三相单绕组多速电动机绕组布线图

三相单绕组多速电动机绕组布线图
三相单绕组多速电动机绕组布线图

6/8极(定子36槽)接线图

6/8极(定子36槽)接线图

4/8极(定子36槽)接线图

4/6极(定子36槽)接线图

4/6极(定子36槽)接线图

4/6极(定子36槽)接线图

2/4/8极(定子36槽)接线图

2/4/8极(定子36槽)接线图

4/6/8极(定子36槽)接线图

4/6/8极(定子36槽)接线图

2/4极(定子36槽)接线图

2/4极(定子24槽)接线图

2/4极(定子24槽)接线图

三相异步电动机定子绕组展开图绘制教案

三相异步电动机定子绕组展开图绘制教案 课程: 《电机与变压器》 课题: 三相异步电动机单层链式定子绕组展开图绘制方法 教学目标: 要求学生掌握绘制定子绕组展开图的基本步骤和作图技巧,充分领悟电动机绕组的嵌线规律,为后期的电机实习做好准备。 教学重点: 正确绘制三相异步电动机单层链式定子绕组展开图 教学难点: 1、电机定子铁心是圆的,而展开图是平铺的,二者如何关联? 2、怎样正确连接U相绕组? 教学方法: 讲授法、示例法、练习法 时间: 2014年2月25日 地点: 多媒体教室 教者: 王泽忠 授课班级: 12电3.4班 教学过程: 【组织教学】 【复旧导入】 1、三相定子绕组的构成原则 2、电动机定子铁心是圆的,如何正确表达其绕组的结构?——运用展开图【新授】 三相异步电动机单层链式定子绕组展开图绘制方法 一、展开图的含义 将电动机从两个定子槽之间沿着轴线方向切开,然后展开平铺于一个平面上,是一种直观的、方便同学们了解和学习电动机的平面图形。 注: 其切开开口处不是电动机的槽,而是两槽之间的硅钢片铁心。 ==> 二、展开图的绘制 以三相单层链绕组为例: 绘制方法第一步: 计算参数

极距每极每相槽数 第二步: 画槽划出24 根平行线段,表示电机的24 个槽,并在其上标明槽号 第三步: 分极将24个槽分成4极,每个极下6个槽,极距为6槽,每个极占有180度电角度,并标明磁极号 第四步: 分相带每个极分三相,每相为两个槽,每个槽占有30度电角度,并按相带排列顺序U1—W2—V1—U2—W1—V2标明相带 第五步: 标明电流参考方向假设某一瞬间电流从绕组的首端流入,尾端流出,根据同一个相带中有效边的电流参考方向相同,相邻相带有效边的电流参考方向相反,标明电流参考方向。 第六步: 画单个线圈U相绕组包括第1、2、7、8、13、14、19、20共八个槽四个线圈,从节省端部导线的角度考虑,应该选择最短节距y =5,故四个线圈为2和7、8和13、14和19、20和1.

2极24槽电动机展开图(苍松借鉴)

2极24槽电动机.绕组形式:单层迭绕,线圈节距=10(1-11).绕组形式,单层同心式,线圈节距=11(1-12),9(1-10). 2极36槽电动机.绕组形式:单层迭绕.线圈节距=15(1-16).绕组形式,单层同心式,线圈节距=17(1-18),15(1-16),13(1-14).绕组形式,双层选绕组,线圈节距=12(1-13). 4极24槽电动机,绕组形式:单层迭绕,绕组形式=5(1-6).绕组形式,单层同心式,线圈节距=5(1-6),7(1-8).绕组形式:双层迭绕,线圈节距5(1-6). 4极36槽电动机,绕组形式,单层单,双圈迭式布线,线圈节距=7(1-8)单圈,8(1-9)双圈.绕组形式:双层迭式,线圈节距=7(1-8).绕组形式:单层迭绕,线圈节距=9(1-10).绕组形式:单层同心式,线圈节距 =7(1-8),9(1-10),11(1-12).用双层叠式绕组画展开图 例3、一台36槽4极三相异步电动机,要求用双层叠式画展开图。 1、求每极所占槽数=36/4=9 2、求每极每相所占槽数= 每极所占槽数/3相=9/3=3 3、根据上二式计算,用不同的线条分出各极、各相槽数。 该图表现为每极占9槽,每相占每极中的3槽。同时可根据每相邻二相电流必定相反。按此标出电流方向:在第一磁极里1、2、3三槽为A相,电流向上。 4、5、6三槽为C相,电流向下。7、8、9槽三槽为B相,电流向上。以后各极各相均按此顺序排列,但电流方向在N极的均向上,而在S极的均向下。如下图所示 4、按双层叠式绕组方式画出第一相绕组(对于双层叠式绕组,若是整距绕组,基本上还是一个线圈的一边在N极,另一边必定在S极。注意:这是指整距绕组。),如下图所示

