抗拔管桩的承载力及结构构造_王离

抗拔管桩的承载力及结构构造_王离
抗拔管桩的承载力及结构构造_王离

PHC管桩作抗拔桩的分析与释疑

PHC管桩作抗拔桩的分析与释疑 复地集团总师室高志建 【摘要】利用绿化及道路下场地作为地下停车库的开发案例较为普遍,对于这类无上部结构的地下室采用PHC管桩作为抗浮桩,集团很多工程技术专业管理人员还存在着一些疑虑和认识上误区,本文从桩身结构强度、焊缝强度、端板孔口抗剪强度、钢棒墩头等几个方面,对采用PHC管桩作为抗拔桩进行了分析,验证了PHC管桩作为抗拔桩的可行性,并提出在施工和验收过程中的重点注意事项。 1 前言 在地下水位较高的地区,建筑工程中尤其是无上部结构的地下室以及地下停车场,工程结构的抗浮问题较为普遍。最常见的抗浮措施是设置锚杆和抗拔桩,常见的抗拔桩主要有钻孔灌注桩、预制方桩、PHC管桩。为抵抗拉力,控制拉力作用下的桩身裂缝,钻孔灌注桩和预制方桩须额外配置数量可观的抗拉钢筋(远远大于一般抗压桩时的钢筋数量),工程造价较高。PHC管桩由于桩身混凝土中有效预压应力可以抵消上拔时的拉应力,一般无须额外增加抗浮钢筋,造价较低。加上PHC管桩本身质量稳定、养护时间短、施工速度快、施工方便等因素,越来越多的工程中开始采用PHC管桩作为抗浮桩。 本文以地区PHC B500 100管桩为例,从桩身结构强度、焊缝强度、端板孔口抗剪强度、钢棒墩头等几个方面,对采用PHC管桩作为抗拔桩进行了分析,验证了PHC管桩作为抗拔桩的可行性。 2 抗拔桩桩身结构承载力验算强度 2.1桩身结构强度验算 桩身结构强度的验算,目前有国家标准、广东省规程、江苏省规程推荐的公式,具体计算如下。 桩身结构强度验算表

广东省标准只是利用了管桩中的有效预压应力,不考虑预应力筋和混凝土的进一步发挥作用,因此不须考虑裂缝控制;国家标准将预应力筋性能完全发挥;江苏省标准除发挥管桩混凝土的有效预压应力和抗拉性能外,较之国家标准还保留了预压应力筋的抗力作为安全储备。国家标准和江苏省标准桩身应力都超过有效预压应力,因此须进行裂缝验算,但由于有效预压应力抵消大部分拉应力,裂缝控制容易满足。因此在地质水文条件复杂、抗腐蚀要求高的情况下,可利用广东省标准进行桩身强度验算,而在正常设计中建议利用江苏省规范进行桩身强度验算。 2.2接桩处的焊缝强度验算 Nl≤3.142(D12-D22)ft w/4=0.25x3.142x(4982-4762)x170=2860kN。 从焊缝验算结果可以看出,如果焊缝质量可以保证,则端板焊缝强度远大于桩身结构强度。 2.3端板孔口抗剪强度验算 由于管桩端板与桩身预应力筋的连接处的受压冲切力,因此须进行孔口抗剪强度验算,计算表明该处是管桩应用中的一个薄弱点。 N≤n*3.142*(d1+d2)*[ts-(h1+h2)/2]*fv/2 =15x3.14x(12+20)x[19-(9.5+6)/2]x125/2=1017 kN。 验算的抗剪强度值远小于桩身强度和焊缝强度,常采用加厚端板的方法,提高孔口抗剪强度。若加厚至24mm,则承载能力=15x3.14x(12+20)x [24-(9.5+6)/2]x125/2=1470 kN。 2.4钢棒墩头抗拉强度验算 在PHC管桩作抗拔桩的试桩过程中,也出现过预应力筋墩头拔出的现象。这是由于墩头在受力过程中受到冲切破坏。因此须验算墩头抗拉强度。 N≤0.95 fpy*Ap=0.95x1348=1280 kN。 通过上面的分析可知,PHC管桩作为抗拔桩使用时,桩身具有较高的承载能力,在地质条件允许情况下,不仅施工、检测方便,而且经济性较好。实际应用时,须注意端板孔口抗剪强度和钢棒墩头抗拉强度的验算。

承载力及桩数、抗浮计算

管桩抗浮及承重承载力计算

1.抗浮验算: 1.1底板面-3.950 1.结构自重: 覆土1.0m : 16×1.0=16.0kN/m 2 顶板自重(厚度0.25m): 25×0.25=6.25kN/m 2 底板自重(厚度0.50m): 25×0.50=12.5 kN/m 2 面层150mm 0.15×20=3 kN/m 2 柱、梁重 约3 kN/m 2 ΣN=40.75 kN/m 2 2.水浮力 F 浮=1.2×(5.45-0.5)×10=59.4kN/m 2 ∵F 浮>ΣN ∴不满足抗浮要求 F 拔=(59.4-40.75)×7.8×7.8=1134kN 3.抗拔桩计算 取直径400预应力管桩, 桩长24m 单桩设计抗拔承载力:∑+=p i si i s p d G l f U R λγ'=6.06 .14.0??π(7.1×15+7.3×20+3.9×50+5.7×55) +π×0.4×0.08×13×24=358.5kN+31.3=390kN 单根柱下抗拔桩根数=1134/390.0=2.90取3根 1.2底板面-3.30 1.结构自重: 覆土1.0m : 16×1.0=16.0kN/m 2 顶板自重(厚度0.25m): 25×0.25=6.25kN/m 2 底板自重(厚度0.50m): 25×0.50=12.5 kN/m 2 面层150mm 0.15×20=3 kN/m 2 柱、梁重 约3 kN/m 2 ΣN=40.75 kN/m 2 2.水浮力 F 浮=1.2×(4.8-0.5)×10=51.6kN/m 2 ∵F 浮>ΣN ∴不满足抗浮要求

