mesh)”、“计算(job)”、“后处理(visualization)”、“草图(sketch)”十大模块组成。 建模方法: 一个模型(model)通常由一个或几个部件(part)组成,“部件”又由一个或几个特征体(feature)组成,每一个部分至少有一个基本特征体(base feature),特征体可以是所创建的实体,如挤压体、切割挤压体、数据点、参考点、数据轴,数据平面,装配体的装配约束、装配体的实例等等。 1.首先建立“部件” (1)根据实际模型的尺寸决定部件的近似尺寸,进入绘图区。绘图区根据所输入的近似尺寸决定网格的间距,间距大小可以在edit菜单sketcher options选项里调整。 (2)在绘图区分别建立部件中的各个特征体,建立特征体的方法主要有挤压、旋转、平扫三种。同一个模型中两个不同的部件可以有同名的特征体组成,也就是说不同部件中可以有同名的特征体,同名特征体可以相同也可以不同。部件的特征体包括用各种方法建立的基本特征体、数据点(datum point)、数据轴(datum axis)、数据平面(datum plane)等等。(3)编辑部件可以用部件管理器进行部件复制,重命名,删除等,部件中的特征体可以是直接建立的特征体,还可以间接手段建立,如首先建立一个数据点特征体,通过数据点建立数据轴特征体,然后建立数据平面特征体,再由此基础上建立某一特征体,最先建立的数据点特征体就是父特征体,依次往下分别为子特征体,删除或隐藏父特征体其下级所有子特征体都将被删除或隐藏。××××特征体被删除后将不能够恢复,一个部件如果只包含一个特征体,删除特征体时部件也同时被删除××××× 2.建立材料特性 (1)输入材料特性参数弹性模量、泊松比等 (2)建立截面(section)特性,如均质的、各项同性、平面应力平面应变等等,截面特性管理器依赖于材料参数管理器 (3)分配截面特性给各特征体,把截面特性分配给部件的某一区域就表示该区域已经和该截面特性相关联 3.建立刚体 (1)部件包括可变形体、不连续介质刚体和分析刚体三种类型,在创建部件时需要指定部件的类型,一旦建立后就不能更改其类型。采用旋转方式建立部件,在绘制轴对称部件的外形轮廓时不能超过其对称轴。 (2)刚体是不能够施加质量、惯性轴等特性的,建立刚体后必须给刚体指定一个参考点(reference point)。在加载模块里对参考点施加约束和定义其运动,对参考点施加的荷载或运动就相当于施加给了整个刚体。 4.模型装配 (1)在装配(assemble)模块里首先建立部件实例(part instance),一个部件实例可以看作部件的代表,但并不是原部件的拷贝。实例一直和原部件保持关联,当原部件几何形状发生变化时,实例也发生相应变化。不能对部件实例直接编辑,一个装配模型可以包含一个部件的多个实例。所有装配模型中的实例都是该装配模型的特征体,在创建第一个实例时所生成的装配模型总体坐标系也是该装配模型的一个实例。 同一个部件中所有特征体在装配模块中对该部件建立实例时会形成一个整体,也即形成了装配模型中一个特征体。选择该实例时,该实例在装配之前原部件中所有特征体都被选择了,原部件中所有特征体在装配后形成了一个整体。

ABAQUS-二次开发-边界条件

这个例子模拟三峡库区的水位涨落时,涉水土质滑坡的渗流场分布情况的,是以前做的,蛮好玩的。如果大家关心些新闻的话,三峡库区有涨水、蓄水、排水、枯水这个一年一次循环的周期,关键问题就在于怎么在数值模拟中考虑这个 时间单位这里用的是“天”,任何问题,只要把单位统一化,就可以实现自己所定义的单位系统下的问题,这个大家应该是很熟悉的了。 t=2天 t=4天 t=8天 t=16天 t=20天t=26天 图2 浸润线位置随涨水时间t变化图

数值模拟中实现这个问题,需要对边界条件上加载孔隙水压力的方式动手脚了,首先把时间定下来,然后把每个时间对应的水位高度定下来,然后就是写对应的程序了,关键就在于,需要在各个位置的节点处定义不同的pp_t幅值曲线。这个问题使用子程序会很方便,也可以不用,只需要定义一堆关键字吧,但是GUI方式是完全没法实现的。其实软件关键字的背后也就是他的脚本语言,就好像是FLAC里写一句struct cable,这个命令本身只有给你看懂那么一个傻瓜意义意义。看看关键字怎么定义的: *AMPLITUDE,name=down1,VALUE=ABSOLUTE 0,0,30,-300,180,-300 *AMPLITUDE,name=down2,VALUE=ABSOLUTE 0,10,1,0,30,-290,180,-290 *AMPLITUDE,name=down3,VALUE=ABSOLUTE 0,20,2,0,30,-280,180,-280 *AMPLITUDE,name=down4,VALUE=ABSOLUTE 0,30,3,0,30,-270,180,-270 *AMPLITUDE,name=down5,VALUE=ABSOLUTE 0,40,4,0,30,-260,180,-260 *AMPLITUDE,name=down6,VALUE=ABSOLUTE 0,50,5,0,30,-250,180,-250 *AMPLITUDE,name=down7,VALUE=ABSOLUTE 0,60,6,0,30,-240,180,-240 *AMPLITUDE,name=down8,VALUE=ABSOLUTE 0,70,7,0,30,-230,180,-230 *AMPLITUDE,name=down9,VALUE=ABSOLUTE 0,80,8,0,30,-220,180,-220 *AMPLITUDE,name=down10,VALUE=ABSOLUTE 0,90,9,0,30,-210,180,-210 *AMPLITUDE,name=down11,VALUE=ABSOLUTE 0,100,10,0,30,-200,180,-200 *AMPLITUDE,name=down12,VALUE=ABSOLUTE 0,110,11,0,30,-190,180,-190 *AMPLITUDE,name=down13,VALUE=ABSOLUTE 0,120,12,0,30,-180,180,-180 *AMPLITUDE,name=down14,VALUE=ABSOLUTE 0,130,13,0,30,-170,180,-170 *AMPLITUDE,name=down15,VALUE=ABSOLUTE 0,140,14,0,30,-160,180,-160 *AMPLITUDE,name=down16,VALUE=ABSOLUTE