电机展开图解读其嵌线工艺

由电机展开图解读其嵌线工艺摘要:在技校维修电工专业实习教学中,三相异步电动机的嵌线工艺是教学的重点,也是教学的难点。许多学生由于对三相异步电动机的展开图理解不深,嵌线时感觉无从下手,部分学生只是死记几种嵌线方法,不会灵活运用。本文结合展开图解读其嵌线工艺,以期对维修电工专业学生有所帮助。 关键词: 嵌线工艺电动机 1、单层链式绕组嵌线工艺图1是三相4极24槽单层链式绕组展开图。每极每相槽数为2,线圈节距为1—6。 图1 展开图上面一行数字表示嵌线顺序,下面一行数字表示线槽序号。由图可以看出每一相都有4个线圈。每一个线圈都有两个边,通常我们把先下的那一个边称为下层边,例如本例中的奇数槽里下的那一边(图上每个线圈的左边),都是下层边;后下的那一边称为上层边,例如本例中的偶数槽里下的那一边(图上每个线圈的右边),都是上层边。每一个上层边都压着两个下层边,例如本例中的6槽里下的上层边压着5槽、3槽下的下层边,由此可见,单层链式绕组嵌线时一定要吊起两把线圈最后下,即吊把线圈2把。嵌线步骤是按次序先嵌下层边,

后嵌上层边;最后嵌吊起的两把线圈的上层边。具体的嵌线顺序如下: (1)选好第一槽位置,靠近机座出线口。 (2)嵌槽1(U相第一个线圈的下层边),上层边吊起。 (3)空一槽24,嵌23槽(W相第一个线圈的下层边),上层边吊起。(4)再空一槽22,嵌21槽(V相第一个线圈的下层边),上层边按节距1—6压着1槽、23槽的下层边嵌入槽2。 (5)再空一槽20,嵌入19槽(U相第二个线圈的下层边),上层边按节距1—6压着23槽、21槽下层边嵌入24槽。此线圈与本相第一个线圈的连接关系是上层边与上层边相连或下层边与下层边相连,即尾、尾或首、首相连。 (6)以后W、V相按空一槽嵌入一槽的次序,轮流将U、W、V三相的4个线圈嵌完。最后把吊把线圈两把嵌入,至此整个绕组全部嵌完。 单层链式绕组的嵌线规律是:嵌1槽,空1槽,吊2把线圈。简称为“嵌1空1吊2”。 按此种方法嵌线,同相线圈之间的过桥线可不截断,连接时要注意翻把,使其首首相连、尾尾相连。最后留出的6个线头,隔一即为同名端,如V1、U1、W1和W2、V2、U2。 2、单层同心式绕组嵌线工艺 图2是三相2极24槽单层同心式绕组的展开图。每极每相槽数为4,节距为1—10、24—11(见U相)。 展开图上面一行数字表示嵌线顺序,下面一行数字表示线槽序号。由图可以看出每一相都有2组线圈,每一组线圈都有两个同心线圈组

(完整版)电动机绕组基础知识简介

第一章电动机绕组基础知识 绕组是电动机进行电磁能量转换与传递,从而实现将电能转化为机械能的关键部件。绕组是电动机最重要的组成部分,又是电动机最容易出现故障的部分,所以在电动机的修理作业中大多属绕组修理。在本章中,主要介绍与电动机绕组有关的若干基础知识。 第一节电动机绕组的类别 电动机绕组按其结构可有多种类别,今将数种较常用的分类简介于下: 一、集中式绕组与分布式绕组 1、集中式绕组 安装在凸形磁极铁心上的绕组,例如直流电动机定子上的主磁极绕组和换向极绕组,是集中式绕组。对于三相电动机而言,如果每相绕组在每个磁极下只占有一个槽,在这种情况下,则也是集中式绕组。 2、分布式绕组 分散布置于铁心槽内的绕组,例如直流电动机的转子绕组以及三相电动机的定子绕组和转子绕组,都是分布式绕组。 二、短距绕组、整距绕组与长距绕组 1、短距绕组 绕组的节距小于极距的绕组,叫做短距绕组。短距绕组广泛应用于直流电动机的转子绕组以及三相交流单速电动机的定子绕组。 2、整距绕组 绕组的节距等于极距的绕组,叫做整距绕组,又称全距绕组或满距绕组。 3、长距绕组 绕组的节距大于极距的绕组,叫做长距绕组。除了在三相交流单绕组多速电动机中会有长距绕组以外,一般情况下,不用长距绕组。 三、单层绕组、双层绕组与单双层绕组 1、单层绕组 在铁心槽内仅嵌一层线圈边的绕组,叫单层绕组。单层绕组在10千瓦以下的小功率三相电动机中应用较多。 2、双层绕组 在铁心槽内嵌有上、下两层线圈边的绕组,叫双层绕组。双层绕组广泛应用于直流电动机以及功率在10千瓦以上的三相电动机。 3、单双层绕组 有少数三相异步电动机,定子铁心的一部分槽中仅嵌入单层线圈边,而在另一部分槽中则嵌有双层线圈边,这种既有单层又有双层的绕组,即单双层绕组。这种绕组是由双层短距绕组演变而来的。 四、整数槽绕组与分数槽绕组 1、整数槽绕组 三相电动机绕组中,每极每相槽数为整数的叫整数槽绕组。 2、分数槽绕组 三相电动机绕组中,每极每相槽数为分数的叫分数槽绕组。分数槽仅用于双层绕组。 五、600 相带、300 相带、和1200 相带绕组 1、600相带绕组 相带为600的绕组称为600相带绕组。通常单速三相电动机都采用600相带绕组. 2、300相带绕组 在嵌有Y和Δ两套绕组,Y-Δ混合连接的三相电动机中,把600相带一分为二,即形成了300相带绕组。 3、1200相带绕组 在单绕组三相多速电动机中,有1200相带绕组

