聚磷酸铵的合成及其阻燃性能研究

聚磷酸铵的合成及其阻燃性能研究
聚磷酸铵的合成及其阻燃性能研究

聚磷酸铵的合成及其阻燃性能研究3

胡云楚1,2,吴志平2,孙汉洲1,周 莹1,刘 元2

(1.中南林业科技大学理学院,湖南株洲412006;2.中南林业科技大学工业学院,湖南长沙41004)

摘 要: 复合型高效阻燃剂是当前阻燃技术研究的重要方向之一。根据木材阻燃的炭量增加理论,利用水溶性试验、灼烧成炭试验和热分析方法研究了聚磷酸铵的合成条件、聚磷酸铵2硼酸复合阻燃剂的复合阻燃效应。聚磷酸铵的最佳合成条件是:磷酸:尿素摩尔比为1∶1.8,预聚合温度为(124±2)℃,预聚合反应时间为25min左右,聚合固化温度230~240℃左右,聚合固化时间为140min左右。在最佳条件下合成的聚磷酸铵的聚合度为23.3,溶解度为0.67g/100mL 水,阻燃处理杨木粉在400℃灼烧30min的成炭率为38.9%,是同一条件下未处理杨木粉灼烧成炭率的2.15倍。聚磷酸铵和硼酸以4∶1复配所制得的聚磷酸铵2硼酸复合阻燃剂,对木粉的成炭率为40.5%,相对复合阻燃效应为43.2%。200~300℃是木粉热解燃烧的主要阶段,也是阻燃剂发挥阻燃作用的主要阶段。聚磷酸铵2硼酸复合阻燃剂在高温下不仅能催化木材产生更多的木炭,而且能使木炭结构紧密、不易燃烧。

关键词: 聚磷酸铵;硼酸;灼烧成炭试验;阻燃性能;

复合效应

中图分类号: TB34文献标识码:A 文章编号:100129731(2006)0320424204

1 引 言

近年来火灾所造成的财产损失和人员伤亡一直呈上升趋势,许多火灾的发生均与高分子材料和木质材料的使用状况及其可燃性有关,因此,阻燃技术的发展是保障人民生命财产安全的需要,也是高聚物和木质材料具有广泛应用前景的基础[1~3]。

聚磷酸铵热稳定性好,产品接近中性,并可以与其它阻燃剂混合,分散性好,同时价格便宜,毒性较低,使用安全。李蕾等报道[4],国内聚磷酸铵阻燃剂的聚合度为20~50;C.Drevelle等[5]报道,聚磷酸铵的聚合度为700,溶解度低于1%。目前国内外对聚磷酸铵合成工艺及在聚合物中阻燃应用的研究报道较多,未见其在木材阻燃方面的研究报道。

复合型高效阻燃剂是当前阻燃技术研究的重要方向之一。硼酸和聚磷酸铵具有原料充足、价格便宜、阻燃效果好、对环境无害的特性,将两者按一定配比复合可以提高阻燃效果[3~11]。

作者根据木材阻燃的炭量增加理论,利用水溶性试验、灼烧成炭试验和热分析方法研究了聚磷酸铵的最佳合成条件、聚磷酸铵2硼酸复合阻燃剂的最佳配比及其复合阻燃效应。

2 实 验

2.1 仪器与试剂

HC T22型微机差热天平、65112A型电动搅拌器、KDM型连续可调电子控温电热套、FN1012型鼓风干燥箱、KSW电阻炉温控制器、5212型箱式电阻炉、A2 1100紫外可见分光光度计、P HS23C酸度剂、PB2032N 型电子天平、100ml玛瑙研钵、30ml瓷坩锅、坩锅架。

尿素、磷酸、硼酸、多聚磷酸钠、钼酸铵、硫酸肼、氢氧化钠均为国产分析纯试剂;杨木粉,植物粉碎机粉碎为40目以下。

2.2 聚磷酸铵的合成

反应原理:

n H3PO4+(n-1)CO(N H2)2

(N H4)n+2P n O3n+1+(n-4)N H3+(n-1)CO2

副反应:

CO(N H2)2+H2O CO2↑+2N H3↑

先将85%的磷酸与99%的尿素按1∶1.8(摩尔比)依次加入三口烧瓶中,加热搅拌,控制升温速度≥10℃/min,待温度升至预聚合温度(100℃左右)时尿素全部融化,溶液澄清冒泡,同时有大量气体逸出(前期p H=6,后期p H=8),待溶液变稠发粘后,在不断搅拌下出料至白瓷盘中,放入已恒温的烘箱中进行聚合固化,待固化完全后,将其冷却,粉碎即得聚磷酸铵

(A PP)。

2.3 聚磷酸铵溶解度的测定

用电子天平称取0.500g样品放入10ml蒸馏水中,于室温下搅拌后,静置24h,过滤,滤渣为未溶解样品,在100℃以下烘干60min,称重,计算溶解度。

2.4 聚磷酸铵聚合度的测定

用分光光度法确定聚磷酸铵样品中P的物质的量,用一阶倒数滴定曲线确定聚磷酸铵的物质的量,根据P的物质的量与聚磷酸铵的物质的量之比计算聚磷酸铵的平均聚合度。测定聚磷酸铵聚合度的详细步骤

3基金项目:国家自然科学基金资助项目(30471358);湖南省自然科学基金资助项目(03JJ Y3063)收到初稿日期:2005207204收到修改稿日期:2005211226 通讯作者:胡云楚作者简介:胡云楚 (1960-),男,湖南湘潭人,教授,博士研究生,从事材料化学和木材阻燃研究。

参见文献[12]。2.5 聚磷酸铵2硼酸复合阻燃剂的制备

将聚磷酸铵置于玛瑙研钵中研磨30min ;将硼酸置于玛瑙研钵中研磨30min ;按一定比例称取聚磷酸铵和硼酸置于玛瑙研钵中研磨30min ,充分研匀。2.6 灼烧实验

用电子天平称取0.100g 阻燃剂与0.900g 杨木粉放入已恒重的30ml 坩埚中充分搅拌均匀,放进已恒温(400℃)的KSW 箱式电阻炉中,灼烧30min 后,取出、冷却、称重、计算成炭率。同时用1.000g 纯杨木粉做空白对照实验。2.7 燃木粉的热分析方法

用HC T 22型微机差热天平测定阻燃杨木粉的T G 2D TA 曲线。

热分析条件:参比物为α2Al 2O 3;静态空气;升温

速率为10℃/min ;D TA 量程为±100

μV ;T G 量程为10mg ;样品用量为6~9mg 。

3 结果与讨论

3.1 聚磷酸铵最佳合成工艺研究

阻燃木材的灼烧成炭量是评价阻燃性能的重要指标之一。木材阻燃的炭量增加理论认为,木炭具有隔热隔气的作用,阻燃剂可以改变木材热解反应的途径,降低木材热解的起始温度,使木材的热解反应朝着生成更多的炭和水、减少可燃性气体的方向变化。

阻燃剂的水溶性也是评价阻燃剂的重要性能指标之一。阻燃剂溶解性较大,则容易出现潮解、结霜、淋失等现象,导致阻燃性能丧失、加工使用性能下降。3.1.1 预聚合温度对聚磷酸铵性能的影响

分别在104、110、115、122、125、126、130℃7个预聚合温度下进行预聚合,然后在236℃下聚合固化160min ,得到了7个聚磷酸铵样品。分别对这7个聚磷酸铵样品进行了水溶性试验和处理杨木粉的灼烧成炭试验。实验结果列于图1,得到聚磷酸铵水溶性随预聚合温度变化的溶解度曲线和聚磷酸铵阻燃性随预聚合温度变化的灼烧成炭率曲线

图1 预聚合温度对聚磷酸胺性能的影响

Fig 1Effect s of t he prep polymerization temperat ure

on t he nat ure of A PP 由图1可以非常清楚地看出预聚合温度选择在(124±2)℃时合成的聚磷酸铵具有较高的成炭率和较低的水溶性。这是因为预聚合温度过低,尿素和磷酸

不能充分预聚合,预聚合温度过高,尿素分解逸出N H 3,最终导致聚磷酸铵聚合度降低。因此,(124±2)℃可以作为合成聚磷酸铵的最佳预聚合温度。3.1.2 聚合固化温度对聚磷酸铵性能的影响

将磷酸和尿素在最佳预聚合温度(124±2)℃预聚合后,分别在200、210、220、230、240、250、260℃固化温度下聚合固化160min ,得到7个聚磷酸铵样品。分别对这7个聚磷酸铵样品进行水溶性和对木粉的灼烧试验。通过水溶性实验和灼烧成炭实验,获得了聚磷酸铵随聚合固化温度而变化的溶解度曲线和灼烧成炭率曲线,结果列于图2

图2 固化温度对聚磷酸铵阻性能的影响

Fig 2Effect s of t he polymerization temperat ure on

t he nat ure of A PP 从图2可以看出固化温度选择在230~240℃时合成的聚磷酸铵具有较高的成炭率和较低的水溶性。这是因为固化温度过低很难充分发泡固化,过高聚磷酸铵会有轻微分解,表面发粘,这都导致了聚磷酸铵水溶性提高,阻燃性降低,聚合度降低,从聚磷酸铵产品质量和经济的角度考虑,230~240℃为聚磷酸铵的最佳聚合固化温度。3.1.3 固化时间对聚磷酸铵品质的影响

