高中数学 随机变量及概率分布

高中数学  随机变量及概率分布
高中数学  随机变量及概率分布

12.4 随机变量及概率分布

一、填空题

1.下列变量为离散型随机变量的是_______. ①掷10

④ 高三(9)班某学生的身高

解析 ①、②、④ 中的随机变量结果无法按一定次序一一列出,故X 不是离散型随机变量; ③中的随机变量的可能取的值都可以按一定次序一一列出,故它是离散型随机变量.

答案 ③

2. 袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为_______.

解析 X 的可能取值为1+2=3,1+3=4,1+4=5=2+3,1+5=6=4+2,2+5=7=3+4,3+5=8,4+5=9,共7种. 答案 7

3.已知随机变量X 的分布列为P(X =k)=

2k

a

(k =1,2,3),则P(X =2)等于_______.

解析 ∵12a +22a +32a =1,∴a =3,P(X =2)=1

3.

答案 1

3

4.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为________.

解析 用完后装回盒中,此时盒中旧球个数X 是一个随机变量.

当X =4时,说明取出的3个球有2个旧球,1个新球,∴P (X =4)=C 19C 23

C 312=27220

.

答案

27220

5.设随机变量X 的概念分布P (X =k )=

c k +1

,k =0、1、2、3,则c =________.

解析 由P (X =0)+P (X =1)+P (X =2)+P (X =3)=1得:c 1+c 2+c 3+c

4=1,

∴c =1225. 答案

1225

6.设某项试验的成功率为失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)的值为________. 解析 设X 的概率分布为:

即“X =0”表示试验失败,“X p ,成功的概率为2p .由p +2p =1,则p =1

3.

答案

13

7.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于________.

解析 “X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球,因此P (X =12)=38C 911? ????389? ????582=C 911? ????3810? ????582

.

答案 C 911? ????3810? ??

??582

8.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量X 表示所选3人中女生的人数,则P (X ≤1)等于________.

解析 P (X ≤1)=1-P (X =2)=1-C 14C 22

C 36=45

.

答案

45

9.连续向一目标射击,直至击中为止,已知一次射击命中目标的概率为3

4,则射

击次数为3的概率为________.

解析 “X =3”表示“前两次未击中,且第三次击中”这一事件, 则P (X =3)=14×14×34=3

64.

答案 3

64

10.设随机变量X 的分布列为P (X =i )=i

10,(i =1,2,3,4),则P ? ????1

2<X <72=

________.

解析 P ? ????1

2<X <72=P (X =1)+P (X =2)+P (X =3)=35.

答案 3

5

11.如图所示,A 、B 两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内通过的最大信息总量为X ,则P (X ≥8)=________.

解析 法一 由已知,X 的取值为7,8,9,10,

∵P (X =7)=C 22C 12C 35=15,P (X =8)=C 22C 11+C 22C 12

C 35=310,

P (X =9)=C 12C 12C 11C 35=25,P (X =10)=C 22C 11

C 35=110

∴X 的概率分布为

∴P (X ≥8)=P (X =8)+P (X =9)+P (X =10)=

10+5+10=45

.

法二P(X≥8)=1-P(X=7)=1-C2

2

C1

2

C3

5

4

5

.

答案4 5

12.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分).若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是________.

解析X=-1,甲抢到一题但答错了.

X=0,甲没抢到题,或甲抢到2题,但答时一对一错.

X=1时,甲抢到1题且答对或甲抢到3题,且一错两对,

X=2时,甲抢到2题均答对.

X=3时,甲抢到3题均答对.

答案-1,0,1,2,3

13.从三名男同学和n名女同学中任选三人参加一场辩论赛,已知三人中至少有

1人是女生的概率是34

35

.则n=________.

解析三人中没有女生的概率为

C3

3

C3n

+3

.

∴三人中至少有一人是女生的概率为:1-

C3

3 C3n

+3

由题意得:1-

C3

3

C3n

+3

34

35

.解得n=4.

答案 4

二、解答题

14.设离散型随机变量X的分布列为

(2)|X-1|的分布列.

解析由分布列的性质知:0.2+0.1+0.1+0.3+m=1,∴m=0.3.

首先列表为:

(1)2X+1的分布列:

15.某射手有5发子弹,射击一次命中概率为0.9.如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数X的分布列.

解析容易求出X取1,2,3,4时的概率分别为0.9,0.09,0.009,0.0009,当X=5时,只要前四次射不中,都要射第5发子弹,不必考虑第5发子弹射中与否,所以P(X=5)=0.000 1,从而知耗用子弹数X的分布列为

1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:

(1)该顾客中奖的概率;

(2)该顾客获得的奖品总价值X元的概率分布.

解析(1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张

或2张,由于是等可能地抽取,所以该顾客中奖的概率

P =C 14C 16+C 24C 210

=3045=23.

