朝阳区2016届高三一模数学试题及答案

合集下载

北京市朝阳区高三年级第一次综合练习数学试卷(理工类)答案

北京市朝阳区高三年级第一次综合练习数学试卷(理工类)答案

北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)当1ω=时,21()sin 22x f x x =+1sin 2x x = sin()3xπ=+.令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z . 所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分 (Ⅱ)由21()sin 22x f x x ωω=+ 1sin 2x x ωω=+ sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z .解得162n ω=+. 又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分)解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 . 由题意可知,13+41()128P A ⨯⨯=⨯4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====; 2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====;4448(4)C P X C ===所以随机变量X 的分布列为随机变量X 的均值10123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分 (Ⅲ)21s >22s .…………………………………………………………………………13分 17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AAC C ⊥平面11AA B B , 所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1ABAA A =,所以AC ⊥平面11AA B B .由已知11//AC AC ,所以11AC ⊥平面11AA B B .因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示. 由已知 11111222AB AC AA AB AC =====, 所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角,所以cos ,17⋅〈〉===⋅m n m n m n. 所以二面角P AM B --的余弦值为17.………………………………9分 (Ⅲ)存在点P ,使得直线1AC //平面AMP . 设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-. 设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意). 又1(2,0,2)AC =-,若1AC //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--=n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1AC //平面AMP .…………14分 18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x af x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数; 当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,.……………………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数,所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x -'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增, 所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e1)2e 0aag x a a a----=++--=>. 故()g x 在(1,)+∞上存在唯一零点.取2-1-21e<e ax =,则221122()(1e 1)2e 24a a g x a a a a ++=--+--=--212[e 2(1)]aa a+=-+.设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >. 故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线.(3)当0a =时,()f x x =,显然不存在过点P (13),的切线.综上所述,当0a >时,过点P (13),存在两条切线; 当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分 19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为P 是椭圆C 上的点,由椭圆定义得124PF PF +=. 所以12PF F ∆的周长为4+易得椭圆的离心率=2c e a =.………………………………………………………4分 (Ⅱ)由2220,1,42y m x y -+=⎨+=⎪⎩得22480x m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<.设11(,)A x y ,22(,)B x y,则12x x +=,21284m x x -=, 1y =,2y =. 显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则12k k +=+211)(1)(x x -+-====2=0==.因为120k k +=,所以PMN PNM ∠=∠.所以PM PN =. ………………………………………………………14分20.(本小题满分13分)解:(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,…. 因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31n n k n b a k ==-,所以13124,n n k n -*-=⋅∈N ,即11(241),3n n k n -*=⋅+∈N . 再证n k 为正整数.显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅,即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数.所以,所求通项公式为11(241),3n n k n -*=⋅+∈N .……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列, 且115k c a ==,22231k c a k ==-, 所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+.只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数.又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+,即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数,故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列, 故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个.…………………………………………………………………………………………13分。

2016 朝阳高三一模 数学 理 答案

2016 朝阳高三一模 数学 理 答案

北京市朝阳区高三年级第一次综合练习答案数学试卷(理工类)2016.3一、选择题:本大题共8小题,每小题5分,共40分. 1.答案:D 2. 答案:D 3.答案:A 4.答案:B 5.答案:C 6.答案:D 7.答案:A 8.答案:C二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.答案:1010.答案:21n a n =-,(3)(411)n n ++11.答案:)4π 12.答案:3(,]4-∞ 13.答案:3(0,)414.答案:121||i i i a b =-∑ 22三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)解析:解:(Ⅰ)当1ω=时,21()sin 22x f x x =+1sin 2x x = sin()3x π=+.令22,232k x k k ππππ-≤+≤π+∈Z . 解得22,66k x k k 5πππ-≤≤π+∈Z . 所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分(Ⅱ)由21()sin 22x f x x ωω=+-1sin 2x x ωω= sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=. 则2332n ωπππ+=π+,n ∈Z . 解得162n ω=+.又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分)解析:解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4.由题意可知,13+41()128P A ⨯⨯=⨯4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====; 2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====;4448(4)C P X C ===所以随机变量X 的分布列为随机变量X 的均值10123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分 (Ⅲ)21s >22s .…………………………………………………………………………13分17.(本小题满分14分)解析:解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AAC C ⊥平面11AA B B , 所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1AB AA A = , 所以AC ⊥平面11AA B B .由已知11//AC AC ,所以11AC ⊥平面11AA B B . 因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示. 由已知 11111222AB AC AA AB AC =====, 所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩ 取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角,所以cos ,⋅〈〉===⋅m n m n m n .所以二面角P AM B --的余弦值为17.………………………………9分 (Ⅲ)存在点P ,使得直线1AC //平面AMP . 设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-.设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩ n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩ 取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意).又1(2,0,2)AC =- ,若1AC //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--= n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1AC //平面AMP .…………14分18.(本小题满分13分)解析: 解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x a f x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数;当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,.……………………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数, 所以min ()(2)2+ln 2f x f a ==. 依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+--(0)x >,则2211(1)()()a x g x a x x x -'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>,()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减,所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增, 所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e1)2e 0aa g x a a a----=++--=>. 故()g x 在(1,)+∞上存在唯一零点.取2-1-21e<e ax =,则221122()(1e 1)2e 24a ag x a a a a++=--+--=--212[e 2(1)]a a a +=-+. 设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >. 故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线. (3)当0a =时,()f x x =,显然不存在过点P (13),的切线. 综上所述,当0a >时,过点P (13),存在两条切线; 当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分19.(本小题满分14分)解析:解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为4+易得椭圆的离心率=2c e a =.………………………………………………………4分 (Ⅱ)由2220,1,42y m x y -+=⎨+=⎪⎩得22480x m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<.设11(,)A x y ,22(,)B x y,则122x x m +=-,21284m x x -=, 112m y +=,222my +=. 显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则12k k +=+211)(1)(x x -+-===28)(m m ----+==220==.因为120k k +=,所以PMN PNM ∠=∠.所以PM PN =. ………………………………………………………14分20.(本小题满分13分)解析:解:(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,….因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31n n k n b a k ==-,所以13124,n n k n -*-=⋅∈N ,即11(241),3n n k n -*=⋅+∈N . 再证n k 为正整数. 显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅,即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数.所以,所求通项公式为11(241),3n n k n -*=⋅+∈N .……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列, 且115k c a ==,22231k c a k ==-, 所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+.只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数.又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+,即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数,故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列, 故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个. …………………………………………………………………………………………13分。