COMSOL周期性边界条件的应用

COMSOL周期性边界条件的应用 在将真实的物理问题转化为仿真模型时,为了通过有限的计算资源获得尽可能高的计算精度,模型简化是必要的。模型简化的前提是所模拟的物理问题具有结构、材料属性及边界条件的对称性或均匀性,以此为基础,可通过特定的方程及边界条件建立模型,例如降维方程,镜像/周期性/旋转对称边界条件,或根据工程经验将某些计算域简化为边界等等。 当处理空间或时间上具有周期性的物理问题时,采用周期性边界条件(Periodic/Cyclic Condition),可将复杂结构的模拟简化为周期单元,在不失精确度的前提下,大大降低计算量。 COMSOL提供的周期性边界条件包括四种类型: ?连续性周期边界(Continuity),指在源和目标边界上的场值相等; ?反对称周期边界(Antiperiodicity),源和目标边界上场值符号相反; ?弗洛奎特周期性边界(Floquet periodicity),源和目标边界上场值相差一个位相因子,位相因子由波矢和边界相对距离确定。Continuity和Antiperiodicity边界可以认 为是Floquet periodicity边界在位相分别为0和π情况下的两个特例。 ?循环对称性边界(Cyclic Symmetry),源和目标边界上场值相差一个位相因子,位相因子由计算域所对应的扇形角和角向模式数决定。 以下是几个典型应用: 1.微纳光学领域内的光子晶体(Photonic Crystal)、表面等离子体激元(Surface Plasmon) 阵列结构及超材料(Metamaterial),这几种结构均由空间上周期性重复的散射体构 成,当计算透射率及能带结构时,常常可采用Floquet perioidcity边界将结构简化。 超材料能带分析 Metamaterial.mph 2.作为压电传感器件的声表面波器件(Surface Acoustic Wave, SAW)的本征频率问题 计算。

fluent边界条件(二)

周期性边界条件 周期性边界条件用来解决,物理模型和所期待的流动的流动/热解具有周期性重复的特点。FLUENT提供了两种类型的周期性边界条件。第一种类型不允许通过周期性平面具有压降(对于FLUENT4用户来说:这一类型的周期性边界是指FLUENT4中的圆柱形边界)。第二种类型允许通过平移周期性边界具有压降,它是你能够模拟完全发展的周期性流动(在FLUENT4中是周期性边界)。 本节讨论了无压降的周期性边界条件。在周期性流动和热传导一节中,完全发展的周期性模拟能力得到了详尽的描述。 周期性边界的例子 周期性边界条件用于模拟通过计算模型内的两个相反平面的流动是相同的情况。下图是周期性边界条件的典型应用。在这些例子中,通过周期性平面进入计算模型的流动和通过相反的周期性平面流出流场的流动是相同的。正如这些例子所示,周期性平面通常是成对使用的。 Figure 1: 在圆柱容器中使用周期性边界定义涡流 周期性边界的输入 对于没有任何压降的周期性边界,你只需要输入一个东西,那就是你的所模拟的几何外形是旋转性周期还是平移性周期。(对于有周期性压降的周期流还要输入其它的东西,请参阅周期性流动和热传导一节。) 旋转性周期边界是指关于旋转对称几何外形中线形成了一个包括的角度。本节中的图一就是旋转性周期。平移性周期边界是指在直线几何外形内形成周期性边界。下面两图是平移性周期边界:

Figure 1: 物理区域 Figure 2: 所模拟的区域 对于周期性边界,你需要在周期性面板(下图)中指定平移性边界还是旋转性边界,该面板是从设定边界条件菜单中打开的。 Figure 3: 周期性面板 (对于耦合解算器,周期性面板中将会有附加的选项,这一选项允许你指定压力跳跃,详细内容请参阅周期性流动和热传导一节。) 如果区域是旋转性区域,请选择旋转性区域类型。如果是平移性就选择平移性区域类型。对

