改进伽罗华有限域上的数乘算法

改进伽罗华有限域上的数乘算法
改进伽罗华有限域上的数乘算法

三位数乘两位数知识点及练习

第四单元三位数乘两位数知识点及课堂练习 知识点: 一、计算基本方法: 1.先用两位数个位上的数去乘另一个因数,得数的末位和两位数的个位对齐。 2.再用两位数十位上的数去乘另一个因数,得数的末位和两位数的十位对齐。 3.然后把两次乘得的数加起来。 因数末尾有0的计算方法: 1.先把0前面的数相乘,乘完以后再看乘数末尾有几个0,就在乘得的数的末尾加几个0。注意:两个因数的末尾有几个0,积的末尾至少有几个0。 二、每小时(或每分钟等)行的路程叫做速度,行了几小时(或几分钟等)叫做时间,一共行了多长的路叫做路程 速度的表示方法:例如:特快列车速度160千米/小时小学生步行速度60米/分 公式:速度×时间=路程 时间=路程÷速度 速度=路程÷时间 每件商品的价钱,叫做单价;买了多少,叫做数量;一个用了多少钱,叫做总价。 公式:单价×数量=总价 单价=总价÷数量 数量=总价÷单价 三、规律:一个因数不变,另一个因数不断变大,积也不断变大。一个因数不变,另一个因数不断变小,积也不断变小。一个因数不变,另一个因数乘以几,积也乘以几。一个因数不变,另一个因数除以几,积也除以几。例如:已知8×50=400,直接写出下面各题的积。 16×50=800(50不变,8乘以2变为16,所以积也从400乘以2变为了800) 32×50=1600(50不变,8乘以4变为32,所以积也从400乘以4变为了1600) 8×25=200(8不变,50除以2变为25,所以积也从400除以2变为了200) 小试牛刀: 一、填空。(11×2=22) ⒈自行车的速度可达每小时15千米,可以写作:()。 ⒉人步行的速度可达每分钟30米,可以写作:()。 ⒊光在空气中的速度可达每秒钟30000千米,可以写作:()。 ⒋()×()=总价,路程÷()=()。 5、400×25的积是()位数,积的末尾有()个0。 6、已知A×B=380,如果A扩大3倍,则积变成();如果B缩小5倍,则积变成()。 二计算题: 176×47= 679 ×13= 220×40= 360 ×25=

高中数学竞赛中数论问题的常用方法

高中数学竞赛中数论问题的常用方法 数论是研究数的性质的一门科学,它与中学数学教育有密切的联系.数论问题解法灵活,题型丰富,它是中学数学竞赛试题的源泉之一.下面介绍数论试题的常用方法. 1.基本原理 为了使用方便,我们将数论中的一些概念和结论摘录如下: 我们用),...,,(21n a a a 表示整数1a ,2a ,…,n a 的最大公约数.用[1a ,2a ,…,n a ]表示1a ,2a ,…,n a 的 最小公倍数.对于实数x ,用[x ]表示不超过x 的最大整数,用{x }=x -[x ]表示x 的小数部分.对于整数 b a ,,若)(|b a m -,,1≥m 则称b a ,关于模m 同余,记为)(mod m b a ≡.对于正整数m ,用)(m ?表示 {1,2,…,m }中与m 互质的整数的个数,并称)(m ?为欧拉函数.对于正整数m ,若整数m r r r ,...,,21中任何两个数对模m 均不同余,则称{m r r r ,...,,21}为模m 的一个完全剩余系;若整数)(21,...,,m r r r ?中每一个数都与m 互质,且其中任何两个数关于模m 不同余,则称{)(21,...,,m r r r ?}为模m 的简化剩余系. 定理1 设b a ,的最大公约数为d ,则存在整数y x ,,使得yb xa d +=. 定理2(1)若)(mod m b a i i ≡,1=i ,2,…,n ,)(m od 21m x x =,则 1 1n i i i a x =∑≡2 1 n i i i b x =∑; (2)若)(mod m b a ≡,),(b a d =,m d |,则 )(mod d m d b d a ≡; (3)若b a ≡,),(b a d =,且1),(=m d ,则)(mod m d b d a ≡; (4)若b a ≡(i m mod ),n i ,...,2,1=,M=[n m m m ,...,,21],则b a ≡(M mod ). 定理3(1)1][][1+<≤<-x x x x ; (2)][][][y x y x +≥+; (3)设p 为素数,则在!n 质因数分解中,p 的指数为 ∑≥1 k k p n . 定理4 (1)若{m r r r ,...,,21}是模m 的完全剩余系,1),(=m a ,则{b ar b ar b ar m +++,...,,21}也是模 m 的完全剩余系; (2)若{)(21,...,,m r r r ?}是模m 的简化剩余系,1),(=m a ,则{)(21...,,m ar ar ar ?}是模m 的简化剩余系. 定理5(1)若1),(=n m ,则)()()(n m mn ???=. (2)若n 的标准分解式为k k p p p n ααα (2) 121=,其中k ααα,...,21为正整数,k p p p ,...,21为互不相