朝阳区2016届高三一模数学试题及复习资料

朝阳区2016届高三一模数学试题及复习资料

北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2016.3第一局部(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i1i+= A .1i - B .1i -- C .1i -+ D .1i +2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是 A .M N N = B .()UMN =∅C .M N U =D .()U M N ⊆3.>e e a b>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4. 执行如图所示的程序框图,输出的S 值为 A .42 B .19 C .8D .35.在ABC ∆中,角A ,B ,C 的对边分别为,,.a b c若222()tan a c b B +-=,则角B 的值为 A . 3π B . 6πC .233ππ或D . 566ππ或6.某工厂一年中各月份的收入、支出状况的统计如图所示,下列说法中错.误.的是A. 收入最高值与收入最低值的比是3:1B. 结余最高的月份是7月C.1至2月份的收入的改变率与4至5月份的收入的改变率一样D. 前6个月的平均收入为40万元 (注:结余=收入-支出)7.某三棱锥的三视图如图所示,则该三棱锥的体积是A .13B .12C .1D .328.若圆222(1)x y r +-=与曲线(1)1x y -=月23 4 1 5 6 89 1711(第4题7题侧视A.0r << B.0r <<C.0r < D.0r <<第二局部(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9. 二项式251()x x+的绽开式中含4x 的项的系数是 (用数字作答).10.已知等差数列}{n a (n *∈N )中,11=a ,47a =,则数列}{n a 的通项公式n a = ;2610410n a a a a +++++=______.11.在直角坐标系xOy 中,曲线1C 的方程为222x y +=,曲线2C 的参数方程为2,(x t t y t=-⎧⎨=⎩为参数).以原点O 为极点,x 轴非负半轴为极轴,建立极坐标系,则曲线1C 与2C 的交点的极坐标...为 .12.不等式组0,,290x y x x y ≥⎧⎪≤⎨⎪+-≤⎩所表示的平面区域为D .若直线(1)y a x =+与区域D 有公共点,则实数a 的取值范围是 .13.已知M 为ABC ∆所在平面内的一点,且14AM AB nAC =+.若点M 在ABC ∆的内部(不含边界), 则实数n 的取值范围是____.14.某班主任在其工作手册中,对该班每个学生用十二项实力特征加以描绘.每名学生的第i (1,2,,12i =)项实力特征用i x 表示,0,1i i x i ⎧=⎨⎩如果某学生不具有第项能力特征,,如果某学生具有第项能力特征.若学生,A B 的十二项实力特征分别记为1212(,,,)A a a a =,1212(,,,)B b b b =,则,A B两名学生的不同实力特征项数为 (用,i i a b 表示).假如两个同学不同实力特征项数不少于7,那么就说这两个同学的综合实力差异较大.若该班出名3学生两两综合实力差异较大,则这3名学生两两不同实力特征项数总与的最小值为 .三、解答题:本大题共6小题,共80分.解容许写出文字说明,演算步骤或证明过程.15.(本小题满分13分)已知函数21()sin 22xf x x ωω=,0ω>.(Ⅰ)若1ω=,求()f x 的单调递增区间;(Ⅱ)若()13f π=,求()f x 的最小正周期T 的表达式并指出T 的最大值. 16.(本小题满分13分)为理解学生暑假阅读名著的状况,一名老师对某班级的全部学生进展了调查,调查结果如下表.(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之与为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列与数学期望;(Ⅲ)试推断男学生阅读名著本数的方差21s 与女学生阅读名著本数的方差22s 的大小(只需写出结论). 17.(本小题满分14分)如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AA C C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点.(Ⅰ)求证:11A C AP ⊥;(Ⅱ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值;(Ⅲ)是否存在点P ,使得直线1A C //平面AMP ?请说明理由. 18.(本小题满分13分)AMPCBA 1C1B1已知函数()f x =ln ,x a x a +∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.19.(本小题满分14分)已知点P 与椭圆:C 22142x y +=.(Ⅰ)设椭圆的两个焦点分别为1F ,2F ,试求12PF F ∆的周长及椭圆的离心率;(Ⅱ)若直线:l20(0)y m m -+=≠与椭圆C 交于两个不同的点A ,B ,直线PA ,PB 与x 轴分别交于M ,N 两点,求证:PM PN =. 20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且nn k b a =.(Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小, (ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式;(Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有多数多个.北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分)解:(Ⅰ)当1ω=时,21()sin 222x f x x =+-令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z .所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z (7)分(Ⅱ)由21()sin 22xf x x ωω= 因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z .解得162n ω=+.又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. (13)分16.(本小题满分13分)解:(Ⅰ)设事务A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之与为4 . 由题意可知,13+41()128P A ⨯⨯=⨯4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====;所以随机变量X 的分布列为随机变量X 的均值10123427070707070EX =⨯+⨯+⨯+⨯+⨯=. (10)分 (Ⅲ)21s >22s .…………………………………………………………………………13分17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AA C C ⊥平面11AA B B ,所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1AB AA A =, 所以AC ⊥平面11AA B B .由已知11//A C AC ,所以11A C ⊥平面11AA B B .因为AP ⊂平面11AA B B , 所以11AC AP ⊥.…………………………………………………………………………4分(Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示.由已知 11111222AB AC AA A B AC =====, 所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩ 取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角,所以cos ,⋅〈〉===⋅m n m n m n.所以二面角P AM B --.………………………………9分(Ⅲ)存在点P ,使得直线1A C //平面AMP .设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-. 设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩取01y =,得02(1,1,)2λλ-=-n (明显0λ=不符合题意).又1(2,0,2)AC =-,若1A C //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--=n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1A C //平面AMP .…………14分18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x af x xx+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数; 当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,. ……………………………………………………………………………………4分(Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,明显函数()f x 在区间[]1,2上恒大于零;(2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a -上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数,所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分(Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01ak x =+,切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x-'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<.故方程()0g x =无解,即不存在0x 满意①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增,所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e 1)2e 0aa g x a a a----=++--=>.故()g x 在(1,)+∞上存在唯一零点. 取2-1-21e<e ax =,则221122()(1e 1)2e 24a a g x a a a a ++=--+--=--212[e 2(1)]aa a+=-+. 设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >. 故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线.(3)当0a =时,()f x x =,明显不存在过点P (13),的切线.综上所述,当0a >时,过点P (13),存在两条切线;当a ≤时,不存在过点P(13),的切线.…………………………………………………13分 19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为4+.易得椭圆的离心率=c e a =4分 (Ⅱ)由2220,1,42y m x y -+=⎨+=⎪⎩得22480x m ++-=. 因为直线l 与椭圆C 有两个交点,并留意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<.设11(,)A x y ,22(,)B x y,则122x x m +=-,21284m x x -=,明显直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则12k k +=+因为120k k +=,所以PMN PNM ∠=∠. 所以PM PN=. ………………………………………………………14分20.(本小题满分13分)解:(Ⅰ)视察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,….因为数列}{n a 是递增的整数数列,且等比数列以2为首项,明显最小公比不能是52,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128. (ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31nn k n b a k ==-,所以13124,n n k n -*-=⋅∈N ,即11(241),3n n k n -*=⋅+∈N . 再证n k 为正整数. 明显11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅,即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数.所以,所求通项公式为11(241),3n n k n -*=⋅+∈N .……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列, 且115k c a ==,22231k c a k ==-,所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+. 只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+. 只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,明显12k =为正整数.又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+,即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数, 故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有多数个不同的取值,对应着不同的等比数列,故数列}{n a 所包含的以52 a 为首项的不同无穷等比数列有多数多个. …………………………………………………………………………………………13分。