Abaqus学习笔记

Abaqus学习笔记 Abaqus 使用日记Abaqus 标准版共有“部件(part)”、“材料特性(propoterty)”、“装配(assemble)”、“计算步骤(step)”、“交互(interaction)”、“加载(load)”、“单元划分(mesh)”、“计算(job)”、“后处理(visualization)”、“草图(sketch)”十大模块组成。建模方法:一个模型(model)通常由一个或几个部件(part)组成,部件又由一个或几个特征体(feature)组成,每一个部分至少有一个基本特征体(base feature),特征体可以是所创建的实体,如挤压体、切割挤压体、数据点、参考点、数据轴、数据平面、装配体的装配约束、装配体的实例等等。1.首先建立部件 (1)根据实际模型的尺寸决定部件的近似尺寸,进入绘图区。绘图区根据所输入的近似尺寸决定网格的间距,间距大小可以在edit菜单sketcher options 选项里调整。 (2)在绘图区分别建立部件中的各个特征体,建立特征体的方法主要有挤压、旋转、平扫三种。同一个模型中两个不同的部件可以有同名的特征体组成,也就是说不同部件中可以有同名的特征体,同名特征体可以相同也可以不同。部件的特征体包括用各种方法建立的基本特征体、数据点(datum point)、数据轴(datum axis)、数据平面(datum plane)等等。 (3)编辑部件可以用部件管理器进行部件复制,重命名,删除等,部件中的特征体可以是直接建立的特征体,还可以间接手段建立,如首先建立一个数据点特征体,通过数据点建立数据轴特征体,然后建立数据平面特征体,再由此基础上建立某一特征体,最先建立的数据点特征体就是父特征体,依次往下分别为子特征体,删除或隐藏父特征体其下级所有子特征体都将被删除或隐藏。特征体被删除后将不能够恢复,一个部件如果只包含一个特征体,删除特征体时部件也同时被删除。 2.建立材料特性 (1)输入材料特性参数弹性模量、泊松比等 (2)建立截面(section)特性,如均质的、各项同性、平面应力平面应变等等,截面特性管理器依赖于材料参数管理器 (3)分配截面特性给各特征体,把截面特性分配给部件的某一区域就表示该区域已经和该截面特性相关联 3.建立刚体 (1)部件包括可变形体、离散刚体和解析刚体三种类型,在创建部件时需要指定部件的类型,一旦建立后就不能更改其类型。采用旋转方式建立部件,在绘制轴对称部件的外形轮廓时不能超过其对称轴。

[考试]在fluent中修改周期性边界条件

[考试]在fluent中修改周期性边界条件中国振动联盟 标题: 在fluent中修改周期性边界条件,怎么不对啊 [打印本页] 作者: skgk-qqq 时间: 2012-2-26 09:39 标题: 在fluent中修改周期性边界 条件,怎么不对啊 我是在fluent主界面输入命令:grid mod check,然后回车,得到periodic zone[()],我再输入3,回车,shadow zonezone[()],我再输入10,回车,得到Rottional periodic,(if no,translational)[yes],然后回车,得到Create periodic zones?[yes],然后回车,得到zone 3;matched 0 out of 10854 faces. zone 10:matched 0 out of 10854 faces. Error: Failed to make zones periodic.ERROE:object:#f.请教各位了,着急啊~~~ 作者: skgk-qqq 时间: 2012-2-26 09:51 回复 1 # skgk-qqq 的帖子 各位大哥,帮帮忙啊,着急啊 作者: Seventy721 时间: 2012-2-26 11:01 大概是因为你的两个periodic面上的网格不完全一致,导致不能match。这两 个面的几何尺寸和网格划分必须完全一致。建议划分网格之前在两个面上建立 hard link,这样网格就会完全一样了。如果还不行就调整判断网格差异的tolerance,我记得用户手册里有说明,你找找看。 作者: skgk-qqq 时间: 2012-2-26 16:15 回复 3 # Seventy721 的帖子 我已经建立了link了啊,经过网格检查,网格单元数量也是一致的,而且输 出meh文件也正确,请问怎么调整tolerance啊,着急啊

abaqus实例

一.创建部件 1.打开abaqus; 开始/程序/Abaqus6.10-1/Abaque CAE 2.Model/Rename/Model-1,并输入名字link4

3.单击Create part弹出Create part对话框, Name输入link-4; Modeling Space 选择2D Planar Type 选择Deformable Base Feature 选择Wire Approximate size 输入800;然后单击continue 4.单击(Create Lines:connected)通过点(0,0)、(400,0)、(400,300)、(0,300)单击(Create Lines:connected)连接(400,300)和(0,0)两点,单击提示区中的Done按钮(或者单击鼠标滚轮,也叫中键),形成四杆桁架结构

5.单击工具栏中的(Save Model Database),保存模型为link4.cae 二.定义材料属性 6.双击模型树中的Materials(或者将Module切换到Property,单击Create Material -ε) 弹出Edit Material对话框后。 执行对话框中Mechanical/Elasticity/Elastic命令, 在对话框底部出现的Data栏中输入Young’s Module为29.5e4, 单击OK.完成材料设定。

7.单击“Create Section ”,弹出Create Section对话框, Category中选择Beam; Type中选择Truss; 单击continue按钮 弹出Edit Section对话框, 材料选择默认的Material-1,输入截面积(Cross-sectional area)为100,单击ok按钮。