数论算法

数论 素数问题、同余问题、中国剩余定理、Nim积、高斯消元法求线性方 程组解、Pell方程、polya计数、矩阵二分快速幂、伪素数、基本数 值计算方法(定积分求解,多项式求根,周期性方程) 1、与整数除法运算相关的算法 整除问题: 欧几里得算法及利用其求最小公倍数: 拓展欧几里得算法及利用其解线性同余方程: a^b%c几种计算方法 中国剩余定理 #include using namespace std; int ext_gcd(int a, int b, int &x, int &y) { int tmp,d; if(b == 0) { x = 1; y = 0; return a; } d = ext_gcd(b, a % b, x, y); tmp = x; x = y; y = tmp - a/b*y; return d; } int China_theory(int a[],int b[],int n) { int res = 0,m,*m1,M = 1,temp; m1 = new int[n]; memset(m1, 0, sizeof(m1)); for(int i = 0; i < n; i++) M *= a[i]; for(int i = 0; i < n; i++) { m = M / a[i]; ext_gcd(m, a[i], m1[i],temp); res = res % M + (m * m1[i] * b[i]) % M;-- res =(res + M) % M; } delete m1; return res; } int main() { int *a, *b, n; while(scanf("%d",&n) && n != 0) { a = new int[n]; b = new int[n];

(完整版)数字PID及其算法

数字PID 及其算法 主要内容:1、PID 算法的原理及数字实现 2、数字PID 调节中的几个实际问题 3、几种发展的PID 算法 4、PID 参数的整定方法 一、概述 几个概念: 1、程序控制:使被控量按照预先规定的时间函数变化所作 的控制,被控量是时间的函数。 2、顺序控制:是指控制系统根据预先规定的控制要求,按 照各个输入信号的条件,使过程的各个执行机构自动地按预 先规定的顺序动作。 3、PID 控制:调节器的输出是输入的比例、积分、微分的 函数。 4、直接数字控制:根据采样定理,先把被控对象的数学模 型离散化,然后由计算机根据数学模型进行控制。 5、最优控制:是一种使控制过程处在某种最优状态的控制。 6、模糊控制:由于被控对象的不确定性,可采用模糊控制。 二、PID 算法的原理及数字实现 PID 调节的实质:根据系统输入的偏差,按照PID 的函数 关系进行运算,其结果用以控制输出。 PID 调节的特点:PID 的函数中各项的物理意义清晰,调节灵活,便于程序化实现。 三、 PID 算法的原理及数字实现 PID 调节器是一种线性调节器,他将设定值w 与实际值y 的偏差: 按其比例、积分、微分通过线性组合构成控制量 1、比例调节器:比例调节器的微分方程为:)(*y t e Kp = y 为调节器输出,Kp 为比例系数,e(t)为调节器输入偏差。由上式可以看出比例调节的特点:调节器的输出与输入偏差成正比。只要偏差出现,就能及时地产生与之成比例的调节作用,使被控量朝着减小偏差的方向变化,具有调节及时 的特点。但是,Kp 过大会导致动态品质变坏,甚至使系统不稳定。比例调节器的阶跃响应特性曲线如下图 y w e -=s d *K s Ki p K 对象 w e + - + + + u y

(完整版)人教版四年级上册数学三位数乘两位数知识点

第四章三位数乘两位数 一、口算乘法 1、两位数乘一位数的口算方法:十位数字与个位数字分别与另一个因数相乘;用左手手指帮助进位。如13×4,27×9 2、末尾有“0”的三位数乘一位数的口算方法:计算结果末尾先填0,再用两位数乘一位数的方法:180×3,250×5 例1 130的5倍是(),24个8相加的和是() 例2 甲数是430,乙数是甲数的7倍,乙数是() 例3 一个数与零相乘的积是() 例4 如果@÷24=5,#÷@=9,那么#=() 例5 120×4的积是12×4积的()倍,850×6的积是85×60积的()倍。 二、笔算乘法 1、三位数乘两位数的笔算方法 A、因数中不含“0”的笔算方法:如321×25,789×14 例1 一辆汽车每小时行121千米,24小时能行()千米。 例2 某商场占地面积是892平方米,15个这样的商场占地面积将是()平方米。 例3 三位数乘两位数,积可能是()位数,也可能是()位数。 例4判断:两个整数相乘,积一定比每个整数都大。() 例5判断:三位数乘两位数,积最小可以是三位数。() B、因数末尾或中间有“0”的笔算方法:如150×84,409×20 C、速度、时间、路程之间的关系:速度×时间=路程,那时间=________________, 速度=__________________. 例1 一队探险者去热带雨林探险,他们每天能行进125千米,21天能行进多少千米?用三种方法计算(提示:竖式、乘法分配律、两位数等于两个一位数的乘积) 例2 泉泉骑车去书店买资料,每分钟能行360米,25分钟可以到达书店;丽丽步行去书店,每分钟走108米,50分钟可以到达书店。泉泉、丽丽到书店时分别走多少米? 例3 计算405×37