北京市朝阳区2016届高三数学第一次综合练习(一模)试题文(含解析)

北京市朝阳区2016届高三数学第一次综合练习(一模)试题文(含解析)

16.( 本小题总分值13 分〕数列a n 的前 n 项和 S n 2n 2 n ,n N .〔Ⅰ〕求数列a n 的通项公式;〔Ⅱ〕假设nn1 n ,求数列 b的前 n 项和T .bann解析 :〔Ⅰ〕由 S2n 2 n ,n当 n2 时, a n S nS n 1=2n 2 n2 n 2n 14n 3.1当 n 1 时,而4131 ,a 1 S 1 1,所以数列 a n 的通项公式 a n4n 3,nN .,,,,,,,,,6 分〔Ⅱ〕由〔Ⅰ〕可得 b n ( 1)na n( 1)n 4n 3 ,当 n 为偶数时,T n1 59 13 174n 34n2 n ,2当 n 为奇数时,n1 为偶数,T n T n 1 b n 1 2(n1) (4 n 1)2n 1.2n, n,综上, T n 为偶数,,,,,,,,,,13 分2n为奇数.1,n17. ( 本小题总分值 13 分 )某班建议假期每位学生至少阅读一本名著,为了解学生的阅读情况,对该班所有学生进行了调查 . 调查结果如下表 :阅读名著的本数1 2 3 4 5 男生人数 3 1 2 1 3 女生人数13312〔Ⅰ〕试根据上述数据,求这个班级女生阅读 名著 的平均本数 ;〔Ⅱ〕假设从阅读5 本名著 的学生中任选 2 人交流读书心得, 求选到男生和女生各 1 人的概率 ;〔Ⅲ〕试判断该班男生阅读名著本数的方差s 12与女生阅读名著本数的方差 s 2 2 的大小〔只需写出结论〕.〔注:方差 s21[( x 1 x )2 (x 2 x)2(x nx) 2 ] ,其中x 为nx 1 x 2,,, x n 的平均数〕7解析 :〔Ⅰ〕女生阅读 名著 的平均本数3 本.x10,,,,,,,,,,3 分〔Ⅱ〕设事件A ={从阅读5本名著 的学生中任取 2 人,其中男生和女生各1 人}.男生阅读 5 本名著的 3 人分别记为a 1 , a 2 , a 3,女生阅读5本名著的2人分别记为 b 1, b 2.从阅读 5 本名著的 5 名学生中任取 2 人,共有 10 个结果,分别是:a 1 ,a 2 , a 1, a 3 , a 2 ,a 3 ,b 1 ,b 2, a 1 , b 1 , a 1,b 2 ,a 2 ,b 1 , a 2 , b 2 , a 3, b 1 , a 3 ,b 2.其中男生和女生各1 人共有 6 个结果,分别是:a 1,b 1, a 1, b 2, a 2 ,b 1, a 2 ,b 2, a 3 , b 1, a 3, b 2.那么 P 〔A 〕63 .,,,,,,,,,,10 分10 5〔 III 〕s 1 2 s 22.,,,,,,,,,, 13 分18. 〔本小题共 14 分〕如图,在三棱柱 ABCA 1BC 11中, AA 1底面 ABC ,BAC90 ,AB AC2 ,AA 13 .M , N 分别为 BC 和CC 1的中点,P 为侧棱BB 1上的动点.〔Ⅰ〕求证:平面 APMBBC CA 1B 1平面 ;1 1C 1P〔Ⅱ〕假设 P 为线段BB 1的中点,求证:AN 1 // 平面APM ;〔Ⅲ〕试判断直线 BC 1与平面APM 是否能够垂直.NAB假设能垂直,求PB 的值;假设不能垂直,请说明理由. CM解析 :〔Ⅰ〕由,M 为BC 中点,且AB AC ,所以AM BC .又因为 BB 1 // AA 1,且 AA 1 底面 ABC ,所以BB 1 底面 ABC .因为 AM底面 ABC ,所以BB 1AM ,又 BB 1 BC B ,所以 AM平面 BBC C .1 1又因为 AM平面 APM ,8解析 :〔Ⅰ〕女生阅读 名著 的平均本数3 本.x10,,,,,,,,,,3 分〔Ⅱ〕设事件A ={从阅读5本名著 的学生中任取 2 人,其中男生和女生各1 人}.男生阅读 5 本名著的 3 人分别记为a 1 , a 2 , a 3,女生阅读5本名著的2人分别记为 b 1, b 2.从阅读 5 本名著的 5 名学生中任取 2 人,共有 10 个结果,分别是:a 1 ,a 2 , a 1, a 3 , a 2 ,a 3 ,b 1 ,b 2, a 1 , b 1 , a 1,b 2 ,a 2 ,b 1 , a 2 , b 2 , a 3, b 1 , a 3 ,b 2.其中男生和女生各1 人共有 6 个结果,分别是:a 1,b 1, a 1, b 2, a 2 ,b 1, a 2 ,b 2, a 3 , b 1, a 3, b 2.那么 P 〔A 〕63 .,,,,,,,,,,10 分10 5〔 III 〕s 1 2 s 22.,,,,,,,,,, 13 分18. 〔本小题共 14 分〕如图,在三棱柱 ABCA 1BC 11中, AA 1底面 ABC ,BAC90 ,AB AC2 ,AA 13 .M , N 分别为 BC 和CC 1的中点,P 为侧棱BB 1上的动点.〔Ⅰ〕求证:平面 APMBBC CA 1B 1平面 ;1 1C 1P〔Ⅱ〕假设 P 为线段BB 1的中点,求证:AN 1 // 平面APM ;〔Ⅲ〕试判断直线 BC 1与平面APM 是否能够垂直.NAB假设能垂直,求PB 的值;假设不能垂直,请说明理由. CM解析 :〔Ⅰ〕由,M 为BC 中点,且AB AC ,所以AM BC .又因为 BB 1 // AA 1,且 AA 1 底面 ABC ,所以BB 1 底面 ABC .