电动机维修基础知识

电动机维修基础知识 洛阳机电技术学校 1.三相电动机的铭牌 交流异步电动机铭牌:主要标记以下数据,并解释其意义如下: (1)额定功率(P):是电动机轴上的输出功率。 (2)额定电压:指绕组上所加的电压。 (3)额定电流:定子绕组线电流。 (4)额定转速:(r/min):额定负载下的转速。 (5)温升:指绝缘等级所耐受超过环境温温度。 (6)工作定额:即电动机允许的工作运行方式。 (7)绕组的接法:△或Y形连接,与额定电压相对应。 例如:某台电机、铭牌介绍: (1)型号: “112” 例如:Y112M-4 中表示Y系列鼠笼式异步电动机(YR表示绕线式异步电动机), 表示电机的中心的高为112mm,“M”表示中机座(L表示长机座,S表示短机座),“4” 表示4极电机。 (2)额定功率: 电动机在额定状态下运行时,其轴上所能输出的机械功率称为额定功率。 单位:W或KW。 (3)额定转速: 在额定状态下运行时的转速。转子没分钟的转数,单位:转/分 (4)额定电压: 额定电压是电动机在额定运行状态下,电动机定子绕组上应加的线电压值。 Y系列电动机的额定电压都是380V的。 对于Y、Y2系列 凡功率:3千瓦及以下的电机,定子绕组接法:均为星形连接(Y), 4千瓦以上的电机接法:都是三角形连接(△)。 铭牌上标明的电压220/380伏和接法△/Y,表示绕组按△形连接,额定电压是220伏, 按Y形连接时,额定电压是380伏。 (5)额定电流: 电动机加以额定电压,在其轴上输出额定功率时,定子从电源吸取的线电流值, 称为:额定电流。 电动机的电流有三种: a:额定电流、 b:启动电流、 c、空载电流。如:----铭牌上注明的电流2.8/1.62安表示:绕组按△形连接在220伏额定电压下工作时的额定电流是2.8安;按Y形连接在380伏额定电压下工作时的额定电流是1.62安。 55千瓦以下的四极式电动机,在380伏电压下,工作时额定电流值,大约是额定功率值的2倍。电动机在启动时,因为转子尚未转动,电流很大,通常是额定电流的4-7倍。为此,功率较大的电动机使用时必须采取降压启动。启动时降压,使起动电流不致过大。待转子加速到正常转速时,再把电动机就直接接在电源上正常工作。

电动机绕组展开图的画法

电动机绕组展开图的画法 所谓展开图,就是将电动机定子铁心带绕组用刀切开并摊平,按电动机绕组在定子铁心上的布置,画出的一种绕组展开图。 例1、一台24槽,4极电机,要求采用同心式绕组布置,求画绕组展开图。 1、根据要求先出每极所占槽数 每极所占槽数=电动机的总槽数/(2P) 或=电动机的总槽数/4(极数) 每极所占槽数=24/4=6槽如下图所示 2、求出每极每相所占(即为极相组)槽数,即在一个磁极里(N或S)按三相平分所得的槽数。每相在每个磁极里均按A、C、B的规律排列,而每相所占的槽数必定相等。如下图所示。 每极每相所占槽数=每极所占槽数/3相=6/3=2槽 3、画第一相绕组展开图

根据上面计算分配得知,每极每相所占槽数为2,即第一极N中,A相占2槽(1、2槽)。而第二极S中,A相也占2槽(7、8槽)。第三极N中,A相也一样占2槽(13、14槽)。而第四极S中,A相同样也占2槽(19、20槽)。对于单层电动机而言,一个线圈有二个有效边,如果它的第一个有效边在N极,则另一个有效边就是在S极。根据同心式绕组的画法,我们得出第一个N极和第二个S极的1------8槽(y=7)、2------7槽(y=5)相连的二个绕组,而第三个N极与第四个S极的连接与上面是相同的,分别是13------20、14------19相连,同样组成另二个绕组。这样A相绕组全部画完(画时应逆时针方向)。 4、绕组的连接绕组的连接是按顺电流方向,逆时针,依绕组先后排列顺序依次连接。 A、电流的方向在同性磁极下电流方向必定相同,在异性磁极下电流的方向必定相反。根据经验,相邻二相的电流方向恰恰相反(初学时电流方向一定要搞清)。 对于一个绕组而言,若规定了它的进出线的位置,按上图第一个线圈是由第1槽进线(它位于N极),可以确定电流的流向是向上。而电流不管匝数有多少电流总是由第8槽流出(它位于S极),故电流的流向必定是向下的。又由于第2槽与第1槽同处于N极,故第2槽的电流方向与第1槽相同,同是向上。而第7槽则与第8槽一样同处于S极,其电流流向相同,均向下。现我们来看第13、14槽它们位于N极与第1、2槽同极性故其电流方向应相同而向上,而第19、20槽则处于S极,故其电流流向与第7、8槽(处于S极)其流向相同,均向下。至此线圈的8个有效边的电流方向均已确定,并把它标于图上。 B、逆序依次连接我们把1------8槽的线圈编为第一个线圈,把2------7的线圈编为第二个线圈,再把13------20的线圈编为第三个线圈,又把14------19的线圈编为第四个线圈。我们把第一个线圈的第1槽作为A相的进线,按规定编为U1。而它的出线在第8槽,第8槽的出线要么与第二个线圈的第2槽或第7槽相接,若假定与第8槽与第7槽相接,我们就会发现其电流方向恰好与原标定的方向相反,而只有与第2槽相接才会顺着电流的方向,故应跟第2槽相接。此时的线尾则是由第7槽出来。而第7槽则应与第三个线圈的第13槽相接,而由第20槽出来,而第20槽的出线则与第14槽相接,由第19槽出来,而第19槽出来的线,则为A相绕组的尾线。只有这样连接才能保持电流的方向不变。而尾线则按规定编为U2。 按上述的顺序连接方向,即为逆序方向,不得反向连接。 5、确定三相绕组的进线电动机三相绕组在空间位置上,应分别相差120度电角度。以第一相进线为准,以每槽的电角度累计和120度后的第1槽即为第二相进线的头。而第三相进线,则以第二相进线头为准,依上法确定。其计算方法如下:

由电机展开图解读其嵌线工艺

由电机展开图解读其嵌线工艺 摘要:在技校维修电工专业实习教学中,三相异步电动机的嵌线工艺是教学的重点,也是教学的难点。许多学生由于对三相异步电动机的展开图理解不深,嵌线时感觉无从下手,部分学生只是死记几种嵌线方法,不会灵活运用。本文结合展开图解读其嵌线工艺,以期对维修电工专业学生有所帮助。 关键词: 嵌线工艺电动机 1、单层链式绕组嵌线工艺图1是三相4极24槽单层链式绕组展开图。每极每相槽数为2,线圈节距为1—6。 图1 展开图上面一行数字表示嵌线顺序,下面一行数字表示线槽序号。由图可以看出每一相都有4个线圈。每一个线圈都有两个边,通常我们把先下的那一个边称为下层边,例如本例中的奇数槽里下的那一边(图上每个线圈的左边),都是下层边;后下的那一边称为上层边,例如本例中的偶数槽里下的那一边(图上每个线圈的右边),都是上层边。每一个上层边都压着两个下层边,例如本例中的6槽里下的上层边压着5槽、3槽下的下层边,由此可见,单层链式绕组嵌线时一定要吊起两把线圈最后下,即吊把线圈2把。嵌线步骤是按次序先嵌下层边,后嵌上层边;最后嵌吊起的两把线圈的上层边。具体的嵌线顺序如下: (1)选好第一槽位置,靠近机座出线口。 (2)嵌槽1(U相第一个线圈的下层边),上层边吊起。 (3)空一槽24,嵌23槽(W相第一个线圈的下层边),上层边吊起。 (4)再空一槽22,嵌21槽(V相第一个线圈的下层边),上层边按节距1—6压着1槽、23槽的下层边嵌入槽2。 (5)再空一槽20,嵌入19槽(U相第二个线圈的下层边),上层边按节距1—6压着23槽、21槽下层边嵌入24槽。此线圈与本相第一个线圈的连接关系是上层边与上层边相连或下层边与下层边相连,即尾、尾或首、首相连。 (6)以后W、V相按空一槽嵌入一槽的次序,轮流将U、W、V三相的4个线圈嵌完。最后把吊把线圈两把嵌入,至此整个绕组全部嵌完。 单层链式绕组的嵌线规律是:嵌1槽,空1槽,吊2把线圈。简称为“嵌1空1吊2”。 按此种方法嵌线,同相线圈之间的过桥线可不截断,连接时要注意翻把,使其首首相连、尾尾相连。最后留出的6个线头,隔一即为同名端,如V1、U1、W1和W2、V2、

电动机基本知识

电动机基本知识 一、电动机的分类 二、三相异步机的结构 三相异步电动机按转子结构的不同分为笼型和绕线转子异步电动机两大类。笼型异步电动机由于结构简单、价格低廉、工作可靠、维护方便,已成为生产上应用得最广泛的一种电动机。绕线转子异步电动机由于结构较复杂、价格较高,一般只用在要求调速和起动性能好的场合,如桥式起重机上。异步电动机由两个基本部分组成:定子(固定部分)和转子(旋转部分)。笼型和绕线转子异步电动机的定子结构基本相同,所不同的只是转子部分。笼型异步电动机的主要部件,如图1-1所示;绕线转子异步电动机的结构如图1-2所示。 图1-1笼型异步电动机的主要部件 图1-2 绕线转子异步电动机的结构

1、定子 三相异步电动机的定子由机座中的定子铁心及定子绕组组成。机座一般由铸铁制成。定子铁心是有冲有槽的硅钢片叠成,片与片之间涂有绝缘漆。三相绕组是用绝缘铜线或铝线绕制成三相对称的绕组按一定的规则连接嵌放在定子槽中。过去用A、B、C表示三相绕组始端,X、Y、Z表示其相应的末端,这六个接线端引出至接线盒。按现国家标准,始端标以U1、V1、W1,末端标以U2、V2、W2。三相定子绕组可以接成如图1-3所示的星形或三角形,但必须视电源电压和绕组额定电压的情况而定。一般电源电压为380V(指线电压),如果电动机定子各相绕组的额定电压是220V,则定子绕组必须接成星形,如图1-3a所示;如果电动机各相绕组的额定电压为380V,则应将定子绕组接成三角形,如图1-3b所示。 图1-3 三相绕组的联结 2、转子 转子部分是由转子铁心和转子绕组组成的。转子铁心也是由相互绝缘的硅钢片叠成的。转子冲片如图1-4a所示。铁心外圆冲有槽,槽内安装转子绕组。根据转子绕组结构不同可分为两种形式:笼型转子和绕线型转子。 (1)笼型转子 笼型转子的绕组是在铁心槽内放置铜条,铜条的两端用短路环焊接起来,绕组的形状如图1-4b所示。它像个鼠笼,故称之为笼型转子。为了简化制造工艺,小容量异步电动机的笼型转子都是熔化的铝浇铸在槽内而成,称为铸铝转子。在浇铸的同时,把转子的短路环和端部的冷却风扇也一样用铝铸成,如图1-5所示。 图1-4 笼型转子a)转子冲片;b)笼型绕组;c)笼型转子图1-5 铸铝转子

