我国风电场建设及分析论文

我国风电场建设及分析论文
我国风电场建设及分析论文

浅析我国风电场建设及分析

摘要:世界风力发电技术取得了突飞猛进的发展,浅析我国在风力发电领域的现状和特点,指出我国风力发电领域未来的发展潜力和方向,对促进我国风电产业科学地、可持续地良性发展有着非常重要的意义。

关键词:风力发电;电场建设;现状;特点

中图分类号:tb857+.3 文献标识码:a 文章编号:

八十年代中期到九十年代中期,世界风力发电技术取得了突飞猛进的发展,设计、制造技术趋向成熟,产品进入商品化阶段。

我国1983年山东引进3 台丹麦vestas55kw风力发电机组,开始了并网风力发电技术的试验和示范。 1986年,新疆达坂城安装了一台丹麦 micon100kw风力发电机组, 1989年安装了 13台丹麦bonus 150kw 风力发电机组和在内蒙古朱日和安装了5台美国windpower 100kw风力发电机组,开始了我国风电场的运行实验和示范。

一、我国风电场现状

装机容量分布

截止1997年底,我国风电场的总装机容量为166 500kw,分布在新疆维吾尔自治区、内蒙古自治区、广东、辽宁等10个省区。(2)各厂家的市场占有率我国并网风力发电技术的研究和开发尚处于200kw级机组实验阶段,与世界先进水平相比,差距甚大。这一市场目前基本上由丹麦(占有67%)、德国(占有21%)和美国(占有

风电场电气系统课程设计报告

风能与动力工程专业 风电场电气系统课程设计报告 题目名称:48MW(35/110KV升压站)风 电场电气一次系统初步设计指导教师:贾振国 学生姓名: 班级: 设计日期:2014年07月 能源动力工程学院

课程设计成绩考核表

摘要 根据设计任务书的要求及结合工程实际,本次设计为48MW风电场升压变电站电气部分设计。本期按发电机单台容量2000kW计算,装设风力发电机组24台。每台风力发电机接一台2000kVA升压变压器,将机端690V电压升至35kV 并接入35kV集电线路,经3回35kV架空线路送至风电场110kV升压站。 变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是由变压器、断路器、隔离开关、互感器、母线、避雷器等电气设备按一定顺序连接而成的,电气主接线的不同形式,直接影响运行的可靠性、灵活性,并对电气设备的选择、配电装置的布置、继电保护和控制方式的拟定等都有决定性的影响。 本文是小组成员的配合下和老师的指导下完成的,虽然时间很短,没有设计出特别完整的成果,可是我们学会了如何查找对自己有用的资料,如何设计一个完整的风电场电气系统。并且我们设计出了三张图,包括风机与箱式变电站接线图、35KV风电场集电线路接线图、110KV变电所电气主接线图,在这里感谢小组成员们的辛勤付出和贾老师的耐心指导。 关键词:主接线电气设备配电装置架空线路防雷与接地

Abstract According to the requirements of the design task and combined with the engineering practice, the design is part of the 48MW wind power booster substation electrical design. This period in accordance with the generator unit capacity of 2000kW calculation, installation of 24 wind turbine units. Each wind generator with a 2000kV A step-up transformer, the terminal 690V voltage to 35kV and access 35kV integrated circuit, the 3 35kV overhead transmission line to the wind farm 110kV booster station. Substation is an important part of power system, which directly affects the safety and economic operation of the whole power system, is the intermediate link between power plants and users, plays a role in transformation and distribution of electricity. The main electrical wiring is composed of a transformer, circuit breaker, isolating switch, transformer, bus, surge arresters and other electrical equipment according to a certain order which is formed by the connection of different form, the main electrical wiring, directly affect the operation reliability,flexibility, and the choice of electrical equipment, power distribution equipment arrangement, relay protection and control to have a decisive impact. This paper is combined with team members and under the guidance of teachers completed, although time is very short, no design particularly integrity achievements, but we learned how to find useful on its own data, how to design a complete wind farm electrical system. And we designed the three pictures, including fans and box type substation wiring diagram, 35KV wind farm set wiring diagram of an electric circuit, 110KV substation main electrical wiring diagram.Thanks to the team members to work hard and Jia teacher's patient instructions here. Key word:The main wiring Electrical equipment Distribution device Overhead line Lightning protection and grounding

有限长均匀带电杆的简单复合体的空间电场分布

有限长均匀带电杆及其简单复合体的空间电场分布 邓晓宇 [摘要]利用教材中有限长带电杆的电场分布的结论,将正四边形均匀带电体,田字形均匀带电体视为多段带电直棒,在空间中采取分段计算然后利用场的叠加原理,导出带电正方形杆,可变田字形杆的普遍表达式,并由此创新性的拓展研究两个正方形杆,两个田字形杆的空间相互作用的空间电场分布,利用DTP 平台编程画出其电场的空间分布图形。 [关键词]带电正方形杆,田字形杆;分段计算;叠加原理;空间电场分布;DTP 平台 O 引言 电场强度的计算是电磁学中的一个常见问题,在各种带电体中,具有中心对称性的带电细圆环或薄圆盘的研究比较多,方法也多种多样,而对不具有中心对称性的矩形或正方形的带电体则研究得很少,本文从教材中一个例题的结果引出,将均匀带电正方形杆,田字形杆视为多段带电直棒,采取分段计算然后利用场的叠加原理,导出均匀带电正方形杆,田字形杆空间电场分布的普遍表达式,并由此拓展研究两个正方形杆,两个田字形杆的空间相互作用的空间电场分布,最后利用DTP 平台编程画出其电场的空间分布图形。 1一段均匀带电细棒的空间电场分布 一般来说应从点电荷的场利用叠加原理可计算限线电荷,面电荷,体电荷的场,但是,往往处理积分特别是多重积分会遇到计算上的困难,有限长直线均匀带电体的电场有一个解析表达式,利用这一结果,可以较方便的处理很多问题,其结果如下:如图1所示,均匀带电细棒的线电荷密度为λ,直棒外一点P 到直棒的距离为a ,点P 至棒两端的连线与直棒之间的夹角分别为α和β,则p 点的场强为: )sin (sin 4αβπελ-= a Ex ; ]1[)c o s (c o s 4βαπελ -=a Ey 这是《大学物理学》教材中的结论,若点P 到直棒的垂足为O,O 到直棒两端的距离分别为1l ,和2l ,则p 点的场强为: )(1 1(4221222 a l a l Ex +-+= πελ (1) )(42222 221 1a l l a l l a Ey +++= πελ (2)