?

????或用间接法,即P =1-C 26

C 210=1-1545=23.

(2)依题意可知,X 的所有可能取值为0,10,20,50,60(元),且

P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 1

6

C 210=25,

P (X =20)=C 23C 210=115,P (X =50)=C 11C 16

C 210=215,

P (X =60)=C 11C 13

C 210=115

.

所以X 的概率分布为:

17.个岗位至少有一名志愿者.

(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率;

(3)设随机变量X 为这五名志愿者中参加A 岗位服务的人数,求X 的概率分布. 解析 (1)记甲、乙两人同时参加A 岗位服务为事件E A ,那么P (E A )=A 33

C 25A 44=140,

即甲、乙两人同时参加A 岗位服务的概率是1

40

.

(2)记甲、乙两人同时参加同一个岗位服务为事件E ,那么P (E )=A 44

C 25A 44=110,

所以甲、乙两人不在同一个岗位服务的概率

P (E )=1-P (E )=910

.

(3)随机变量X 可能取的值为1,2,事件“X =2”是指有两人同时参加A 岗位服

务,则P (X =2)=C 25A 33

C 25A 44=14

.

所以P(X=1)=1-P(X=2)=3

4

,X的概率分布是

18.4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9.求在一年内李明参加驾照考试次数X的概率分布,并求李明在一年内领到驾照的概率.

解析X的取值分别为1,2,3,4.

X=1,表明李明第一次参加驾照考试就通过了,

故P(X=1)=0.6.

X=2,表明李明在第一次考试未通过,第二次通过了,

故P(X=2)=(1-0.6)×0.7=0.28.

X=3,表明李明在第一、二次考试未通过,第三次通过了,

故P(X=3)=(1-0.6)×(1-0.7)×0.8=0.096.

X=4,表明李明第一、二、三次考试都未通过,

故P(X=4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024.

∴李明实际参加考试次数X的概率分布为

1-(1-0.6)(1-0.7)(1-0.8)(1-0.9)=0.997 6.

高中数学随机变量分布列知识点

第二章随机变量及其分布 内容提要: 一、随机变量的定义 设是一个随机试验,其样本空间为,若对每一个样本点,都有唯一确定的实数 与之对应,则称上的实值函数是一个随机变量(简记为)。 二、分布函数的概念和性质 1.分布函数的定义 设是随机变量,称定义在上的实值函数 为随机变量的分布函数。 2.分布函数的性质 (1) , (2)单调不减性:, (3) (4)右连续性:。 注:上述4个性质是函数是某一随机变量的分布函数的充要条件。在不同的教科书上,分布函数的定义可能有所不同,例如,其性质也会有所不同。 (5) 注:该性质是分布函数对随机变量的统计规律的描述。 三、离散型随机变量 1.离散型随机变量的定义 若随机变量的全部可能的取值至多有可列个,则称随机变量是离散型随机变量。 2.离散型随机变量的分布律 (1)定义:离散型随机变量的全部可能的取值以及取每个值时的概率值,称为离散型随机变量的分布律,表示为 或用表格表示:

或记为 ~ (2)性质:, 注:该性质是是某一离散型随机变量的分布律的充要条件。 其中。 注:常用分布律描述离散型随机变量的统计规律。 3.离散型随机变量的分布函数 =,它是右连续的阶梯状函数。 4.常见的离散型分布 (1)两点分布(0—1分布):其分布律为 即 (2)二项分布 (ⅰ)二项分布的来源—重伯努利试验:设是一个随机试验,只有两个可能的结果 及,,将独立重复地进行次,则称这一串重复的独立试验为重伯努利试验。 (ⅱ)二项分布的定义 设表示在重伯努利试验中事件发生的次数,则随机变量的分布律为 ,, 称随机变量服从参数为的二项分布,记作。 注:即为两点分布。

【免费下载】概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X 、Y 分别表示甲乙命中的次数,求(X,Y )联合分布律。2.袋中有两只白球,两只红球,从中任取两只以X 、Y 表示其中黑球、白球的数目,求(X,Y )联合分布律。3.设,且P{}=1,求()的X 1=(?1011/41/21/4) X 2=(011/21/2)X 1X 2=0X 1,X 2联合分布律,并指出是否独立。 X 1,X 24.设随机变量X 的分布律为Y=,求(X,Y )联合分布律。X 2X Y 01