周期边界条件

周期边界条件 aresaran (答网友问) (1)、究竟什么是"周期性边界条件"?如何去定义它的,为什么要引入这样一个定义。 周期边界条件源于这样的问题:宏观结构的信息不足以描述问题的细节,所以引入微观结构的信息来统计物质的宏观性质。周期边界条件广泛用于molecular dynamics & micromechanics. Fig1.细观力学的RVE 代表单元 尽管目前计算机的运算速度极大提高,但是仍然不能够用于进行大规模的宏微观联合计算。 因此引入了代表单元的概念,代表单元RVE 就如同是一个打开微观世界的一个窗口,看到的只是窗户里面的东西,我们假设整个微观世界是统计均匀的,因此无限量的复制了这个窗口,就可以得到所有微观信息。当然这个代表单元有要求,如上图,宏观结构尺寸远远尺寸,但是这个达标单元的尺寸又要能 足够多的包含微观颗粒的信息,有代表性,所以要求l L >>l A <<这是个一般性定义。 (2)、"周期性边界条件" 是不是只是在处理复合材料问题时才用,而且从众位大侠的讨论中似乎让我觉得这有点像"子结构"? Fig2. 2D or 3 D RVE

子结构和代表单元根本不在一个层次上,RVE 的建模与普通建模没什么区别,当然你想得到随机的微观结构,就需要用外部程序比如matlab 书写相应的inp 文件。 Fig3. Ref. Frederic Feyel. Multiscale elastoviscoplastic analysis of composite structures. Computational Materials Science,1999,16: 344~354 2FE 子结构模型适合多尺度计算。如图三,是一个发动机叶片,局部区域希望能够用细观微结构描述,其余结构希望是均匀材料。 这个问题的模型就可以将复合材料区域SiC/Ti 用子模型/子结构实现代表单元,子结构传递边界条件给代表单元, 实现微观和宏观的关联。 (3)、"周期性边条"是不是"旋转周期结构"里所需施加的边界条件? 对于复合材料层合壳体结构的旋转周期结构,相当于直角坐标周期结构的球坐标变换,物理意义等同。 (4)、为什么有些"轴对称单元"也在用这个? 因该是指对称性条件和周期性条件的关系,下面的例子会给出解释。 【1】周期边界条件的推导实例: ij 是边界上施加的的宏观应变条件 Displacement BC. j ij i i l x u y u ε+=)()( Traction BC. )()()()(x n x y n y j ij j ij σσ?=

晶格振动、金属电子论、能带理论三个地方都用到了周期性边界条件

1.固体物理教材在晶格振动、金属电子论、能带理论三个地方都用到了周期性 边界条件,试比较其异同并阐述你的理解。 周期性边界条件是边界条件的一种,反映的是如何利用边界条件替代所选部分(系统)受到周边(环境)的影响。可以看作是如果去掉周边环境,保持该系统不变应该附加的条件,也可以看作是由部分的性质来推广表达全局的性质。 周期性边界条件的引入有两个目的:在粒子的运动过程中,若有一个或几个粒子跑出模型,则必有一个或几个粒子从相反的界面回到模型中,从而保证该模拟系统的粒子数恒定;计算原子间作用力的时候采取最近镜像方法,这样模型中处于边界处的原子受力就比较全面,从而消除了边界效应。这种方法在计算机分子动力学模拟中使用非常广泛。 由此,在讨论晶格振动、金属电子论、能带理论的周期性边界条件时只是在不同的范围中周期性边界条件具体的定义、应用以及意义。 晶格振动的周期性边界条件:由N个原子组成一个模型——原子数目有限,但各原子完全等价。第j个原子的运动与第 mN+j个原子的运动情况完全一样。对于原子的自由运动,边界上的原子与其它原子一样,无时无刻不在运动,对于有N个原子原子链,硬性设定u1=0,uN=0的边界条件是不符合事实的。其实不论什么边界条件都与事实不符合,但为了求近似解,必须选取一个边界条件,晶格振动谱的实验测定是对晶格振动理论的最有力验证,周期性边界条件是晶格振动理论的前提条件。 金属电子论的周期性边界条:.金属中自由电子气应该服从量子力学规律,在保留独立电子近似和自由电子近似基础上应通过求解薛定愕方程给出电子本征态和本征能量,从而来解释金属性质。我们把自由电子气等效为在温度 T=0K,V =L3的立方体内运动的 N个自由电子。独立电子近似使我们可以把 N个电子问题转换为单电子问题处理。要计算一系列想关函数都与波矢 k有关。波矢 k 的取值要由边界条件决定,边界条件的选取既要反映出电子是在有限体积中运动的特点,又要在数学上便于操作,因此,类似于晶格振动是的情况,周期性边界条件(Born-Karman边界条件)是人们通常采用的最适合的方法。 能带理论的周期性边界条件:能带论的基本出发点是认为固体中的电子不再是完全被束缚在某个原子周围,而是可以在整个固体中运动的,称之为共有化电子。但电子在运动过程中并也不像自由电子那样,完全不受任何力的作用,电子在运动过程中受到晶格原子势场和其它电子的相互作用。能带理论是基于三个基本(近似)假设:1)Born-Oppenheimer 绝热近似:离子的波函数与电子的位置及状态无关:多粒子问题→多电子问题2)Hatree-Fock平均场近似:忽略电子与电子间的相互作用,用平均场代替电子与电子间的相互作用:多电子问题→单电子问题。3)周期场近似:单电子问题→单电子在周期场中运动问题。由于这三个基本假设,每个电子都处在完全相同的严格周期性势场中运动,因此每个电子的运动都可以单独考虑。在计算电子运动的薛定谔方程时,由于势场的周期性反映了晶格的平移对称性,可定义一个平移算符,为了确定平移算符的本征值,引入周期性边界条件。