F 拔=(51.6-40.75)×7.8×7.8=660kN 3.抗拔桩计算 取直径400预应力管桩, 桩长24m 单桩设计抗拔承载力:∑+=p i si i s p d G l f U R λγ'=6.06 .14.0??π(7.6×15+7.3×20+3.9×50+5.1×55) +π×0.4×0.08×13×24=346.4kN+31.3=377.8kN 单根柱下抗拔桩根数=660/377.8=1.747取2根 1.3靠外墙处抗浮计算(以-3.95算) 1.结构自重:ΣN=40.75 kN/m 2 每沿米40.75×5.1/2=103.9kN/m 外墙自重0.3×25×3.55=26.625 kN/m 外挑土重0.5×16×4.8=38.kN/m 合计168.5 kN/m 2.水浮力 F 浮=1.2×(5.45-0.5)×10=59.4kN/m 2 每沿米59.4×5.1/2=151.4kN/m ∵F 浮<ΣN ∴满足抗浮要求 靠外墙抗浮满足要求,可不打桩,考虑沿外墙下每1~2跨打一根桩,以保持整个车库的变形协调。 1.4.抗浮桩身强度及配筋计算 选用PHC-AB400 查DBJT08-92-2000图集知:单桩结构强度1640 kN 混凝土有效预压应力5.30MPa 桩身受拉强度设计值 7.0==P py A f N ×1420×9×63.6=568 kN >390 kN 满足要求 桩身抗裂计算 混凝土有效预压应力5.30Mpa 则桩抗裂值为 5.3 Mpa ×3.1415926×400×80=532 kN 满足要求 1.5试桩承载力计算 单桩设计抗拔承载力:∑+=p i si i p d G l f U R λ'= π?4.0×0.6 (2.4×15+8.8×15+7.3×20+3.9×50+5.7×55) +π×0.4×0.08×13×29=620kN+37.9=657.9kN

单桩竖向极限承载力和抗拔承载力计算书

塔吊基础计算书 一、计算参数如下: 非工作状态工作状态 基础所受的水平力H:66.2KN 22.5KN 基础所受的竖向力P:434KN 513KN 基础所受的倾覆力矩M:1683KN.m 1211KN.m 基础所受的扭矩Mk:0 67KN.m 取塔吊基础的最大荷载进行计算,即 F =513KN M =1683KN.m 二、钻孔灌注桩单桩承受荷载: 根据公式: (注:n为桩根数,a为塔身宽) 带入数据得 单桩最大压力: Qik压=872.04KN 单桩最大拔力:Qik拔=-615.54KN 三、钻孔灌注桩承载力计算 1、土层分布情况: 层号 土层名称 土层厚度(m) 侧阻qsia(Kpa) 端阻qpa(Kpa) 抗拔系数λi 4 粉质粘土 0.95 22 / 0.75 5 粉质粘土 4.6 13 / 0.75 7 粉质粘土 5.6 16 /

0.75 8-1 砾砂 7.3 38 1000 0.6 8-2 粉质粘土 8.9 25 500 0.75 8-3 粗砂 4.68 30 600 0.6 8-4a 粉质粘土 4.05 32 750 0.75 桩顶标高取至基坑底标高,取至场地下10m处,从4号土层开始。 2、单桩极限承载力标准值计算: 钻孔灌注桩直径取Ф800,试取桩长为30.0 米,进入8-3层 根据《建筑地基基础设计规范》(GB50007-2002)8.5.5条: 单桩竖向承载力特征值计算公式: 式中:Ra---单桩竖向承载力特征值; qpa,qsia---桩端端阻力,桩侧阻力特征值; Ap---桩底端横截面面积; up---桩身周边长度; li---第i层岩土层的厚度。 经计算:Ra=0.5024×600+2.512×(22×0.95+13×4.6+16×5.6+38×7.3+25×8.9+30×2.65)=2184.69KN>872.04KN满足要求。 单桩竖向抗拔承载力特征值计算公式: 式中:Ra,---单桩竖向承载力特征值; λi---桩周i层土抗拔承载力系数; Gpk ---单桩自重标准值(扣除地下水浮力) 经计算:Ra,=2.512×(22×0.95×0.75+13×4.6×0.75+16×5.6×0.75+38×7.3×0.6+25

管桩桩身的竖向极限承载力标准值设计值与特征值的关系

管桩桩身的竖向极限承载力标准值设计值与特 征值的关系 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

管桩桩身的竖向极限承载力标准值、设计值 与特征值的关系 (一)、计算公式: 管桩桩身的竖向极限承载力标准值Qpk、桩身竖向承载力设计值Rp与单桩竖向承载力最大特征值Ra的计算: 1、管桩桩身竖向承载力设计值Rp的确定: 根据03SG409《预应力混凝土管桩》国家标准图集中的说明第6.2.5条的计算式可以计算出桩身竖向承载力设计值Rp:Rp=AfcΨc。式中Rp—管桩桩身竖向承载力设计值KN;A—管桩桩身横截面积mm2; fc—混凝土轴心抗压强度设计值MPa; Ψc—工作条件系数,取Ψc=0.70 。 2、单桩竖向承载力最大特征值Ra的确定: 根据03SG409《预应力混凝土管桩》国家标准图集中的说明第6.2.6条的计算式可以计算出单桩竖向承载力最大特征值Ra:Ra= Rp/1.35。 3、管桩桩身的竖向极限承载力标准值Qpk的确定: 第一种确定方法:根据GB50007—2002《建筑地基基础设计规范》附录中单桩竖向桩身极限承载力标准值Qpk=2 Ra。