将磷酸和尿素在最佳预聚合温度(124±2)℃下预聚合,然后在最佳聚合固化温度240℃下分别聚合固化40、60、90、120、140、160、180min ,得到7个聚磷酸铵样品。分别对这7个聚磷酸铵样品进行水溶性实验和对木粉的灼烧试验。根据实验结果,获得了聚磷酸铵的灼烧成炭率曲线和水溶性曲线,结果列入图3

图3 聚合固化时间对聚磷酸铵性能的影响

Fig 3Effect s of t he polymerization time on t he nat ure

of A PP 由图3可以看出,固化时间选择在140~160min 左右时合成的聚磷酸铵具有较高的成炭率和较低的水溶性。固化时间太短,聚磷酸铵不能重复发泡固化,过长会致使聚磷酸铵有轻微分解,表面发粘。固化时间

过长和过短均会导致聚磷酸铵水溶性提高,阻燃性降

低,聚合度降低。从聚磷酸铵产品的质量和经济的角度考虑,140min 为聚磷酸铵的最佳聚合固化时间。3.2 聚磷酸铵的阻燃性能研究3.2.1 灼烧残重曲线

分别将1.000g 纯杨木粉(空白对照)、硼酸处理杨木粉(m 硼酸∶m 杨木粉=1∶9)、聚磷酸铵处理杨木粉(m 聚磷酸铵∶m 杨木粉=1∶9)装入已恒重的30ml 坩埚中,并放进已恒温(温度分别设定为50、100、150、200、

250、300、350、400、450、500℃

)的箱式电阻炉中,灼烧30min 后,取出冷却称重,计算残重率。为便于分析和比较,将灼烧残重率随灼烧温度的变化作成阻燃木粉的灼烧残重曲线,结果列于图4

图4 阻燃木粉灼烧残重率曲线

Fig 4The curves of t he remnant mass after burring

test of t he poplar wood powder t reated wit h flame retardant 由图4可以看出,在200℃之前,主要是木粉的干燥失水阶段,50~100℃之间失重变大。200~300℃之间木粉剧烈分解和燃烧,失重变化最为剧烈,阻燃剂在这一阶段发挥重要作用。未处理杨木粉在250℃以后失重开始加快,聚磷酸铵阻燃处理杨木粉则提前在200℃以后失重就明显增大。聚磷酸铵在200~250℃之间剧烈分解释放出氨气,生成的聚磷酸和偏聚磷酸催化木材脱水成炭。300℃以后,木粉的失重速度减缓,残余质量趋于稳定,但是,聚磷酸铵和硼酸阻燃处理后的杨木粉的残余质量明显大于同一温度下未处理杨木粉的残余质量。这表明,阻燃剂参与了木材的热解反应,改变了木材热解反应的途径,可以生成更多的木炭[13]。

300~450℃温度范围内,阻燃处理木粉与未处理木粉的残重率差值较大,而且残重曲线相对平稳、差值相对恒定。因此,在300~450℃温度范围内的木粉灼烧残重率可以用于阻燃性能评价。3.2.2 聚磷酸铵2硼酸复合阻燃剂的复合阻燃效应

以聚磷酸铵质量分数分别为0、20%、33.3%、40%、50%、60%、70%、75%、80%、85%、90%、95%、100%制备聚磷酸铵2硼酸复合阻燃剂,然后按质量比为1∶9的比例将聚磷酸铵2硼酸复合阻燃剂与杨木粉充分研磨均匀,进行灼烧试验。聚磷酸与硼酸的比例对复合阻燃剂的阻燃性能的影响试验结果,列于图5中

图5 复合效应曲线

Fig 5The curve of complex effect

由图5可以看出,当聚磷酸铵的质量分数比在0~100%之间时,聚磷酸铵2硼酸复合阻燃剂对杨木粉的灼烧成炭率均高于纯聚磷酸铵和纯硼酸对杨木粉的灼烧成炭率的加和平均值,其复合效应为正值;其中,聚磷酸铵和硼酸的配比为4∶1时聚磷酸铵2硼酸复合阻燃剂处理杨木粉的灼烧成炭率为40.5%,远远超过了纯聚磷酸铵处理杨木粉的灼烧成炭率(33.8%)和纯硼酸处理杨木粉的灼烧成炭率(23.5%)及其加和平均值23.6%,相对复合阻燃效应为:

33.8-23.6

23.6

=43.2%

3.2.3 聚磷酸铵2硼酸复合阻燃杨木粉的热分析

利用H TC 22微机差热天平测定了未处理杨木粉、聚磷酸铵阻燃处理杨木粉、聚磷酸铵2硼酸复合阻燃处理杨木粉的热重分析曲线和差热分析曲线。其中,未处理杨木粉的热分析图谱列于图6

图6 阻燃处理杨木粉的T G 2D TA 曲线

Fig 6The T G 2D TA curves of wood t rested wit h

flame retardant 由图6可见,杨木的热重曲线可以分为3个失重阶段[13~15]:(1)干燥阶段:200℃以前,木粉主要在50~110℃之间失去吸附水,同时在D TA 曲线上出现一个吸热峰,干燥阶段失重率为5%左右;(2)炭化阶段:温度范围是200~300℃左右,200℃以后失重速度明显加快,木材中的木质素、半纤维素和纤维素等组分剧烈分解,包括脱水、重排及左旋葡聚糖的生成、裂解反应,产生C H 4、C H 3O H 、CO 2、CO 、H 2O 挥发性低分子糖衍生物、左旋葡聚糖的裂解产物、木焦油等,此时可燃性气体在空气中燃烧,放出燃烧热,对应D TA 曲线上出现一个很大的放热峰,碳化阶段的失重率为50%。阻燃剂在木材的热解炭化阶段具有重要作用,阻燃处理以后,碳化阶段的失重率降低至38%,放热峰变得平缓,放热速率下降。碳化阶段失重越少,木材热解形成

的木炭越多,对抑制火灾的蔓延具有重要作用;(3)煅烧阶段:300℃以后,T G曲线出现明显转折,进入匀速失重阶段,主要为分子间的交联、环化、脱去小分子反应及左旋葡聚糖的裂解,不太稳定的脂肪烃基通过C—C键和C—H键的断裂而降解,反应后期固体残渣中主要为芳香烃成分。未处理杨木试样,在430℃附近木炭燃烧,失重速度加快,对应D TA曲线上出现一个放热的尖峰;阻燃处理后,木炭的燃烧放热峰消失不见了,失重速度也变得平缓。其中,可能的原因是:聚磷酸铵在225℃左右受热分解释放出N2、N H3等不易燃性气体,同时形成聚磷酸或聚偏磷酸,它们是强脱水剂,促使基材表面脱水生成炭层,对基材表面具有覆盖作用,可以隔绝空气;硼酸高温分解形成硼的氧化物,具有玻璃状致密结构,可以使炭层更加稳定和不易燃烧。

4 结 论

灼烧成炭试验和水溶性试验结果表明,聚磷酸铵的最佳合成条件是:磷酸:尿素摩尔比为1∶1.8,预聚合温度(124±2)℃(反应约25min),聚合固化温度230~240℃左右,聚合固化时间为140min左右。

在最佳条件下合成的聚磷酸铵的聚合度为23.3 (文献值为20~30),溶解度为0.67g/100ml水,阻燃处理杨木粉在400℃灼烧30min的成炭率为38.9%,是同一条件下未处理杨木粉灼烧成炭率(为18.1%)的2.15倍。

灼烧成炭试验结果表明,聚磷酸铵和硼酸以4∶1复配所制得的聚磷酸铵2硼酸复合阻燃剂,对木粉的成炭率为40.5%,相对复合阻燃效应为43.2%。

灼烧残重曲线和热分析结果表明,200~300℃是木粉热解燃烧的主要阶段,也是阻燃剂发挥阻燃作用的主要阶段。聚磷酸铵2硼酸复合阻燃剂使木炭结构紧密和不易燃烧。

参考文献:

[1] 王永强.阻燃材料及应用技术[M].北京:化学工业出版

社,2003.

[2] 欧育湘.[J].阻燃材料与技术,2003,(2):125.

[3] 梁 诚.[J].阻燃材料与技术,2003,(2):527.

[4] 李 蕾,杨荣杰,王雨钧.[J].消防技术与产品信息,2003,

(6):43245.

[5] Drevelle C,Lefebvre J,Deuquesne S,et al.[J].Polymer

Degradation and Stability,2005,88:1302137.

[6] 鲍志素.[J].塑料助剂,2003,3(39):8210.

[7] 丁著明,范 华.[J].阻燃材料与技术,2003(4):4214.

[8] Maurer A.Process for Making Long2chain Ammonium

Polyphosphate[P].US:4,396,586,1983208202.

[9] Sansing J E.Process for Producing Ammonium Polyphos2

phate[P].US:4,367,921,1987201220.

[10] Staffel T.Process for Preparation of Ammonium

Polyphosphate[P].US:5,277,887,1994201211.

[11] Duquesne S,Delobel R,Le Bras M,et al.[J].Polymer

Degradation and Stability,2002,77:3332344.

[12] 徐红波,姜效军.[J].鞍山钢铁学院学报,1998,21(1):72

9.

[13] 胡云楚,刘 元,孙汉洲,等.[J].林产化学与工业,2005,

25(1):61265.