ABAQUS旋转周期对称边界条件的设置

ABAQUS旋转周期对称边界条件的设置 旋转周期对称设置包括:旋转周期对称设置,外加主面上的对称面约束,两者一起构成旋转对称的边界条件。下面所述的两种方法是仅针对旋转周期对称的设置。 两种方法: 1)修改inp文件: 找到*End Assembly,将之替换为 *TIE,CYCLIC SYMMETRY,NAME=TIE-CYCLIC Surf-Cylic-SLAVE,Surf-Cylic-MASTER ** *End Assembly ** *CYCLIC SYMMETRY MODEL,N=60 0,0,0,0,0,1 --------------------------- 上面设置中包括:主面的设置,从面的设置,模型周期的数目,以及旋转轴。因此需要建立这两个面的集合:Surf-Cylic-MASTER,Surf-Cylic-SLAVE。N=60表示有60个。0,0,0为旋转轴的起点,0,0,1为旋转轴的终点。 2)直接在前处理cae中设置 首先,建立主面和从面的集合,便于选取; 其次,为旋转轴的起点和终点建立参考点(RP),旋转轴一定要设在整个模型的旋转中心上;参考点可通过输入坐标的方式建立。注意:其他方式建立点都不可行,以下详述。 最后,输入周期的数目,本模型为整体模型的多少分之一,即输入倒数即可。 以上步骤参见下图。 【旋转轴起点和终点的建立】 1)除参考点以外其他的建点的方式不行,比如建立datum point,无法在viewport中直接选中,同样建立集合时也选不中datum point。 2)使用attachment point建立的点虽然可以直接在viewport中选中,建立集合时也可选中,但无法写入inp文件,当write inp 文件时就造成cae崩溃直接退出软件! 总之,旋转轴的设置,直接在前处理cae界面中设置,不如直接在inp文件中修改方便!因为修改inp旋转轴只要直接给定起点和终点坐标就OK,省去先建立RP点的步骤。 【主面上设置对称面】 在边界条件中选对称面设置即可。先要建立一个柱坐标系为好。将柱坐标系的Z轴建在旋转中心上,R轴在模型两对称侧面的平分线上,T轴即自动建好为切线方向。对称边界设置时,选取之前建立的主面,方向为U2=UR1=UR3=0,此即为T轴为对称面的法线方向。 【补充说明】 对于一个具体的部件,除上述约束外,根据实际情况还需加上其他约束条件避免存在任何刚体位移的出现。如Z向(轴向)上避免刚体位移,径向上避免刚体位移。 下文算例中的详情看文末的总结。

ABAQUS常用技巧归纳

ABAQUS学习总结 1.ABAQUS中常用的单位制。-(有用到密度的时候要特别注意) 单位制错误会造成分析结果错误,甚至不收敛。 2.ABAQUS中的时间 对于静力分析,时间没有实际意义(静力分析是长期累积的结果)。对于动力分析,时间是有意义的,跟作用的时间相关。 3.更改工作路径 4.对于ABAQUS/Standard分析,增大内存磁盘空间会大大缩短计算 时间;对于ABAQUS/Explicit分析,生成的临时数据大部分是存 储在内存中的关键数据,不写入磁盘,加快分析速度的主要方法是提高CPU的速度。 临时文件一般存储在磁盘比较大的盘符下

提高虚拟内存

5.壳单元被赋予厚度后,如何查看是否正确。 梁单元被赋予截面属性后,如休查看是否正确。 可以在VIEW的DISPLAY OPTION里面查看。 6.参考点 对于离散刚体和解析刚体部件,参考点必须在PART模块里面定义。 而对于刚体约束,显示休约束,耦合约束可以在 PART ,ASSEMBLY,INTERRACTION,LOAD等定义参考点. PART模块里面只能定义一个参考点,而其它的模块里面可以定义很多个参考点。

7.刚体部件(离散刚体和解析刚体),刚体约束,显示体约束 离散刚体:可以是任意的形状,无需定义材料属性,要定义参考点,要划分网格。 解析刚体:只能是简单形状,无需定义材料属性,要定义参考点,不需要划分网格。 刚体约束的部件:要定义材料属性,要定义参考点,要划分网格。 显示体约束的部件:要定义材料属性,要定义参考点,不需要要划分网格(ABAQUS/CAE会自动为其要划分网格)。 刚体与变形体比较:刚体最大的优点是计算效率高,因为它在分析作 业过程中不参与所在基于单元的计算,此外,在接触分析,如果主面是刚体的话,分析更容易收敛。 刚体约束和显示体约束与刚体部件的比较:刚体约束和显示体约束的优点是去除约束后,就可以立即变为变形体。 刚体约束与显示体约束的比较:刚体约束的部件会参与计算,而显示约束的部件不会参与计算,只是用于显示作用。 8.一般分析步与线性摄动分析步 一般分析步:每个分析步的开始状态都是前一个分析步结束时刻的模型状态;如果不做修改的话,前一个分析步所施加的载荷,边界 条件,约束都会延续到当前的分析步中;所定义的载荷,边界条件以及得到的分析结果都是总量。

abaqus实例详细过程(铰链)

