直线和圆锥曲线常考题型 (2)

直线和圆锥曲线常考题型 (2)
直线和圆锥曲线常考题型 (2)

直线和圆锥曲线常考题型

运用的知识: 1、中点坐标公式:1212,y 22

x x y y

x ++=

=,其中(,x y )是点

1122(,)(,)A x y B x y ,的中点坐标。

2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,

1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一,

AB ===

=

或者

AB ===

= 3、两条直线111222:

,:l y k x b l y k x b =+=+垂直:则121k k =-

两条直线垂直,则直线所在的向量120v v =r r

g

4、韦达定理:若一元二次方程2

0(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a

+=-=。

常见的一些题型:

题型一:数形结合确定直线和圆锥曲线的位置关系

例题1、已知直线:1l y kx =+与椭圆22

:

14x y C m

+=始终有交点,求m 的取值范围

解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆22

:

14x y C m +=过动点04m ±≠(,且,如果直线

:1l y kx =+和椭圆22

:14x y C m

+

=14m ≥≠,且,即14m m ≤≠且。 规律提示:通过直线的代数形式,可以看出直线的特点:

:101l y kx =+?过定点(,) :(1)1l y k x =+?-过定点(,0) :2(1)1l y k x -=+?-过定点(,2)

题型二:弦的垂直平分线问题

例题2、过点T(-1,0)作直线l 与曲线N :2

y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,

求出0x ;若不存在,请说明理由。

解:依题意知,直线的斜率存在,且不等于0。 设直线:

(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。

由2(1)y k x y x =+??=?

消y 整理,得

2222(21)0k x k x k +-+= ①

由直线和抛物线交于两点,得

2242(21)4410k k k ?=--=-+>

即21

04

k <

<

② 由韦达定理,得:212221

,k x x k -+=-121x x =。 则线段AB 的中点为22

211

(,)22k k k

--。 线段的垂直平分线方程为:

2

2

1112()22k y x k k k --=--

令y=0,得0

21122x k =

-,则211

(,0)22

E k -

ABE ?Q 为正三角形,

∴211

(

,0)

22

E k -到直线AB 的距离d 。

AB =Q

=

2d k

=

222k k

=

解得k

=满足②式 此时0

53

x =

。 题型三:动弦过定点的问题

例题3、已知椭圆C :22221(0)x y a b a b

+=>>x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。

(I )求椭圆的方程; (II )若直线:(2)l x

t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN

是否通过椭圆的焦点?并证明你的结论 解:(I )由已知椭圆C 的离心率3

2

c e

a =

=,2a =,则得3,1c b ==。 从而椭圆的方程为2

214

x y += (II )设11(,)M x y ,22(,)N x y ,直线1A M

的斜率为1k ,则直线1A M

的方程为1(2)y k x =+,由122

(2)

44y k x x y =+??+=?

消y 整理得

222121(14)161640k x k x k +++-=

12x -Q 和是方程的两个根,

2112

1

164

214k x k -∴-=+ 则2

112

12814k x k -=+,11

21414k y k =+,

即点M 的坐标为211

22

11284(,)1414k k k k -++,

同理,设直线A 2N 的斜率为k 2,则得点N 的坐标为222

22

22

824(,)1414k k k k --++ 12(2),(2)p p y k t y k t =+=-Q

12122

k k k k t

-∴

=-+,

Q 直线MN 的方程为:

121

121

y y y y x x x x --=

--,

∴令y=0,得211212

x y x y x y y -=

-,将点M 、N 的坐标代入,化简后得:4x t

=

又2t

>Q ,∴402t

<

< Q 椭圆的焦点为(3,0)

4

3t

∴=,即433t =

故当43t =

时,MN 过椭圆的焦点。

题型四:过已知曲线上定点的弦的问题

例题4、已知点A 、B 、C 是椭圆E :22

221x y a b

+= (0)a b >>上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中

心O ,且0AC BC =u u u r u u u r g ,2BC AC =u u u r u u u r

,如图。

(I)求点C 的坐标及椭圆E 的方程;

(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3x

=对称,求直线PQ 的斜率。

解:(I) 2BC AC =u u u r u u u r

Q ,且BC 过椭圆的中心O

OC AC

∴=u u u r u u u r

0AC BC =u u u r u u u r Q g

2

ACO π

∴∠=

又 A (23,0)Q

∴点C 的坐标为3,3)。 Q A (23,0)是椭圆的右顶点,

3a ∴=

22

2112x y b

+= 将点C 3,3)代入方程,得24b =,

∴椭圆E 的方程为22

1124

x y +=

(II)Q 直线PC 与直线QC 关于直线3x

=

∴设直线PC 的斜率为k ,则直线QC 的斜率为k -,从而直线PC 的方程为:

(y k x =-,即

)y kx k =+-,

由22)

3120

y kx k x y ?=+-??