99MW风电场升压站电气设计优化方案

99MW风电场升压站电气设计优化方案 社会的进步与经济的增长推动了科学技术的发展,使得各种电气设备被广泛应用到社会各个领域当中,从而提升了对电力能源的使用力度,社会各界对电力能源产生了更高的要求。基于此,论文以99MW风电场升压站为研究对象,在简单对其进行介绍的基础上,详细阐述了电气主接线与直流电源两个方面的优化。 【Abstract】Social progress and economic growth promoted the development of science and technology,making all kinds of electrical equipment has been widely applied to various fields of the society,so as to enhance the usage level of power energy. Based on this,paper takes the 99MW wind power plant booster station as the research subject,through simply introduces this engineering,paper detailedly explores the optimization of mian electrical connection and direct current power supply. 标签:99MW风电场;升压站;电气设计;优化 1 引言 近年来,在社会经济快速发展的情况下,环境破坏问题得到了社会各界的广泛关注,使得人们建立了更加良好的环境保护理念。这种情况下,依然采用火力发电的方式为社会提供电力能源,完全不能满足人们对环境保护的要求,从而对新能源产生了较大的期望。风能作为自然界广泛存在的新能源之一,还是一种可再生能源,对环保具有重要价值,对于当前的电力行业的环境保护取得了不错的效果。但深入分析后可以发现,但受到技术等因素的限制,采用风力发电时往往需要投入较高的成本,降低了电力企业的效益。因此,本文对99MW风电场升压站电气设计优化方案进行研究具有重要意义,通过研究提高当前现有风力发电站的运行效率,为电力企业获得更多的经济效益打下良好基础。 2 99MW风电场升压站电气介绍 风电场作为当前电力行业中的重要组成部分之一,由风力发电机、箱变、集电线路、升压站等多个结构构成,升压站是其中较为关键的结构之一,为整个风电场的运行提供了重要帮助。所谓的升压站,指的是一个使通过的电荷电压发生变化的整体系统,主要目的是为了升压,降低小线路电流,从而减少电能的损耗。当前阶段的风电场当中,主要包括3种电压型号种型号的升压站,分别为110kV、220kV和330kV的升压站,升压站的等级越高,生产时所需要投入的资金越多,而且对抗压等物理性能具有更高的要求[1]。 整个升压站主要由四个部分构成:①一次设备,包括变压器、隔离开关、断路器、电抗器等;②二次回路,也可以称为控制回路,与一次设备相比,该回路中的电压较低,指的是对一次设备具有保护、控制作用的设备与线路;③继电保

中国风电发展现状与潜力分析

风能资源作为一种可再生能源取之不尽,中国更是风能大国,据统计中国风能的技术开发量可达3亿千瓦-6亿千瓦,而且中国风能资源分布集中,有利于大规模的开发和利用。 据考察中国的风能资源主要集中在两个带状地区,一条是“三北(东北、华北、西北)地区丰富带即西北、华北和东北的草原和戈壁地带;另一条是“沿海及其岛屿地丰富带,即东部和东南沿海及岛屿地带。 这些地区一般都缺少煤炭等常规能源并且在时间上冬春季风大、降雨量少,夏季风小、降雨量大,而风电正好能够弥补火电的缺陷并与水电的枯水期和丰水期有较好的互补性。 一、风电发展现状据统计,从2017年开始,中国的风电总装机连续5年实现翻番,截至2017年底,中国以约4182.7万千瓦的累积风电装机容量首次超越美国位居世界第一,较瓦,到2020年可达1.5亿千瓦。 (二)风电投资企业风电投资企业包括开发商与风电装机制造企业。 从风电开发商的分布来看,更向能源投资企业集中,2017年能源投资企业风电装机在已经建成的风电装机中的比例已高达90%,其中中央能源投资企业的比例超过了80%,五大电力集团超过了50%。 其他国有投资商、外资和民企比例的总和还不到10%,地方国有非能源企业、外企和民企大都退出,仅剩下中国风电、天润等少数企业在“苦苦挣扎,当年新增和累计在全国中的份额也很小。