[14] Yunchu H,Peijiang Z,Songsheng Q.[J].European Jour2

nal of Wood and Wood Products,2000,58(122):35238. [15] Bugajny M,Bras M L,Bourbigot S,et al.[J].Polymer

Degradation and Stability,1999,64:1572163.

Synthesis and flame retardantion of an ammonium polyphosphate HU Yun2chu1,2,WU Zhi2ping2,SU N Han2zhou1,ZHOU Y ing1,L IU Yuan2

(1.College of Science,Cent ral Sout h Forestry,Zhuzhou412006,China;

2.College of Indust ry,Cent ral Sout h Forest ry,Changsha410004,China)

Abstract:The efficacious composition flame retardant is an important investigation aspect of flame retardation technology currently.The synt hesis condition of an ammonium polyp hosp hate and t he compo sition effect of am2 monium polyp ho sp hate/boric acid flame retardation had st udied by using water solubility test and burning char2 coal test and t hermal analysis.The fine synt hesis condition of an ammonium polyp ho sp hate is t hat t he mole ratio of carbamide/p ho sp horic acid is1.8,t he prep polymerization temperat ure is(124±2)℃,t he prep polymerization time is abo ut25min,t he polymerization temperat ure is230~240℃,t he polymerization time is about140min. The nat ure of t he ammonium polyp hosp hate made in t his condition is t hat t he polymerization degree is23.3,t he solubility is0.67g/100ml in water,t he charcoal ratio of t he poplar wood powder t reated wit h ammonium polyp ho sp hate is38.9%which is2.15times of t he charcoal ratio of t he cont rol.The charcoal ratio of t he poplar wood powder t reated wit h t he composition flame retardation made f rom ammonium polyp hosp hate and boric acid by4∶1is40.5%.The compo sition effect is43.2%.The p rimary p hase of pyrogenation and burnt of wood is 200~300℃.This is also t he p rimary p hase bring into play flame retardation.Not only more charcoal has formed but also it is p rovided wit h tight ness st ruct ure and incombustibility as a result of catalysis of t he ammonium polyp ho sp hate/boric acid composition flame retardant in t he high temperat ure.

K ey w ords:ammonium polyphosphate;boric acid;burning charcoal test;flame retardation;composition effect

聚磷酸铵

聚磷酸铵 摘要:以磷酸铵盐、尿素为原料,制备了高聚合度聚磷酸铵无机阻燃剂。测定了聚磷酸铵的溶解度[1]。以防火材料的制备测定防火性能,对现代工艺的提高有了自己的认识和理解。 关键词:聚磷酸铵、阻燃性能、防火材料[2]。 前言:聚磷酸铵(APP)是近十多年来发展起来的一种重要的无机阻燃剂,广泛用于塑料、纤维、纸张、橡胶、木材等的阻燃,并可用于配制耐火材料。APP 含磷、氮量大,热稳定性好,水溶性小,近于中性。同时,它具有分散性好,比重小,毒性低和价格低廉的特点。 1实验部分 1.1实验原理 其结构是为(NH4)n+2PnO3n+1。APP有水溶性(n为10∽20)及水难溶性(n?0)两种。作为阻燃剂的n一般大于25[3]。 合成方法主要有高温聚合法和低温溶剂法。本实验用低温溶剂法,以石蜡为介质,尿素和磷酸二氢胺为原料进行制备。本实验用低温溶剂法,以石蜡为介质,尿素和磷酸二氢胺为原料进行制备。在尿素和磷酸二氢胺反应体系中,存在下列反应: CO(NH2)2 +2NH4H2PO4-----(NH4)2P2O7+CO2 (NH4)2P2O7+CO(NH2)2-----2/n(NH)4n+2PnO3n+1+4NH3+CO2 当n很大时,产物可写成(NH4PO3)。 1.2药品与仪器 药品:液体石蜡(碳数在16 以上),尿素,磷酸二氢铵,苯等。 仪器:烧杯(500ml,200ml),抽滤装置,电炉,温度计。 1.3合成

在500ml干燥的烧杯中,加入150ml液体石蜡,加热至200℃,在该温度下,不断搅拌,将30g尿素与28克磷酸二氢胺混合,分批加入至温度为200℃的液体石蜡中,注意温度不能过高,30分钟内加完。与190∽200℃的条件下继续反应25∽30分钟,观察反应产物(由粘稠泡沫液体变为白色固体)。然后冷却至室温,尽可能倾出液体石蜡,将生成物研细后,每次用30∽40ml苯浸洗2-3次,除去产物中夹留得石蜡,抽滤,回收苯。然后用蒸馏水洗涤产物。在120℃烘箱中,烘30分钟,即得产物,成重,计算产率。 1.4产品质量检验 (1) 溶解度测定:准确称取上述产物2克加入50ml蒸馏水煮沸5分钟后,过滤产物,烘干,称余物,计算100ml蒸馏水中的溶解度。 (2) 阻燃性能测试:称取4gAPP加100ml蒸馏水,搅拌均匀后,将一片滤纸浸在此液体中。10分钟后称出烘干,与一未处理的滤纸,使燃烧对比实验,观察其现象。 (3) 测定产品的熔点 1.5防火涂料的制备及防火性能 涂料的配比见下表1 表1:涂料配方 品名用量品名用量 聚乙烯醇缩甲醛胶25.0 聚磷酸铵22 三聚氰胺11.5 季戊四醇 6.0 六偏磷酸钠(10%) 5.0 甲基硅油消泡剂0.5 羧甲基纤维素钠 3.0 去离子水22.0 制备步骤为:将六偏磷酸钠,羧甲基纤维素钠分别配制成10%和2%的水溶液;将要求量的去离子水加入烧杯中;低速(约800r/min)搅拌下,将配方量的阻燃剂、颜料、填料、分散剂依次加入,再加入适量的消泡剂,然后高速搅拌(大

新型阻燃剂之聚磷酸铵APP

新型阻燃剂之聚磷酸铵APP 应化0801班080370103 袁恒垒 聚磷酸铵又称多聚磷酸铵或缩聚磷酸铵(简称APP),1965年美国孟山都公司首先开发成功。聚磷酸铵无毒无味,不产生腐蚀气体,吸湿性小,热稳定性高,是一种性能优良的非卤阻燃剂 聚磷酸铵又称多聚磷酸铵或缩聚磷酸铵(简称APP),1965年美国孟山都公司首先开发成功。聚磷酸铵无毒无味,不产生腐蚀气体,吸湿性小,热稳定性高,是一种性能优良的非卤阻燃剂。在20世纪70年代初,日本、前西德、前苏联等开始大量生产,目前应用较为普遍。我国从20世纪80年代开始研制该类产品,生产企业有几十家,主要用作阻燃剂。 聚磷酸铵是一种含N和P的聚磷酸盐,按其聚合度可分为低聚、中聚以及高聚3种,其聚合度越高水溶性越小,反之则水溶性越大。按其结构可以分为结晶形和无定形,结晶态聚磷酸铵为长链状水不溶性盐。聚磷酸铵的分子通式为(NH4)(n+2)Pn0(3n+1),当n为10 ~20时,为水溶性;当n大于20时,为难溶性。 聚磷酸铵已逐渐进入复混肥和液体肥料的生产,特别是在发达国家已得到广泛应用。20世纪70年代初,美国TVA开发了用商品湿法磷酸(54%P205,质量分数)生产聚磷酸铵基础液体肥料,也就是将湿法磷酸浓缩成过磷酸,在管式反应器中与氨反应,生成高浓度聚磷酸铵,加水冷却生成品级为10-34-0的液肥产品。基础液肥可与氮溶液、钾肥生产液体复混肥。我国目前尚未有专业生产聚磷酸铵肥料的企业,其性状、组成及生产方法尚存在争议,一般认为作为肥料用聚磷酸铵应是短链全水溶的,包含磷酸铵、三聚磷酸铵和四聚磷酸铵等多种聚磷酸铵,

聚合度更高、链更长的聚磷酸铵只有少量存在;另有资料介绍,农用聚磷酸铵聚合度通常为5~18,且溶解性好,是液体肥料的主要品种。农用聚磷酸铵目前在中国仅有少量生产,还未形成商品出售。 聚磷酸铵系无分支的长链聚合物,分子结构通式为(NH4)n+2PnO3n+1,当n足够大时,可写为(NH4)n+2PO3n+ 聚磷酸铵的含磷量高达30%~32%,含氮为14%~16%。这类阻燃剂最突出的特征是燃烧时的生烟量极低,不产生卤化氢。由于聚磷酸铵热稳定性好,可替代磷酸铵。 聚磷酸铵为白色结晶或无定形微细粉末。APP的水溶性和吸湿性随聚合物增加而降低。国内按聚合度n的不同可分为水溶性(n=10~20,相对分子质量1000~2000)和水不溶性(n>20,相对分子质量大于2000)两种。n可大于1000。国外把n<100称为结晶相I聚磷酸铵(APPⅠ),把n>1000的带支链的APP称为结晶相Ⅱ聚磷酸铵(APPⅡ)。n<100的短链APP对水的敏感性(可水解性)比超长链(M>1000)APP 大,而后者的热稳定性和耐水解性较高。长链APP在300℃以上才开始分解成磷酸和氨,而短链APP在150℃以上就开始分解。 常用的结晶态APP为水不溶性长链状聚磷酸铵盐。APP含磷量大、含氮量高,磷氮体系产生协同效应,阻燃性好。相对密度小,分散性好,化学稳定性好、消烟、毒性低。 APP的生产方法常用的有两种, 一种是磷酸-尿素热聚合法: 另一种是磷酸铵的尿素热聚法:聚合温度约为205~300℃,反应过程维持—定的氨分压,以防止APP分解。