因为 AM底面 ABC ,所以BB 1AM ,又 BB 1 BC B ,所以 AM平面 BBC C .1 1又因为 AM平面 APM ,8解析:〔Ⅰ〕女生阅读名著的平均本数11323314+253 本.x10,,,,,,,,,, 3 分〔Ⅱ〕设事件 A ={从阅读5本名著的学生中任取 2 人,其中男生和女生各 1 人}.男生阅读 5 本名著的 3 人分别记为a1 , a2 , a3,女生阅读5本名著的2人分别记为b1, b2.从阅读 5 本名著的 5 名学生中任取 2 人,共有 10 个结果,分别是:a1 ,a2, a1, a3, a2 ,a3, b1 ,b2, a1 , b1, a1,b2,a2 , b1, a2 , b2, a3, b1, a3 ,b2.其中男生和女生各 1 人共有 6 个结果,分别是:a1, b1, a1, b2, a2 ,b1, a2 ,b2, a3 , b1, a3, b2.那么 P〔A〕63.,,,,,,,,,,10 分105〔 III 〕s12s22.,,,,,,,,,,13 分18.〔本小题共 14 分〕如图,在三棱柱 ABC A1BC11中, AA1底面 ABC ,BAC90 ,AB AC 2 ,AA13 .M , N分别为 BC 和CC1的中点,P为侧棱BB1上的动点.〔Ⅰ〕求证:平面 APM BBC C A1B1平面;11C1P 〔Ⅱ〕假设 P 为线段BB1的中点,求证:AN1 // 平面APM;〔Ⅲ〕试判断直线 BC1与平面APM是否能够垂直.NA B假设能垂直,求PB 的值;假设不能垂直,请说明理由.CM 解析:〔Ⅰ〕由,M 为BC中点,且AB AC,所以AM BC .又因为 BB1 // AA1,且 AA1底面 ABC ,所以BB1底面 ABC .因为 AM底面 ABC ,所以BB1AM ,又 BB1 BC B,所以 AM平面BBC C.11又因为 AM平面 APM ,解析:〔Ⅰ〕女生阅读名著的平均本数11323314+253 本.x10,,,,,,,,,, 3 分〔Ⅱ〕设事件 A ={从阅读5本名著的学生中任取 2 人,其中男生和女生各 1 人}.男生阅读 5 本名著的 3 人分别记为a1 , a2 , a3,女生阅读5本名著的2人分别记为b1, b2.从阅读 5 本名著的 5 名学生中任取 2 人,共有 10 个结果,分别是:a1 ,a2, a1, a3, a2 ,a3, b1 ,b2, a1 , b1, a1,b2,a2 , b1, a2 , b2, a3, b1, a3 ,b2.其中男生和女生各 1 人共有 6 个结果,分别是:a1, b1, a1, b2, a2 ,b1, a2 ,b2, a3 , b1, a3, b2.那么 P〔A〕63.,,,,,,,,,,10 分105〔 III 〕s12s22.,,,,,,,,,,13 分18.〔本小题共 14 分〕如图,在三棱柱 ABC A1BC11中, AA1底面 ABC ,BAC90 ,AB AC 2 ,AA13 .M , N分别为 BC 和CC1的中点,P为侧棱BB1上的动点.〔Ⅰ〕求证:平面 APM BBC C A1B1平面;11C1P 〔Ⅱ〕假设 P 为线段BB1的中点,求证:AN1 // 平面APM;〔Ⅲ〕试判断直线 BC1与平面APM是否能够垂直.NA B假设能垂直,求PB 的值;假设不能垂直,请说明理由.CM 解析:〔Ⅰ〕由,M 为BC中点,且AB AC,所以AM BC .又因为 BB1 // AA1,且 AA1底面 ABC ,所以BB1底面 ABC .因为 AM底面 ABC ,所以BB1AM ,又 BB1 BC B,所以 AM平面BBC C.11又因为 AM平面 APM ,解析:〔Ⅰ〕女生阅读名著的平均本数11323314+253 本.x10,,,,,,,,,, 3 分〔Ⅱ〕设事件 A ={从阅读5本名著的学生中任取 2 人,其中男生和女生各 1 人}.男生阅读 5 本名著的 3 人分别记为a1 , a2 , a3,女生阅读5本名著的2人分别记为b1, b2.从阅读 5 本名著的 5 名学生中任取 2 人,共有 10 个结果,分别是:a1 ,a2, a1, a3, a2 ,a3, b1 ,b2, a1 , b1, a1,b2,a2 , b1, a2 , b2, a3, b1, a3 ,b2.其中男生和女生各 1 人共有 6 个结果,分别是:a1, b1, a1, b2, a2 ,b1, a2 ,b2, a3 , b1, a3, b2.那么 P〔A〕63.,,,,,,,,,,10 分105〔 III 〕s12s22.,,,,,,,,,,13 分18.〔本小题共 14 分〕如图,在三棱柱 ABC A1BC11中, AA1底面 ABC ,BAC90 ,AB AC 2 ,AA13 .M , N分别为 BC 和CC1的中点,P为侧棱BB1上的动点.〔Ⅰ〕求证:平面 APM BBC C A1B1平面;11C1P 〔Ⅱ〕假设 P 为线段BB1的中点,求证:AN1 // 平面APM;〔Ⅲ〕试判断直线 BC1与平面APM是否能够垂直.NA B假设能垂直,求PB 的值;假设不能垂直,请说明理由.CM 解析:〔Ⅰ〕由,M 为BC中点,且AB AC,所以AM BC .又因为 BB1 // AA1,且 AA1底面 ABC ,所以BB1底面 ABC .因为 AM底面 ABC ,所以BB1AM ,又 BB1 BC B,所以 AM平面BBC C.11又因为 AM平面 APM ,。