从风电装机制造企业来看,主要是国内风电整机企业为主,2017年累计和新增的市场份额中,前3名、前5名和前10名的企业的市场占有率,分别达到了55.5%和发电;由沈阳工业大学研制的3mw风电机组也已经成功下线。 此外,中国华锐、金风、东汽、海装、湘电等企业已开始研制单机容量为5mw的风电机组。 中国开始全面迈进多mw级风电机组研制的领域。 2017年,国际上公认中国很难建成自主化的海上风电项目,然而,华锐风电科技集团中标的上海东海大桥项目,用完全中国自主的技术和产品,用两年的时间实现了装机,并于2017年成功投产运营,令世界风电行业震惊。 (四)风电场并网运行管理目前,风电并网主要存在两大问题:风电异地发电机组技术对电网安全稳定产生影响、风的波动性使风电场的输出功率的波动性难以对风电场制定和实施准确的发电计划。 它们使得风电发展受到严重影响。 对于这种电力上网“不给力的现况,国家和电网企业都在积极努力地解决好风电基地电力外送问题,除东北的风电基地全部由东北电网消纳和江苏沿海等近海和海上风电基地主要是就地消纳之外,其余各大风电基地就近消费一部分电力和电量之外的电力外送的基本考虑是:河北风电基地和蒙西风电基地近期主要送入华北电网;2020年前后需要山东电网接纳部分电力和电量;蒙东风电基地近期送入东北电网和华北电网;甘肃酒泉风电基地和新疆哈密风电基地近期送入

中国风电场装机容量统计

年中国风电场装机容量统计 2007 年中国风电场装机基本情况: 2007 年新增市场份额 2007 年累计市场份额: 2007 年新增和累计的市场份额 2007 年分省累计风电装机 2007 年内蒙风电场当年装机 内资与合资制造商全称 2007 年新增中国内资制造商的市场份额 2007 年新增中外合资制造商的市场份额 2007 年新增外资制造商的市场份额 2007 年累计中国内资制造商的市场份额 2007 年累计中外合资制造商新增的市场份额 2007 年累计外资制造商的市场份额 截止2008年2月内蒙风电场装机量 2007 年中国风电场装机容量统计 截止至2008年2月28 数据的基础是风电机组制造商的安装信息,参考了开发商和有关机构的数据,综合整理而成。 说明: 1.鉴于风电场的范围没有明确规定,不对风电场装机容量进行排序。 2.风电场的统计以风电场内的变电站划分,多个业主及项目共享一个场内变电站视为一个风电场,不考虑行政归属、业主的组成和项目的分期建设等。 3. 风电场以地理位置标识,尽量采用风电场内变电站所在位置村一级的地名,再冠以县名,以便区分。希望读者继续提供准确的村级地名和县级地名。 年中国风电场装机基本情况: 2 0 0 7 中国除台湾省外新增风电机2007 年中国除台湾省外累计风电机组6469 台,装机容量590.6 万kW,风电场158 个。分布在21 个省(市、区、特别行政区),比前一年增加了北京、山西、河南、湖北、湖南等六个省市。与2006 年累计装机259.9 万kW 相比,2007 年累计装机增长率为127.2%。 年风电上网电量估计约52 亿kW?h。 2007 年新增市场份额: 中国内资企业产品占55.9%,内资企业的新增市场份额首次超过外资企业。新疆金风的份额最大,占新增总装机的25.1%,内资企业产品的44.9%。 合资企业产品占新增总装机的 1.6%,有中国西班牙合资的航天安迅能和德国中国合资的瑞能北方两家公司。 外资企业产品占42.5%,西班牙Gamesa 的份额最大,占新增总装机的17.0%,外资企业产品的39.9%。

常见的电场电场线分布规律

常见电场电场线分布规律 电场强度、电场线、电势部分基本规律总结 整理:胡湛霏 一、几种常见电场线分布: 二、等量异种电荷电场分析 1、场强: ①在两点电荷连线上,有正电荷到负电荷,电场强度先减小后增大,中点O 的电场强度最小。电场强度方向由正电荷指向负电荷; ②两点电荷的连线的中垂线上,中点O的场强最大,两侧场强依次减小。各 点电场强度方向相同。 2、电势: ①由正电荷到负电荷电势逐渐降低; ②连线的中垂线所在的、并且与通过的所有电场线垂直的平面为一等势面; ③若规定无限远处电势为0,则两点电荷连线的中垂线上各点电势即为0。 3、电势能:(设带电粒子由正电荷一端移向负电荷一端) ①带电粒子带正电:电场力做正功,电势降低,电势能减少; ②带电粒子带负点:电场力做负功,电势降低,电势能增加。 三、等量同种电荷电场分析 1、场强: ①两点电荷的连线上,由点电荷起,电场强度越来越小,到终点O的电场强度 为0,再到另一点电荷,电场强度又越来越大; ②两点电荷连线的中垂线上,由中点O向两侧,电场强度越来越大,到达某一 点后电场强度又越来越小; ③两点电荷(正)连线的中垂线上,电场强度方向由中点O指向外侧,即平行 于中垂线。 2、电势: ①两正点电荷连线上,O点电势最小,即由一个正点电荷到另一正点电荷电势先降低后升高。连线的中垂线上,O电电势最大,即O点两侧电势依次降低。 ②两负点电荷连线上,O点电势最大,即由一个负点电荷到另一负点电荷电势先增高后降低。连线的中垂线上,O点电势最小,即O点两侧电势依次升高。 ③其余各点电势由一般规律判断,顺着电场线方向电势逐渐降低。