第二种确定方法:根据以下公式计算Qpk=(0.8fck-0.6σpc)A。式中Qpk—管桩桩身的竖向极限承载力标准值KN; A—管桩桩身横截面积mm2; fck—混凝土轴心抗压强度标准值MPa;σpc—桩身截面混凝土有效预加应力。 管桩桩身的竖向极限承载力标准值Qpk相当于工程施工过程中的压桩控制力。 4、综合以上计算公式,管桩桩身的竖向极限承载力标准值Qpk、桩身竖向承载力设计值Rp与单桩竖向承载力最大特征值Ra的关系如下: Ra= Rp/1.35; Qpk=2 Ra=2 Rp/1.35约等于1.48 Rp。 (二)、举例说明: 一、例如,根据03SG409《预应力混凝土管桩》国家标准图集标准,现对PC —A500(100)的管桩分别计算管桩桩身的单桩竖向极限承载力标准值、设计值与特征值如下,以验证以上公式的正确性: 1、管桩桩身竖向承载力设计值Rp的计算: Rp=AfcΨc=125660 mm2×27.5 MPa×0.7=2419KN;03SG409《预应力混凝土管桩》中为2400 KN,基本相符。 2、单桩竖向承载力最大特征值Ra的计算: Ra= Rp/1.35=2419 KN/1.35=1792 KN。 3、管桩桩身的竖向极限承载力标准值Qpk的计算:

预应力管桩做抗拔桩时应注意

1.预应力管桩中的PTC桩不宜用作抗拔桩,PC桩可用作抗拔桩,单桩抗拔承载力特征值由 桩周土摩擦力和桩身承载力两者中的较小值确定,其中桩身承载力又由预压应力及焊缝强度等两者之小值确定。 2.抗拔桩桩顶的填芯混凝土的灌注深度不应小于 3.0m,且应在填芯混凝土中掺入微膨胀 剂,混凝土强度等级应比承台提高一级,且不应低于C30,注意震捣密实。 3.抗拔桩与承台连接的钢筋应沿桩周围均匀布置,其数量由计算确定,钢筋伸入桩内的长 度应同填芯混凝土深度,锚入承台长度不小于40d。 4.抗拔桩计算时若考虑两节以上管桩的桩周摩擦力时,应在图上注明“抗拔桩制作时应 采用端部锚固筋”(详管桩图集)。 5.抗拔桩计算时若考虑两节以上管桩的桩周摩擦力时,管桩接桩处金属表面须刷沥青两 遍防腐;抗拔桩焊缝高度不应小于12mm。 看来还有些人被管桩“高强度”、“预应力”两个词搞迷糊了,忍不住再说几句: 1、高强度预应力管桩的预应力钢筋不是为了承受荷载用的!!!而是为了提高穿透能力、抵御施工时桩体内部产生的弹性波破坏而布设的(对此不理解的朋友,可翻翻有关弹性波的资料,对擅长于静力学朋友也是一个知识拓展)。因此管桩中的钢索或钢筋预拉力已经达到强度的90%以上(管桩生产规范好像是97%,我在实际厂家中看到的是92%),只要一受拉,钢筋立即就断。这是高强度预应力管桩不宜用作为抗拉构件的原因之一。 2、管桩身除了须承受垂直荷载外,还要承受钢筋的强大预应力,无奈之下只好采用工业化生产的方法提高其强度(这就是管桩没有现浇的主要技术原因)。这样一来,桩身的脆性就很大,在受拉、受弯情况下,比普通桩容易破坏得多。这是高强度管桩不宜作为受拉构件的原因之二。 可以不客气地说:高强度预应力管桩断桩事故频繁,其主要原因之一就是设计人员不懂得管桩的弱点,把管桩用在受拉、受弯的工况下造成的。 我不否认有些工程采用管桩抗浮“成功”,但“功劳”还是现行规范中的浮力计算没有考虑土体与地下结构的相互作用,设计浮力远远大于实际,以至管桩实际拉力仍在其残余抗拉力之内

管桩检测及承载力计算

管桩检测及承载力计算 管桩检测 1、管桩检测规范应严格按照《基桩高应变动力检测规程》(JGJ 106-97)中相关规定执行。 2、检测仪器管桩高应变动力检测仪器目前国内市场种类较多,所选进口或国产仪器均应满足规程中相关规定。目前国外引进的仪器有瑞典PID打桩分析仪、荷兰TNO基桩诊断系统、美国桩基动力学公司PDA打桩分析仪,国内的有中国建筑科学研究院FEI-C型桩基动测分析系统、中交三航局SDF-1型打桩分析仪、中科院武汉岩土所RSM系列动测仪、武汉岩海工程技术有限公司RS系列桩基动测仪等型号。武汉岩海公司 RS-1616K(PLUS)/1616K动测仪高应变系统主要用途: ?高应变测桩主要特点: ?电性能指标高,机械故障率低?即现速度、力曲线和承载力与打击力?高应变实时监控大于130锤/分钟存取信号?任选RS模式和PDA模式从事高应变检测?自动实现连续采集、叠加、平衡调节功能?兼容速度计和国产或进口内装式加速度计中科院武汉岩土所RSM—24FD浮点工程动测仪是针对目前市政工程、铁路交通、地质勘察等检测工作研制开发的产品,应用多项最新技术,能有效完成基桩高低应变法检测;单孔波速、振动、瑞雷波测试;其它工程动态信号检测;…。是目前我国工程界广泛采用的主流机型,深得广大用户的喜爱。美国桩基动力学公司PAK型PDA高应变桩基动测专用仪器 Case法承载力。侧摩阻力和端阻力。最大压应力、加速度和位置。桩身最大拉应力。计算的桩端应力。桩身结构完整性,缺损程度及位置。传递给桩的最大能量。锤垫层刚度(蒸汽锤/钢桩)每分钟锤击数,检验打桩系统。可显示力、速度、动能、位移、阻力、上下行波的时标曲线,可以用