2极24槽电动机展开图

2极24槽电动机.绕组形式:单层迭绕,线圈节距=10(1-11).绕组形式,单层同心式,线圈节距=11(1-12),9(1-10). 2极36槽电动机.绕组形式:单层迭绕.线圈节距=15(1-16).绕组形式,单层同心式,线圈节距=17(1 -18),15(1-16),13(1-14).绕组形式,双层选绕组,线圈节距=12(1-13). 4极24槽电动机,绕组形式:单层迭绕,绕组形式=5(1-6).绕组形式,单层同心式,线圈节距=5(1-6),7(1-8).绕组形式:双层迭绕,线圈节距5(1-6). 4极36槽电动机,绕组形式,单层单,双圈迭式布线,线圈节距=7(1-8)单圈,8(1-9)双圈.绕组形式:双层迭式,线圈节距=7(1-8).绕组形式:单层迭绕,线圈节距=9(1-10).绕组形式:单层同心式,线圈节距=7(1-8),9(1-10),11(1-12).用双层叠式绕组画展开图 例3、一台36槽4极三相异步电动机,要求用双层叠式画展开图。 1、求每极所占槽数=36/4=9 2、求每极每相所占槽数= 每极所占槽数/3相=9/3=3 3、根据上二式计算,用不同的线条分出各极、各相槽数。 该图表现为每极占9槽,每相占每极中的3槽。同时可根据每相邻二相电流必定相反。按此标出电流方向:在第一磁极里1、2、3三槽为A相,电流向上。4、5、6三槽为C相,电流向下。7、8、9槽三槽为B相,电流向上。以后各极各相均按此顺序排列,但电流方向在N极的均向上,而在S极的均向下。如下图所示 4、按双层叠式绕组方式画出第一相绕组(对于双层叠式绕组,若是整距绕组,基本上还是一个线圈的一边在N极,另一边必定在S极。注意:这是指整距绕组。),如下图所示

永磁同步电机基础知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ?? ?-????? ??=--- ? ???? ???? ?+-+? ? (2)d/q 轴磁链方程: d d d f q q q L i L i ψψψ=+???=?? 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。

电动机基本知识点

电机基本知识 1、电机为什么会产生轴电流? 电机的轴---轴承座---底座回路中的电流称为轴电流。. B0 T0 o;) z7 S轴电流产生的原因:% _. j$ m( w( y3 X) B (1)磁场不对称;! N. f+ ]4 _* s% i$ e (2)供电电流中有谐波;* I" v& o7 I P( (3)制造、安装不好,由于转子偏心造成气隙不匀; (4)可拆式定子铁心两个半圆间有缝隙;5 w- k. ^5 J1 (5)有扇形叠成的定子铁心的拼片数目选择不合适。, Y& \4 X1 E. k& m& 危害 使电机轴承表面或滚珠受到侵蚀,形程点状微孔,使轴承运转性能恶化,摩擦损耗和发热增加,最终造成轴承烧毁。9 d K% w+ b% Q- k# O8 E& I + p% J4 r: Z1 u3 c5 v$ G+ Y" [ 预防: (1)消除脉动磁通和电源谐波(如在变频器输出侧加装交流

电抗器); (2)电机设计时,将滑动轴承的轴承座和底座绝缘,滚动轴承的外圈和端盖绝缘。' p2 L; v3 t. Y3 e9 i) \9 Y 2、为什么一般电机不能用于高原地区? 海拔高度对电机温升,电机电晕(高压电机)及直流电机的换向均有不利影响。应注意以下三方面: . ?3 V8 j. ~ T+ z* l% i (1)海拔高,电机温升越大,输出功率越小。但当气温随海拔的升高而降低足以补偿海拔对温升的影响时,电机的额定输出功率可以不变; ; J8 b( z7 z$ J! _( I: c (2)高压电机在高原使用时要采取防电晕措施;$ r; l1 }. H& n; l# l (3)海拔高度对直流电机换向不利,要注意碳刷材料的选用。: i/ v1 c) j4 b ' N1 g# g2 W! ?+ V* \4 d/ U. m 3、电机为什么不宜轻载运行? 6 R* r" ^9 Z: M/ \. [

防爆电机基本知识完整详细版..