新型阻燃剂DDP的合成

新型阻燃剂DDP的合成 1、前言 PET,PEN是最常见的聚酯,被广泛用作合成纤维和工程塑料的原材料,但由于聚酯材料的易燃性,它们的应用受到一定限制。解决该问题的途径是对聚酯进行阻燃改性。DDP就是聚酯的新型共聚型阻燃剂之一, DDP的结构式通过直接酯化过程,采用DDP共聚,可以提高聚酯的阻燃性,并保持聚酯原有的机械加工性能[1],因而本项研究具有广阔的应用前景。另外,由于聚酯的纺丝温度通常高于290℃,在此温度下,许多阻燃剂就会分解,失去阻燃特性,因而越来越强调阻燃剂的热稳定性[2,3]。本文对DDP进行了热失重分析,其初始热分解温度可达到312℃。 2、实验部分 2.1 原料9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOP),实验室自己合成[4];衣康酸,化学纯,新华活性材料研究所;丙酮,分析纯,北京化学试剂公司;邻二甲苯,分析纯,北京化学试剂公司。 2.2 仪器北京科学仪器厂XT-4A型显微熔点测定仪;美国热电公司Megana-560型红外光谱仪(KBr压片法);美国Varian公司Unity型超导核磁谱仪(溶剂:DMSO-d6,内

标:TMS);Dupont2000热分析仪(气氛:氮气,升温速率:10℃ min,试样重量:8mg)。 2.3 合成方法方法 1:向四口烧瓶中加入80ml邻二甲苯和4 3.2gDOP,通入氮气,搅拌,加热到90℃,再缓慢加入26g衣康酸,然后在145℃温度下回流反应8h。反应体系冷却后,DDP从邻二甲苯中结晶析出。方法2:向装有分馏柱、搅拌器和氮气入口的四口烧瓶中加入43.2gDOP和28.6g衣康酸,通入氮气,并连续搅拌,缓慢加热到165℃,在此温度下回流反应3~4h,可制得粗品DDP,然后将此粗品 加入到100ml丙酮中,加热,回流2h,冷却后,DDP从丙酮中析出。 3、结果与讨论 3.1 理化性质和结构分析 3.1.1 熔点用XT-4A显微熔点测定仪测定方法1和方法2制得样品的混熔点是191~192℃。 3.1.2 红外谱图图2为DDP的IR谱图。数据如下:P-O-C(1180cm-1);P-C(1500~1400cm-1);P=O(1238cm-1);C= O(1750~1735cm-1);OH(3400~3230cm-1),图中找不到衣康 酸的C=C的吸收峰(1600cm-1)和DOP的P-H的吸收峰(2384cm

聚磷酸铵的生产工艺及改性技术进展[1]

聚磷酸铵的生产工艺及改性技术进展 崔小明,聂 颖 (北京燕山石油化工公司研究院,北京 102550) 摘要:介绍了聚磷酸铵的生产方法以及改性技术进展,并指出了其今后的发展趋势。关键词:聚磷酸铵;阻燃剂;生产工艺;改性技术 聚磷酸铵(AmmoniumPol yphosphate,简称APP)是一种含磷、氮的无机聚合物,最早由美国孟山都公司开发应用,分子通式为(NH4)n+2 PnO3n+1,外观呈白色粉末状,当n足够大时也可以写成(NH4PO3)n。由于其具有含磷量高、含氮量大、热稳定性好、水溶性小、接近于中性、阻燃效能高等优点,因此作为膨胀型阻燃剂的基础材料,被广泛应用于阻燃领域。以APP为主要原料的膨胀型阻燃剂已成为研究开发的热点。我国自20世纪80年代开始研制APP的合成与应用,目前生产能力和产量仍不能满足国内实际需求,需要大力发展。 1 聚磷酸铵的物化性质 根据聚合度的大小,APP可分为短链APP( n=10~20)和长链APP(n>20)两大类。目前已知的APP有5种不同的晶体结构[1]:即Ⅰ型、Ⅱ型、Ⅲ型、Ⅳ型和V型。其中Ⅰ型晶粒外观呈多孔性颗粒状物质,表面具有不规则结构,是线形结构的缩聚物;Ⅱ型具有规则的外表面,均属正交(斜方)晶系,结构紧密,颗粒表面圆滑,为带较长支链的缩聚物,并发生若干交联结构;Ⅲ型为中间体;Ⅳ型和V型为高温下稳定的结构。几种晶体结构之间在不同条件下可以互相转换。Ⅲ型、Ⅳ型的结晶状态是不稳定的,其中Ⅱ型、V型难溶于水,状态稳定;但对V型,目前尚未报道切实可行的制造方法。用做阻燃剂的聚磷酸铵主要类型为Ⅰ型和Ⅱ型。由于Ⅰ型晶粒结构的氧键露置于表面,极易吸引水分而发生水解反应,容易发生吸湿现象;而Ⅱ型APP中支链的存在包围了氧键,使其吸引水分子困难,水解反应困难,具有较低的水溶性,且不易发生吸湿现象,另外其聚合度也比I 型APP高。在通常的温度和湿度下性质比较稳定,可以长期稳定贮存。高聚合度聚磷酸铵通常是指Ⅱ型的APP。 2 聚磷酸铵的生产方法 APP的生产方法很多,目前常用的生产方法主要有磷酸与尿素缩合法,磷酸二氢铵与尿素缩合法以及五氧化二磷与磷酸铵化合法3种。 2.1 磷酸与尿素缩合法 磷酸与尿素缩合法是工业中合成聚磷酸铵最常见、最实用的方法[2]。该法在反应中,尿素既是氮源,又起到缩聚剂的作用,保持反应物在气相中有足够的氨浓度和促进聚磷酸铵的脱水缩聚。具体的合成过程为:将一定质量配比的磷酸和尿素加入到反应釜中,在釜中混合溶解,然后进入沸腾床进行沸腾聚合,物料发泡后,调节排氨量,保持沸腾床内氨压,随着温度的上升,物料聚合固化,继续控制温度和压力,保温,最后冷却出料,得到松脆的白色产物,最后经粉碎得到成品。在生产过程中,有多个因素影响产品的质量,如原料配比、缩合温度和时间、料层高度以及氨气分压等。为了使缩合反应完全,需要提高含氮量和聚合度。尿素使用量少,缩合不完全,聚合度低,含氮量也低;尿素使用量多,氨的损失增大,且不易固化;加热所需要时间取决于温度,温度越高,完成缩聚的时间越短,脱氨速度也越快,但氨的损失也增大。此外,料层过高易导致温度不均匀,反应速度不一;反应温度低,缩聚时间需要延长,否则聚合度不高,难以固化;氨气分压对固相反应体系影响较

阻燃剂分类及各类典型介绍

阻燃剂分类及各类典型介绍

阻燃剂分类及各类典型介绍 阻燃剂分类及各类典型介绍 一、目前常用的阻燃剂按不同的分类方法可以分成3大类,具体分类如下:二、各类典型的阻燃剂1、氯系阻燃剂 近来,氯系阻燃剂已部分为溴系阻燃剂取代,氯系在整个阻燃剂的消耗量中有所下降。A、氯化石蜡 (C20H24CI18?C24H29CI21 ) 含氯量50%的主要用作PVC塑料的辅助增塑剂;含氯量70%的主要用作阻燃剂。 B、氯化聚乙烯 一类含氯35%-40%,另一类含氯68%,无毒。可用于聚烯烃,ABS树脂等。 它本身是聚合材料,因此作为阻燃剂使用时和树脂体系相容性好,不

影响塑料的物理机械性能,耐久性良好。 2、溴系阻燃剂 A、四溴双酚A 性质:灰白色粉末。熔点180-184C,沸点316C (分解)。用途:广泛用作反应型阻燃剂以制造含溴环氧树脂和含溴聚碳酸酯以及作为中间体合成其他复杂的阻燃剂,也作为添加 型阻燃剂用于ABS、HIPS、不饱和聚酯、硬质聚氨酯泡沫塑料、胶黏剂以及涂料等。既可作添加型阻燃剂,又可作为 反应型阻燃剂。 关注艾邦高分子,回复“阻燃”查看更多文章 B、十溴二苯醚 性质:白色微细粉末,溶点为304-309 C,溴含量大约83.3% , 几乎不溶于所有溶剂,5%热量失重时温度大于320 °C,热稳定性好。 用途:添加型阻燃剂,用途广泛;可用于PE、PP、ABS树 脂、环氧树脂、PBT树脂、硅橡胶、三元乙橡胶及PET、 PA6等材料的阻燃剂。其与Sb2O3并用阻燃效果更佳。缺点是耐侯性差,容易黄变。 3、磷系阻燃剂