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 5.设(X,Y )的概率分布为 且事件{X=0}与{X+Y=1}独立求a ,b 。6. 设某班车起点上车人数X 服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 (1)C 的值 (2), (3)P{X+Y ≤1}并判别X 与Y 是否独立。f z (x)f Y (y)9.设f(x,y)= 为(X,Y )的密度函数,求{10 |y |1/2|Y>0}(2) f Y|X (y|x ), f X|Y (x|y )10. 设f(x,y)= 为(X,Y )的密度函数,求 {12x 2y 0 1x ≤y ≤x,x ≥1 其它 f X|Y (x|y )11. 设f(x,y)= 为(X,Y )的密度函数,求的联合分布 {4xy 0 0≤x ≤1,0≤y ≤1 其它 (X,Y )

(完整word版)高中数学选修2-3第二章随机变量及其分布教案

第二章 随机变量及其分布 2.1.1离散型随机变量 第一课时 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) . 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y ,ξ,η,… 表示. 思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢? 定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,…. 思考3:电灯的寿命X 是离散型随机变量吗? 电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量. 在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量: ?? ≥?0,寿命<1000小时; Y=1,寿命1000小时. 与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易. 连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验

高二数学《随机变量的方差(第2课时)》教案

§2.3.2离散型随机变量的方差(第2课时) 一、教材分析: 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差. 回顾一组数据的方差的概念:设在一组数据1x ,2x ,…, n x 中,各数据与它 们的平均值x 得差的平方分别是21)(x x -,2 2)(x x -,…,2)(x x n -,那么 [1 2n S = 21)(x x -+2 2)(x x -+…+])(2x x n -叫做这组数据的方差 。 二、学情分析: 学生学习本节应该比较轻松,定义比较简单,初中已经接触过方差,高中阶段是将原先学得知识进一步提升。主要学生能将离散型随机变量的分布列列出来,进行套公式运算就可以,应注意的是要求学生在计算过程中细心。有过探究、交流的课堂教学的尝试。 三、教学目标: 1、知识与技能 了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程和方法: 通过教师指导下的探究活动,经历数学思维过程,熟悉理解“观察—归纳—猜想—证明”的思维方法,养成合作的意识,获得学习和成功的体验.了解方差公式“D (a ξ+b )=a 2 D ξ”,以及“若ξ~Β(n ,p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 3、情感和价值: 承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

2.1随机变量及其概率分布(1)

随机变量及其概率分布(1) 【教学目标】 1、在对具体问题的分析中,了解随机变量、离散型随机变量的意义,理解取有限值的离散性随机变量及其概率分布的概念。 2、会求出某些简单的离散型随机变量的概率分布,认识概率分布对于刻画随机现象的重要性。 3、提高学生的抽象概括能力,提高数学建模的能力,提高学生应用数学的意识。 4、随机变量是客观世界中极为普遍的,通过对各种现象及事件a 的分析,培养严谨的逻辑思维能力,激发学生学习兴趣,初步认识数学的应用价值、科学价值,并深刻体会数学是服务于实践的一门学科。 【教学过程】 1、相关知识回顾: (1)随机现象: 在一定条件下,某种现象可能发生,也可能不发生,事先也不能断定出现哪种结果的现象 (2)基本事件: 在一次试验中可能出现的每一个基本结果 (3)古典概型: 我们将具有:①试验中所有可能出现的基本事件只有有限个; ②每个基本事件发生的概率相等. 满足这两个特点的概率模型称为古典概率模型 2、新课引入: (1)在一块地里种下10棵树苗,成活的树苗棵数X 是0,1,…,10中的某个数; (2)抛掷一颗骰子,向上的点数Y 是1,2,3,4,5,6中的某一个数; (3)新生婴儿的性别,抽查的结果可能是男,也可能是女。如果将男婴用0表示, 女婴用1表示,那么抽查的结果Z 是0和1中的某个数; 上述问题有哪些共同特点? 上述问题中的X ,Y ,Z ,ε实际上是把每个随机试验的基本事件都对应一个确定的实数,即在试验结果(样本点)与实数之间建立了一个映射。 例如:上面的植树问题中成活的树苗棵数X : X=0,表示成活0棵; X=1,表示成活1棵;…… 思考:“X>7”表示什么意思? 3、新授: 知识点1:随机变量: 一般地,如果随机试验的结果,可以用一个变量来表示,那么这样的变量叫随机变量。 通常用大写拉丁字母X ,Y ,Z (或小写希腊字母ζηε,,)等表示,而用小写拉丁字母z y x ,,(加上适当下标)等表示随机变量取得可能值。 引入随机变量后,随机试验中我们感兴趣的事件就可以通过随机变量的取值表达出来。 注:(1)随机试验中,可能出现的恶结果都可以用一个数来表示。如掷一枚硬币,“正