2016年朝阳区高三数学一模试题及答案理

2016年朝阳区高三数学一模试题及答案理

三、解答题:本大题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分 13 分) 已知函数 f ( x) =
1 ωx 3 ,ω > 0 . sin ω x + 3 cos 2 − 2 2 2
(Ⅰ)若 ω = 1 ,求 f ( x) 的单调递增区间; (Ⅱ)若 f ( ) = 1,求 f ( x) 的最小正周期 T 的表达式并指出 T 的最大值.
若学生 A, B 的十二项能力特征分别记为 A = (a1 , a2 , 两名学生的不同能力特征项数为
, a12 ) , B = (b1 , b2 , , b12 ) ,则 A, B
(用 ai , bi 表示).如果两个
同学不同能力特征项数不少于 7 ,那么就说这两个同学的综合能力差异较大.若该班有 3 名学生两 两综合能力差异较大,则这 3 名学生两两不同能力特征项数总和的最小值为 .
北京市朝阳区高三年级第一次综合练习
数学试卷(理工类)
(考试时间 120 分钟 满分 150 分)
2016.3
本试卷分为选择题(共 40 分)和非选择题(共 110 分)两部分
第一部分(选择题 共 40 分)
一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,选出符合题目 要求的一项. 1. i 为虚数单位,复数 A. 1 − i
P( X = 2) =
P( X = 3) =
P( X = 4) =
所以随机变量 X 的分布列为
X P
0
1
2
3
4
1 8 18 8 1 70 35 35 35 70 1 16 36 16 1 随机变量 X 的均值 EX = 0 × + 1× + 2 × + 3 × + 4 × = 2 .…………10 分 70 70 70 70 70

2016年北京朝阳区高三一模数学(文)试卷答案与解析

2016年北京朝阳区高三一模数学(文)试卷答案与解析
当 k 2 时, ①当 x k 2 2k 且 x k 或 x k 2 2k 时, f x 0 , f x 单调递减; ②当 k 2 2k x k 2 2k 时, f x 0 , f x 单调递增. 当 k 0 时, ①当 x k 2 2k 或 x k 2 2k 时, f x 0 , f x 单调递减; ②当 k 2 2k x k 2 2k 且 x k 时, f x 0 , f x 单调递增.

a b
2
2
2 2 2 2 ∴ a b 2a b a b 2a b
∴ a b 0 ∴ab
4.B 【解析】 i 1 , S 1 S 3,i 2 S 8 ,i 3 S 19 , i 4 输出 S 19 5.C 【解析】 3a cos B b sin A 0
8.C 【解析】只需求圆心 0 , 1 到曲线 y
1 1 上的点的最短距离,取曲线上的点 a , , a 1 x 1
a 1
在线1对1 家教网 三好网中小学辅导http://www.sanhao.com
2016 高三一模
1 距离 d a 2 1 a 1
4
n 1 3 4n . 2 n 2n 2
1 2n .
若 n 为偶数时, Tn 1 5 (9) 13 7 4n 4n 3 4
1 2n, 故数列 bn 的前 n 项和 Tn 2 n,
2
3 x 3
【解析】 y 2 8x 焦点为 2 ,0
c 2 4 m2 1 , m 2 3 1 渐近线方程为: y x m