单桩竖向极限承载力和抗拔承载力计算书

塔吊基础计算书 一、计算参数如下: 非工作状态 工作状态 基础所受的水平力H : 66.2KN 22.5KN 基础所受的竖向力P : 434KN 513KN 基础所受的倾覆力矩M : 1683KN.m 1211KN.m 基础所受的扭矩Mk : 0 67KN.m 取塔吊基础的最大荷载进行计算,即 F =513KN M =1683KN.m 二、钻孔灌注桩单桩承受荷载: 根据公式: 2 a M n P F Qik i ± += (注:n 为桩根数,a 为塔身宽) 带入数据得 单桩最大压力: Q ik 压=872.04KN 单桩最大拔力:Q ik 拔=-615.54KN 三、 钻孔灌注桩承载力计算 1、土层分布情况:

2、单桩极限承载力标准值计算: 钻孔灌注桩直径取Ф800,试取桩长为30.0 米,进入8-3层 根据《建筑地基基础设计规范》(GB50007-2002)8.5.5条: 单桩竖向承载力特征值计算公式: ∑+=i sia i p p pa a l q u A q R λ 式中:R a ---单桩竖向承载力特征值; q pa ,q sia ---桩端端阻力,桩侧阻力特征值; A p ---桩底端横截面面积; u p ---桩身周边长度; l i ---第i 层岩土层的厚度。 经计算:R a =0.5024×600+2.512×(22×0.95+13×4.6+16×5.6+38×7.3+25 ×8.9+30×2.65)=2184.69KN>872.04KN 满足要求。 单桩竖向抗拔承载力特征值计算公式: ∑+=pk i sia i p a G l q u R λ' 式中: R a , ---单桩竖向承载力特征值; λi ---桩周i 层土抗拔承载力系数; G pk ---单桩自重标准值(扣除地下水浮力) 经计算:R a , =2.512×(22×0.95×0.75+13×4.6×0.75+16×5.6×0.75+38×7.3×0.6+25×8.9×0.75+30×2.65×0.6)+0.5024×30×15=1504.03KN>615.54KN 满足要求。

管桩基础搅拌站各基础承载力和配筋等演算

搅拌站基础设计及验算 **项目部拟采用HZS100和HZS75搅拌站各一台,现在根据厂家图纸和现场地基条件设计和验算搅拌站基础。 搅拌站基础主要分五大基础:筒仓基础、主机架基础、送料系统基础、操作室基础和配料系统基础。计算中,筒仓考虑风荷载并根据地质条件使用钢管桩增强抗拔。其他基础均根据图纸采用混凝土扩大基础,其中土质承载力根据《工程地质勘察报告》,地基承载力取90kPa。 1.筒仓基础设计及验算 根据肇花项目东岸搅拌站选址地质情况,筒仓基础拟采用钢管桩配上混凝土承台作为承载基础。 图1.1 筒仓基础结构 混凝土扩大基础拟采用□3.5m×3.5m×0.5m的混凝土结构。钢管桩拟采用直径Ф630mm,壁厚为6mm。 将混凝土如图均分4份,根据北江特大桥勘探资料,表面土层为素填土,允许承载力为90kPa。 1.1抗拔及承压工况计算 根据实际工作分析,抗拔最大工况为风荷载最大且筒仓空载:

如图所示,风荷载作用位置H=15m ,风级按12级风,风压p 取1.3kPa : kN kPa F 21.54)]8.03(35.0123[3.1=+??+??=; 风荷载产生弯矩:m kN FH M ?=?==15.8131521.54; 另外,考虑m e 1.0=偏心,其中筒仓空载载荷载取kN g m k 200=,kN g m m 1400=,则:m kN kN m M ek ?=?=202001.0,m kN kN m M em ?=?=14014001.0 对钢管桩产生附加荷载F ?的计算: 0='++=∑M M M M e ,Fd M ?='; 风向平行钢管所在正方形的边长和对角线时,力偶臂分别为:m d 95.11=和 m d 76.22=。 故,kN m m kN d M M d M F e 6.21395.1215.83322111=??=+='= ?; kN m m kN d M M d M F e 9.30176.215.833222=?=+='= ?; 所以,钢管桩承载力: 每份混凝土质量:kN vg g m t 8.39105.075.175.16.2=????==ρ kN g m R m 7.6919.3018.394max =++= ,kN g m R k 1.2128.394 9.301min =--=(方向向上)。 图1.2 筒仓风荷载 每份混凝土承压:kN A R h 6.2759075.175.1=??==σ