高中理科数学离散型随机变量及分布列

理科数学复习专题 统计与概率 离散型随机变量及其分布列 知识点一 1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,表示,所有取值可以一一列出的随机变量,称为离散型随机变量。 2、离散型随机变量的分布列及其性质: (1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x X 取每一个值(1,2,,)i x i n 的概率为()i i P X x p ,则表 (2)分布列的性质:①0,1,2,,i p i n ;②11n i i p (3)常见离散型随机变量的分布列: ①两点分布:若随机变量X 的分布列为, 则称X 服从两点分布,并称(1)p P x 为成功概率 ②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()(0,1,2,,k n k M N M n N C C P X k k m C 其中min{,}m M n ,且*,,,,)n N M N n M N N ,称分布列为超几何分布列。如果随机变量X 的分布列题型一 由统计数据求离散型随机变量的分布列 【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( ) A. 5

【变式1】某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果: 则该公司一年后估计可获收益的期望是________. 题型二由古典概型求离散型随机变量的分布列(超几何分布) 【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率; (2)该顾客获得的奖品总价值X元的概率分布列. 【变式2】某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X表示此人选对A饮料的杯数.假设此人对A和B两种饮料没有鉴别能力. (1)求X的分布列;(2)求此员工月工资的期望. 知识点二 1.条件概率及其性质 对于两个事件A和B,在已知事件B发生的条件下,事件A发生的概率叫做条件概率,用 符号P(A|B)来表示,其公式为P(A|B)=P(AB) P(B) (P(B)>0). 在古典概型中,若用n(B)表示事件B中基本事件的个数,则P(A|B)=n(AB) n(B) . 2.相互独立事件 (1)对于事件A、B,若事件A的发生与事件B的发生互不影响,称A、B是相互独立事件. (2)若A与B相互独立,则P(AB)=P(A)P(B). (3)若A与B相互独立,则A与B,A与B,A与B也都相互独立. (4)若P(AB)=P(A)P(B),则A与B相互独立. 3.二项分布

随机变量及其分布知识点整理

随机变量及其分布知识点整理 一、离散型随机变量的分布列 一般地,设离散型随机变量X 可能取的值为12,,,,,i n x x x x ??????,X 取每一个值(1,2,,)i x i n =???的概率()i i P X x p ==,则称以下表格 为随机变量X 的概率分布列,简称X 的分布列. 离散型随机变量的分布列具有下述两个性质: (1)0,1 ,2,,i P i n =???≥ (2)121n p p p ++???+= 1.两点分布 如果随机变量X 的分布列为 则称X 服从两点分布,并称=P(X=1)p 为成功概率. 2.超几何分布 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为: (),0,1,2,3,...,k n k M N M n N C C P X k k m C --=== {}*min ,,,,,,m M n n N M N n M N N =≤≤∈其中且。 注:超几何分布的模型是不放回抽样 二、条件概率 一般地,设A,B 为两个事件,且()0P A >,称()(|)() P AB P B A P A =为在事件A 发生的条件下,事件B 发生的条件概率. 0(|)1P B A ≤≤ 如果B 和C 互斥,那么[()|](|)(|)P B C A P B A P C A =+ 三、相互独立事件 设A ,B 两个事件,如果事件A 是否发生对事件B 发生的概率没有影响(即()()()P AB P A P B =),则称事件A 与事件B 相互独立。()()()A B P AB P A P B ?=即、相互独立 一般地,如果事件A 1,A 2,…,A n 两两相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概

高中数学《随机变量及其分布》单元测试

数学选修2-3第二章《随机变量及其分布》单元测试 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟 第Ⅰ卷(选择题共60分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的) 1.设X~B(n,p),E(X)=12,D(X)=4,则n,p的值分别为() A.18, B.36, C.36, D.18, 2.10张奖劵中只有3张有奖,若5个人购买,每人1张,则至少有1个人中奖的概率为() A. B. C. D. 3.设随机变量X等可能地取值1,2,3,…,10.又设随机变量Y=2X-1,则P(Y<6)的值为() A.0.3 B.0.5 C.0.1 D.0.2 4.在区间(0,1)内随机取一个数x,若A=,B=,则P(B|A)等于() A. B. C.D. 5.若离散型随机变量X的分布列为 X123 P

则X的数学期望E(X)=() A. B.2 C. D.3 6.已知某离散型随机变量X的分布列如下表,则随机变量X的方差D(X)等于() X01 P m2m A. B. C. D. 7.同时抛掷两枚质地均匀的硬币10次,设两枚硬币出现不同面的次数为X,则D(X)=() A. B. C. D.5 的值分别为() 8.已知随机变量ξ服从正态分布N(3,4),则E(2ξ+1) 与D(2ξ+1) A.13,4 B.13,8 C.7,8 D.7,16 9.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是的事件为() A.恰有1只是坏的 B.4只全是好的 C.恰有2只是好的 D.至多有2只是坏的 10.节日期间,某种鲜花进货价是每束 2.5元,销售价是每束5元,节日后没卖出的鲜花以每束1.6元的价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量X的分布列为 X200300400500 P0.200.350.300.15 若进这种鲜花500束,则利润Y的均值是() A.706 B.690 C.754 D.720 11.现有甲,乙两个靶,某射手向甲靶射击一次,命中的概率为;向乙靶射击两次,每次命中的概率为.该射手每次射击的结果相互独立.假设该射手完成以上三次射击,该射手恰好命中一次的概率为()