+-=??消y ,整理得:

222(13)(1)91830k x k x k k ++-+--

=x =Q

22

918313P k k x k

--∴=+

即2P x =

同理可得:

2Q x =

))P Q P Q y y kx k kx k -=-++Q

=()P Q k x x +-

22P Q x x -=

13

P Q PQ P Q

y y k x x -∴=

=

- 则直线PQ 的斜率为定值13

。 题型五:共线向量问题

例题5、设过点D(0,3)的直线交曲线M :22

194

x y +=于P 、Q 两点,且DP DQ l =uuu r uuu r ,求实数l 的取值范围。

解:设P(x 1,y 1),Q(x 2,y 2),

Q DP DQ l =uuu r uuu r

\(x 1,y 1-3)=l (x 2,y 2-3)

即121

23(3)x x y y l l ì=??í?=+-??? 方法一:方程组消元法

又Q P 、Q 是椭圆29x +24

y =1上的点

\22222222

194()(33)194x y x y l l l ì??+=???í?+-?+=????

消去x 2,

可得

222

222

(33)14

y y l l l l +--=- 即y 2=

135

6l l - 又Q -2£y 2£2,

\-2£

135

6l l

-£2 解之得:

1

55

λ≤≤ 则实数l 的取值范围是

1,55??????

。 方法二:判别式法、韦达定理法、配凑法 设直线PQ 的方程为:

3,0y kx k =+≠,

由22

3

4936

y kx x y =+??

+=?消y 整理后,得 22(49)54450k x kx +++= Q P 、Q 是曲线M 上的两点

22(54)445(49)k k ∴?=-?+=2144800k -≥

即2

95k

≥ ①

由韦达定理得:

1212

22

5445

,4949k x x x x k k +=-

=++

21212

1221

()2x x x x x x x x +=++Q

222

254(1)45(49)k k λλ

+∴=+

2222

36944

15(1)99k k k λλ+==++ ②

由①得2

11

095

k <

≤,代入②,整理得 2

36915(1)5

λλ<

≤+, 解之得1

55

λ<<

当直线PQ 的斜率不存在,即0x =时,易知5λ=或15

λ=

。 总之实数l 的取值范围是1,55??????

。 题型六:面积问题

例题6、已知椭圆C :12222=+b

y a x (a >b >0)的离心率为,36

短轴一个端点到右焦点的距离为3。 (Ⅰ)求椭圆C 的方程;

(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为

2

3

,求△AOB 面积的最大值。

解:(Ⅰ)设椭圆的半焦距为c

,依题意c a a ?=

???=?

1b ∴=,∴所求椭圆方程为2

213

x y +=。

(Ⅱ)设

11()A x y ,,22()B x y ,。

(1)当

AB x ⊥

轴时,AB =。

(2)当AB 与x 轴不垂直时,

设直线

AB 的方程为y kx m =+。

由已知

2

=

,得2

23(1)4m k =+。

y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,

122631

km

x x k -∴+=+,21223(1)31m x x k -=+。

2

2

2

21(1)()AB k x x ∴=+-2222

222

3612(1)(1)(31)31k m m k k k ??

-=+-??++??

222222222

12(1)(31)3(1)(91)

(31)(31)

k k m k k k k ++-++==++

2

42

2

2

121212

33(0)34

1

961236

96

k

k

k k k

k

=+=+≠+=

++?+

++

≤。

当且仅当2

2

1

9k

k

=,即

3

3

k=±时等号成立。当0

k=时,3

AB=,

综上所述

max

2

AB=。

∴当AB最大时,AOB

△面积取最大值

max

133

222

S AB

=??=。

题型七:弦或弦长为定值问题

例题7、在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点。

(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;

(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由。

(Ⅰ)依题意,点N的坐标为N(0,-p),可设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+p,与x2=2py联立得

?