算例二铰链 一、创建部件 1、进入部件模块。。点击创建部件。 命名为Hinge-part,其他的选项选择如右下图所示。点击 “继续”,进入绘图区。 2、点击,在绘图区绘一个矩形。再点击,将尺寸改为 0.04*0.04。单击鼠标中键。 3、在弹出的对话框中输入0.04作为拉伸深度。点击”确定”。 4、点击创建拉伸实体,点击六面体的一个面,以及右侧的边。进入到绘图区域。 5、如下图那样利用创建三条线段。利用将两条横线都改为0.02mm长。 6、选择,做出半圆。 7、点击,以半圆的圆心为圆心,做圆。 8、点击为圆标注尺寸。输入新尺寸0.01。 9、在弹出的对话框里输入拉伸深度为0.02,拉伸方向:翻转。点击“确定”。 10、在模型树的部件里,选择圆孔部件。右击,编辑。将内孔直径改为0.012.。确定。

创建润滑孔 1、进入草图模块。创建名为hole的草图。如右图所示。单击“继续”。 2、单击做一个直径为0.012的圆。单击鼠标中键。进入部件模块。 3、选择主菜单栏的工具→基准。对话框选择格式如下图所示。 选择半圆形边。参数设为0.25。。单击中键,点就建好了。软件提示选择一个轴。那么,我们就创建一个基准轴。如上图右侧所示。选择刚刚建好的那一点以及圆孔的中心,过这两点创建一个轴。再在基准处点击如下图所示,选择刚刚建好的点和轴,那么面也就建好了。

4、点击,视图左下角的显示区显示,选择上一步中创建的基准面,再选一个边。如图所示。进入绘图区。 6、导入之前绘制的小润滑孔hole。利用将孔移植所需位置。单击中键。选择正确的翻 转方向。对话框按右下图设置。确定。 7、将部件的名称改成hinge-hole,并复制一个命名为hinge-solid。 将hinge-solid的模型树张开,删除其下的特征,即该部件不带孔。 8、创建第三个部件:刚体销。 点击创建部件按钮,命名为pin,解析刚体,旋转壳。具体见下图所示。单击“继 续”,在出现的旋转轴右侧画一条垂直向下的直线。用将该直线的长度改为0.06,与旋转轴的距离为0.012,点击确定,界面出现旋转之后的销。

abaqus中边界条件的设置

精品文档 ABAQU 模型中的6个自由度,其中的坐标中编号是 1.2.3而不是常用的X.Y.Z 。因为模 型的坐标 系也可以是主坐标系或球坐标系等。 边界条件的定义方法主要有两种, 这两种方法 可以混合使用: 自由度1 ( U1):沿坐标轴1方向上的平移自由度。 自由度2( U2):沿坐标轴2方向上的平移自由度。 自由度3( U3):沿坐标轴3方向上的平移自由度。 自由度4( UR1):沿坐标轴1上的旋转自由度。 自由度5( UR1):沿坐标轴2上的旋转自由度。 自由度 6(UR1) 沿坐标轴 3上的旋转自由度。 2、约定的边界条件类型 反对称边界条件,对称面为与坐标轴 2垂直的平面,即 U1= U3= UR2=0; ZASYMM 反对 称边界条件,对称面为与坐标轴 3 垂直的平面,即 U1= U2= UR3=0; PINNED 约束所有 平移自由 度,即 U1=U2=U3=0; ENCASTRE 约束所有自由度(固支边界条件) ,即 5= U2=U3=UR 仁UR2=UR3=0. 精品文档 XSYMM 对称边界条件,对称面为与坐标轴 YSYMM 对称边界条件,对称面为与坐标轴 ZSYMM 对称边界条件,对称面为与坐标轴 1 垂直的平面,即 2 垂直的平面,即 3 垂直的平面,即 U1= UR2= UR3=0; U2= UR1= UR3=0; XASYMM 反对称边界条件,对称面为与坐标轴 1垂直的平面,即U2= U3= UR 仁0; YASYMM

欢迎您的下载, 资料仅供参考! 致力为企业和个人提供合同协议,策划案计划书,学习资料等等 打造全网一站式需求

周期性非稳态导热

周期性边界条件下的非稳态导热 ——边界条件作周期性变化,从而引起物体周期性加热或周期性冷却 重点:周期性非稳态导热的基本特征及其影响因素 特例:半无限大物体中的周期性不稳态导热 边界条件:)cos(βωτ-+=+w w w t t t 此时,物体中的温度分布由三部分组成:瞬变分量(随时间的延续而迅速消失);稳态分量(即w t -,是一个常量);准稳态分量(是叠加在w t -上的简谐波) 其中,准稳态分量(简谐波)为:)cos(φβωτθθ --=+x 其中:波幅 )2ex p(x a t w x ω θ-=++,随深度x 的增加,波幅按指数规律迅速衰减(推 进波的特点),材料的热扩散率a 越大,衰减越慢; 滞后角 x a 2ω φ=,随深度x 的增加,滞后角增大;而在同一深度处,材料的热 扩散率a 越大,滞后角越小。 波动频率 π ω2,频率越高,波幅衰减越快,滞后角越大,温度波动可以察觉的透入深度则越小(这一特性称为热工对象的高频滤波性)。 温度波在半无限大物体中的传播特性 另外,波速0 2τπa v =:表明,波速只取决于波动周期0τ和材料的热扩散率a ,而与时间 无关。(a 大,波速亦大;0τ大则波速小)