磷系阻燃剂包括无机磷系阻燃剂和有机磷系阻燃剂。 A、无机磷系阻燃剂 红磷、聚磷酸铵(APP)、磷酸铵盐、磷酸盐及聚磷酸盐等。阻燃机理:燃烧时生成磷酸、偏磷酸、聚偏磷酸等,覆盖于树脂表面,可促进塑料表面炭化成炭膜;聚偏磷酸则呈黏稠状液态覆盖于塑料表面。这种固态或液态膜能阻止自由基逸出,又能隔绝氧气。 磷系与氮系及金属氢氧化物等阻燃剂都有协同作用,并用可产生协同阻燃和消烟效果。 无机磷系阻燃剂的耐水性差,与聚烯烃的相容性差,致使制 品的力学性能下降,所以在聚烯烃中用量少。①、红磷红色至紫红色粉末,因仅含有磷元素,所以比其他磷化物阻燃效率高。如7.5%红磷填充PA的氧指数可达35%,而加入15%磷酸酯阻燃剂的PA氧指数仅为28%。 红磷的缺点为与树脂的相容性差、易吸湿、颜色太深。红磷进行微囊化处理后,与树脂的相容性提高,吸湿性降低,但需防止红磷与氧及水接触而生成剧毒的磷化氢,必须加入磷 化氢捕捉剂。②、聚磷酸铵(APP) 性质:白色粉末,随聚合度增大而吸水性降低。APP在250 C 以上分解,释放出水和氨,并生成磷酸,阻燃机理为吸热降温和稀释可燃气体。APP由于分子内含有磷和氮,具有很好

磷酸酯的性质与用途

磷酸酯 磷酸酯类性质 磷酸酯是一种兼阻燃、增塑效果为一体的阻燃增塑剂,较其它的磷酸酯及溴系增塑剂具有无味、耐光辐射、防霉、相溶而不易喷出,增塑性能好,阻燃效果优异等特性。磷酸酯与聚氯乙烯等树脂有良好的相容性,特别是阻燃性能好,但有毒。芳香族磷酸酯的低温性能较差,而脂肪族磷酸酯的低温性能较好,但热稳定性较差,耐抽出性不如芳香族磷酸酯。其主要品种有磷酸三甲苯酯(TCP)、磷酸三苯酯(TPP)、磷酸三丁酯(TBP)、磷酸三辛酯(TOP)、磷酸二苯一辛酯(DPOP)等。 磷酸酯是一种淡黄色或无色液体,高闪点、无毒、无味、防霉、耐低温、耐光辐射,用良好的相溶性、增塑性、阻燃性。磷酸酯及卤化磷酸酯在增塑剂、阻燃剂中占有重要地位,是合成材料加工助剂中主要类别之一,广泛应用于塑料、合成橡胶、合成纤维、木材、纸张、涂料等领域中。 磷酸酯类用途 磷酸酯主要用作聚氯乙烯树脂及各种塑料、合成橡胶、高分子材料的阻燃增塑剂。磷酸酯类塑料加工助剂与聚氯乙烯、醋酸及硝基纤维素、聚苯乙烯、聚乙烯等聚烯烃树脂、合成橡胶等具有良好的相容性,是具有优良的增塑、阻燃、耐磨、抗菌等多功能的加工助剂。含卤磷酸酯一般作为阻燃剂使用,而芳香族磷酸酯、脂肪族磷酸酯或芳香脂肪族磷酸酯则作为阻燃增塑剂使用。 用作阻燃剂的作用:磷系阻燃剂的阻燃作用在于阻碍向火焰供给燃料,降低聚合物裂解速度和催化聚合物的交联反应,这样就促使聚合物的碳化,增加燃烧残余物的量。当磷系阻燃剂与一定的氮化合物共同使用时,阻燃效力比两种阻燃剂单独使用时效力之和还大,这就是所谓磷-氮协同效应。 用作增塑剂的作用:磷酸酯突出的特点是良好的阻燃性和抗菌性,特别是单独使用时效果更佳。另外,磷酸酯类增塑剂挥发性较低,抗抽出性也优于邻苯二甲酸二(2-乙基)己酯,多数磷酸酯都有耐菌性和耐侯性。但这类增塑剂的主要缺点是价格较贵,耐寒性较差,大多数磷酸酯类的毒性较大,特别是磷酸三甲苯酯(TCP)不能用于和食品接触的场合。磷酸二苯辛酯是允许用于食品包装的唯一磷酸酯。含卤磷酯几乎全部作为阻燃剂使用。 表面活性剂的作用和种类:磷酸酯类表面活性剂是含磷表面活性剂的代表,是一种性能优良、应用广泛的表面活性剂。具有优良的润湿、洗净、增溶、乳化、抗静电和缓蚀防锈等特性,且易生物降解,刺激性比较低,热稳定性、耐碱、耐电解质和抗静电性均优于一般阴离子表面活性剂,广泛用于化纤、纺织、塑料、造纸、皮革和日用化学品等领域。目前,磷酸酯表面活性剂的研究方向基本分为两大类:①合成研究;②新功能的开发和应用。 磷酸酯类表面活性剂的主要品种:有烷基(芳基)磷酸酯(盐)、脂肪醇(烷基酚)聚氧乙烯醚磷酸酯盐、烷基醇酰胺磷酸酯(盐)、咪唑啉类磷酸酯(盐)、高分子聚磷酸酯(盐)以及硅氧烷磷酸酯等。它们的性质不同,应用范围各有侧重。 合成磷酸酯表面活性剂需要亲油、亲水两部分原料。亲油性原料主要有:脂肪醇(ROH)、脂肪醇聚氧乙烯醚(RO(C2H40) H)、烷醇酰胺(RCONHCH2CH2OH)、烷醇酰胺聚氧乙烯醚(RCONH(C2H40) H)、脂肪胺聚氧乙烯醚、油脂和脂肪酸酯类等6大类;磷酸化试剂有:五氧化二磷(P2O5)、焦磷酸(}{3P2o7)、三氯化磷(PC1 )、三氯氧磷(POC13)和磷酸(H3PO4)等。具体用途: 1、磷酸酯可用于生产国家煤炭部、化工部相关标准要求的一般难燃输送带,阻燃钢丝绳芯输送带、阻燃钢缆输送带,阻燃整芯PVC及PVG输送带。而制作出的PVC输送带表面无异物喷出,易于生产PVG输送带。

浅谈阻燃材料聚磷酸铵的研究进展

浅谈阻燃材料聚磷酸铵的研究进展 摘要:聚磷酸铵是一种高效无机无卤磷系阻燃剂,是膨胀型阻燃剂的主要成分之一。本文就聚磷酸铵的合成方法,改性研究现状和应用前景进行了介绍。 关键词:聚磷酸铵;阻燃剂;合成方法;改性,应用进展 聚磷酸铵(简称APP)是一种磷氮系特效膨胀型无机阻燃剂,通式为(NH4)n+ 2PnO3n+1,外观呈白色粉末状,分水溶性和水难溶性,其中聚合度n 在10- 20 之间为水溶性,称为短链APP;聚合度n 大于20 的为水难溶性,称为长链APP。该产品P- N 阻燃元素含量高、热稳定性能好,产品近乎中性,能与其他物质配伍,阻燃性能持久,无毒抑烟。APP作为膨胀型阻燃剂的基础材料, 被广泛应用于阻燃领域,随着全球阻燃剂朝无卤化方向发展,以APP 为主要原料的膨胀型阻燃剂成为研究开发的热点。APP 的阻燃机理是受热脱水后生成聚磷酸强脱水剂,促使有机物表面脱水生成炭化物,加之生成的非挥发性磷的氧化物及聚磷酸对基材表面进行覆盖,隔绝空气而达到阻燃的目的,同时由于APP 含有氮元素,受热分解释放出CO2、N2、NH3等气体,这些气体不易燃烧,阻断了氧的供应,达到了阻燃增效和协同效应的目的[1]。 1 聚磷酸铵的合成 目前聚磷酸铵的合成工艺很多,主要有磷酸和尿素缩合法,聚磷酸铵化法,正聚磷酸铵与氨气高温中和法,P2O5-NH3-H2O 高温气相反应法,NH4H2PO4和CO(NH2)2缩合法,NH4H2PO4和NH3缩合法以及H3PO4和NH3缩合法等。根据聚磷酸铵不同的用途合成的方法也不一样。 1.1 磷酸和尿素缩合法 这种合成方法是将磷酸和尿素以一定比例混合,加热搅拌后,得到澄清透明的液体再将这种液体加热,经发泡、聚合和固化3 个阶段即可得到白色干燥固体,冷却后得到成品。 李茂林等以85%的磷酸和尿素为原料探究了聚磷酸铵生产的最佳工艺条件,合成的产品聚合度为170,结果表明反应温度220℃,反应时间3h,n(H3PO4) (以P2O5计85%)∶n [CO(NH2)2]=1∶1.8为最佳工艺条件。 张长水等以正交实验法探讨了用磷酸和尿素为原料合成聚磷酸铵时,原料配比、反应温度、聚合时间等因素对产品聚合度的影响。实验结果表明,较优工艺条件为:尿素与磷酸的摩尔配比为 1.7∶1,预聚合温度180℃,固化温度240℃,固化时间为160min,产品外观为白色固体,平均聚合度为34,溶解度为0.98g·(100g 水)-1。 1.2 磷酸法 这种合成方法要求磷酸以沸腾状态进入反应器,通入氨后使氨气与五氧化二磷的摩尔比在0.5~0.6 之间,反应器温度在180℃左右,此时局部氨化的磷酸将进入浓缩器内浓缩,使氨气与五氧化二磷混合物的含量在70%左右,再进入绝热氨化器内继续氨化,使混合物氨气与五氧化二磷的含量不少于77%,最后在辅助氨化器内进行氨化以达到一定规格的产品。 V.Archie等用物质的量之比为0.8~1.2 的氨气和五氧化二磷在