二维随机变量及其分布题目

一、单项选择题 1 ,那么下列结论正确的是 ()A B C D.以上都不正确 2设X与Y相互独立,X 0—1分布,Y 0—1分布,则方程 t 有相同实根的概率为 (A(B(C (D 3.设二维随机变量(X,Y)的概率密度为 则k的值必为 (A(B(C (D 4.设(X,Y)的联合密度函数为 (A (B(C(D 5.设随机变量X与Y相互独立,而且X服从标准正态分布N(0,1),Y服从二项分布B(n,p),0

二、填空题 2 若(X ,Y )的联合密度 , 3 4 ,则 且区域 5 。 6 . 7

=? ∞+∞ -)(x f X . 8 如果随机变量),(Y X 的联合概率分布为 X 1 2 3 1 61 91 181 2 3 1 α β 则βα,应满足的条件是 ;若X 与Y 相互独立,则=α ,=β . 9 设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度 =),(y x f ,Y X Z +=的概率密度=)(Z f Z . 10、 设 ( 、 ) 的 联 合 分 布 函 数 为 ()()()()?? ??? ≥≥+-+-+++= y x y x y x A y x F 00,0111111,2 22则 A =_____。 11设X 服从参数为1的泊松分布,Y 服从参数为2的泊松分布,而且X 与Y 相互独立,则 (max(,)0)_______. (min(,)0)_______.P X Y P X Y ≠=≠= 12 设X 与Y 相互独立,均服从[1,3]上的均匀分布,记(),A X a =≤(),B Y a => 7 ()9 P A B ?= 且,则a=_______. 13 二维随机变量(X ,Y )的联合概率密度为 221()21sin sin (,)(,),2x y x y f x y e x y π -++= -∞<<+∞ 则两个边缘密度为_________. 三.解答题 1 一个袋中有三个球,依次标有数字 1, 2, 2,从中任取一个, 不放回袋中 , 再任取一个, 设每次取球时,各球被取到的可能性相等,以 X , Y 分别记第一次和第二次取到的球上标有的数字 ,求 ( X , Y ) 的分布律与分布函数. 2.箱子里装有12件产品,其中2件是次品,每次从箱子里任取一件产品,共取2次,定义随机变量12,X X 如下:

《概率论与数理统计》习题答案(复旦大学出版社)第三章

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=???? ? ≤ ≤≤ ≤. , 020,20, sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ?? ≤<≤ <36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππsin sin sin sin sin 0sin sin 0sin 4 3 4 6 3 6 1). 4 =--+= 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X ,Y )的分布密度 f (x ,y )=?? ?>>+-. , 0, 0,0, )43(其他y x A y x e 求:(1) 常数A ; (2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34) (,)d d e d d 112 x y A f x y x y A x y +∞+∞+∞+∞+-∞ -∞ == =? ??? 得 A =12 (2) 由定义,有 (,)(,)d d y x F x y f u v u v -∞ -∞ = ?? ( 34 ) 3400 12e d d (1e )(1e ) 0,0, 0,0, y y u v x y u v y x -+--??-->>? ==?? ? ????其他 (3) {01,02}P X Y ≤<≤< 12(34) 38 {01,02} 12e d d (1 e )(1e )0.9499. x y P X Y x y -+--=<≤<≤= =--≈?? 5.设随机变量(X ,Y )的概率密度为 f (x ,y )=?? ?<<<<--. , 0, 42,20),6(其他y x y x k (1) 确定常数k ; (2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有

高中理科数学-离散型随机变量及分布列汇编

理科数学复习专题 统计与概率 离散型随机变量及其分布列 知识点一 1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y ,x h g g g 表示,所有取值可以一一列出的随机变量,称为离散型随机变量。 2、离散型随机变量的分布列及其性质: (1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x g g g g g g X 取每一个值(1,2,,)i x i n =g g g 的概率为()i i P X x p ==,则表 称为离散型随机变量离散型随机变量X ,简称X 的分布列。 (2)分布列的性质:①0,1,2,,i p i n ?g g g ;②11n i i p ==? (3)常见离散型随机变量的分布列: ①两点分布:若随机变量X 的分布列为, 则称X 服从两点分布,并称(1)p P x ==为成功概率 ②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则()(0,1,2,,k n k M N M n N C C P X k k m C --===g g g g 其中m i n {,m M n =,且* ,,,,)n N M N n M N N #?,称分布列为超几何分布列。如果随机变量X 的分布列

题型一 由统计数据求离散型随机变量的分布列 【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( ) A. 5 【变式1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果: 则该公司一年后估计可获收益的期望是________. 题型二 由古典概型求离散型随机变量的分布列(超几何分布) 【例2】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1) 该顾客中奖的概率; (2)该顾客获得的奖品总价值X 元的概率分布列.