c算法大全

一、数论算法 1.求两数的最大公约数 function gcd(a,b:integer):intege r; begin if b=0 then gcd:=a else gcd:=gcd (b,a mod b); end ; 2.求两数的最小公倍数 function lcm(a,b:intege r):integer; begin if a0 do inc(lcm,a); end; 3.素数的求法 A.小范围内判断一个数是否为质数:function prime (n: intege r): Boolean; v ar I: integer; begin for I:=2 to trunc(sqrt(n)) do if n mod I=0 then begin prime:=false; exit;

end; prime:=true; end; B.判断longint范围内的数是否为素数(包含求50000以内的素数表):procedure getprime; v ar i,j:longint; p:array[1..50000] of boolean; begin fillchar(p,sizeof(p),true); p[1]:=false; i:=2; w hile i<50000 do begin if p[i] then begin j:=i*2; w hile j<50000 do begin p[j]:=false; inc(j,i); end; end; inc(i); end; l:=0; for i:=1 to 50000 do

数论中的基础概念

1群、环、域概念 A1:加法的封闭性:如果a 和b 属于G ,则a+b也属于G A2:加法结合律:对G 中的任意元素a,b,c,a+(b+c)=(a +b)+c A3:加法单位元:G 中存在一个元素0,使得对于G 中的任意元素a,有a+0=0+a A4:加法逆元:对于G中的任意元素a ,G 中一定存在一个元素a,使得 ? a+(-a)=(-a)+a =0 A5:加法交换律:对于G中的任意元素a 和b ,有a+b=b+a M1:乘法的封闭性:如果a 和b 属于G,则ab也属于G M2:乘法结合律:对于G 中的任意元素a,b,c有a(bc)=(ab )c M3:乘法分配了:对于G中的任意元素a,b,c,有a(b +c)=ab+ac 和(a +b)c=ac+bc M4:乘法交换律:对于G 中的任意元素a ,b 有a b=ba M5:乘法单位元:对于G 中的任意元素a,在G中存在一个元素1,使得a1=1a =a M6:无零因子:对于G 中的元素a,b,若ab=0,则必有a=0或b=0 M7:乘法逆元:如果a 属于G ,且a 不为0,则G 中存在一个元素1-a ,使得 111==--a a aa 满足A1---A 4称为群 满足A1---A5称为可交换群 满足A1---M 3称为环 满足A1---M 4称为可交换换 满足A 1---M6称为整环 满足A1---M 7称为域 2循环群:如果群中的每一个元素都是一个固定元素)(G a a ∈的幂k a (k 为整数), 则称群G 是循环群。我们认为元素a 生成了群G ,或者说a是群G 的 生成元。 循环群总是交换群 3模运算 )mod ()mod (n b n a =则称整数a和b 是模n 同余的,可以表示为:)(mod n b a ≡ 若b 整除a。则用符号:a |b 表示。其性质可表示如下: ①如果a|1,那么a=-1或1。 ②如果a|b,且b|a ,那么a=b 或a=-b

七年级数学竞赛讲座数论的方法与技巧(含答案详解)

数学竞赛讲座 数论的方法技巧(上) 数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。 小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。主要的结论有: 1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得abq+r(0≤r

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为: d(n)(a1+1)(a2+1)…(ak+1)。 5.整数集的离散性:n与n+1之间不再有其他整数。因此,不等式x

数论算法讲义 3章(同余方程)