3、电势能: ①由电势判断:若带电粒子为正电荷,则电势越高,电势能越大;若带电粒子为负电荷,则电势越高,电势能越小。 ②由功能关系判断:若电场力做负功,则电势能增加;若电势能做正功,则电势能减少。 3、匀强电场 1、特点: ①匀强电场的电场线,是疏密相同的平行的直线。 ②场强处处相等。 ③电荷在其中受到恒定电场力作用,带电粒子在其中只受电场力时做匀变速运动。 2、等势面:垂直于电场线的系列平面。 四、电势、电势能的变化规律 1、电势:q E p = ?(相当于高度) ①根据电场线判断:电势沿电场线方向减小。 ②根据在两点间移动试探电荷,根据电场力做功情况判断电势: 正电荷:电场力做正功,电势能减小,电势降低;电场力做负功,电势能增加,电势升高。 负电荷:电场力做正功,电势能较小,电势升高;电场力做负功,电势能增加,电势降低。 ③根据公式q W AO A = ?和q W BO B =?判断:把电荷q 从将要比较的A 、B 两点分别移到零电势点O ,若做的功分别为AO W 、BO W ,则可根由公式q W AO A = ?和q W BO B =?直接判断出A ?、B ?的高低。 2、电势能:q E p ?=?(相当于重力势能) ①在电场中,无论移动+Q 还是-Q ,只要电场力做正功,Q 的电势能一定减小;只要电场力做 负功,Q 的电势能一定增大。 ②对于正电荷,若电势降低,则电势能一定降低,若电势升高,则电势能一定升高; 对于负电荷,若电势降低,则电势能一定升高,若电势升高,则电势能一定降低; ③电场力做功只与初末位置有关,与运动路径无关。 五、常见等势面 1、点电荷电场中的等势面: 2、等量异种点电荷电场中的等势面: 3、等量同种点电荷电场中的等势面: 以点电荷为球心的一簇球面。 是两簇对称曲面。 是两簇对称曲面。

中国风资源分布

中国有效风力资源分布调查 2007-10-16 16:36 来源:新华网广东频道 中国风力资源十分丰富。根据国家气象局的资料,我国离地10 米高的风能资源总储量约32.26亿千瓦,其中可开发和利用的陆地上风能储量有2.53亿kW,50米高度的风能资源比10米高度多1倍,约为5亿多kW。近海可开发和利用的风能储量有7.5亿kW。 中国有效风能分布图 根据图中国风力资源分布状况图,我国风能资源丰富的地区主要分布在以下地区: (1)三北(东北、华北、西北)地区丰富带,风能功率密度在200~300瓦/米2以上,有的可达500瓦/米2以上,如阿拉山口、达坂城、辉腾锡勒、锡林浩特的灰腾梁等、可利用的小时数在5000小时以上,有的可达7000小时以上。这一风能丰富带的形成,主要是由于三北地区处于中高纬度的地理位置有关。 (2)东南沿海及附近岛屿包括山东、江苏、上海、浙江、福建、广东、广西和海南等省(市)沿海近10 公里宽的地带,年风功率密度在200W/m2米以上。 (3)内陆个别地区由于湖泊和特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区和湖北的九宫山和利川等地区。

(4)近海地区,我国东部沿海水深5米到20米的海域面积辽阔,按照与陆上风能资源同样的方法估测,10米高度可利用的风能资源约是陆上的3倍,即7亿多千瓦。 我国风力资源分布与电力需求存在不匹配的情况。东南沿海地区电力需求大,风电场接入方便,但沿海土地资源紧张,可用于建设风电场的面积有限。广大的三北地区风力资源丰富和可建设风电场的面积较大,但其电网建设相对薄弱,且电力需求相对较小,需要将电力输送到较远的电力负荷中心。海上风电资源丰富且距离电力负荷中心很近。随着海上风电场技术的发展成熟,经济上可行,发展前景势必良好。

风力发电系统电气控制设计毕业论文

风力发电系统电气控制设计毕业论文 1绪论 1.1国内外风力发电的现状与发展趋势 风能属于可再生能源,具有取之不尽、用之不竭、无污染的特点。人类面临的能源、环境两大紧迫问题使风能的利用日益受到重视。我国的风能资源丰富,可利用的潜能很大,大力发展风、水电是我国长期的能源政策。而其中风电是可再生能源中最具发展潜力和商业开发价值的能源方式。从20世纪80年代问世的现代并网风力发电机组,只经过30多年的发展,世界上已有近50个国家开发建设了风电场(是前期总数的3倍),2002年底,风电场总装机容量约31128兆瓦(是前期总数的300倍)。 2005年以来,全球风电累计装机容量年平均增长率为27.3%,新增装机容量年平均增长率为36.1%,保持着世界增长最快能源的地位。2010年全球装机容量达196630MW,新装机容量37642MW,比去年同期增长23.6%。 目前,德国、西班牙和意大利三国的风电机组的装机容量约占到欧洲总量的65%。近年来,在欧洲大力发展风电产业的国家还有法国、英国、葡萄牙、丹麦、荷兰、奥地利、瑞典、爱尔兰。欧洲之外,发展风电的主要国家有美国、中国、印度、加拿大和日本。迄今为止,世界上已有82个国家在积极开发和应用风能资源。 海上风力资源条件优于陆地,将风电场从陆地向近海发展在欧洲已经成为一种新的趋势。有人把风电的发展规划为3步曲,陆上风电技术(当前技术)一近海风电技术(正研发技术)一海上风电技术(未来发展方向)。 2010年北美的装机容量有显著下降,美国年度装机容量首度不及中国;多数西欧国家风能发展处于饱和阶段,但风能产业在东欧国家得到显著发展;非洲风能发展主要集中在北非。 随着海上风电的迅速发展,单机容量为3 -6MW的风电机组已经开始进行商业化运行。美国7MW风电机组已经研制成功,正在研制10MW机组;英国10MW机组也正在进行设计,挪威正在研制 14MW的机组,欧盟正在考虑研制20MW的风电机组,全球各主要风电机组制造厂家都在为未来更大规模的海上风电场建设做前期开发。 1.1.1世界上风力发电的现状 近年来,世界风电发展持续升温,速度加快。现主要以德国、西班牙、丹麦和美国的一些公司为代表,大规模地促进了风电产业化和风机设备制造业的发展。经过四、五年时间的整合,国际上风机制造业大约有十几家比较好的大企业。2003年底,全世界风电是3800万千瓦左右,而2003年一年就增加了400多万千瓦,仅德国到2003