抗拔管桩的结构构造

4. 抗拔管桩的结构构造 主要应注意下列3个问题:桩身结构;接头;桩顶(头)与承台的连接问题。 管桩与承台连接时,桩顶嵌入承台深度宜取100mm;另一条是:对于抗拔桩,应将桩的纵向钢筋全部直接锚入承台内。锚固长度不得小于50倍纵向钢筋直径且不小于500mm。 预应力受拉钢筋的锚固长度表5是计算结果: 表中d为预应力钢筋直径。常用的承台混凝土强度等级为C30,则C30混凝土中的预应力锚固长度为113d,当钢筋直径为9.0mm时,则锚固长度为102cm;当钢筋直径为10.7mm时,则锚固长度为120cm。 4.1 桩身结构问题 4.1.1 桩身的配筋。 4.1.2 端板的质量。目前端板质量存在二大问题:端板的材质和端板的厚度。(1)端板的材质大部分不符合规定;(2)端板的厚度普遍较薄。新广东规程不是按管桩直径来规定端板厚度,而是根据预应力钢筋的粗细来规定端板的最小厚度参见表6: 端板的材质、板厚、坡口尺寸等要严格按有关规范的要求设置 可由地勘资料推算。侧摩阻由土质不同取0.6~0.8的系数,求出的极限承载力的一半来和浮力标准值比较。 如果采用机械连接接桩,桩全长皆可参与抵抗浮力;如没采用机械连接,浮力计算只能考虑最上面的一截桩 能,但不能接桩,否则接头处无法保证抗拉 前一段时间我也做了一地下车库,预应力管桩做抗拔桩,有效桩长24米,承担抗拔力为170~200KN 接桩处我也做了防腐处理,但现场都没做,现在担心接头处的质量 不知楼主在桩和承台交接出怎么处理的? 是可以做,只是接头不太好处理,接头抗拉强度无法处理 。 1.预应力管桩中的PTC桩不宜用作抗拔桩,PC桩可用作抗拔桩,单桩抗拔承载力特征值由 桩周土摩擦力和桩身承载力两者中的较小值确定,其中桩身承载力又由预压应力及焊缝强度等两者之小值确定。 2.抗拔桩桩顶的填芯混凝土的灌注深度不应小于 3.0m,且应在填芯混凝土中掺入微膨 胀剂,混凝土强度等级应比承台提高一级,且不应低于C30,注意震捣密实。 3.抗拔桩与承台连接的钢筋应沿桩周围均匀布置,其数量由计算确定,钢筋伸入桩内的 长度应同填芯混凝土深度,锚入承台长度不小于40d。 4.抗拔桩计算时若考虑两节以上管桩的桩周摩擦力时,应在图上注明“抗拔桩制作时应 采用端部锚固筋”(详管桩图集)。 5.抗拔桩计算时若考虑两节以上管桩的桩周摩擦力时,管桩接桩处金属表面须刷沥青 两遍防腐;抗拔桩焊缝高度不应小于12mm。 预应力管桩不适宜用做抗拨桩。其原因如下: 1、管桩与承台的连接受拉并不可靠。如是抗拨桩,容易造成二者脱离。 2、管桩可能不是单节。如果是多节,则存在着焊接节点。对于这种焊接节点,由于是现场施工,质量并不过关,再者这些焊缝多为淬冷。因此节点焊缝并不可靠。基于此原因,对于

抗拔桩承载力计算书

单桩承载力计算书 、设计资料 1. 单桩设计参数 桩类型编号1 桩型及成桩工艺:泥浆护壁灌注桩 桩身直径d = 0.500m 桩身长度I = 13.00m 桩顶标高81.00m 2?土层性能 3.勘探孔 天然地面标高96.00m 地下水位标高92.00m 注:标高均指绝对标高。 4.设计依据 《建筑桩基技术规范》JGJ 94-2008 二、竖向抗压承载力 单桩极限承载力标准值: Q uk = u」q sik|i + q pk A p =1.57 x(60 X2.50 + 38 X4.00 + 65 X6.50) + 0 X0.20

=1138kN 三、竖向抗拔承载力 基桩抗拔极限承载力标准值: T uk = :Fq sik U i l i =0.75 X60 X1.57 X2.50 + 0.72 X38 X1.57 X4.00 + 0.55 X65 X1.57 X6.50 =714kN 四、基桩抗拔力特征值 R tu=T uk/2+G p=714/2+0.5x0.5x3.14x13x25x1.35=612Kn

桩身强度计算书 、设计资料 1. 基本设计参数 桩身受力形式:轴心抗拔桩 轴向拉力设计值:N' = 750.00 KN 轴向力准永久值:N q = 560.00 KN 不考虑地震作用效应 主筋:HRB400 f y = 360 N/mm 2E s = 2.0 X105 N/mm 2 箍筋:HRB400 钢筋类别:带肋钢筋 桩身截面直径:D = 500.00 mm 纵筋合力点至近边距离:a s = 35.00 mm 混凝土: C30 f tk = 2.01 N/mm 2 最大裂缝宽度限值:-iim = 0.3000 mm 2. 设计依据 《建筑桩基技术规范》JGJ 94-2008 《混凝土结构设计规范》GB 50010--2010 、计算结果 1. 计算主筋截面面积 根据《混凝土结构设计规范》式( 6.2.22 ) N' W f y A s + f py A py 因为不考虑预应力,所以式中f py及A py均为0 N' 750.000 X103 A s = ' = = 2083.33 mm 2 f y 360 2. 主筋配置 根据《建筑桩基技术规范》第 4.1.1条第1款 取最小配筋率-min = 0.597%

抗拔桩检测方案范本

抗拔桩检测方案

文档仅供参考 南京至高淳城际轨道禄口机场至溧水段试验段土建工程(DS7-TA05标) 桩基检测方案 编制: 审核: 审批: 中铁十四局集团有限公司 二○一四年十月二十日

桩基检测方案 1工程概况 1.1工程名称:南京至高淳城际轨道禄口机场至溧水段试验段土建工程(DS7-TA05标) 1.2建设单位:南京地铁建设有限责任公司 1.3建设地点:金龙路站~无想山站 1.4工程概况:本标段二站一区间,金龙路站、无想山站和金龙路站~无想山站区间。 金龙路站采用Φ1000钻孔灌注桩,混凝土等级为C35P8水下,有效桩长5m。设计抗拔承载力特征值为:1000KN(KBZ1~9a、15~22a)、2400KN(KBZ10~14)。金龙路站桩数总计127根。 无想山站采用Φ1000钻孔灌注桩,混凝土等级为C35P8水下,有效桩长5m。设计抗拔承载力特征值为:1000KN(KBZ1~KBZ5)、2400KN (KBZ6~KBZ25)。无想山站桩数总计90根。无想山站抗拔桩平面布置见图2-2。 1.5检测项目及数量: 《建筑基桩检测技术规范》JGJ106- 《建筑地基基础处理技术规范》JGJ79-