高中数学离散型随机变量综合测试题(附答案)

高中数学离散型随机变量综合测试题(附答案)选修2-3 2.1.1 离散型随机变量 一、选择题 1.①某机场候机室中一天的旅客数量X;②某寻呼台一天内收到的寻呼次数X;③某篮球下降过程中离地面的距离X; ④某立交桥一天经过的车辆数X.其中不是离散型随机变量的是() A.①中的X B.②中的X C.③中的X D.④中的X [答案] C [解析] ①,②,④中的随机变量X可能取的值,我们都可以按一定次序一一列出,因此,它们都是离散型随机变量; ③中的X可以取某一区间内的一切值,无法按一定次序一一列出,故③中的X不是离散型随机变量. 2.一个袋子中有质量相等的红,黄,绿,白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是() A.小球滚出的最大距离 B.倒出小球所需的时间 C.倒出的三个小球的质量之和 D.倒出的三个小球的颜色的种数 [答案] D

[解析] A小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C三个小球的质量之和是一个定值,可以预见,但结果只有一种,不是随机变量,就更不是离散型随机变量;D颜色的种数是一个离散型随机变量. 3.抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为,则“4”表示的试验结果是() A.第一枚6点,第二枚2点 B.第一枚5点,第二枚1点 C.第一枚2点,第二枚6点 D.第一枚6点,第二枚1点 [答案] D [解析] 只有D中的点数差为6-1=54,其余均不是,应选D. 4.设某项试验的成功率是失败率的2倍,用随机变量描述1次试验的成功次数,则的值可以是() A.2 B.2或1 C.1或0 D.2或1或0 [答案] C [解析] 这里“成功率是失败率的2倍”是干扰条件,对1次试验的成功次数没有影响,故可能取值有两种0,1,故选

第二章__随机变量及其概率分布_考试模拟题答案

第二章随机变量及其概率分布考试模拟题 (共90 分) 一.选择题(每题2分共20分) 1.F(X) 是随机变量X的分布函数,则下列结论不正确的是( B ) A.0 F( x) 1 B.F( x)=P{X=x} C.F( x)=P{X x} D.F( )=1, F( )=0 解析:A,C,D 都是对于分布函数的正确结论,请记住正确结论! B 是错误的。2.设随机变量X的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X 5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是 4x 0 x1 2x A.F(x)= B.F(x)= 其它其它 x<0 x<0 C.F(x)= 2x D.F(x)= 2x 0 x 0.5 其它≥0.5 解析:由分布函数F(x) 性质:0 F(x) 1,A,B,C 都不满足这个性质,选D 4.设X 的密度函数为f(x)=则P{-2

1 解析:根据密 度函数性质: A.有f(x) 0的情况,错; B.D. 不符合 f(x)dx 1错; 1 C. 1 12dx 21x|11 12 21 1 选 C 6.设随机变量 X~N(1 ,4), (1) 0.8413, (0) 0.5 ,则事件 {1 X 3 } 的概率为(D ) 解:P{1 X 3 }=F(3)-F(1)= (3 1) (1 1) (1) (0) 0.8413 0.5 0.3413 22 7.已知随机变量 X 的分布函数为( A ) 0 x 0 1 0 x 1 F(x)= 2 ,则 P X 1 = 2 1x3 3 1 x 3 112 A . 1 B . 1 C . 2 D . 1 623 A. 0 B. C. D. 848 解析: P {-2