(优辅资源)北京市朝阳区高三数学(文)第一次综合练习(一模)试题(含解析)

(优辅资源)北京市朝阳区高三数学(文)第一次综合练习(一模)试题(含解析)

北京市朝阳区2016届高三数学(文)第一次综合练习(一模)试题(含解析)(考试时间120分钟 满分150分)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知全集U =R ,集合{}3A x x =≤,{}2B x x =<,则()U B A =I ð A .{}2x x ≤ B .{}13x x ≤≤ C. {}23x x <≤ D .{}23x x ≤≤ 答案:D解析:考查补集与交集的运算。

因为{}U C B ≥=x|x 2,所以,()U B A =I ð{}23x x ≤≤。

2.已知i 为虚数单位,则复数2i1i+= A .1i + B .1i - C .1i -+ D .1i --答案:A解析:分母实数化,即分子与分母同乘以分母的其轭复数:222(1)111i i i i i i -==++-。

3.已知非零平面向量,a b ,“+=-a b a b ”是“⊥a b ”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案:C解析:因为||||a b a b +=-r r r r ,平方:22()()a b a b +=-r r r r ,展开,合并同类项,得:0a b =r rg , 所以,a b ⊥r r。

4.执行如图所示的程序框图,输出的S 值为A. 42B. 19C. 8D. 3 答案:B解析:依次执行结果如下:S =2×1+1=3,i =1+1=2,i <4; S =2×3+2=8,i =2+1=3,i <4;S =2×8+1=19,i =3+1=4,i ≥4; 所以,S =19,选B 。

5.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若3cos sin 0a B b A +=,则B = A.π6B.π3 C. 2π3D.5π6答案:C解析:因为3cos sin 0a B b A +=,由正弦定理,得:3sin cos sin sin 0A B B A +=所以,3cos sin 0B B +=,即2sin()3B π+=0,所以,B =2π3。