《建筑基桩技术规范》JGJ94- 《建筑地基基础检测规程》DGJ32/TJ 142- 《建筑地基基础设计规范》GB50007- 《钻孔灌注桩成孔、地下连续墙成槽质量检测技术规程》DGJ32/TJ117- 《南京轨道交通工程建设质量检测项目和频率规定》 本工程设计图纸 1.7检测任务: 低应变检测:经过低应变动测对试桩完整性进行检测,以确定试桩的完整性和可靠性。 抗拔检测:测试试验桩单桩竖向抗拔最大值,提供单桩竖向抗拔承载力极限值和特征值; 测定单桩竖向荷载作用下的荷载和变形;判定单桩竖向抗拔承载力是否满足设计要求。 2检测方法 2.1静载抗拔检测 2.1.1检测装置及安装示意图 试验装置主要包括千斤顶加载部分和桩顶位移观测两部分。 在抗拔桩的顶部架设一根钢梁,将抗拔桩钢筋锚固于钢梁之上。在抗拔桩两侧的地面上对称放置两块荷载板,荷载板上方分别安装千斤顶进行并联同步加载。千斤顶加载产生的抬升力由钢梁传递给抗拔桩的钢筋笼。桩顶位移用百分表位移传感器测量。

预应力混凝土管桩的计算

预应力混凝土管桩的计算 C.1预应力混凝土管桩的预应力损失及桩身混凝土有效预压应力值的计算方法,按照现行《混凝土结构设计规范》GB50010的规定计算。根据管桩的生产工艺特点,预应力损失一般考虑管桩中直线预应力钢棒由于锚夹具变形和钢棒内缩引起的预应力损失值ii;预应力钢棒 的应力松驰引起的预应力损失14;管桩混凝土收缩、徐变引起预应 力损失|5。 1、预应力钢筋由于锚夹具变形和钢筋内缩引起的预应力损失值 按下列公式计算: |1= 式中a—张拉端锚具变形和钢筋内缩值(伽); L—单节管桩长度或单根和模长度(mm); Es—预应力钢筋的强性模量(2.0 X 105N/m 2)。 2、预应力钢筋的应力松驰引起的预应力损失值14按下列公式计算: 11=0.025 con 式中con —预应力钢筋张拉控制应力(N/m 2); 0.025 —松驰系数,按低松驰螺旋槽钢棒确定。 3、混凝土收缩、徐变引起的预应力损失值15按下列公式计算: 60+340 opc i f 'u l 5= 1 + 15 式中pc i —管桩横截面上预应力钢棒合力点处的混凝土法向应力 ( pc i = ( con- 11- |4) A P/ A o)

f施加预应力时的混凝土立方体抗压强度; —管桩横截面上预应力钢筋的配筋率。 4、管桩横截面上混凝土有效预压力值应按下式计算: pc= ( con- J A p/A o 式中:con—预应力钢筋张拉控制应力(一般取con =0.70f ptk) 1—钢筋的总预应力损失值(1=(11+ 14+ 15) A p—管桩横截面上预应力钢筋总截面积; A o—管桩换算横截面面积。 C.2管桩在纯弯状态下的抗弯承载力设计值和抗弯承载力极限值分别 按下规定计算: 1、管桩的抗弯承载力设计值按下式计算 Sn兀a Sn n a Sn兀 a M = a i f c A(r i+r2)—+ f Py A p r p (f '- po)A p「p 2 n n n 式中:f py A p a= a f c A+f py A p+1.5(f py- po)A p a t =1-1.5 a A—管桩有效横截面面积(m^); A—预应力钢棒的总横截面面积(mm ; 「1、「2—管桩截面的内、外半径(mr); 九一纵向预应力钢筋重心所在圆周的半径(mr); a—受压区混凝土截面面积与全截面面积的比值; a t—纵向受拉钢筋截面面积与全部纵向钢筋截面面积的比值, 当a> 2/3 时,取a t =0 a 1—受压力混凝土矩形应力图的应力值与混凝土轴心抗压强

关于加强预应力混凝土抗拔管桩连接接头质量控制的通知

关于加强预应力混凝土抗拔管桩连接接头质量控制的通知 闽建建函[2011]52号浏览次数:383 各设区市建设局(建委)、公用局,平潭综合试验区交通与建设局: 预应力混凝土管桩(以下简称“管桩”)因其施工速度快、价格适宜、比较适合我省地质条件等特点,已在我省得到广泛应用。传统的管桩连接采用人工施焊,焊接质量受人为因素和天气条件影响,抗拉性能难以完全保证;而管桩机械快速连接接头技术经实践证明,具有连接质量高、抗拔性能好、施工速度快等优点,能有效解决抗拔管桩的连接质量问题,省厅已于2010年4月以闽建科函[2010]52号文加以推广。为保证抗拔管桩连接接头施工质量,提出如下质量控制措施: 一、本省行政区域内的房屋建筑和市政基础设施工程凡是采用抗拔管桩的,其连接接头均应采用管桩机械快速连接接头技术。各有关单位在使用过程中应严格执行《福建省建筑结构抗震设计暂行规定》(闽建科[2008]60号)和《先张法预应力混凝土管桩基础技术规程》(DBJ13-86-2007)、《预应力混凝土管桩机械快速连接接头施工及验收规程》(DBJ13-58-2004)、《先张法预应力高强混凝土管桩》(闽2007G119)等相关规定。 二、设计单位应在设计文件上明确抗拔管桩采用机械快速连接接头方式,且不得随意变更。 三、请施工图审查机构加强对设计文件的审查把关,对未采用机械快速接头技术的,应督促设计单位予以修改。 四、施工单位应严格执行抗拔管桩连接接头的相关技术规定,按图施工,加强对进场连接接头所用材料和连接工艺的质量把关。施工过程中遇到技术问题时,应及时与设计单位、连接接头产品生产企业协商解决,不得随意改变连接方式。 五、监理单位应按照施工文件和相关技术规定实施监理,抗拔管桩连接接头施工必须进行旁站监理,并做好监理记录。 六、监督机构应加大对抗拔管桩连接接头质量控制的监管力度,督促各有关单位认真执行相关规定。 福建省住房和城乡建设 厅 二○一一年五月六日 发布时间:2011年05月11日