带电细圆环以及薄圆盘的空间电场分布

带电细圆环以及薄圆盘的空间电场分布 孝义市第五中学:蔺金林 摘要: 先介绍电位的两种计算方法,一种是用点电荷的电位分布来计算电位(参考点在无穷远时),一种是用电位与场强的积分关系式来计算电位.然后用两种不同的方法求出均匀带电薄圆盘轴线上的电位和电场.根据点电荷电势和电场的叠加原理,导出了均匀带电细圆环电势和电场的级数表达式,再用叠加法推广到均匀带电圆盘周围空间的电场分布(将均匀带电薄圆盘分割成同心的带电圆环,先求出任一带电圆环电位的空间分布,再进行叠加,由点电荷在空间激发电场的电位公式,用两种方法,一种是线电荷元分割法,一种是面电荷元分割法,求出均匀带电圆盘电位的空间分布). 关键词:均匀带电圆环;均匀带电圆盘;电场;电位

The Space Distribution Of Electric Field Of Charged Thin Ring As Well As Thin Disc ABSTRACT:In this paper, we first introduce two computational methods of the electric potential, one kind is that calculating the electric potential with the point charges’ potential distribution (reference point is in infinite distance), another one is that calculating the electric potential with the electric potential and the field intensity integral relationship. Then extract the spool thread on the even charged thin disc with two different methods. According to the principle of superposition of electric potential and the electric field of the point charges, derive the progression expression of the electric potential and the electric field on the even charged thin ring, again we will use the method of superposition to promote the space distribution of electric field (Divide the even charged thin disc to many a concentric charged rings. Extract first the electric potential spatial distribution no matter where on a charged ring. Again carry on the superposition. From the formula of electric potential stirred up by a point charge, we deduce the space distribution of a uniform charged disc’s electric potential with two methods. One kind is the line charge method, one kind is the surface charge method). KEYWORDS:Even charged ring;Even charged disc;Electric field; Electric potential

电场的分布

专题八 电场的分布 电场的分布问题是近年的高考的热点问题,这部分题目也选择题为主,本专题主要讲解四种情况下的电场分布问题 1、电场由一个或多个点电荷的电场叠加而成,这类题目的处理方法一般为将各个点电荷的场强进行矢量和,也可运用一些已知的结论,如等量同种电荷的场强分布、等量异种电荷的场强分布 2、电场由非点电荷产生,常见的有直杆、圆环或圆环的一部分,平面等。处理这类问题的思路一般是根据对称性或某些特殊位置解决 3、已知等势面的分布判断电场的分布,思路为电场线与等势面垂直,从而画出电场线 4、已知电势的变化规律(φ—x 图象),根据图象的斜率等于场强来判断 1、(2013海南)1.如图,电荷量为q 1和q 2的两个点电荷分别位于P 点和Q 点。已知在P 、Q 连线至某点R 处的电场强度为零,且PR=2RQ 。则 A .q 1=2q 2 B .q 1=4q 2 C .q 1=-2q 2 D .q 1=-4q 2 2、(2010海南)4、(3分)如下图, M 、N 和P 是以为直径的半圈弧上的三点,O 点为半圆弧的圆心,.电荷量相等、符号相反的两个点电荷分 别置于M 、N 两点,这时O 点电场强度的大小为;若将N 点处的点电荷移至P 点,则O 点的场场强大小变为 , 与 之比为 A . B . C . D . 4、(2013江苏)6. 将一电荷量为+Q 的小球放在不带电的金属球附近,所形成的电场线分布如图所示,金属球表面的电势处处相等. a 、b 为电场中的两点,则 (A)a 点的电场强度比b 点的大 (B)a 点的电势比b 点的高 (C)检验电荷-q 在a 点的电势能比在b 点的大 (D)将检验电荷-q 从a 点移到b 点的过程中,电场力做负功 6、(2013山东)19、如图所示,在x 轴上相距为L 的两点固定两个等量异种电荷+Q 、-Q ,虚 线是以+Q 所在点为圆心、2 L 为半径的圆,a 、b 、c 、d 是圆上 的四个点,其中a 、c 两点在x 轴上,b 、d 两点关于x 轴对称,下列说法正确的是( ) A 、b 、d 两点处的电势相同 B 、四个点中c 点处的电势最低 C 、b 、d 两点处的电场强度相同 D 、将一试探电荷+q 沿圆周由a 点移至c 点,+q 的电势能减小 5、(2010上海)9、(3分)三个点电荷电场的电场线分布如图所示,图中a 、b 两点处的场强大小分别为E a 、E b ,电势分别为φa 、φb ,则 …( ) A .E a >E b ,φa >φb B .E a <E b ,φa <φb C .E a >E b ,φa <φb D .E a <E b ,φa >φb 3、(2011重庆)6、(6分)如图所示,电量为+q 和-q 的点电荷分别位于正方体的顶点,正方体范围内电场强度为零的点有 …( ) A .体中心、各面中心和各边中点