高中数学选修2-3随机变量及其分布综合测试题

高中数学选修2-3随机变量及其分布综合测试题 一、选择题 1.①某寻呼台一小时内收到的寻呼次数X ;②长江上某水文站观察到一天中的水位X ;③某 超市一天中的顾客量X 其中的X 是连续型随机变量的是 A .① B .② C .③ D .①②③ 2.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是 A .取到的球的个数 B .取到红球的个数 C .至少取到一个红球 D .至少取到一个红球的概率 3.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为X ,则 “X >4”表示试验的结果为 A .第一枚为5点,第二枚为1点 B .第一枚大于4点,第二枚也大于4点 C .第一枚为6点,第二枚为1点 D .第一枚为4点,第二枚为1点 4.随机变量X 的分布列为P (X =k )=) 1(+k k c ,k =1、2、3、4,其中c 为常数,则P (15 22X <<) 的值为 A .54 B .65 C .32 D .43 5. 甲射击命中目标的概率是 2 1,乙命中目标的概率是 3 1,丙命中目标的概率是 4 1. 现在三 人同时射击目标,则目标被击中的概率为 10 7 D. 5 4C. 3 2 B. 4 3A. 6.已知随机变量X 的分布列为P (X =k )=3 1,k =1,2,3,则D (3X +5)等于 A .6 B .9 C .3 D .4 7. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以X 表示取出球的最大号码,则EX = A .4 B .5 C .4.5 D .4.75 8.某人射击一次击中目标的概率为35 ,经过3次射击,此人至少有两次击中目标的概率为 A . 81125 B . 54125 C . 36125 D . 27125 9.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,那么k 的值为 A. 0 B. 1 C. 2 D. 3 10.已知X ~B (n ,p ),EX =8,DX =1.6,则n 与p 的值分别是 A .100、0.08 B .20、0.4 C .10、0.2 D .10、0.8 11.随机变量2(,)X N μσ ,则随着σ的增大,概率(||3)P X μσ-<将会 A .单调增加 B .单调减小 C .保持不变 D .增减不定 12.某人从家乘车到单位,途中有3个交通岗亭.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的期望为: A .0.4 B .1.2 C .3 4.0 D .0.6

第二章 随机变量及其概率分布

第二章 随机变量及其概率分布 教学目的与要求 1. 熟练掌握一维离散型随机变量及其分布的概念,会求一维离散型随机变量的分布列; 2. 熟练掌握一维随机变量分布函数的概念与性质; 3. 熟悉一维离散型随机变量的分布函数与分布列的关系; 3. 理解一维连续型随机变量分布函数与分布密度的概念及其关系; 4. 熟记常见的几种分布的表达形式. 6. 熟悉随机变量函数的分布函数与分布密度的计算公式. 教学重点 一维离散型、连续型随机变量及其分布 教学难点 随机变量函数的分布 教学方法 讲解法 教学时间安排 第11-12学时 第一节 随机变量 第四节 随机变量的分布函数 第13-16学时 第二节 离散型随机变量 第三节 连续型随机变量 第17-18学时 第五节 随机变量函数的分布 习题辅导 教学内容 第一节 随机变量 一、随机变量 在上一章所讲的有些随机试验的样本空间中基本事件是用数值描述的,这就提示我们,无论什么随机试验,如果用一个变量的不同取值来描述它的全部可能结果,样本空间的表达及其相应的概率就显得更明了、更简单.事实上,这种想法是可以的,为此,引入一个新概念. 定义2.1 设E 维随机试验,()ωΩ=为其样本空间,若对任意的ω∈Ω,有唯一的实数与之对应,且对{},x R x ξ?∈≤为事件,则称()ξω为随机变量. 这样,事件可通过随机变量的取值来表示,随机变量,(),(),b a b ξξξ≤<≤L 等都表

示为事件,其中,a b 表示任意实数.即用随机变量的各种取值状态和取值范围来表示随机事件. 二、分布函数的定义与性质 定义2.2 定义在样本空间Ω上,取值于实数域的函数()ξω,称为是样本空间Ω上的(实值)随机变量,并称 ()(()), (,)F x P x x ξω=≤∈-∞∞ 是随机变量()ξω的概率分布函数.简称为分布函数. 分布函数的性质: (1)单调性 若12,x x <则12()()F x F x ≤; (2)()lim ()0x F F x →-∞ -∞== ()lim ()1x F F x →+∞ +∞== (3)右连续性 (0)()F x F x += 反过来,任一满足这三个性质的函数,一定可以作为某个随机变量的分布函数.因此,满足这三个性质的函数通常都称为分布函数. 由分布函数还可以下列事件的概率: {()}1(){()}(0) {()}1(0){()}()(0) P x F x P x F x p x F x P x F x F x ξωξωξωξω>=-<=-≥=--==-- 由此可见,形如12121212{()},{()},{()},{()}x x x x x x x x ξωξωξωξω≤≤<<<≤≤<这些事件以及它们经过有限次或可列次并、交、差以后的概率,都可以由()F x 算出来,所以()F x 全面地描述了随机变量()ξω的统计规律. 第二节 离散型随机变量 一、离散型随机变量的概念及其分布 定义 2.2 定义在样本空间Ω上,取之于实数域R ,且只取有限个或可列个值的变量 ()ξξω=,称作是一维(实值)离散型随机变量,简称为离散型随机变量.称