预应力管桩在抗拔桩中的应用

预应力管桩在抗拔桩中的应用实录 朱陆明沈永根 (1.浙江大学新宇集团浙江恒业房地产开发公司2.浙江有色建设工程有限公司) 摘要针对四个预应力混凝土管桩作为抗拔桩应用的工程实例中出现质量问题,分别从管桩作为抗拔桩的设计计 算、施工方法、管材强度、管桩连接及构造要求等方面加以深入剖析,找出出现质量问题的原因,得出管桩作 为抗拔桩使用时须在管桩端板处加筋锚固,同时设计时对抗拔荷载取值应按最不利情况考虑,另外做永久性 抗拔桩时,在管桩的端板连接处,要保证焊接质量,同时作必要的防锈处理。 关键词预应力管桩抗拔桩补筋锚固 1 抗拔管桩的应用现状 我国于1985年在广东省首次施打应用PHC 桩,至1994年全省大小管桩厂有5O多家,年产管桩 达400万米,占建筑桩基用量的1/3。1995年浙江 省工业与民用建筑基础中开始大量采用管桩,2003 年省内管桩年产达到4200万米。 管桩基础具有以下特点:一是适合浙江省海相 沉积地区的地质条件;二是工期短、造价低。大量管 桩基础工程中管桩作为永久性承压桩,对管桩作为 抗拔桩目前各设计单位看法不同,多数意见持慎用 或不用的想法。近年来已有一些工程在业主要求降 低工程造价的压力推动下,将管桩作为临时抗拔桩 或丙级建筑物的准永久性抗拔桩,其中所谓的临时 抗拔桩是指建筑物含1~2层地下室,在建筑物施工 完成大部分地下室结构浇筑后至建筑物结构全部施 工完之间的较长一段时间内,因降雨等因素引起地 下水位的突变,致使建筑物基桩承受较大的抗拔荷 载,此期间的抗拔荷载与已完成的上部结构自重成 反比,与地下水位的高低成正比。 此类工程主要为中、低、中高层管桩基础的民用 建筑物。所谓的准永久性抗拔桩是指建筑物施工完 乃至未有使用荷载期间或使用中需要清理该建筑物 时管桩基础仍承受较大抗拔荷载。此类工程主要有 大型地下车库、大型污水处理池。目前象杭州市区 用管桩作为临时抗拔桩的建筑物相当普遍,作为准 永久抗拔桩的工程近年来明显增多。实际应用中总 有不少工程因某个环节疏忽导致地下室出现不同程 度的质量事故。下面就举4个工程实例加以剖析, (收稿日期] 2005—6—20 46 分析工程出现问题的原因是设计考虑不周,还是施 工工序质量失控,并就管桩作为抗拔桩的合理性作 出判断。

静压(抗拔)管桩的应用及施工

静压(抗拔)管桩的应用及施工 摘要:预应力管桩具有单桩承载力高,桩端承载力可比原状土提高80%~100%;设计选用范围广,单桩承载力可从600kN到4500kN,既适用于多层建筑,也可用于50层以下的高层建筑;现阶段管桩的使用越来越普遍、越来越广泛。 关键词:管桩;单桩竖向抗拔承载力特征值;终压力;接桩;桩与承台的连接 Abstract: prestressed pipe pile is single pile bearing capacity is high, the bearing capacity of pile endpoint comparable undisturbed soil increased 80% ~ 100%; Design selection scope, single pile bearing capacity from 600 to 4500 kN kN, applies to both multistory buildings, also can be used for 50 layer below the high-rise buildings; At present the use of pipe pile is becoming more and more common, more and more widely. Keywords: pipe; Vertical bearing capacity of the single pile out characteristic value; Eventually pressure; Meet pile; The pile and pile caps is connected 概述 静压法沉桩是通过静力压桩机的压桩机构,以压桩机自重和桩机上的配重作反力而将预制钢筋混凝土桩分节压入地基土层中成桩。其特点是:施工无噪声、无振动、无污染;沉桩采用全液压夹持桩身向下施加压力,可避免锤击应力,打碎桩头;效率高,施工速度快;可预估和验证单桩承载力,施工安全可靠,便于拆装维修,运输等。但存在压桩设备较笨重,要求边桩中心到已有建筑物间距较大,压桩力受一定限制,挤土效应仍然存在等问题。 目前管桩基础90%以上是承受压力为主的承压桩,抗拔桩的数量不到总应用量的10%。但抗拔管桩只要在质量保证的前提下,会显示出其施工方便、工期短、造价便宜等许多优点,管桩的抗拔应用仍成发展趋势。 一、影响抗拔承载力的因素 与抗压承载力相比,预应力混凝土管桩的抗拉承载力显得复杂一些,影响因素归纳起来有以下几点: (1)抗拔计算时桩端阻力不起作用,桩侧阻力因为要乘以抗拔系数也要折减,因此抗拔承载力比抗压承载力小很多。 (2)预应力管桩的工作环境是二类,应进行桩的抗裂验算。 (3)作为轴心受拉构件,应进行正截面的受拉承载力计算。