新型阻燃剂阻燃效果及其阻燃机理的研究

新型阻燃剂阻燃效果 及其阻燃机理的研究 武警学院工程系 田 丽 摘要:为了提高聚合物的耐燃性,应该使用一种能使聚合物形成炭化层的无卤阻燃剂,我们选用了硅胶以及硅胶和碳酸钾的混合物作为PP、PVA的阻燃剂,并探讨了该新型阻燃剂在其它聚合物中使用的可能性。实验表明,该阻燃剂具有明显的阻燃效果。同时本文在添加剂存在下,利用固相NM R分析了炭化层的结构,探讨了阻燃剂的阻燃机理。 现在合成聚合物正在迅速替代传统的钢材、无钢金属以及天然聚合物(如木材、天然橡胶等),它们之所以发展速度快,是因为具有有价值的物理特性,然而它们的缺点是都是易燃的。为了提高抗燃性,人们提出了各种各样的方法。其中常用的减小其火灾危险性的方法有以下几种:提高其点火能,减小火焰传播速度,减小释热速率和减小毒性物质及烟的生成量。热稳定性好的聚合物,一般能够满足以上几个方面的要求,但这些高聚物的价格比较昂贵,且其物理性能和加工性能可能不如热稳定性稍差的聚合物。对于价格比较低廉的高聚物(如大部分商品聚合物PE PP PS PV C等等),一般采用添加阻燃剂的方法减小其火灾危险性。但这种阻燃添加剂必须对材料的物理性质和价格影响较小。虽然卤代阻燃剂能显著降低聚合物的释热速率,但在将来,卤代阻燃剂终将被淘汰。在欧洲,人们普遍认为某些卤系阻燃剂的燃烧和再循环对环境会造成一定的影响。 而可供选择的非卤系阻燃剂的种类非常多,如A l (OH)3和M g(OH)2(都产生水,从而吸收大量热),其阻燃作用体现在许多方面,一个重要的有发展前景的作用是炭化层的形成。本文还谈到了这一作用在现阶段阻燃剂领域中的地位。炭化层降低可燃性的机理体现在以下几个方面:(1)使部分碳和氢存在于凝聚相,这就减小了可燃挥发分的生成量。(2)炭化层具有较低的导热性能,可将其看作是绝缘层,从而保护内部原材料。(3)致密炭化层对可燃挥发分降解产物的产生是一个物理性障碍。参考文献[1]中谈到,有些聚合物在燃烧过程中降解产生炭化层,有些不产生炭化层,要想了解成炭原理以及提高成炭量的方法,必须首先研究炭化层的物理化学结构。参考文献[2]中详细分析研究了芳香性工程聚合物燃烧剩余物,从而确定了它们的化学结构。这些结果表明,当BPA-PC以及其他芳香聚合物受热后,失去大部分的脂肪族基团,剩余炭层绝大部分为质子化或非质子化的芳香碳。 炭化层的物理结构对聚合物的燃烧性能有很大影响。最好形成填充有气体的多孔膨胀炭层,膨胀炭层的主要作用是其绝热性能,而不是其对挥发性气体产物和低粘度液体产物进入气相的阻碍作用,因为低粘度聚合熔融物可通过膨胀炭化层的毛细作用而上升到聚合物表面。 大部分商品聚合物燃烧时不会形成炭化层,现在研究的一个重要方面是怎样促使这些聚合物形成炭化层。可取的研究方法是怎样使这些聚合物在燃烧过程的初期快速成炭,而成炭过程的温度必须高于聚合物的加工温度,并且成炭过程必须发生于聚合物热分解过程的初期,这样炭化层才能发挥作用。我们采用的成炭方法是,选择廉价的成炭阻燃添加剂加入到商品聚合物中,并且了解其成炭机理,从而使添加剂发挥较好的作用。最近对填有含硅物质的聚合物可燃性的研究表明,这些含硅的物质不论单独作用、与聚合物混合使用还是作为共聚体,都是有发展前途的阻燃剂。我们选择硅胶和碳酸钾的混合物作为添加剂,并且确定它们对商品聚合物燃烧性能的影响。我们选择含有碳酸钾的硅胶的目的是在探讨燃烧过程中形成硅基阻燃剂的方法,在金属氢氧化物存在时,硅胶与有机醇反应生成多种有机硅化物。我们并没有直接合成这些有机硅化物,并使之与聚合物连接起来,来评价它们对聚合物燃烧性能的影响;而是通过将多羟基聚合物如PVA或纤维素与硅胶和碳酸钙结合,并预测在燃烧表面下面凝聚相可能发生的反应,即如果聚合物在燃烧过程中与添加剂作用,反应结果会使聚合物交联,从而形成Si-O-C类型的保护炭层。 研究中所使用的聚合物和添加剂为硅胶(F isher Scientific公司,28-200目);碳酸钾(马林克罗特公司,粒状);聚丙烯PP(Scientific公司的聚合物产品,重均分子量=240000g mo l),聚苯乙烯PS(Scientifc公司的聚合物产品,重均分子量=45000g mo l);苯乙烯-丙烯腈,SAN(GE聚合物);聚甲基异丁烯酸,P MM A(D u Pont,E lvacite);聚(乙烯醇);PVA(Scientific公司的聚合物产品,数均分子量=86000g mo l,重均分子量= 178000g mo l,经N aOH水溶液处理后9917%为水合物);尼龙6,6(R hone Poulenc)和a-纤维素(Sigm a Chem ical公司,纤维含量9915%)。将添加剂和聚合物

磷系阻燃剂的阻燃机理

磷系阻燃剂的现状与展望 2009-12-23 11:27:21| 分类:默认分类 | 标签: |字号大中 小订阅 磷系阻燃剂的现状与展望 -------------------------------------------------------------------------------- 来源:中国化工信息网 2009年3月24日 随着高分子材料在各个领域的广泛应用,有机高分子,在给人们的生产和生活带来巨大利益的同时,也会带来了潜在的火灾安全问题。为了减少火灾的发生,世界各国都在致力于研究和应用阻燃剂及阻燃材料。所谓阻燃剂就是能够提高可燃物的难燃性或自熄性的一种助剂,是塑料助剂中仅次于增塑剂消耗量的助剂。在各类阻燃剂中,磷系阻燃剂占有重要地位,它不仅克服了含卤型阻燃剂燃烧烟雾大、放出有毒及腐蚀性气体的缺陷,同时又改善了无机阻燃剂高添加量严重影响材料的物理机械性能的缺点,做到了高阻燃性、低烟、低毒、无腐蚀性气体产生。 1 阻燃机理及分类 1.1 磷系阻燃剂的阻燃机理 磷系阻燃剂的阻燃机理主要是形成隔离膜来达到阻燃效果,形成隔离膜的方式有2种。 (1)利用阻燃剂的热降解产物促使聚合物表面迅速脱水而炭化,进而形成炭化层。由于单质碳不进行产生火焰的蒸发燃烧和分解燃烧,因此,具有阻燃保护作用。磷系阻燃剂对含氧聚合物的阻燃作用就是通过这种方式实现的。其原因是含磷化合物热分解得到的最终产物是聚偏磷酸,而它是强脱水剂。 (2)磷系阻燃剂在燃烧温度下分解生成不挥发的玻璃状物质,它包覆在聚合物的表面,这种致密的保护层起隔离层的作用。 1.2磷系阻燃剂的分类

磷系阻燃剂根据磷系阻燃剂的组成和结构,可以分为无机磷系阻燃剂和有机磷系阻燃剂两大类。无机磷系阻燃剂包括红磷、磷酸铵盐和聚磷酸铵等。有机磷系阻燃剂包括磷酸酯、亚磷酸酯、膦酸酯和鳞盐等。下述阐述一下几种常用磷系阻燃剂的特点。 2 无机磷系阻燃剂 无机阻燃剂历史悠久,主要是红磷、聚磷酸铵(APP)、磷酸二氢铵等磷酸盐,受热分解出磷酸、偏磷酸和H2O等,并促进成炭覆于基材的表面起到阻燃的效果。应用于PVC、尼龙环氧树脂、聚酯和聚酰胺等,尤其是对后两类更为普遍。作为一种老牌阻燃剂,其无卤、低毒、稳定、效果持久等优势,使其在无机阻燃剂中占有很重的地位。1963年,由德国拜耳公司推出红磷阻燃剂以来,一直在研究塑料阻燃剂用红磷的稳定方法。 2.1 红磷 红磷是一种性能优良的阻燃剂,具有高效、抑烟、低毒的阻燃效果,红磷在400℃受热分解,,解聚形成白磷,白磷在水汽存在下被氧化成粘性的磷的含氧酸,这类酸即覆盖于被阻燃材料表面,又促使材料表面加速脱水炭化,形成炭层。液膜和炭层可起到蓄热、阻止气体交换的作用,保护下层不再被继续氧化,起到阻燃作用。但是在实际应用中易吸潮、氧化、并放出剧毒气体,粉尘易爆炸,而其呈深红色,在与树脂混炼、模塑等加工操作过程中存在着火危险,且与树脂相容性差,不宜分散均匀,导致基材物理性能下降。为了克服这些缺点,红磷颗粒的表面改性处理成为重要研究课题之一。 在我国,由于红磷作为阻燃剂未广泛使用,故国内研制开发较少。但鉴于它有着广泛的市场前景,应引起注意和重视。由于微胶囊能保护物质免受环境影响,改变物质质量、状态或表面性能,隔离活性成分,降低挥发性和毒性等多种作用,所以将该技术应用于无机阻燃剂,就可以防止无机阻燃剂迁移、提高阻燃效果、改善热稳定性等。 目前,微胶囊技术在无机阻燃剂中的工业化应用主要是微胶囊化红磷,经包覆处理的红磷具有低烟、低毒、无卤、相容性好、物化性能优良等特点。李玉荣等研制出了一种无机和有机双层包覆红磷(即IO红磷),作为矿井用阻燃抗静电橡胶和像塑导风筒,以及矿用阻燃聚乙烯塑料棚网,均表现出良好的阻燃效果,同时,减少了卤系阻燃剂和Sb2O3的用量,降低了阻燃制品燃烧时产生的有害气体。目前商品化的品种有:ClariantWC公司的ExolitRP,Albright&Wilson公司的AMGARD和AMGARDCPC系列,AmgardCRP和AmgardGHT系列,日本的RINKA系列等。 另外红磷具有抑烟效果,可以寻找合适的消烟剂与之进行复配,火灾中抑烟比防火更重要,促进发展消烟技术。 2.2聚磷酸铵 聚磷酸铵(APP)是一种性能良好的无机磷阻燃剂,是目前磷系阻燃剂比较活跃的研究领域。APP的P-N阻燃元素含量高、热稳定性好,产品近乎于中性;另外价廉、毒性低、阻燃性能持久,可单独或与其它阻燃剂复合用于塑料的阻燃。另外,聚磷酸是强脱水剂,可使聚合物脱水炭化形成炭层,隔绝聚合物与氧气的接触,在固相起阻止燃烧的作用。