第 3 章 同余方程 (一) 内容: ● 同余方程概念 ● 解同余方程 ● 解同余方程组 (二) 重点 ● 解同余方程 (三) 应用 ● 密码学,公钥密码学 3.1 基本概念及一次同余方程 (一) 同余方程 (1) 同余方程 【定义3.1.1】(定义1)设m 是一个正整数,f(x)为n 次多项式 ()0111a x a x a x a x f n n n n ++++=--Λ 其中i a 是正整数(n a ≠0(mod m )),则 f (x)≡0(mod m ) (1) 叫做模m 的(n 次)同余式(或模m 的(n 次)同余方程),n 叫做f(x)的次数,记为deg f 。 (2) 同余方程的解 若整数a 使得 f (a)≡0(mod m )成立,则a 叫做该同余方程的解。 (3) 同余方程的解数 若a 是同余方程(1)的解,则满足x ≡a (mod m )的所有整数都是方程(1)的解。即剩余类

a C ={x |x ∈Z ,x ≡a (mod m )} 中的每个剩余都是解。故把这些解都看做是相同的,并说剩余类a C 是同余方程(1)的一个解,这个解通常记为 x ≡a (mod m ) 当21,c c 均为同余方程(1)的解,且对模m 不同余时,就称它们是同余方程(2)的不同的解,所有对模m 的两两不同余的解的个数,称为是同余方程(1)的解数,记作()m f T ;。显然 ()m f T ;≤m (4) 同余方程的解法一:穷举法 任意选定模m 的一组完全剩余系,并以其中的每个剩余代入方程(1),在这完全剩余系中解的个数就是解数()m f T ;。 【例1】(例1)可以验证,x ≡2,4(mod 7)是同余方程 15++x x ≡0(mod 7) 的不同的解,故该方程的解数为2。 50+0+1=1≡3 mod 7 51+1+1=3≡3 mod 7 52+2+1=35≡0 mod 7 53+3+1=247≡2 mod 7 54+4+1=1029≡0 mod 7 55+5+1=3131≡2 mod 7 56+6+1=7783≡6 mod 7 【例2】求同余方程122742 -+x x ≡0(mod 15)的解。 (解)取模15的绝对最小完全剩余系:-7,-6,…,-1,0,1,2,…,7,直接计算知x =-6,3是解。所以,该同余方程的解是 x ≡-6,3(mod 15)

数字PID控制算法

第三章、计算机测控系统设计与实现 一、参考书目: 书名:《计算机控制系统》 章节:第六章 页号:P140-156 二、主要学习内容: 1.数字PID 控制算法 PID 控制规律的基本输入/输出关系可用微分方程表示: ()()()??????++=?dt t de T dt t e T t e K Y D I P 1 在模拟调节系统中,PID 控制算法的模拟表达式为: ()()()()??????++=?dt t de T dt t e T t e K t Y D I P 1 2.对标准PID 算法的改进 1、微分项的改进 不完全微分型PID 算法传递函数 ????? ? ??++???? ??+=1111)(S K T S T S T K S G D D D I P C

2、积分项的改进 抗积分饱和 积分作用虽能消除控制系统的静差,但它也有一个副作用,即会引起积分饱和。在偏差始终存在的情况下,造成积分过量。当偏差方向改变后,需经过一段时间后,输出u(n)才脱离饱和区。这样就造成调节滞后,使系统出现明显的超调,恶化调节品质。这种由积分项引起的过积分作用称为积分饱和现象。 克服积分饱和的方法: 1、积分限幅法 积分限幅法的基本思想是当积分项输出达到输出限幅值时,即停止积分项的计算,这时积分项的输出取上一时刻的积分值。其算法流程如图3-2-4所示。 2、积分分离法 积分分离法的基本思想是在偏差大时不进行积分,仅当偏差的绝对值小于一预定的门限值ε时才进行积分累积。这样既防止了偏差大时有过大的控制量,也避免了过积分现象。其算法流程如图3-2-5。 三、知识点: 1、为什么要用PID调节器 1、经典控制方法,可靠成熟。 2、相比两位式控制,控制精度大大提高。 3、算法成熟,资源丰富。 2、数字PID控制算法的比例、积分、微分的作用特点和不足 PID是英文单词比例(Proportion),积分(Integral),微分(Differential coefficient)的缩写。PID调节实际上是由比例、积分、微分三种调节方式组成,它们各自的作用如下: 比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。 积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取