A3锚杆抗拔承载力计算

腾冲古茶墅假日风景庄园项目人工挖孔桩计算书 工程编号:2011038 云南博超建筑设计有限公司 设计人:张寅 校对人:张毅 二〇一二年十月

抗浮锚杆竖向抗拔承载力特征值Rt 的取值计算 一、基本概况 锚杆类型: 全长粘结型抗浮锚杆 承载力设计参数取值: 桩端持力层为④粘土层(硬塑) 锚杆锚固段侧阻力标准值按桩基规范表5.3.5-1取90kPa 。 桩身设计直径: d = 0.25 m 锚杆长度: l = 10.00 m. 二、计算依据 《建筑桩基技术规范》(JGJ 94-2008) 以下简称 桩基规范 《全国民用建筑工程设计技术措施》结构(地基与基础 2009年版) 以下简称 民用技术措施 《建筑边坡工程技术规范》(GB 50330-2002) 以下简称 边坡规范 《岩土锚杆(索)技术规范》(CECS 22-2005) 以下简称 锚杆规范 三、竖向抗拔承载力特征值Rt 的取值计算 1. 计算参数表 f rb ——注浆体与土层间的粘结强度特征值,按民用技术措施表7.3.2-2确定; q sik ——极限侧阻力,按桩基规范表5.3.5-1取值。 2. 锚杆竖向抗拔承载力特征值估算 按式(1)或(1-1)和式(2)估算,两者宜取较小值。 10.8 3.140.251032201t a rb R Dl f kN ξπ==????= (1) 11900.8 3.140.250.7810220.42n t i sia i i R D q l kN ξπλ===????? =∑ (2) (1-1)

3. 抗拔锚杆杆体的横截面积A 的估算 3 2 2201108090.69360td y N A mm f ξ?≥==? (3) 式中,ξ2 ——锚筋抗拉工作条件系数,永久锚杆取0.69 ; N td ——荷载效应基本组合下的锚杆轴向拉力设计值; f y ——钢筋或预应力钢绞线的抗拉强度设计值。 4. 锚杆钢筋与砂浆之间的锚固长度应满足下式验算要求 3 320110 1.10.63 3.1422 2.40.7td a s b N t m n Df ξπ?≥==????? 式中,n s ——钢筋或钢绞线根数,取3 ; D ——单根钢筋或钢绞线直径,根据上式(3)的计算取20mm ; f b ——钢筋或钢绞线与锚固注浆体间的粘结强度设计值,按民用技术措 施表7.3.2-3取2.4MPa (砂浆强度等级为M30),当采用三根钢筋点焊成束时,应乘0.7的折减系数。

管桩竖向承载力计算书及符合地基计算

63#楼桩承载力计算书 本工程±0.000定位为黄海高程9.450m,桩顶标高为-1.50m,根据地勘报告桩端持力层为○5层粉质粘土层,桩基选用预应力砼管桩。 根据地勘报告选KK11号孔验算: 桩径=0.4m 周长=1.256m 桩端面积Aj=0.0876㎡ 桩端敞口面积Apl =0.038㎡桩长L=18m λp=0.8 桩端极限端阻力标准值=3300x(0.0876+0.8*0.038)=389.4KN 桩极限侧阻力标准值: (3.55*40+1.57*45+5.4*27+5.55*58)*1.256=850.5632KN 单桩竖向承载力特征值为Ra=(850.5632+389.4)/2=620KN 73#楼桩承载力计算书 本工程±0.000定位为黄海高程9.450m,桩顶标高为-1.50m,根据地勘报告桩端持力层为○5层粉质粘土层,桩基选用预应力砼管桩。 根据地勘报告选K212号孔验算: 桩径=0.4m 周长=1.256m 桩端面积Aj=0.0876㎡ 桩端敞口面积Apl=0.038㎡桩长L=15m λp=0.8 桩端极限端阻力标准值=2500x(0.0876+0.8*0.038)=295KN 桩极限侧阻力标准值: (2.2*55+7.1*28+1.7*60+2.8*80)*1.256=811KN 单桩竖向承载力特征值为Ra=(811+295)/2=553KN 根据地勘报告选K209号孔验算: 桩径=0.4m 周长=1.256m 桩端面积Aj=0.0876㎡ 桩端敞口面积Apl=0.038㎡桩长L=11m λp=0.8 桩端极限端阻力标准值=2500x(0.0876+0.8*0.038)=295KN 桩极限侧阻力标准值: (2*55+3.1*60+4.6*80)*1.256=834KN 单桩竖向承载力特征值为Ra=(834+295)/2=565KN

抗拔承载力计算2011

抗拔桩计算 条件1:面积:A=8.0X9.3=74.4mm2 设防水位标高为相对标高-1.640m,地下室底板的底标高为相对标高-5.100m 抗浮水位:H=5.100-1.640=3.460m 抗浮自重:底板=25X0.5A=12.5A KN 首层板=25X0.25XA=6.25A KN 覆土=16X0.6A=9.6A KN 柱=25X0.5X0.5X3.7=23.1KN 桩台=25X2X2X1.1=110KN 故F自重=(12.5A+6.25A+9.6A+133.1)X0.9=25.51A+119.79KN 水浮力:F浮设=3.46X10A=34.6A KN 现取用φ400的管桩为抗拔桩,抗拉特征值为F抗拔=150KN 因为(F浮设-F自重)X1.2=F抗拔,即(34.6A -25.51A-119.79)X1.2=150n,10.908A-143.7=150n,n=(811.1-143.7)/150=5 所以5根抗拔桩能满足抗拔要求。条件2:面积:A=8.0X9.3X0.5=37.2mm2 设防水位标高为相对标高-1.640m,地下室底板的底标高为相对标高-5.100m 抗浮水位:H=5.100-1.640=3.460m 抗浮自重:底板=25X0.5A=12.5A KN 首层板=25X0.25XA=6.25A KN 覆土=16X0.6A=9.6A KN 柱=25X0.5X0.5X3.7=23.1KN 桩台=25X0.8X2X1.1=44KN 侧壁=25X0.4X8X3.55=284KN 故F自重=(12.5A+6.25A+9.6A+351.1)X0.9=25.51A+316KN 水浮力:F浮设=3.46X10A=34.6A KN 现取用φ400的管桩为抗拔桩,抗拉特征值为F抗拔=150KN 因为(F浮设-F自重)X1.2=F抗拔,即(34.6A -25.51A-316)X1.2=150n,10.908A-379=150n,n=(405.77-379)/150=1 所以2根抗拔桩能满足抗拔要求。

相关文档
最新文档