高考数学讲义随机变量及其分布列.知识框架

随机变量及其分布 要求层次重难点 取有限值的离散型 随机变量及其分布 列 C ⑴理解取有限个值的离散型随机变量及 其分布列的概念,了解分布列对于刻画 随机现象的重要性. ⑵理解超几何分布及其导出过程,并能 进行简单的应用. 超几何分布 A 二项分布及其应用 要求层次重难点 条件概率 A 了解条件概率和两个事件相互独立的概 念,理解n次独立重复试验的模型及二 项分布,并能解决一些简单的实际问题.事件的独立性 A n次独立重复试验与 二项分布 B 离散型随机变量的 要求层次重难点 取有限值的离散型随 B 理解取有限个值的离散型随机变量均高考要求 模块框架 随机变量及其分布列

均值与方差 机变量的均值、方差 值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题. 正态分布 要求层次 重难点 正态分布 A 利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义. 1. 离散型随机变量及其分布列 ⑴离散型随机变量 如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.随机变量常用大写字母,,X Y L 表示. 如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. ⑵离散型随机变量的分布列 将离散型随机变量X 所有可能的取值x 与该取值对应的概率p (1,2,,)i n =L 列表表示: X 1x 2x … i x … n x P 1p 2p … i p … n p X 的分布列. 2.几类典型的随机分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X X 的分布列满足二点分布. X 1 P 0.8 0.2 两点分布又称01-布又称为伯努利分布. ⑵超几何分布 一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为 C C ()C m n m M N M n N P X m --==(0m l ≤≤,l 为n 和M 中较小的一个). 我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N , M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列. 知识内容

高中数学离散型随机变量及其分布列全章复习题型完美版

第十二讲 随机变量及其分布列 课程类型:□复习 □预习 □习题 针对学员基础:□基础 □中等 □优秀 本章主要内容 : 1.离散型随机变量的定义; 2.期望与方差; 3.二项分布与超几何分布. 本章教学目标: 1.理解随机变量及离散型随机变量的含义.(重点) 2.会求出某些简单的离散型随机变量的分布列.(重点) 3.理解两点分布和超几何分布及其推导过程,并能简单的运用.(难点) 第一节 离散型随机变量及其分布列 【知识与方法】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量. ①随机变量是一种对应关系; ②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化. 2.表示:随机变量常用字母X ,Y ,ξ,η,…表示. 授课班级 授课日期 学员 月 日 组 “超几何分布”一词来源于超几何数列,就像“几何分布”来源于几何数列。 几何数列又叫等比数列,“几何分布”、'几何数列"名称的来源前面的文章已经解释过,请看一些带"几何"的数学名词来源解释。几何分布( )是离散型机率分布。其中一种定义为:在第n 次伯努利试验,才得到第一次成功的机率。详细的说,是:n 次伯努利试验,前1次皆失败,第n 次才成功的机率。 课外拓展

3.所有取值可以一一列出的随机变量,称为离散型随机变量 ( ) . 4.连续型随机变量:对于随机变量可能取的值,可以取某一区间或某几个区间内的一切值,这样的变量就叫做连续 型随机变量 5.注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,0=ξ, 表示正面向上,1=ξ,表示反面向上 (2)若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量二.离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,,…,, X 取每一个值(1,2,…,n )的概率P (),则称表: 为离散型随机变量X 用等式可表示为P (),1,2,…,n, 也可以用图象来表示X 的分布列. 2.离散型随机变量的分布列的性质 ①≥0,1,2,…,n ;② 11 =∑=n i i p . 1.两点分布),1(~P B X 若随机变量X (1)为成功概率. 2.超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P ()=n N k n M N k M C C C --,0,1,2,…, m ,其中{}n M ,,且n ≤N ,M ≤N ,n ,M ,N ∈N *.

高中数学-随机变量及其概率分布练习

高中数学-随机变量及其概率分布练习 基础巩固题组 (建议用时:40分钟) 一、填空题 1.(·武汉模拟)从装有3个白球,4个红球的箱子中,随机取出了3个球,恰好是2个白球,1个红球的概率是________. 解析 如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问题,故所求概率为P =C 23C 1 4C 37=12 35. 答案 1235 2.设X 是一个离散型随机变量,其分布列为: 则q 等于________. 解析 由分布列的性质得: ??? 0≤1-2q <1, 0≤q 2 <1, 0.5+1-2q +q 2 =1 ?? ?? ?? 0<q ≤1 2,q =1±2 2.∴q =1- 2 2 . 答案 1- 22 3.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于________. 解析 由已知得X 的所有可能取值为0,1, 且P (X =1)=2P (X =0), 由P (X =1)+P (X =0)=1,得P (X =0)=1 3. 答案 13

4.在15个村庄有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,则P (x =4)的概率为____________(不必化简). 解析 X 服从超几何分布,故P (X =k )=C k 7C 10-k 8 C 1015,k =4. 答案 C 47C 68 C 1015 5.随机变量X 的概率分布规律为P (X =n )=a n n +1 (n =1,2,3,4),其中a 是 常数,则P ? ????12

相关文档
最新文档