费马小定理数论的证明方法

费马小定理数论的证明方法 2007年12月28日星期五 01:29 P.M. 费马小定理数论的证明方法 Mod的简单介绍 (Congruence) a=b(mod m) a和b除以m以后有相同的余数 不失一般性地另a>b 则a=km+b比如7=1 mod 2 9=4 mod 5 简单的Congruence 计算 如果a=b mod m c=d mod m 则a=km+b c=tm+d 直接可推出 a+b=c+d (mod m) a-b=c-d (mod m) ab=cd (mod m) 并且可得存在正整数c 使得ac=bc (mod mc) 当然ac=bc(mod m) 费马小定理如果a,p互质且q是质数则a^(p-1)=1 (mod p) 考虑数列An= a,2a,3a,4a…… (p-1)a 假设An中有2项ma, na 被p除以后的余数是相同的.那么必然有ma=na (mod p) 即a(m-n)=0(mod p) 由于a和p互质,所以m-n=0(mod p) 但是m,n属于集合{1,2,3..p-1} 且m不等于n,所以m-n不可能是p的倍数.和假设产生矛盾所以An中任意2项被p除 得到的余数都是不同的, 并且对于任一个整数被p除以后的余数最多有p-1个,分别是 1,2,3,….p-1 而数列An中恰好有p-1个数,所以数列中的数被p除以后的余数一定正好包含所有的1,2,3,4,5…. p-1 由此我们可以用Congruence的乘法性质, a*2a*3a*…(p-1)a=1*2*3*4..*(p-1) (mod p) 对两边进行化简,即可以得到a^(p-1)=1 (mod p) Euler’s Totient function 定义o(n)是所有比n小且和n互质的数的总数(包括1) 例如o(5)=4 o(10)=8 我们发现引入这个以后费马小定理可以改写为a^o(p)=1 (mod p) 事实上,这个结论对所有的正整数n都成立即a^o(n)=1 (mod n)

数论班100题手册

数论短期班100题手册 知识框架体系 一、奇偶性质 1.奇数和偶数的表示方法: 因为偶数是2的倍数,所以通常用2k这个式子来表示偶数(这里k是整数); 因为任何奇数除以2其余数总是1,所以通常用式子21 k+来表示奇数(这里k是整数).特别注意,因为0能被2整除,所以0是偶数.最小的奇数是1,最小的偶数是0. 2.奇数与偶数的运算性质: 性质一:偶数+偶数=偶数(偶数-偶数=偶数) 奇数+奇数=偶数(奇数-奇数=偶数) 偶数+奇数=奇数(偶数-奇数=奇数) 可以看出:一个数加上(或减去)偶数,不改变这个数的奇偶性; 一个数加上(或减去)奇数,它的奇偶性会发生变化. (也可以这样记:奇偶性相同的数加减得偶数,奇偶性不同的数加减得奇数.) 性质二:偶数?奇数=偶数(推广开来还可以得到:偶数个奇数相加得偶数) 偶数?偶数=偶数(推广开就是:偶数个偶数相加得偶数) 奇数?奇数=奇数(推广开就是:奇数个奇数相加得奇数) 可以看出:一个数乘以偶数时,乘积必为偶数;几个数的积为奇数时,每个乘数都是奇数.(也可以这样简记:对于乘法,见偶(数)就得偶(数)). 性质三:任何一个奇数一定不等于任何一个偶数. 二、整除 1.整除的定义 所谓“一个自然数a能被另一个自然数b整除”就是说“商a b 是一个整数”;或者换句话说: 存在着第三个自然数c,使得a b c =?.这是我们就说“b整除a”或者“a被b整除”,其中b 叫a的约数,a是b的倍数,记作:“|b a”. 2.整除性质: ⑴传递性若|c b,|b a,则|c a. ⑵可加性若|c a,|c b,则|c a b ± (). ⑶可乘性若|c a,|d b,则| cd ab. 3.整除的特征 ⑴4,25,8,125,16,625的整除特征 能否被4和25整除是看末两位;能否被8和125整除是看末三位;能否被16和625整除是看末四位(100425 =?,10008125 =?,1000016625 =?,100000323125 =?) ⑵3,9的整除特征 能否被9整除是看数字之和是否是9的倍数,并且这个数除以9的余数和这个数数字之和除以9的余数相同,因此判断一个数除以九余几就可以先把和是9的倍数的数划掉,剩下的数是几就代表

《数论算法》教案5章(二次同余方程与平方剩余)

第5章 二次同余方程与平方剩余 内容 1. 二次同余方程,平方剩余 2. 模为奇素数的平方剩余 3. 勒让德符号、雅可比符号 4. 二次同余方程的求解 要点 二次同余方程有解的判断与求解 5.1 一般二次同余方程 (一) 二次同余方程 2ax +bx +c ≡0(mod m ),(a 0(mod m ))(1) (二) 化简 设m =k k p p p αααΛ2 121,则方程(1)等价于同余方程组 ??? ????≡++≡++≡++) () ()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 0222 1221Λ Λ ?2ax +bx +c ≡0(mod αp ), (p a ) (2) (三) 化为标准形式 p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp ) ()22b ax +≡2b -4ac (mod αp ) 变量代换, y =2ax +b (3) 有