?

?

+

=

=

.

2

2

p

kx

y

py

x

消去y得x2-2pkx-2p2=0.

由韦达定理得x1+x2=2pk,x1x2=-2p2.

于是

2

1

2

2

1

x

x

p

S

S

S

ACN

BCN

ABN

-

?

=

+

=

?

?

?

2

1

2

2

1

2

1

4

)

(x

x

x

x

p

x

x

p-

+

=

-

=.2

2

8

42

2

2

2

2+

=

+k

p

p

k

p

p

222min 0p S k ABN ==∴?)时,(当.

(Ⅱ)假设满足条件的直线l 存在,其方程为y=a,AC 的中点为为直与AC t O ,'径的圆相交于点P 、Q ,PQ 的中点为H ,则

点的坐标为(2

,2,11p

y x O PQ H O +'⊥' 212

1)(2121p y x AC P O -+=='Θ

=22121p y +. ,22

1

211p y a p y a H O --=+-

=' 2

2

2

H

O P O PH '-'=∴

=

21221)2(4

1

)(41p y a p y ---+ =),()2

(1a p a y p

a -+-

22

)2(PH PQ =∴

=.)()2(4

2??

????-+-a p a y p a 令02=-

p a ,得p PQ p a ==此时,2为定值,故满足条件的直线l 存在,其方程为2

p

y =, 即抛物线的通径所在的直线. 解法2:

(Ⅰ)前同解法1,再由弦长公式得

2

2222122122128414)(11p k p k x x x x k x x k AB +?+=-+?+=-+=

=.21222+?+k k p

又由点到直线的距离公式得2

12k

p d

+=

.

从而,

,22122122121222

22+=+?+?+?=??=

?k p k p k k p AB d S ABN

.22max 02p S k ABN ==∴?)时,(当

(Ⅱ)假设满足条件的直线t 存在,其方程为y=a ,则以AC 为直径的圆的方程为

,0))(())(0(11=-----y y p y x x x 将直线方程y=a 代入得

).

(1)2(4))((4,

0))((121112a p a y p a y a p a x y a p a x x x -+??????

-=---?=----=则 设直线l 与以AC 为直径的圆的交点为P (x 2,y 2),Q (x 4,y 4),则有

.)()2(2)()2(41143a p a y p a a p a y p a x x PQ -+-=??

?

???-+-=-=

令p PQ p a p a ===-

此时得,2,02为定值,故满足条件的直线l 存在,其方程为2

p

y =.

即抛物线的通径所在的直线。 题型八:角度问题

例题8、(如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足:

6.PM PN +=

(Ⅰ)求点P 的轨迹方程; (Ⅱ)若

2·1cos PM PN MPN

-∠=

,求点P 的坐标.

解:(Ⅰ)由椭圆的定义,点P 的轨迹是以M 、N 为焦点,长轴长2a =6的椭圆. 因此半焦距c =2,长半轴a =3,从而短半轴

b =

225a c -=,

所以椭圆的方程为22

1.95

x y += (Ⅱ)由2

,1cos PM PN MPN

=

-g 得

cos 2.PM PN MPN PM PN =-g g ①

因为cos 1,MPN

P ≠不为椭圆长轴顶点,故P 、M 、N 构成三角形.在△PMN 中,4,MN =由余弦定理有

2

2

2

2cos .MN PM PN PM PN MPN =+-g ②

将①代入②,得 22

2

4

2(2).PM PN PM PN =+--g

故点P 在以M 、N

为焦点,实轴长为2

213

x y -=上. 由(Ⅰ)知,点P 的坐标又满足22

195

x y +=,所以 由方程组22225945,3 3.x y x y ?+=??+=??

解得x y ?=????=??

即P 点坐标为

.

问题九:四点共线问题

例题9、设椭圆22

22:1(0)x y C a b a b

+=>>

过点M

,且着焦点为1(F

(Ⅰ)求椭圆C 的方程;

(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段AB 上取点Q ,满足

AP QB AQ PB

=u u u r u u u r u u u r u u u r

g g ,证明:点Q

总在某定直线上 解 (1)由题意:

2222222

211c a b c a b

?=?