防爆电动机基本知识认知

目录 一、旋转电机的定义是什么? (3) 二、旋转电机是如何分类的? (4) 三、旋转电机的基本原理是什么? (5) 四、旋转电机设计时的模拟电路? (8) 五、旋转电机有哪些性能参数指标? (9) 六、电机制造常用标准有哪些? (11) 七、电动机型号编制方法(GB4831-1984电机产品型号编制方法) (13) 八、电动机电压等级的选择 (16) 九、电机轴中心高 (16) 十、电机绝缘等级 (17) 十一、电机工作制(GB 755-2000旋转电机定额和性能) (17) 十二、防护型式IPXX (GB/T 4208-1993 外壳防护分级(IP代码)) (18) 十三、电机安装结构型式(GB/T 997-2003旋转电机结构及安装型式(IM代码)) (19) 十四、电机冷却方法(GB/T 1993-1993旋转电机冷却方法) (20) 十五、湿热带、干热带环境用电动机采取的措施 (21) 十六、防腐电机应采取的措施 (22) 十七、电动机振动限值 (22) 十八、电机选型要点 (23) 十九、电动机基本特征 (23)

一、旋转电机的定义是什么? 旋转电机(以下简称电机)是依靠电磁感应原理而运行的旋转电磁机械,用于实现机械能和电能的相互转换。发电机从机械系统吸收机械功率,向电系统输出电功率;电动机从电系统吸收电功率,向机械系统输出机械功率。 电机运行原理基于电磁感应定律和电磁力定律。电机进行能量转换时,应具备能作相对运动的两大部件:建立励磁磁场的部件,感生电动势并流过工作电流的被感应部件。这两个部件中,静止的称为定子,作旋转运动的称为转子。定、转子之间有空气隙,以便转子旋转。 电磁转矩由气隙中励磁磁场与被感应部件中电流所建立的磁场相互作用产生。通过电磁转矩的作用,发电机从机械系统吸收机械功率,电动机向机械系统输出机械功率。建立上述两个磁场的方式不同,形成不同种类的电机。例如两个磁场均由直流电流产生,则形成直流电机;两个磁场分别由不同频率的交流电流产生,则形成异步电机;一个磁场由直流电流产生,另一磁场由交流电流产生,则形成同步电机。 电机的磁场能量基本上储存于气隙中,它使电机把机械系统和电系统联系起来,并实现能量转换,因此,气隙磁场又称为耦合磁场。 当电机绕组流过电流时,将产生一定的磁链,并在其耦合磁场内存储一定的电磁能量。磁链及磁场储能的多少随定、转子电流以及转子位置不同而变化,由此产生电动势和电磁转矩,实现机电能量转换。这种能量转换理论上是可逆的,即同一台电机既可作为发电机也可作为电动机运行。但实际上,一台电机制成后,由于两种运行状态下电机的参数和特性方面的原因,很准满足两种运行状态下的客观要求,因此,同一台电机不经改装和重新设计,不可任意改变其运行状态。 电机内部能量转换过程中,存在电能、机械能、磁场能和热能。热能是由电机内部能量损耗产生的。 对电动机而言: 从电源输入的电能=耦合电磁场内储能增量+电机内部的能量损耗+输出的机械能对发电机而言: 从机械系统输入的机械能=辐合电磁场内储能增量+电机内部的能量损耗+输出的电能

4极24槽电动机展开

青岛港湾职业技术学院授课教案 编号:第8 周Array课题实训七电机拆装与检修 班级 授课日期年月日

实训七电机拆装与检修 一、电机的定义及分类 1、电动机是根据电磁感应原理,把电能转换为机械能,并输出机械转矩的原动机。 2、分类: 按电流分同步 交流单相 异步绕线式 三相 鼠笼式 二、电动机常见故障分析及判断 电机常见故障主要分机械故障和电气故障两大类。 机械故障主要包括轴承、风扇、端盖、转轴、机壳等故障。电气故障主要包括定子绕组、转子绕组和电路故障。 要正确判断电动机发生故障的原因,是一项复杂细致的工作。电动机在运行时,不同的原因会产生很相似的故障现象,这给分析、判断和查找故障原因带来一定难度。为了尽量缩短故障停机的时问,迅速修复电动机,对故障原因的判断要快而准。电工在巡视检查时,可以通过自身韵感官来了解电动机的运行状态是否正常。 看,观察电机和所拖带的机械设备转速是否正常;看控制设备上的电压表、电流表批示数值有无超出规定范围,看控制线路中的指示、信号装置是否正常。 听,必须熟悉电动机启动、轻载、重载的声音特征;学会辨别电动机单相、过载等故障时的声音及转子扫膛、笼型转子断条、轴承故障时的特殊声音,可帮助查找故障部位。 摸,电动机过载及发生其他故障时,温升显著增加,造成工作温度上升,用手摸电动机外壳各部位即可判断温升情况。 闻,电动机严重发热或过载时问较长,会引起绝缘受损而散发特殊气味;轴承发热严重时也可挥发出油脂气味。闻到特殊气味时,便可确认电动机有故障。 问,向操作者了解电动机运行时有无异常征兆;故障发生后,向操作者询问故障发生前后电动机及所拖带机械的症状,对分析故障原因很有帮助。 造成电动机故障的原因很多,仅靠最初查出的故障是不够的,还应在初步分析的基础上,使用各种仪表(万用表、兆欧表、钳形表及电桥)进行必要的测量检查。除了要检查电动机本身可能出现的故障外,还要检查所拖带的机械设备及供电线路、控制线路。通过认真检查,找出故障点,准确地分析造成故障的原因,才能有针对性地进行处理,采取预防措施,以防止故障再次发生。 三、电机拆卸 电机绕组被烧毁或老化后,电机就不能再使用了;只有拆除旧绕组更换新绕组后,电机才能重新使用。电机种类很多,绕组方式也各有差异,但电机绕组的拆除方法是相同的。这里以小功率三相笼式电动机拆卸为例介绍电机的拆除方法与步骤。 1.拆卸前的准备 (1)备齐常用电工工具及拉码等拆卸工具。 (2)查阅并记录被拆电机的型号、外型和主要技术参数。 (3)在端盖、轴、螺钉、接线桩等零件上做好标记。 2.拆卸步骤 小型电机的拆卸应按如下几个基本步骤进行,如图7—1所示。