中国大陆风资源分布统计

中国大陆风资源分布统计 简介 1.中国大陆风资源总体介绍 中国幅员辽阔,海岸线长,风能资源丰富。在20世纪80年代后期和2004-2005年,中国气象局分别组织了第二次和第三次全国风能资源普查,得出中国陆地10m高度层风能资源的理论值,可开发储量分别为32.26亿kW和43.5亿kW、技术可开发量分别为2.53亿kW和2.97亿kW的结论。此外,2003-2005年联合国环境规划署组织国际研究机构,采用数值模拟方法开展了风能资源评价的研究,得出中国陆地上离地面50m高度层风能资源技术可开发量可以达到14亿kW的结论。2006年国家气候中心也采用数值模拟方法对中国风能资源进行评价,得到的结果是:在不考虑青藏高原的情况下,全国陆地上离地面10m高度层风能资源技术可开发量为25.48亿kW,大大超过第三次全国风能资源普查的数据[1]。 根据第三次风能资源普查结果,中国技术可开发(风能功率密度在150W/m2及其以上)的陆地面积约为20万km2。考虑风电场中风电机组的实际布置能力,按照低限3MW/km2、高限5MW/km2计算,陆上技术可开发量为6亿~10亿kW。根据《全国海岸带和海涂资源综合调查报告》,中国大陆沿岸浅海0~20m等深线的海域面积为15.7万km2。2002年中国颁布了《全国海洋功能区划》,对港口航运、渔业开发、旅游以及工程用海区等作了详细规划。如果避开上述这些区域,考虑其总量10%~20%的海面可以利用,风电机组的实际布置按照5MW/km2计算,则近海风电装机容量为1亿~2亿kW。综合来看,中国可开发的风能潜力巨大,陆上加海上的总量有7亿~12亿kW,风电具有成为未来能源结构中重要组成部分的资源基础[2]。 但是由于我国国土面积广大,地形地貌十分复杂,故而风能资源状况及分布特点随地形、地理位置不同而有所不同。本文将借助Interface Vortex在线分析

电源内部的电场分布

电源内部的电场分布 安徽省萧县中学李峰 核心提示:并不能认为电源内电势均匀地连续的分布着,总是存在着由正极指向负极的 电场。在电源内,也并非由“非静电力”把直接把正电荷由负极传送到电源正极...... 普通高中课程标准《物理》实验教科书(人民教育出版社,2010年4月第三版),第二 章第二节,关于电源的电动势,有这样一段叙述:“由于正、负极总保持一定数量的正、负 电荷,所以电源内部总存在着由正极指向负极的电场。在这个电场中,正 电荷所受的静电力阻碍它继续向正极移动。因此在电源内要使正电荷向正 极移动,就一定要有‘非静电力’作用于电荷才行。”其彩色插图电源部 分如图1: 图1 本人认为:教材对电动势和电源内部电场分布不加区别,不加分析的作如此笼统的概括 的叙述,不仅不符合电源内部实际电场分布,还给学生认识和理解电源内部电场造成知识 和思维上的混乱,更增加了理解电源电动势的难度。 下面我们以蓄电池为例,分析电动势的产生及电源内部的电场分布。 我们知道,蓄电池产生电动势的基本原理都是相同的.都是靠作为正、负两极的不同材 质的金属板(棒,下略)和与金属板附近的电解液之间的化学作用,即“非静电力”将金属 板和电解液中正、负电荷分离,在极板附近产生电偶极层,形成电势差,从而完成将化学能 转化为电能的过程。而正负两电极电势差之和,就是该电源的电动势。 当电路断开时,在电源负极,在“非静电力”作用下,金属离子与电子分离。进入电解 液的正离子与留在金属棒上的电子形成电偶极层,在此电偶极层中,电场方向由极层上正离 子指向负极极板,这一电场阻碍金属离子的进一步分离。当电场力与“非静电力”达到动态 平衡时,溶液与电极间形成相对稳定的电势差,即在电源负极处形成一次电势跃变,记作 U CD。而发生电势跃变的空间尺度应当是很小的。 同理,在电源正极,电极与电解液产生化学作用,溶液中正离子积聚到电源正极。使正 极上积聚的正离子与正极附近电解液中负离子形成电偶极层,电场方向由正极指向溶液,这 一电场阻碍正离子在正极进一步聚集。当电场力与使溶液中正离子积聚到 正极上的化学力即“非静电力”达到动态平衡时,正极与电解液间形成相 对稳定的电势差,即在正极附近也形成一次电势跃变,其电势差记作U AB。 同样,发生此电势跃变的空间尺度也很小。如图2: 图2 以上分析可以看出,在电源内部,除了AB间存在着由A指向B,CD间存在着由C指向 D的电场外,相对于AB,CD发生电势跃变的电偶极层更为广大的BC区域内,并不存在着由 负极指向正极的电场。AB与CD两个电偶极层的电荷在BC区间产生的电场方向相反,合场 强为零。各处电势相等,电源电动势等于两电极处电势跃变之和。即 E=U AB+U CD。 当外电路接通时,负极上电子沿外电路流向正极,形成由正极流向负极的电流。而在电 源内部,负极上电子减少,必然有与之形成电偶的正离子脱离电偶极层进入电源内部的电解液,动态平衡破坏。在“非静电力”作用下,负极又将释放新的正离子使得负极上的电子得