北京市朝阳区高三数学第一次综合练习(一模)试题 理

北京市朝阳区高三数学第一次综合练习(一模)试题 理

北京市朝阳区高三年级第一次综合练习 数学试卷(理工类) 2016.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i 1i+= A .1i - B .1i -- C .1i -+ D .1i +2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是A .M N N =IB .()U M N =∅I ðC .M N U =UD .()U M N ⊆ð 3. “a b >”是“e e a b>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4. 执行如图所示的程序框图,输出的S 值为 A .42 B .19 C .8 D .35.在ABC ∆中,角A ,B ,C 的对边分别为,,.a b c若222()tan 3a c b B ac +-=,则角B 的值为A . 3πB . 6πC . 233ππ或 D . 566ππ或开始1,1i S ==4?i < 1i i =+2S S i =+输出S结束 否 是(第4题图)6.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误..的是 A. 收入最高值与收入最低值的比是3:1B. 结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D. 前6个月的平均收入为40万元 (注:结余=收入-支出)7.某三棱锥的三视图如图所示,则该三棱锥的体积是A .13B .12C .1D .328.若圆222(1)x y r +-=与曲线(1)1x y -=的没有公共点,则半径r 的取值范围是 A .02r << B .1102r <<C .03r <<D .130r << 第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 二项式251()x x+的展开式中含4x 的项的系数是 (用数字作答).10.已知等差数列}{n a (n *∈N )中,11=a ,47a =,则数列}{n a 的通项公式n a = ;2610410n a a a a +++++=L ______.万元 月O23430 1 10 20 5689 10 7111240 60 570 90 8收入支出(第7题图)正视图侧视图俯视图2 11111.在直角坐标系xOy 中,曲线1C 的方程为222x y +=,曲线2C 的参数方程为2,(x t t y t =-⎧⎨=⎩为参数).以原点O 为极点,x 轴非负半轴为极轴,建立极坐标系,则曲 线1C 与2C 的交点的极坐标...为 . 12.不等式组0,,290x y x x y ≥⎧⎪≤⎨⎪+-≤⎩所表示的平面区域为D .若直线(1)y a x =+与区域D 有公共点,则实数a 的取值范围是 .13.已知M 为ABC ∆所在平面内的一点,且14AM AB nAC =+u u u u r u u u r u u u r.若点M 在ABC ∆的内部(不含边界),则实数n 的取值范围是____.14.某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第i (1,2,,12i =L )项能力特征用i x 表示,0,1i i x i ⎧=⎨⎩如果某学生不具有第项能力特征,,如果某学生具有第项能力特征.若学生,A B 的十二项能力特征分别记为1212(,,,)A a a a =L ,1212(,,,)B b b b =L ,则,A B 两名学生的不同能力特征项数为 (用,i i a b 表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分) 已知函数213()sin 3cos 22x f x x ωω=+-,0ω>. (Ⅰ)若1ω=,求()f x 的单调递增区间;(Ⅱ)若()13f π=,求()f x 的最小正周期T 的表达式并指出T 的最大值.16.(本小题满分13分)为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.人数 本数12345(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列和数学期望;(Ⅲ)试判断男学生阅读名著本数的方差21s 与女学生阅读名著本数的方差22s 的大小(只需 写出结论).17.(本小题满分14分)如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AA C C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点.(Ⅰ)求证:11A C AP ⊥;(Ⅱ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值;(Ⅲ)是否存在点P ,使得直线1A C //平面AMP ?请说明理由.18.(本小题满分13分)已知函数()f x =ln ,x a x a +∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.性别男生 1 4 3 2 2 女生1331AMPCBA 1C 1B 119.(本小题满分14分)已知点(2,1)P 和椭圆:C 22142x y +=. (Ⅰ)设椭圆的两个焦点分别为1F ,2F ,试求12PF F ∆的周长及椭圆的离心率; (Ⅱ)若直线:l 220(0)x y m m -+=≠与椭圆C 交于两个不同的点A ,B ,直线PA ,PB 与x轴分别交于M ,N 两点,求证:PM PN =.20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且n n k b a =.(Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小, (ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式;(Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有无数多个.北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3一、选择题:(满分40分)题号 1 2 3 4 5 6 7 8 答案DDABCDAC二、填空题:(满分30分) 题号91011121314答案 10 21n a n =-,(3)(411)n n ++ (2,)4π3(,]4-∞3(0,)4121||ii i ab =-∑22(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)当1ω=时,213()sin 3cos 222x f x x =+-13sin 2x x =+ sin()3x π=+.令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z .所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分(Ⅱ)由213()sin 3222x f x x ωω=+-13sin 22x x ωω=+ sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z . 解得162n ω=+.又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分)解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 . 由题意可知,13+41()128P A ⨯⨯=⨯4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====;2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====; 44481(4)70C P X C ===. 所以随机变量X 的分布列为随机变量X 的均值0123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分(Ⅲ)21s >22s .…………………………………………………………………………13分17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AA C C ⊥平面11AA B B ,所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1AB AA A =I , 所以AC ⊥平面11AA B B .由已知11//A C AC ,所以11A C ⊥平面11AA B B . 因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示. 由已知 11111222AB AC AA A B AC =====, 所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u rn n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩ 取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角, 所以317cos ,1717⋅〈〉===⋅m n m n m n.所以二面角P AM B --的余弦值为31717.………………………………9分 (Ⅲ)存在点P ,使得直线1A C //平面AMP .设111(,,)P x y z ,且1BP BB λ=u u u r u u u r,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-u u u r.设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u rn n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩ yxAMPC BA 1 C 1B 1z取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意). 又1(2,0,2)AC =-u u u r ,若1A C //平面AMP ,则10AC ⊥u u u rn . 所以10220AC λλ-⋅=--=u u u r n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1A C //平面AMP .…………14分 18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x af x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数; 当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,. ……………………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数, 所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-.综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x-'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增, 所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e 1)2e 0aag x a a a----=++--=>.故()g x 在(1,)+∞上存在唯一零点.取2-1-21e<e ax =,则221122()(1e 1)2e 24a a g x a a a a ++=--+--=--212[e 2(1)]a a a+=-+. 设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20tu t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >.故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线.(3)当0a =时,()f x x =,显然不存在过点P (13),的切线.综上所述,当0a >时,过点P (13),存在两条切线;当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为4+.易得椭圆的离心率=2c e a =.………………………………………………………4分 (Ⅱ)由2220,1,42y m x y -+=⎨+=⎪⎩得22480x m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<. 设11(,)A x y ,22(,)B x y,则122x x m +=-,21284m x x -=, 112m y +=,222m y +=. 显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则12k k +=211)(1)(x x -+-===28)(m m ----+=2=220==. 因为120k k +=,所以PMN PNM ∠=∠. 所以PM PN =. ………………………………………………………14分20.(本小题满分13分)解:(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,…. 因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31n n k n b a k ==-,所以13124,n n k n -*-=⋅∈N , 即11(241),3n n k n -*=⋅+∈N . 再证n k 为正整数.显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅, 即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数.所以,所求通项公式为11(241),3n n k n -*=⋅+∈N . ……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列,且115k c a ==,22231k c a k ==-,所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+.只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数. 又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+, 即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数,故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列,故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个.…………………………………………………………………………………………13分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2016.3第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i 1i+= A .1i - B .1i -- C .1i -+ D .1i +2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是A .M N N =B .