2y ≡2b -4ac (mod αp ) (4) 当p 为奇素数时,方程(4)与(2)等价。即 ● 两者同时有解或无解;有解时,对(4)的每个解 ()p y y mod 0≡, 通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。 ● 两者解数相同。 结论:只须讨论方程2x ≡a (mod αp ) (5) 【例5.1.1】化简方程7x 2+5x -2≡0(mod 9)为标准形式。 (解)方程两边同乘以4a =4×7=28,得 196x 2+140x -56≡0(mod 9) 配方 (14x +5) 2-25-56≡0(mod 9) 移项 (14x +5) 2≡81(mod 9) 变量代换y =14x +5 得 y 2≡0(mod 9) (解之得y =0, ±3,从而原方程的解为 x ≡114-(y -5)≡15- (y -5) ≡2(y -5)≡2y -10≡2y -1 ≡-7, -1, 5≡-4, -1, 2(mod 9)) (四) 平方剩余 【定义5.1.1】设m 是正整数,a 是整数,m a 。若同余方程 2x ≡a (mod m ) (6) 有解,则称a 是模m 的平方剩余(或二次剩余);若无解,则称a 是模m 的平方非剩余(或二次非剩余)。

数字PID的补偿算法的设计..

数字PID调节器纯滞后的补偿算法设计 摘要 对于无滞后或滞后比较小的系统,通常采用PID控制。对于纯滞后系统,PID控制效果并不好,需要另加补偿,因此提出了Smith预估补偿控制系统。而 Smith 预估算法则在模型匹配时具有好的性能指标 ,但是由于这种算法严重依赖模型的精确匹配 ,而在实际中这是很难做到的。 本文研究的重点是设计与实现纯滞后系统的控制过程的控制规律和控制算法,并比较传统的数字PID控制算法与加入Smith预估器的控制算法的不同。具体讨论了纯滞后系统的Smith预估器的实现方法,着重对这种控制算法进行了较深入的讨论,而且还通过仿真对设计和改进的结果进行了分析。仿真实验中,若采用PID控制算法,系统会出现较大的超调量,采用史密斯预估器补偿控制超调量大大较少,系统更加稳定。 关键字:Matlab;纯滞后;数字PID;Smith 预估控制器;Simulink

Abstract For the system with no or less delay, usually adopts PID control. For pure delay system, PID control effect is not good, need additional compensation, so the proposed Smith predictor control system. But Smith pre estimation algorithm has good performance index in the model matching, but because an exact match this algorithm heavily depends on the model, but in fact it is very difficult to do. This paper is focused on the control and implementation of rules and the control algorithm to control the process of pure lag system design, and compare the traditional digital PID control algorithm with the addition of Smith predictive control algorithm for different. Discussed the specific time delay system Smith prediction method is, focuses on the control algorithm are discussed in depth, but also analyzed through simulation design and improvement of the results. The simulation experiment, if the PID control algorithm, the system will have a large overshoot, Smith predictor is used to compensate control overshoot is greatly reduced, the system more stable. Keywords: Matlab; delay; digital PID; Smith controller; Simulink

数字PID控制算法

计算机测控系统 读书笔记 《数字PID控制算法》 2017年10月

一、参考文献 《计算机测控系统设计与应用》李正军机械工业出版社 百度文库 二、知识目录 1、主要内容: 数字PID控制算法 对标准PID算法的改进 PID调节器的参数选择 2、重点内容: 为什么要用PID调节器 数字PID控制算法的比例、积分、微分的作用特点和不足 PID控制算法数字化前提条件 两种算法表达式及相互比较 对标准PID算法的改进——“饱和”作用的抑制 采样周期的选择依据 三、主要内容学习 1、数字PID控制算法 P(比例)I(积分)D(微分) 位置式PID算法 由于计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量,因此式子

中的计分和微分项不能直接准确计算,只能用数值计算的方法逼近。在采样时刻t=iT(T为采样周器),模拟PID调节规律可通过下数值公式近似计算 上式的控制算法提供了执行机构的位置U i(如阀门开度),所以称之为位置式PID控制算法。 增量式PID算法 相减就可以导出下面的公式 上式称为增量式PID控制算法。也可以将其进行进一步改写。 其中 图1给出了位置式与增量式PID算法的结构比较。 图1 位置式与增量式PID控制算法的简化示意图 (a)位置式(b)增量式

增量式PID算法与位置式相比,存在下列优点: ①位置式算法每次输出与整个过去状态有关,计算式中要用到过去偏差的累加值,容易产生较大的累计误差。而增量式只需计算增量,当存在计算误差或精度不足时,对控制量计算的影响较小。 ②控制从手动切换到自动时,必须首先将计算机的输出值设置为原始阀门开度u0,才能保证无冲击切换。如果采用增量算法,则由于算式中不出现u0项,易于实现手动到自动的无冲击切换。此外,在计算机发生故障时,由于执行装置本身有寄存作用,故可仍然保持在原位。 因此,在实际控制中,增量式算法要比位置式算法应用更为广泛。图2给出了增量式PID控制算法子程序的流程。在初始化时,应在内存固定单元置入调节参数d0,d1,d2和设定值w,并设置误差初值ei=ei-1=ei-2=0。