中国风电发展现状与潜力分析

中国风电发展现状与潜力分析 风能资源作为一种可再生能源取之不尽,中国更是风能大国,据统计中国风能的技术开发量可达3亿千瓦-6亿千瓦,而且中国风能资源分布集中,有利于大规模的开发和利用。 据考察中国的风能资源主要集中在两个带状地区,一条是“三北(东北、华北、西北)地 区丰富带”即西北、华北和东北的草原和戈壁地带;另一条是“沿海及其岛屿地丰富带”,即东部和东南沿海及岛屿地带。这些地区一般都缺少煤炭等常规能源并且在时间上冬春季风大、降雨量少,夏季风小、降雨量大,而风电正好能够弥补火电的缺陷并与水电的枯水期 和丰水期有较好的互补性。 一、风电发展现状 据统计,从2017年开始,中国的风电总装机连续5年实现翻番,截至2017年底,中国 以约4182.7万千瓦的累积风电装机容量首次超越美国位居世界第一,较 瓦,到2020年可达1.5亿千瓦。 (二)风电投资企业 风电投资企业包括开发商与风电装机制造企业。从风电开发商的分布来看,更向能源投资企业集中,2017年能源投资企业风电装机在已经建成的风电装机中的比例已高达90%, 其中中央能源投资企业的比例超过了80%,五大电力集团超过了50%。其他国有投资商、外资和民企比例的总和还不到10%,地方国有非能源企业、外企和民企大都退出,仅剩下中国风电、天润等少数企业在“苦苦挣扎”,当年新增和累计在全国中的份额也很小。从风 电装机制造企业来看,主要是国内风电整机企业为主,2017年累计和新增的市场份额中,前3名、前5名和前10名的企业的市场占有率,分别达到了55.5%和 发电;由沈阳工业大学研制的3mw风电机组也已经成功下线。此外,中国华锐、金风、 东汽、海装、湘电等企业已开始研制单机容量为5mw的风电机组。中国开始全面迈进多mw级风电机组研制的领域。2017年,国际上公认中国很难建成自主化的海上风电项目,然而,华锐风电科技集团中标的上海东海大桥项目,用完全中国自主的技术和产品,用两 年的时间实现了装机,并于2017年成功投产运营,令世界风电行业震惊。 (四)风电场并网运行管理 目前,风电并网主要存在两大问题:风电异地发电机组技术对电网安全稳定产生影响、风 的波动性使风电场的输出功率的波动性难以对风电场制定和实施准确的发电计划。它们使 得风电发展受到严重影响。对于这种电力上网“不给力”的现况,国家和电网企业都在积极 努力地解决好风电基地电力外送问题,除东北的风电基地全部由东北电网消纳和江苏沿海 等近海和海上风电基地主要是就地消纳之外,其余各大风电基地就近消费一部分电力和电 量之外的电力外送的基本考虑是:河北风电基地和蒙西风电基地近期主要送入华北电网;

大气电场与空间电场

大气电场 大气电场也称自然电场,是地球环境中存在的一种自然现象,并对地球环境中的植物生长发育以及病虫害发生与发展产生着一种“无形”控制,它是继光、温度、水分、空气、土壤、肥料之后于上世纪九十年代才发现的新要素。大气电场的形成是由带负电荷的地球和带正电荷的电离层组成的类似于球形电容器产生的,因此,大气电场的方向指向地面,其强度随时间、地点、天气状况和离地面的高度而变。按天气状况可分为晴天大气电场和讯变大气电场。图2-18给出了全球大气电过程的球形电容器模型,其中E0为大气电场的电场强度。 图2-18全球大气电过程的球形电容器模型(图片设计:韩大鹏刘滨疆) 2.2.4.1 晴天大气电场 晴天大气电场为正电场,具有空间分布特征。其电场强度可随纬度、气溶胶含量、地面高度、局地特点、时间变化而变化。 1)晴天大气电场局地特点与植物的多样性相关 大陆上地面晴天大气电场随地点的变化较为复杂,就全球平均而言,电场强度E0在陆地上为120伏/米,在海洋上为130伏/米。我国广州的大气电场的平均值为87 v·m-1,日较差为11%,而伊宁则为56 v·m-1,日较差为129%,各地区大气电场的不同会导致植物生长变化的多样性。 2)晴天大气电场场强也因时因地而异 通常,晴天大气电场随高度增加近似呈指数规律递减的分布特征。然而,即使在同一时刻,晴天大气电场在不同高度范围内随高度的分布规律也不尽相同,在贴近地面的大气层中,

晴天大气电场将受大地电极效应的影响。由于大地带负电荷,因而在贴近地面的一薄层大气中积累了大量符号相反的正电荷,而且体电荷密度在该气层中很不均匀,具有随高度增加而急剧递减的变化特征,于是该气层中便形成了较强的大气电场。晴天大气电场受大地电极效应影响而增大1倍的高度分别为1m和5m左右,高度为零处的晴天大气电场为未受大地电极效应影响的晴天大气电场的2.8倍。 根据静电学感应原理,贴近地面的晴天大气电场强度的增加,其植物体表层将感应出更多的荷负电的离子。阴离子积累在植株叶缘或叶脉等尖端部位最易获得大气正电荷的中和而发生化学反应。比如叶内的OH-负离子,它可对大气中阳离子或荷正电荷的粒子放电而发生4OH—-4e=O2↑+2H20的还原反应。感应积累于叶面表层的OH-在日光电磁场的激发下很易在气孔等棱缘处放出电子,这个反应也许同植物的光合作用放氧有关。在人为施加静电场的环境中,有些植物也能在黑暗中进行光合作用就是对这一推测的正确性的证明。 3)晴天大气电场时变性 晴天大气电场具有较明显的日变化和年变化,还存在周期约几分钟至十几分钟的脉动起伏变化。晴天大气电场日变化的波形受两种机制的影响,一种是全球普遍变化的机制,主要与全球雷暴活动的日变化有关,另一种是地方性局地变化机制,主要与局地大气状况的日变化所导致大气电导率和大气体电荷密度等大气电学量的日变化有关。根据世界各国的观测结果,可将地面晴天大气电场日变化归纳为二种基本类型。 第一类为地面晴天大气电场日变化具有单峰单谷的变化波形。通常,这类地面晴天大气电场日变化的峰值出现在下午至傍晚,即地方时13时至19时左右。谷值多出现在清晨,即地方时2时至6时左右,远离人口密集的大城市、工业区和气溶胶自然源地的小城镇和乡村地区,其地面晴天大气电场日变化有些属于这一类型。这类地区的植物可在晴天大气电场向峰值变化时从土壤中获得阴离子HCO3-、OH-等,又可在晴天大气电场由峰值向谷值变化时吸收阳离子C a+2等。因而,这类地区的植物在每日中有两次大规模吸收阴离子或阳离子的时间,这类地区的生物产量往往不会太高。 第二类为大陆复杂型。这类地面晴天大气电场日变化具有双峰双谷的变化波形.通常,第一峰值多出现在上午地方时7时至10时左右,第二峰值多出现在晚间地方时18时至21时左右,第一谷值多出现在清晨地方时2时至6时左右,第二谷值多出现在下午地方时13时至16时左右,离人口密集的大城市、工业区和气溶胶自然源地较近的地区的地面晴天大气电场日变化多属于这一类型。这类地区的植物在每日里分别有两次大规模地吸收阴离子和阳离子的时间,故其生物产量一般高于单峰单谷地区。