()U M N =∅ ðC .M N U =D .()U M N ⊆ð 3. “a b >”是“e e ab>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4. 执行如图所示的程序框图,输出的S 值为 A .42 B .19 C .8 D .35.在ABC ∆中,角A ,B ,C 的对边分别为,,.a b c 若222()tan 3a c b B ac +-=,则角B 的值为A . 3πB . 6πC . 233ππ或 D . 566ππ或6.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误..的是 A. 收入最高值与收入最低值的比是3:1B. 结余最高的月份是7月开始1,1i S ==4?i < 1i i =+ 2S S i =+输出S 结束 否 是(第4题图)C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D. 前6个月的平均收入为40万元 (注:结余=收入-支出)7.某三棱锥的三视图如图所示,则该三棱锥的体积是A .13B .12C .1D .328.若圆222(1)x y r +-=与曲线(1)1x y -=的没有公共点,则半径r 的取值范围是 A .02r << B .1102r <<C .03r <<D .1302r <<第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9. 二项式251()x x+的展开式中含4x 的项的系数是 (用数字作答). 10.已知等差数列}{n a (n *∈N )中,11=a ,47a =,则数列}{n a 的通项公式n a = ;2610410n a a a a +++++= ______.万元 月O23430 110 20 5689 10 7111240 60 570 90 8收入支出(第7题图)正视图侧视图俯视图2 11111.在直角坐标系xOy 中,曲线1C 的方程为222x y +=,曲线2C 的参数方程为2,(x t t y t=-⎧⎨=⎩为参数).以原点O 为极点,x 轴非负半轴为极轴,建立极坐标系,则曲 线1C 与2C 的交点的极坐标...为 . 12.不等式组0,,290x y x x y ≥⎧⎪≤⎨⎪+-≤⎩所表示的平面区域为D .若直线(1)y a x =+与区域D 有公共点,则实数a 的取值范围是 .13.已知M 为ABC ∆所在平面内的一点,且14AM AB nAC =+.若点M 在ABC ∆的内部(不含边界),则实数n 的取值范围是____.14.某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第i (1,2,,12i = )项能力特征用i x 表示,0,1i i x i ⎧=⎨⎩如果某学生不具有第项能力特征,,如果某学生具有第项能力特征.若学生,A B 的十二项能力特征分别记为1212(,,,)A a a a = ,1212(,,,)B b b b = ,则,A B 两名学生的不同能力特征项数为 (用,i i a b 表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分) 已知函数213()sin 3cos 222x f x x ωω=+-,0ω>. (Ⅰ)若1ω=,求()f x 的单调递增区间;(Ⅱ)若()13f π=,求()f x 的最小正周期T 的表达式并指出T 的最大值.16.(本小题满分13分)为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.人数 本数性别12 3 4 5(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列和数学期望;(Ⅲ)试判断男学生阅读名著本数的方差21s 与女学生阅读名著本数的方差22s 的大小(只需 写出结论).17.(本小题满分14分)如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AAC C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点.(Ⅰ)求证:11AC AP ⊥;(Ⅱ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值;(Ⅲ)是否存在点P ,使得直线1AC //平面AMP ?请说明理由.18.(本小题满分13分)已知函数()f x =ln ,x a x a +∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;男生 1 4 3 2 2 女生1331AMPCBA 1C 1B 1(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.19.(本小题满分14分)已知点(2,1)P 和椭圆:C 22142x y +=. (Ⅰ)设椭圆的两个焦点分别为1F ,2F ,试求12PF F ∆的周长及椭圆的离心率; (Ⅱ)若直线:l 220(0)x y m m -+=≠与椭圆C 交于两个不同的点A ,B ,直线PA ,PB 与x轴分别交于M ,N 两点,求证:PM PN =.20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且n n k b a =. (Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小, (ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式;(Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有无数多个.北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3一、选择题:(满分40分)题号 1 2 3 4 5 6 7 8 答案DDABCDAC二、填空题:(满分30分) 题号 9 10 11 12 13 14答案1021n a n =-,(3)(411)n n ++(2,)4π 3(,]4-∞3(0,)4121||ii i ab =-∑22(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)当1ω=时,213()sin 3cos 222x f x x =+- 13sin cos 22x x =+ sin()3x π=+.令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z . 所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分 (Ⅱ)由213()sin 3cos 222x f x x ωω=+- 13sin cos 22x x ωω=+ sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z .解得162n ω=+. 又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分)解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 . 由题意可知, 13+417()=12896P A ⨯⨯=⨯.………………………………………4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====; 2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====;44481(4)70C P X C ===. 所以随机变量X 的分布列为X 0 1 2 3 4P 1708351835835170随机变量X 的均值116361610123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分 (Ⅲ)21s >22s .…………………………………………………………………………13分 17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AAC C ⊥平面11AA B B , 所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1AB AA A = , 所以AC ⊥平面11AA B B .由已知11//AC AC ,所以11AC ⊥平面11AA B B . 因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示. 由已知 11111222AB AC AA AB AC =====, 所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩ 取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角, 所以3317cos ,1717⋅〈〉===⋅m n m n m n. 所以二面角P AM B --的余弦值为31717.………………………………9分 (Ⅲ)存在点P ,使得直线1AC //平面AMP . 设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-.设平面AMP 的一个法向量为0000(,,)x y z =n ,yxAMPC BA 1 C 1B 1z由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩ n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩ 取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意).又1(2,0,2)AC =- ,若1AC //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--= n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1AC //平面AMP .…………14分 18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x a f x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数; 当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,. ……………………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数,所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x -'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增, 所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e1)2e 0aag x a a a----=++--=>. 故()g x 在(1,)+∞上存在唯一零点.取2-1-21e<e ax =,则221122()(1e 1)2e 24a ag x a a a a++=--+--=--212[e 2(1)]a a a +=-+.设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >. 故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线. (3)当0a =时,()f x x =,显然不存在过点P (13),的切线. 综上所述,当0a >时,过点P (13),存在两条切线; 当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分 19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =. 因为(2,1)P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为422+. 易得椭圆的离心率2=2c e a =.………………………………………………………4分 (Ⅱ)由22220,1,42x y m x y ⎧-+=⎪⎨+=⎪⎩得2242280x mx m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<. 设11(,)A x y ,22(,)B x y ,则1222x x m +=-,21284m x x -=, 1122x m y +=,2222x m y +=. 显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则1212121122y y k k x x --+=+-- 12211222(1)(2)(1)(2)22(2)(2)x m x m x x x x ++--+--=-- 122112(22)(2)(22)(2)2(2)(2)x m x x m x x x +--++--=-- 1212121222(4)()22422[2()2]x x m x x m x x x x +-+-+=-++ 2121222(8)(4)228216244442[2()2]m m m m x x x x ----+=-++ 2121222(8)(4)22821628[2()2]m m m m x x x x ----+=-++ 2212122216222828216208[2()2]m m m m x x x x --+-+==-++. 因为120k k +=,所以PMN PNM ∠=∠. 所以PM PN =. ………………………………………………………14分 20.(本小题满分13分)解:(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,…. 因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31n n k n b a k ==-,所以13124,n n k n -*-=⋅∈N , 即11(241),3n n k n -*=⋅+∈N . 再证n k 为正整数.显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅, 即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数. 所以,所求通项公式为11(241),3n n k n -*=⋅+∈N . ……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列,且115k c a ==,22231k c a k ==-,所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+. 只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数. 又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+, 即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数, 故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列,故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个.…………………………………………………………………………………………13分。

相关文档
最新文档