四年级数学三位数乘两位数乘法知识点

三位数乘两位数乘法知识点 1、两位数乘两位数的口算方法:可以先把两位数按数的组成分成几十加几,分别乘一位数,再把两次乘得的积相加;如13×4=(10+3)×4=10×4+3×4=40+12=52 也可以把两位数分成几十减几,分别乘一位数,再把两次乘得的积相减. 如 29×3=(30-1)×3=30×3-1×3=90-3=87 口算乘法很简单,几十和几两分散,分别乘上一位数,两积加减是关键. m个n是多少? m×n= m的n倍是多少? m×n= 8是4的多少倍?如:8个4是多少? 8×4=32 如:8的4倍是多少?8×4=32 如:8是4的多少倍? 8÷4=2 2、整十数乘整百数(几十、几百、几千的数)的口算方法:先把因数中的0前面的数相乘,再看因数末尾一共有几个0,就在积的末尾添写几个0. 如 600×70=先算6×7=42 再在42后加写上000 600×70=42000 3、估算三位数乘两位数的乘法时,可以把两个因数看作接近的整十数或整百数,也可以把其中的一个因数看作接近的整十、整百数,另一个因数不变。然后进行相乘。估算的结果是近似数,所以结果一定要用“≈”连接,不要用“=”。 乘法的估算,关键在于如何如何对两个因数进行估算,不能机械地采用“四舍五入”法来取近似值,其标准就是符合实际。 4、三位数乘两位数的笔算方法:①先用两位数个位上的数去乘三位数,得数的末位和两位数的个位对齐;②再用两位数的十位上的数去乘三位数,得数的末位和两位数的十位对齐;(与哪个数相乘,积的个位就与哪个数对齐);③然后把两次乘得的积相加;④计算过程中有进位的,计算时要把进位加上。 如: 2 1 3 6 8 4 8 2 6 6 0 8 ×25 × 4 5 × 6 7 × 2 8 1 0 6 5 213×5的积 4 2 6 213×2的积 5 3 2 5 因数末尾有0的简便算法:①先把因数末尾的0前面的数相乘(写竖式时,将0前面的数对齐);②再看因数末尾一共有几个0;③在乘得的数的末尾添写相应个数的0.

数论入门

欧几里得算法 欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。其计算原理依赖于下面的定理: 定理:gcd(a,b) = gcd(b,a mod b) (a>b 且a mod b 不为0) 证明:a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a,d|b,而r = a - kb,因此d|r 因此d也是(b,a mod b)的公约数 因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证欧几里得算法模板 int gcd(int n,int m) { int t,r; if(n0) { n=m; m=r; } return m; } 题目:HDU 1108 HDU 1576 扩展欧几里得 定理 对于不完全为0 的非负整数a,b,gcd(a,b)表示a,b 的最大公约数,必然存在整 数对x,y ,使得gcd(a,b)=ax+by。 求解x,y的方法的理解 设a>b。 1,显然当b=0,gcd(a,b)=a。此时x=1,y=0; 2,ab!=0 时 设ax1+by1=gcd(a,b); bx2+(a mod b)y2=gcd(b,a mod b); 根据朴素的欧几里德原理有gcd(a,b)=gcd(b,a mod b); 则:ax1+by1=bx2+(a mod b)y2; 即:ax1+by1=bx2+(a-[a/b]*b)y2=ay2+bx2-(a/b)*by2; 根据恒等定理得:x1=y2; y1=x2-[a/b]*y2; 这样我们就得到了求解x1,y1 的方法:x1,y1 的值基于x2,y2. 上面的思想是以递归定义的,因为gcd 不断的递归求解一定会有个时候b=0,所以递归可以