电动机绕组展开图的画法

转】电动机绕组展开图的画法 2010-12-14 19:42 转载自iwooye 最终编辑iwooye 同芯式绕组展开图 所谓展开图,就是将电动机定子铁心带绕组用刀切开并摊平,按电动机绕组在定子铁心上的布置,画出的一种绕组展开图。 例1、一台24槽,4极电机,要求采用同心式绕组布置,求画绕组展开图。 1、根据要求先出每极所占槽数 每极所占槽数=电动机的总槽数/(2P) 或=电动机的总槽数/4(极数) 每极所占槽数=24/4=6槽如下图所示 800)this.width=800" border=0> 2、求出每极每相所占(即为极相组)槽数,即在一个磁极里(N 或S)按三相平分所得的槽数。每相在每个磁极里均按A、C、B的规律

排列,而每相所占的槽数必定相等。如下图所示。 每极每相所占槽数=每极所占槽数/3相=6/3=2槽 800)this.width=800" border=0> 3、画第一相绕组展开图 800)this.width=800" border=0> 根据上面计算分配得知,每极每相所占槽数为2,即第一极N中,A相占2槽(1、2槽)。而第二极S中,A相也占2槽(7、8槽)。第三极N中,A相也一样占2槽(13、14槽)。而第四极S中,A相同样也占2槽(19、20槽)。对于单层电动机而言,一个线圈有二个有

效边,如果它的第一个有效边在N极,则另一个有效边就是在S极。根据同心式绕组的画法,我们得出第一个N极和第二个S极的1------8槽(y=7)、2------7槽(y=5)相连的二个绕组,而第三个N极与第四个S极的连接与上面是相同的,分别是13------20、14------19相连,同样组成另二个绕组。这样A相绕组全部画完(画时应逆时针方向)。 4、绕组的连接绕组的连接是按顺电流方向,逆时针,依绕组先后排列顺序依次连接。 800)this.width=800" border=0> A、电流的方向在同性磁极下电流方向必定相同,在异性磁极下电流的方向必定相反。根据经验,相邻二相的电流方向恰恰相反(初学时电流方向一定要搞清)。 对于一个绕组而言,若规定了它的进出线的位置,按上图第一个线圈是由第1槽进线(它位于N极),可以确定电流的流向是向上。而电流不管匝数有多少电流总是由第8槽流出(它位于S极),

电机修理入门知识

电机修理入门知识 三相异步电动机结构和转动原理 一.三相异步电动机结构 三相异步电动机基本结构由定子和转子这两大基本部分组成,在定子和转子之间具有一定的气隙。此外,还有端盖、轴承、接线盒、吊环等其他附件。 1.定子部分 定子是用来产生旋转磁场的。三相电动机的定子一般由外壳、定子铁心、定子绕组等部分组成。 (1)外壳 三相电动机外壳包括机座、端盖、轴承盖、接线盒及吊环等部件。 机座:铸铁或铸钢浇铸成型,它的作用是保护和固定三相电动机的定子绕组。中、小型三相电动机的机座还有两个端盖支承着转子,它是三 相电动机机械结构的重要组成部分。通常,机座的外表要求散热性 能好,所以一般都铸有散热片。 端盖:用铸铁或铸钢浇铸成型,它的作用是把转子固定在定子内腔中心,使转子能够在定子中均匀地旋转。 轴承盖:也是铸铁或铸钢浇铸成型的,它的作用是固定转子,使转子不能轴向移动,另外起存放润滑油和保护轴承的作用。 接线盒:一般是用铸铁浇铸,其作用是保护和固定绕组的引出线端子。 吊环:一般是用铸钢制造,安装在机座的上端,用来起吊、搬抬三相电动机。 (2)定子铁心 异步电动机定子铁心是电动机磁路的一部分,由0.35mm~0.5mm 厚表面涂有绝缘漆的薄硅钢片叠压而成。由于硅钢片较薄而且片与片之间是绝缘的,所以减少了由于交变磁通通过而引起的铁心涡流损耗。铁心内圆有均匀分布的槽口,用来嵌放定子绕圈。 3)定子绕组 定子绕组是三相电动机的电路部分,三相电动机有三相绕组,通入三相对称电流时,就会产生旋转磁场。三相绕组由三个彼此独立的绕组组成,且每个绕组又由若干线圈连接而成。每个绕组即为一相,每个绕组在空间相差120°电角度。线圈由绝缘铜导线或绝缘铝导线绕制。中、小型三相电动机多采用圆漆包线,大、中型三相电动机的定子线圈则用较大截面的绝缘扁铜线或扁铝线绕制后,再按一定规律嵌入定子铁心槽内。定子三相绕组的六个出线端都引至接线盒上,首端分别标为U1, V1, W1 ,末端分别标为U2, V2, W2 。这六个出线端在接线盒里的排列,可以接成星形或三角形。 2.转子部分 1)转子铁心 是用0.5mm厚的硅钢片叠压而成,套在转轴上,作用和定子铁心相同,