聚磷酸铵的合成及其阻燃性能研究

聚磷酸铵的合成及其阻燃性能研究3 胡云楚1,2,吴志平2,孙汉洲1,周 莹1,刘 元2 (1.中南林业科技大学理学院,湖南株洲412006;2.中南林业科技大学工业学院,湖南长沙41004) 摘 要: 复合型高效阻燃剂是当前阻燃技术研究的重要方向之一。根据木材阻燃的炭量增加理论,利用水溶性试验、灼烧成炭试验和热分析方法研究了聚磷酸铵的合成条件、聚磷酸铵2硼酸复合阻燃剂的复合阻燃效应。聚磷酸铵的最佳合成条件是:磷酸:尿素摩尔比为1∶1.8,预聚合温度为(124±2)℃,预聚合反应时间为25min左右,聚合固化温度230~240℃左右,聚合固化时间为140min左右。在最佳条件下合成的聚磷酸铵的聚合度为23.3,溶解度为0.67g/100mL 水,阻燃处理杨木粉在400℃灼烧30min的成炭率为38.9%,是同一条件下未处理杨木粉灼烧成炭率的2.15倍。聚磷酸铵和硼酸以4∶1复配所制得的聚磷酸铵2硼酸复合阻燃剂,对木粉的成炭率为40.5%,相对复合阻燃效应为43.2%。200~300℃是木粉热解燃烧的主要阶段,也是阻燃剂发挥阻燃作用的主要阶段。聚磷酸铵2硼酸复合阻燃剂在高温下不仅能催化木材产生更多的木炭,而且能使木炭结构紧密、不易燃烧。 关键词: 聚磷酸铵;硼酸;灼烧成炭试验;阻燃性能; 复合效应 中图分类号: TB34文献标识码:A 文章编号:100129731(2006)0320424204 1 引 言 近年来火灾所造成的财产损失和人员伤亡一直呈上升趋势,许多火灾的发生均与高分子材料和木质材料的使用状况及其可燃性有关,因此,阻燃技术的发展是保障人民生命财产安全的需要,也是高聚物和木质材料具有广泛应用前景的基础[1~3]。 聚磷酸铵热稳定性好,产品接近中性,并可以与其它阻燃剂混合,分散性好,同时价格便宜,毒性较低,使用安全。李蕾等报道[4],国内聚磷酸铵阻燃剂的聚合度为20~50;C.Drevelle等[5]报道,聚磷酸铵的聚合度为700,溶解度低于1%。目前国内外对聚磷酸铵合成工艺及在聚合物中阻燃应用的研究报道较多,未见其在木材阻燃方面的研究报道。 复合型高效阻燃剂是当前阻燃技术研究的重要方向之一。硼酸和聚磷酸铵具有原料充足、价格便宜、阻燃效果好、对环境无害的特性,将两者按一定配比复合可以提高阻燃效果[3~11]。 作者根据木材阻燃的炭量增加理论,利用水溶性试验、灼烧成炭试验和热分析方法研究了聚磷酸铵的最佳合成条件、聚磷酸铵2硼酸复合阻燃剂的最佳配比及其复合阻燃效应。 2 实 验 2.1 仪器与试剂 HC T22型微机差热天平、65112A型电动搅拌器、KDM型连续可调电子控温电热套、FN1012型鼓风干燥箱、KSW电阻炉温控制器、5212型箱式电阻炉、A2 1100紫外可见分光光度计、P HS23C酸度剂、PB2032N 型电子天平、100ml玛瑙研钵、30ml瓷坩锅、坩锅架。 尿素、磷酸、硼酸、多聚磷酸钠、钼酸铵、硫酸肼、氢氧化钠均为国产分析纯试剂;杨木粉,植物粉碎机粉碎为40目以下。 2.2 聚磷酸铵的合成 反应原理: n H3PO4+(n-1)CO(N H2)2 (N H4)n+2P n O3n+1+(n-4)N H3+(n-1)CO2 副反应: CO(N H2)2+H2O CO2↑+2N H3↑ 先将85%的磷酸与99%的尿素按1∶1.8(摩尔比)依次加入三口烧瓶中,加热搅拌,控制升温速度≥10℃/min,待温度升至预聚合温度(100℃左右)时尿素全部融化,溶液澄清冒泡,同时有大量气体逸出(前期p H=6,后期p H=8),待溶液变稠发粘后,在不断搅拌下出料至白瓷盘中,放入已恒温的烘箱中进行聚合固化,待固化完全后,将其冷却,粉碎即得聚磷酸铵 (A PP)。 2.3 聚磷酸铵溶解度的测定 用电子天平称取0.500g样品放入10ml蒸馏水中,于室温下搅拌后,静置24h,过滤,滤渣为未溶解样品,在100℃以下烘干60min,称重,计算溶解度。 2.4 聚磷酸铵聚合度的测定 用分光光度法确定聚磷酸铵样品中P的物质的量,用一阶倒数滴定曲线确定聚磷酸铵的物质的量,根据P的物质的量与聚磷酸铵的物质的量之比计算聚磷酸铵的平均聚合度。测定聚磷酸铵聚合度的详细步骤 3基金项目:国家自然科学基金资助项目(30471358);湖南省自然科学基金资助项目(03JJ Y3063)收到初稿日期:2005207204收到修改稿日期:2005211226 通讯作者:胡云楚作者简介:胡云楚 (1960-),男,湖南湘潭人,教授,博士研究生,从事材料化学和木材阻燃研究。

有机磷酸酯阻燃剂研究进展_徐会志

有机磷酸酯阻燃剂研究进展 徐会志,王胜鹏,包杰界 (浙江传化股份有限公司,杭州 311231) 摘 要有机磷阻燃剂研究在国内外得到极大的关注。综述了磷酸酯类阻燃剂、膦酸酯类阻燃剂和磷杂环类阻燃剂的研究进展,并提出了有机磷阻燃剂今后的发展方向。 关键词 有机磷,阻燃剂,磷酸酯,膦酸酯,磷杂环 1 引言 有机磷酸酯阻燃剂是一种阻燃性能较好的阻燃剂,它品种多,用途广泛。卤系阻燃剂存在很多缺点,如抗紫外线稳定性差,燃烧时生成较多的烟、腐蚀性气体和有毒气体。特别是自1986年起,发现多溴二苯醚及其阻燃的高聚物的热裂解和燃烧产物中含有致癌物四溴代双苯并二恶烷及四溴代苯并呋喃后,卤系阻燃剂的使用受到了限制,使得非卤阻燃剂特别是有机磷阻燃剂的研究和开发变得更加重要。虽然有机磷化合物都会有一定的毒性,但它们的致畸性却不高,其分解产物及其阻燃的高聚物的热裂解和燃烧产物中腐蚀性、有毒物也很少。有机磷阻燃剂之所以成为阻燃剂研究中的热点,除了上面的因素外,还因为有机磷阻燃剂除了具有阻燃性能之外,很多品种还同时具有增塑、热稳定等作用,对提高高分子材料的综合性能有十分重要的作用。 目前,有机磷阻燃剂的研究、开发方兴未艾,每年报道很多。有机磷阻燃剂根据化学活性的不同,可以分为使用方便的反应型和阻燃性持久的添加型两类,下面就这些阻燃剂种类、合成和应用的最新发展状况进行论述[1,2]。 2 磷酸酯阻燃剂 用作阻燃剂的磷酸酯很多,主要可用于聚苯乙烯(PS),聚氨酯(PU)泡沫塑料,聚酯(PET),聚碳酸酯(PC)和液晶等高分子材料的阻燃。包括只含磷的磷酸酯阻燃剂、含氮磷酸酯阻燃剂和含卤磷酸酯阻燃剂等几类。 (1)只含磷的磷酸酯阻燃剂 只含磷的磷酸酯阻燃剂大多数为酚类的磷酸酯,也有少量的烷基磷酸酯。Bright Danielle A报道,结构式如下的化合物可用于高抗冲聚苯乙烯的阻燃处理: 1,4-(ArO)2P(O)OCH2C6H4CH2OP(O)(ArO)2 式中Ar=(未)取代的芳基。 当在高抗冲聚苯乙烯中加入5.6份该化合物时极限氧指数(LOI)从18变为20.5。相近结构的