峰值滞后时间x a 2/10)(21πττ=?:表明深度x 处的温度波滞后于表面温度波的时间; x 处的温度达到峰值的时间也比表面温度达到峰值滞后同样的时间 结论: 半无限大平壁周期性变化边界条件下的温度波:空间上呈周期性变化且振幅衰减,时间上呈周期性变化且相位延迟; 在周期性变化的边界温度作用下半无限大介质中的温度波在深度方向呈现衰减和延迟。当介质的热扩散率a 越大,衰减越慢(温度波的衰减度和延迟时间均减小); 确定材料中温度波的频率越高,则温度波的振幅沿传播方向衰减越快,滞后角越大——高频滤波性。 波速只取决于波动周期0τ和材料的热扩散率a ,而与时间无关——a 大,波速亦大;0τ大则波速小) 峰值滞后时间与温度波滞后时间相同(同一位置处,a 大,滞后少;0τ大则滞后多) 一、数学模型及分析解 数学模型: (初始条件和边界条件合二为一) 温度分布: 边界处热流通量: 二、换热特征分析 1、温度波的衰减: ,定义衰减度: 温度波衰减的影响因素 ①热扩散率a:热扩散系数大,波的衰减缓慢; ②温度波周期T:波动的周期越短,振幅衰减越快,所以日变化温度波 比年变化温度波衰减得快得多。 ③传播距离x:温度波影响越深入,波的衰减越缓慢。 2、温度波的时间延迟:体现为落后一定的相位角。 时间延迟: 温度波时间延迟的影响因素

ABAQUS基本使用方法

ABAQUS基本使用方法 快捷键:Ctrl+Alt+左键来缩放模型;Ctrl+Alt+中键来平移模型;Ctrl+Alt+右键来旋转模型。 ABAQUS/CAE不会自动保存模型数据,用户应当每隔一段时间自己保存模型以避免意外丢失。 平面应力问题的截面属性类型是Solid(实心体)而不是Shell(壳)。 ABAQUS/CAE推荐的建模方法是把整个数值模型(如材料、边界条件、载荷等)都直接定义在几何模型上。 载荷类型Pressure的含义是单位面积上的力,正值表示压力,负值表示拉力。 对于应力集中问题,使用二次单元可以提高应力结果的精度。 Dismiss和Cancel按钮的作用都是关闭当前对话框,其区别在于:前者出现在包含只读数据的对话框中;后者出现在允许作出修改的对话框中,点击Cancel按钮可关闭对话框,而不保存所修改的内容。 每个模型中只能有一个装配件,它是由一个或多个实体组成的,所谓的“实体”(instance)是部件(part)在装配件中的一种映射,一个部件可以对应多个实体。材料和截面属性定义在部件上,相互作用(interaction)、边界条件、载荷等定义在实体上,网格可以定义在部件上或实体上,对求解过程和输出结果的控制参数定义在整个模型上。 ABAQUS/CAE中的部件有两种:几何部件(native part)和网格部件(orphan mesh part)。 创建几何部件有两种方法:(1)使用Part功能模块中的拉伸、旋转、扫掠、倒角和放样等特征来直接创建几何部件。 (2)导入已有的CAD模型文件,方法是:点击主菜单File→Import→Part。网格部件不包含特征,只包含节点、单元、面、集合的信息。创建网格部件有三种方法: (1)导入ODB文件中的网格。 (2)导入INP文件中的网格。 (3)把几何部件转化为网格部件,方法是:进入Mesh功能模块,点击主菜单Mesh→Create Mesh Part。 初始分析步只有一个,名称是initial,它不能被编辑、重命名、替换、复制或删除。在初始分析步之后,需要创建一个或多个后续分析步,主要有两大类: (1)通用分析步(general analysis step)可以用于线性或非线性分析。常用的通用分析步包含以下类型: Static,General:ABAQUS/Standard静力分析— Dynamics,Implicit:ABAQUS/Standard隐式动力分析 Dynamics,Explicit:ABAQUS/Explicit显式动态分析

关于ABAQUS渗流分析中排水边界的几点说明

关于ABAQUS 渗流分析中排水边界的几点理解 1.ABAQUS 默认状态下边界条件即为不透水,所以无需定义。 2.透水边界的定义,两种情况下各有两种形式,通过关键字来定义: 2.1 仅考虑渗流; *SFLOW Surface set, QD, s k 其中,Surface set 为面集合名称,QD:表示面,s k 为自由排水渗透系数,单位m/s ,其中5 10 s w k k c γ= ,k 为介质的渗透系数,w γ为水的容重,c 为 单元长度。ABAQUS 推荐使用s k =0.1。 或者; *FLOW Element set, QnD, s k 其中,Element set 为单元集合名称,QnD:表示单元面,s k 为自由排水渗透系数,单位m/s 。定义同上,ABAQUS 推荐使用s k =0.1。 2.2 考虑渗流-应力耦合; *SFLOW Surface set, QD, w u ∞ ,s k 其中,Surface set 为面集合名称,QD:表示面,w u ∞ 为参考孔隙压力,s k 为自由排水渗透系数,单位m/s ,其中5 10 s w k k c γ= ,k 为介质的渗透系数,w γ为水的容重,c 为单元长度。ABAQUS 推荐使用s k =0.1。 或者; *FLOW Element set, QnD, w u ∞ ,s k 其中,Element set 为单元集合名称,QnD:表示单元面,s k 为自由排水渗透

k=0.1。 系数,单位m/s。定义同上,ABAQUS推荐使用 s 边界条件主要包括孔隙压力边界,流速或者流量边界以及总应力边界。其中;孔隙压力边界由*BOUNDARY命令定义; 流速或者流量边界由*DSFLOW命令定义; 总应力边界由*DSLOAD命令定义。 2016/05/31