电机原理基础知识

第一部分:电机基础知识 一、小功率电动机的分类 按国家标准规定,小功率电动机指折算至1500r/min(转/分)时连续额定功率不超过1.1kw的电动机,也称为微电动机或马力电动机,其分类如下: 1、小功率电动机分为以下4种: 1)小功率异步电动机; ①三相异步电动机; ②单相电阻起动电动机; ③单相电容起动电动机; ④单相电容运转电动机; ⑤单相电容双值电动机; ⑥罩极异步电动机。 2)小功率同步电动机; ①永磁同步电动机; ②磁阻同步电动机; ③磁滞(zhi)同步电动机; 3)小功率直流电动机; ①有刷直流电动机; A、励磁直流电动机; B、永磁直流电动机。 ②无刷直流电动机。 4)小功率交流换向器电动机; ①单相串激电动机; ②交直流两用电动机; ③推斥电动机。 二、电机的运行原理 1、安培环路定律——全电流定律 本定律阐(chan)述电流产生磁场的规律,由式表达: 上式说明沿任一条闭合回路L,磁场强度的线积分等于该闭合路所包围的全电流。 将全电流定律用到电机中,由于电机磁路通常可按不同的材料和几何尺寸分成几段,每段中的磁场强度是相同的,因此可将上式写成: H i----第i段磁路磁场强度(A/m) Li----第i段磁路计算长度(m) Wi----磁势(A) W---线圈匝数

磁场感应电流产生的强弱及方向由磁感应强度表示。 形象的描绘磁场用磁力线,磁力线是闭合曲线,磁力线的方向与产生磁场的电流之间符合右螺旋法则。穿过单位面积的磁力线数就是感应强度B. 磁感应强度不仅与电流有关,而且与周围介质有关,当周围放有铁磁物质时,磁场会大大加强,这是因为不同的介质有不同的磁导率,磁导率用u0表示。真空磁导率磁场物质u为u0的几百倍至几千倍,而且与磁场强度有关,不是常数,磁场强与磁感应强度关系为H=B/u 式中B——表示磁感应强度(T) U——表示磁导率(H/m) H——表示磁场强度,也叫磁势(A/m) 在均匀磁场中,穿过面积S的磁力线定义为磁通 2、电磁力定律 本定律阐述处于磁场中的载流导体受有电磁力作用。当磁场与载流导体相互垂直时,作用在导体相互垂直时,作用在导体的电磁力为f=BiL 式中f——电磁力(N) B———磁感应强度(T) i-----导体的电流(A) L-----导体的有效长度(m) 电磁力f的方向由左手定则判定:磁通指向手心,伸直四指指电流方向,垂直的拇指指电磁方向。 3、电磁感应定律 本定律阐述磁通变化产生感生电势的规律。 ⑴变化磁通产生的感应电势——变压器电势 式中W—与磁通Φ相交链的线圈匝数 Φ—与线圈交链的磁通(Wb) t —时间(s) e —感应动势(V)

电动机展开图

建立时间:2006年10月11日 {三相异步电动机绕组检修-6} 用双层叠式绕组画展开图例3、一台36槽4极三相异步电动机,要求用双层叠式画展开图。 1、求每极所占槽数=36/4=9 2、求每极每相所占槽数=每极所占槽数/3相=9/3=3 3、根据上二式计算,用不同的线条分出各极、各相槽数。 该图表现为每极占9槽,每相占每极中的3槽。同时可根据每相邻二相电流必定相反。按此标出电流方向:在第一磁极里1、2、3三槽为A相,电流向上。4、5、6三槽为C相,电流向下。7、8、9槽三槽为B相,电流向上。以后各极各相均按此顺序排列,但电流方向在N极的均向上,而在S极的均向下。如下图所示 4、按双层叠式绕组方式画出第一相绕组(对于双层叠式绕组,若是整距绕组,基本上还是一个线圈的一边在N极,另一边必定在S极。注意:这是指整距绕组。),如下图所示 由上图可以看出1、2、3、10、11、12、19、20、21、28、29、30计12槽为A 相绕组(上图中的每一个槽内有二条线,实线部分为槽内线圈的上层绕组,双点划线为下层绕组。)。上下层绕组必须分清。每个线圈由如下组成:第1槽的实线

与第10的虚线为一个线圈,第2槽的实线与第11的虚线为一个线圈,第3槽的实线与第12的虚线为一个线圈。第10槽的实线与第19的虚线为一个线圈,第11槽的实线与第20的虚线为一个线圈,第12槽的实线与第21的虚线为一个线圈------余类推。 5、连接方法按电流方向、向右方向、依线圈的排列顺序依次连接。如下图所示 连接顺序:第1槽的实线为第一相进线其(电流向上)。其尾线由第12槽的双点划线(虚线、电流向下)出与第21槽的虚线相连(电流向上),其出线头由第10槽实线出(电流向下),由第10槽的实线与第19槽的实线相连(电流向上),其出线由第30槽的虚线出(电流向下),第30槽的虚线再与第3槽的虚线相连(电流向上),其出线由第28槽的实线出(电流向下)。细看就可以发现,每一槽的电流方向均与上方所标注的电流方向相。 6、第二相绕组的进线及其绕组画法 计算每槽电角度=(极数X180度)/36=20度 求120度后的第一槽120/20=6槽由于第一相进线是从第1槽进,1、2、3、4、5、6槽,每槽20度,计120度,120度后的第一槽则是第7槽。就是说第二相绕组的进线应是由第7槽开始,并按第一相绕组相同的方法接线。

相关文档
最新文档