新型阻燃剂的发展现状-推荐下载

江苏雅克、杰尔斯、山东默锐 随着我国合成材料工业的发展和应用领域的不断拓展,阻燃剂在化学建材、电子电器、交通运输、航天航空、日用家具、室内装饰、衣食住行等各个领域中具有广阔的市场前景。此外,煤田、油田、森林灭火等领域也促进了我国阻燃、灭火剂生产较快的发展。我国阻燃剂已发展成为仅次于增塑剂的第二大高分子材料改性添加剂,目前的生产能力20万t/a左右,年生产量在15万-17万t之间,年消费量20万t左右。不足部分主要从美国和以色列进口,进口的主要品种为有机溴及卤—磷系阻燃剂。我国阻燃剂生产厂60余家,能够生产50余种产品,主要为溴磷系列,其中溴系阻燃剂是最重要的系列,约占我国有机阻燃剂的30%。、 国内阻燃剂的品种和消费量还是以有机阻燃剂为主,无机阻燃剂生产和消费量还较少,但近年来发展势头较好,市场潜力较大。阻燃剂中最常用的卤系阻燃剂虽然具有其他阻燃剂系列无可比拟的高效性,但是它对环境和人的危害是不可忽视的。环保问题是助剂开发和应用商关注的焦点,所以国内外一直在调整阻燃剂的产品结构,加大高效环保型阻燃剂的开发。 1.环保型阻燃剂应用和生产现状 随着人们环保、安全、健康意识的日益增强,世界各国开始把环保型阻燃剂作为研究开发和应用的重点,并已经取得了一定的成果。阻燃剂按有效元素分类,可分为磷系、氯系、溴系和锑基、铝基、硼基阻燃剂等。本文根据阻燃有效元素将阻燃剂分为无卤阻燃

剂、溴系阻燃剂、卤—磷协同阻燃剂及其他阻燃剂四个种类,分别 介绍其中几种环保且具有应用前景的阻燃剂。 1.1无卤阻燃剂 无卤、低烟、低毒的环保型阻燃剂一直是人们追求的目标,近 年来全球一些阻燃剂供应和应用商对阻燃无卤化表现出较高热情, 对无卤阻燃剂及阻燃材料的开发也投入了很大的力量。据分析,无 卤阻燃剂主要品种为磷系阻燃剂及无机水合物。前者主要包括红磷 阻燃剂,无机磷系的聚磷酸铵(APP)、磷酸二氢铵、磷酸氢二铵、磷酸酯等,有机磷系的非卤磷酸酯等。后者主要包括氢氧化镁、氢氧 化铝、改性材料如水滑石等。聚磷酸铵、水滑石为该系列环保型且 市场前景较好的代表产品,以下就这两种产品展开分析。 1.1.1聚磷酸铵 聚磷酸铵(ammoniumpolyphosphate,简称为APP)是长链状含磷、氮的无机聚合物,其分子通式为:(NH4P03)n。由于其具有化学稳定性好、吸湿性小、分散性优良、比重小、毒性低等优点,近年来广 泛用于塑料、橡胶、纤维作阻燃处理剂;还可用于配制膨胀性防火 涂料,用于船舶、火车、电缆及高层建筑的防火处理;也用于生产 干粉灭火剂,用于煤田、油井、森林大面积灭火;此外,还可作肥 料用。聚磷酸铵的聚合度是决定其作为阻燃剂产品质量的关键,聚 合度越高,阻燃防火效果越好。国内已经有聚合度超过100的产品,而国外APP(聚磷酸铵)的聚合度在500以上已是常见。国内聚磷酸 铵研制始于1978年,经过20多年的发展,我国聚磷酸铵生产已具

磷系阻燃剂的阻燃机理

磷系阻燃剂的现状与展望2009-12-23 11:27:21| 分类:默认分类| 标签:|字号大 中 小订阅 磷系阻燃剂的现状与展望 -------------------------------------------------------------------------------- 来源:中国化工信息网2009年3月24日 随着高分子材料在各个领域的广泛应用,有机高分子,在给人们的生产和生活带来巨大利益的同时,也会带来了潜在的火灾安全问题。为了减少火灾的发生,世界各国都在致力于研究和应用阻燃剂及阻燃材料。所谓阻燃剂就是能够提高可燃物的难燃性或自熄性的一种助剂,是塑料助剂中仅次于增塑剂消耗量的助剂。在各类阻燃剂中,磷系阻燃剂占有重要地位,它不仅克服了含卤型阻燃剂燃烧烟雾大、放出有毒及腐蚀性气体的缺陷,同时又改善了无机阻燃剂高添加量严重影响材料的物理机械性能的缺点,做到了高阻燃性、低烟、低毒、无腐蚀性气体产生。 1 阻燃机理及分类 1.1 磷系阻燃剂的阻燃机理 磷系阻燃剂的阻燃机理主要是形成隔离膜来达到阻燃效果,形成隔离膜的方式有2种。 (1)利用阻燃剂的热降解产物促使聚合物表面迅速脱水而炭化,进而形成炭化层。由于单质碳不进行产生火焰的蒸发燃烧和分解燃烧,因此,具有阻燃保护作用。磷系阻燃剂对含氧聚合物的阻燃作用就是通过这种方式实现的。其原因是含磷化合物热分解得到的最终产物是聚偏磷酸,而它是强脱水剂。 (2)磷系阻燃剂在燃烧温度下分解生成不挥发的玻璃状物质,它包覆在聚合物的表面,这种致密的保护层起隔离层的作用。 1.2磷系阻燃剂的分类 磷系阻燃剂根据磷系阻燃剂的组成和结构,可以分为无机磷系阻燃剂和有机磷系阻燃剂两大

有机磷系阻燃剂.

阻燃剂及有机磷系阻燃剂的综述 1引言 材料是实现工业、农业、国防和科学技术现代化的重要物质基础,它与信息、能源并列为现代文明的三大支柱,是现代社会赖以生存和发展的基本条件之一。然而,自20世纪30年代,有机高分子材料进入国民经济的各个领域及人民生活的各个方面后,人类即开始面临新的火灾威胁,原因是这类材料大部分是易燃或可燃的。这不但限制了它们的应用,还给人类社会带来频繁的火灾危害和严重的经济损失,表1.1列举了半个世纪以来世界各国部分特大火灾。据统计,经济发达的国家和地区在1989-1993年间的年均火灾损失达国民生产总值的0.1-0.4%。 因此,阻燃已成为当前人类提高社会消防能力,确保人民生命和财产免遭火灾的重要措施,以阻燃为目的的高分子材料改性也愈加引人注目,从而大大促进了阻燃材料和技术的研究、生产。制备应用低烟、低毒和环境污染低的阻燃剂是加工绿色阻燃材料的需求。 阻燃剂是用以提高材料抗燃性,即阻止材料被引燃及抑制火焰传播的助剂。阻燃剂主要用于阻燃合成和天然高分子材料(包括塑料、橡胶、纤维、木材、纸张、涂料等)。

一个理想的阻燃剂最好能同时满足下述条件,但这实际上几乎是不可能的,所以选择实用的阻燃剂时大多是在满足基本要求的前提下,在其他要求间折中和求得的最佳的平衡: (1)阻燃效率高,获得单位阻燃效能所需的用量少。 (2)本身低毒或基本无毒(对大鼠口服的LD50)5000mg/kg),燃烧时生成的有 毒和腐蚀性气体量及烟量尽可能少。 (3)与被阻燃基材的相容性好,不易迁移和渗出。 (4)具有足够高的热稳定性,在被阻燃基材加工温度下不分解,但分解温度 也不宜过高,以在250~400度之间为宜。 (5)不致过多恶化被阻燃基材的加工性能和最后产品的物理-机械及电气性 能。可以认为,现有的阻燃剂和阻燃工艺无一不或多或少地对被阻燃高 聚物的某一性能或某几种性能会产生不利的影响,而且阻燃剂用量越多,影响越大,所以性能优良的阻燃剂和合理的阻燃剂配方在于能在材料阻 燃性和实用性间求得和谐的统一。 (6)具有可接受的紫外线稳定性和光稳定性。 (7)原料来源充足,制造工艺简便,价格低廉。因为阻燃剂的用量一般比较 大,所以它的价格也是一个不可忽视的考虑因素,一个性能较优而价格 偏贵的阻燃剂在于一个性能尚能满足使用要求但不甚理想而价格低廉的 阻燃剂竞争时,前者往往败北。 2阻燃剂的分类 按化学组成来分,阻燃剂可分为有机阻燃剂和无机阻燃剂两大类;按使用方式的不同,阻燃剂可分为添加型阻燃剂和反应型阻燃剂两种。按照阻燃元素的不同,阻燃剂可分为卤系、有机磷系及卤磷系、磷-氮系、锑系、铝磷系、无机磷系、硼系和钼系、锡系、钙化合物、铁化合物等。前三种属于有机阻燃剂,后几类属于无机阻燃剂。

相关文档
最新文档