我国风力发电场地分布情况

我国风力发电场的分布情况 我国有效风能分布图 根据图中国风力资源分布状况图,我国风能资源丰富的地区主要分布在以下地区: (1)三北(东北、华北、西北)地区丰富带,风能功率密度在200~300瓦/米2以上,有的可达500瓦/米2以上,如阿拉山口、达坂城、辉腾锡勒、锡林浩特的灰腾梁等、可利用的小时数在5000小时以上,有的可达7000小时以上.这一风能丰富带的形成,主要是由于三北地区处于中高纬度的地理位置有关. (2)东南沿海及附近岛屿包括山东、江苏、上海、浙江、福建、广东、广西和海南等省(市)沿海近10 公里宽的地带,年风功率密度在200W/m2米以上. (3)内陆个别地区由于湖泊和特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区和湖北的九宫山和利川等地区. (4)近海地区,我国东部沿海水深5米到20米的海域面积辽阔,按照与陆上风能资源同样的方法估测,10米高度可利用的风能资源约是陆上的3倍,即7亿多千瓦. 根据中国气象科学研究院绘制的全国平均风功率密度分布图,中国陆地10m高度层的风能总储量为32.26亿KW,居世界第一位。我国陆上实际可开发风能资源储量为2.53亿千瓦,近

海风场的可开发风能资源是陆上3倍,则总的可开发风能资源约10亿千瓦。也就是说,如果中国的风力资源开发60%,那么仅风能就可以支撑中国目前每年全部的电力需求。 中国的风电资源不仅丰富,而且分布基本均匀。东南沿海及其岛屿、青藏高原、西北、华北、新疆、内蒙古和东北部分地区都属于风能储藏量比较丰富的地区,而甘肃、山东、苏北、皖北等地区也有相当大比例的风能资源可以有效利用。我国陆地上从新疆、甘肃、宁夏到内蒙古,是一个大风力带;同时还有许多大风口,如张家口地区,鄱阳湖湖口地区、云南大理等。这些为风能的集中开发利用提供了极大的便利。 到2008年底,中国的风电装机容量达到1200万千瓦,现在在全世界是位居第四位,装机容量近三年来是连续成倍增长。如果按照现在这样的增长速度,到2010年底,可能会达到3000万千瓦。 目前中国已经有20多个省区开发建设了风电场,已建成风电场近240个,安装风电机组1.1万多台。按照有关规划,未来两年,中国将在河北、内蒙古、辽宁、吉林、新疆等地区建成10多个百万千瓦级的大型风电基地,并初步形成几个千万千瓦级风电基地。除了发展陆上风电外,中国还将加快海上风电建设。 由上图可知中国的风力资源主要集中在一下几个地方: 新疆、内蒙古、黑龙江、辽宁、吉林、山东、甘肃、河北、浙江、上海、江苏、福建、广东、海南等地 一下是这几个地方的风电场分布情况: 1.新疆 以下是新疆主要的几个风电场: 新疆省是目前中国风力发电最大的省。 达坂城风电一厂:装置32台100~600千瓦机组,共12100千瓦 达坂城风电二厂:装置146台300~600千瓦机组,共75000千瓦 布尔津风电厂:装置7台150千瓦机组,共1050千瓦。总装机4.95万千瓦的新疆新华布尔津风电场开工建设。届时,布尔津县风电总装机容量为14.85万千瓦,每年可提供绿色电能3.6亿度。 阿拉山口风电厂:装置2台600千瓦机组,共1200千瓦。总投资5.2183亿元的国电新疆阿拉山口风电场总体规划装机容量1000兆瓦。现阶段已经规划的200兆瓦分四期建设。一、二期规划装机各49.5MW,计划今明两年完成,“十二五”初期完成三、四期开发建设。目前一期49.5MW风电项目33台风机吊装工作已经全部完成,预计今年10月底投产发电。在整个施工过程中,工程人员加班加点,工程未受“7·5”事件影响。阿拉山口是新疆著名的九大风区之一,全年8级以上大风就有165天,具有风力强、风向稳定和风频率高等特点,极具风电开发潜力。 乌鲁木齐托里风电厂:位在乌鲁木齐县托里乡,装置20台1500千瓦机组,共3万千瓦宁夏省

相关文档
最新文档