周期性边界条件

如果我们计算的流动或者热场有周期性重复,或者几何边界条件周期性重复,就形成了周期性流动。FLUENT 可以模拟两类周期性流动问题。第一,无压降的周期性平板问题(循环边界);第二,有压降的周期性边界导致的完全发展或周期性流向流动问题(周期性边界)。 流向周期性流动模拟的条件: 1, 流动是不可压的 2, 几何形状必须是周期性平移 3, 如果用coupled solver 求解,则只能给定压力阶跃;如果是Segregated solver ,可以给定 质量流率或者压力阶跃。 4, 周期性流动中不能考虑进口和出口有质量差,也不考虑过程中的额外源项或者稀疏相源 项。 5, 只能计算进口出口没有质量流率变化的组分问题。但不能考虑化学反应。 6, 不能计算稀疏相或者多相流动问题。 如果在这过程中计算有换热问题,则还必须满足以下条件: 1, 必须用segregated solver 求解 2, 热边界条件必须是给定热流率或者给定壁面温度。对于一个具体的问题,热边界条件只 能选择一个,而不能是多热边界条件问题。对于给定温度热边界条件,所有壁面的温度必须相同(不能有变化)。对于给定热流率边界条件,不同壁可以用不同值或曲线来模拟。 3, 对于有固体区域的问题,固体区域不能跨越周期性平板。 4, 热力学和输运特性(热容,热导系数,粘性系数,密度等)不能是温度的函数(所以不 能模拟有化学反应流动问题)。但输运特性(有效导热系数,有效粘性系数)可以随空间有周期性变化,因此可以对有周期性湍流输运特性不同的流动问题有模拟能力。 2.3.5 计算流向周期性流动问题的步骤: 通常,可以先计算周期性流动到收敛,这时候不考虑温度场。下一步,冻结速度场而计算温度场。步骤如下: 1, 建立周期性边界条件网格 2, 输入热力学和分子输运特性参数 3, 指定周期性压力梯度或者确定通过周期性边界的质量流量 4, 计算周期性流动场。求解连续,动量(湍流量)方程。 5, 指定热边界条件(等温或者给定热流密度) 6, 给定进口体平均温度 7, 求解能量方程(其它方程不求解,只求解能量方程),得到周期性温度场。 周期性速度定义 对于位置矢量r ,周期性速度定义为: ...)2()()( L r u L r u r u 2-17 ...)2()()( L r v L r v r v 2-18 ...)2()()( L r w L r w r w 2-19 其中,L 是计算区域内周期性长度矢量。 周期性流向周期压力 上面方程中压力不是周期性的,而压力降是周期性的。即:

周期性边界条件

2.3.4周期性流动与换热 如果我们计算的流动或者热场有周期性重复,或者几何边界条件周期性重复,就形成了周期性流动。FLUENT 可以模拟两类周期性流动问题。第一,无压降的周期性平板问题(循环边界);第二,有压降的周期性边界导致的完全发展或周期性流向流动问题(周期性边界)。 流向周期性流动模拟的条件: 1, 流动是不可压的 2, 几何形状必须是周期性平移 3, 如果用coupled solver 求解,则只能给定压力阶跃;如果是Segregated solver ,可以给定 质量流率或者压力阶跃。 4, 周期性流动中不能考虑进口和出口有质量差,也不考虑过程中的额外源项或者稀疏相源 项。 5, 只能计算进口出口没有质量流率变化的组分问题。但不能考虑化学反应。 6, 不能计算稀疏相或者多相流动问题。 如果在这过程中计算有换热问题,则还必须满足以下条件: 1, 必须用segregated solver 求解 2, 热边界条件必须是给定热流率或者给定壁面温度。对于一个具体的问题,热边界条件只 能选择一个,而不能是多热边界条件问题。对于给定温度热边界条件,所有壁面的温度必须相同(不能有变化)。对于给定热流率边界条件,不同壁可以用不同值或曲线来模拟。 3, 对于有固体区域的问题,固体区域不能跨越周期性平板。 4, 热力学和输运特性(热容,热导系数,粘性系数,密度等)不能是温度的函数(所以不 能模拟有化学反应流动问题)。但输运特性(有效导热系数,有效粘性系数)可以随空间有周期性变化,因此可以对有周期性湍流输运特性不同的流动问题有模拟能力。 2.3.5 计算流向周期性流动问题的步骤: 通常,可以先计算周期性流动到收敛,这时候不考虑温度场。下一步,冻结速度场而计算温度场。步骤如下: 1, 建立周期性边界条件网格 2, 输入热力学和分子输运特性参数 3, 指定周期性压力梯度或者确定通过周期性边界的质量流量 4, 计算周期性流动场。求解连续,动量(湍流量)方程。 5, 指定热边界条件(等温或者给定热流密度) 6, 给定进口体平均温度 7, 求解能量方程(其它方程不求解,只求解能量方程),得到周期性温度场。 2.3.5.1流向周期性流动理论 周期性速度定义 对于位置矢量r ,周期性速度定义为: ...)2()()(=+=+=L r u L r u r u 2-17 ...)2()()(=+=+=L r v L r v r v 2-18

相关文档
最新文档