数论与解析数论简史

数论与解析数论简史 王志伟200800090156 数学与应用数学 数学王子Gauss曾经说过:数学是科学的女王,而数论是数学的女王。Gauss在数学、物理、天文各方面都取得了非凡的成就,但他却始终对数论情有独钟。数论,以其纯粹的数学本质,常常被认为是最美的数学,数学的中心。 与其他数学分支,比如几何、分析不同,数论并非是源于实际需要而创立的一门学科,其起源很有可能是出自数字游戏和Pythagoras学派以数字为图腾的宗教文化。数论曾经被认为是数学家的游戏、最纯的数学学科、唯一不会有什么应用价值的分支。但是现在随着网络加密技术的发展,数论也找到了自己用武之地——密码学。前几年破解MD5码的王小云老师就是山大数论学派出身。而在其他理论中,数论也表现出了一些意想不到的价值。在量子理论中,Hermite算子是最基本的概念之一,它的思想起源就是19世纪Hermite为解决数论问题而创立的Hermite型。我们在代数中常见的理想、环等概念最开始是出自Dedekind的数论著作中。最近的一个例子,Grothendieck为解决Weil猜想而对代数几何进行了革命性的改造。此类例子还有很多,在此不一一列举。 在古代对数论贡献最大的当属古希腊人。最著名的一些成果大概就是Euclid在《几何原本》中提到的Euclid算法、素数无限多个,算数基本定理等内容,这些我们在初等数论中都可以见到。另一个对数论有重大贡献的古希腊人当属Diophantus,他探讨了很多不定方程,为纪念,我们现在就称这些方程为Diophantus方程,著名的费马大定理就是一个Diophantus 方程问题。当然,中国古代在数论方面也作出了一定的贡献:众所周知、大名鼎鼎的中国剩余定理,被数学界唯一承认的中国的定理。 在经过漫长的中世纪之后,数论进入了一个辉煌的发展时期。推动数论发展的第一个重要人物首推Fermat,一个在数论界享有崇高地位的法国律师、业余数学家。Wiles在1994年证明的Fermat's last theorem,即我们所说的费马大定理,就是Fermat所提出的一个猜想。另外,Fermat小定理,关于多角形数的猜想,Fermat数,Mersenne素数性质,Pell方程都有他的贡献,我们证明中常用的无穷递降法,就是费马在证明费马大定理在n=3时最先发明使用的,除了数论,他在其他方面也有一些突出贡献,比如解析几何、微积分。Fermat之后,另一个重要的人物是Euler,他对Fermat的一个猜想:Fermat数都是素数给出了反例,引进了在数论中一个非常重要的数论函数,即Euler函数,并发现了一个数论中非常重要的Euler 公式。另外,笔者在跟同学在参加大学生科技创新项目中研究整数分拆这个课题时,阅读了Geogre Andrew的《The theory of partitions》,有幸了解到Euler在数论中的整数分拆方面也做出了很大的贡献,提出了母函数法,利用幂级数来研究整数分拆,这导致圆法和指数和方法的产生。 。在Euler之后,两个法国人Lagrange、Legendre也在数论方面做出了重要贡献,比如我们熟悉的二次互反律,Euler和Legendre都曾提出猜想,而公式中的符号我们即称作Legendre符号。他们的贡献就不在此细述。而在数论史上做出贡献最大的,我想大多人会同意是Gauss,一个伟大的数

PID控制算法控制算法

第五章 PID控制算法控制算法 5.1 PID控制原理与程序流程 5.1.1过程控制的基本概念 过程控制――对生产过程的某一或某些物理参数进行的自动控制。 一、模拟控制系统 图5-1-1 基本模拟反馈控制回路 被控量的值由传感器或变送器来检测,这个值与给定值进行比较,得到偏差,模拟调节器依一定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执行器作用于过程。 控制规律用对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。 二、微机过程控制系统 图5-1-2 微机过程控制系统基本框图 以微型计算机作为控制器。控制规律的实现,是通过软件来完成的。改变控制规律,只要改变相应的程序即可。 三、数字控制系统DDC 图5-1-3 DDC系统构成框图 DDC(Direct Digital Congtrol)系统是计算机用于过程控制的最典型的一种系统。微型计算机通过过程输入通道对一个或多个物理量进行检测,并根据确定的控制规律(算法)进行计算,通过输出通道直接去控制执行机构,使各被控量达到预定的要求。由于计算机的决策直接作用于过程,故称为直接数字控制。 DDC系统也是计算机在工业应用中最普遍的一种形式。

5.1.2 模拟PID 调节器 一、模拟PID 控制系统组成 图5-1-4 模拟PID 控制系统原理框图 二、模拟PID 调节器的微分方程和传输函数 PID 调节器是一种线性调节器,它将给定值r(t)与实际输出值c(t)的偏差的比例(P)、积分(I)、微分(D)通过线性组合构成控制量,对控制对象进行控制。 1、PID 调节器的微分方程 ?????? ++=?t D I P dt t de T dt t e T t e K t u 0)()(1)()( 式中 )()()(t c t r t e -= 2、PID 调节器的传输函数 ?? ????++==S T S T K S E S U S D D I P 11)()()( 三、PID 调节器各校正环节的作用 1、比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节器 立即产生控制作用以减小偏差。 2、积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分 时间常数TI ,TI 越大,积分作用越弱,反之则越强。 3、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太 大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。 5.1.3 数字PID 控制器 一、模拟PID 控制规律的离散化 二、数字PID 控制器的差分方程