?+=??

?=-? ,解得22

4,2a b ==,所求椭圆方程为 22142x y += (2)方法一

设点Q 、A 、B 的坐标分别为1122(,),(,),(,)x y x y x y 。

由题设知

,,,AP PB AQ QB u u u r u u u r u u u r u u u r

均不为零,记AP AQ PB QB

λ==u u u r u u u r

u u u r u u u r

,则0λ>且1λ≠

又A ,P ,B ,Q 四点共线,从而,AP PB AQ QB λλ=-=u u u r u u u r u u u r u u u r

于是 12

41x x λλ-=

-, 12

11y y λλ-=-

121x x x λλ+=+, 12

1y y y λλ

+=

+

从而

222

12

2

41x x x λλ-=-,L L

(1) 222

12

2

1y y y λλ-=-,L L

(2)

又点A 、B 在椭圆C 上,即

221124,(3)x y +=L L 22

2224,(4)x y +=L L

(1)+(2)×2并结合(3),(4)得424s y +=

即点(,)Q x y 总在定直线220x y +-=上

方法二

设点1122(,),(,),(,)Q x y A x y B x y ,由题设,

,,,PA PB AQ QB u u u r u u u r u u u r u u u r

均不为零。

PA PB AQ QB

=u u u r u u u r u u u r u u u r

,,,P A Q B 四点共线,可设,(0,1)PA AQ PB BQ λλλ=-=≠±u u u r u u u r u u u r u u u r

,于是

1141,11x y

x y λλλλ--=

=

-- (1) 2241,11x y

x y λλλλ++==

++ (2) 由于

1122(,),(,)A x y B x y 在椭圆C 上,将(1),(2)分别代入C 的方程22

24,x y +=整理得

222(24)4(22)140x y x y λλ+--+-+= (3) 222(24)4(22)140x y x y λλ+-++-+= (4)

(4)-(3) 得

8(22)0x y λ+-=

0,220x y λ≠+-=∵∴

即点(,)Q x y 总在定直线220x y +

-=上

问题十:范围问题(本质是函数问题)

设1F 、2F 分别是椭圆14

22

=+y x 的左、右焦点。 (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF 的最大值和最小值; (Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点)

,求直线l 的斜率k 的取值范围。

解:

(Ⅰ)解法一:易知2,1,a

b c ===

所以(

))1

2

,F F ,设(),P x y ,则

(

))

2212,,

,3PF PF x y x y x y ?=--=+-u u u r u u u u r

()22

21

133844

x x x =+--=-

因为[]2,2x ∈-,故当0x =,即点P 为椭圆短轴端点时,12PF PF ?u u u r u u u u r

有最小值2-

当2x =±,即点P 为椭圆长轴端点时,12PF PF ?u u u r u u u u r 有最大值1

解法二:易知2,1,a

b c ===

(

))12

,F F ,设(),P x y ,则

22212121212121212cos 2PF PF F F PF PF PF PF F PF PF PF PF PF +-?=??∠=???u u u r u u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u r u u u u r

(

(2

2

2

2221

1232x y x y x y ??=+++-=+-?

???

(以下同解法一)

(Ⅱ)显然直线0x

=不满足题设条件,可设直线()()1222:2,,,,l y kx A x y B x y =-,

联立22

2

1

4

y kx x y =-???+=??,消去y ,整理得:2214304k x kx ??+++= ???

∴12

122

2

43,114

4

k x x x x k k +=-

?=

+

+

由()2214434304k k k ?

??

=-+?=-> ??

?

得:2k <

或2k >-

又0

0090cos 000A B A B OA OB <∠??>u u u r u u u r

∴12120OA OB x x y y ?=+>u u u r u u u r

又()()()2

121212122224y y kx kx k x x k x x =++=+++2

2

223841144

k k k k -=++++

2211

4k k -+=+ ∵

2223

1

01144

k k k -++>++

,即24k < ∴22k -<<

故由①、②得32k -<<-

3

2k << 问题十一、存在性问题:(存在点,存在直线y=kx+m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)

设椭圆E:

22

22

1x y a b +=(a,b>0)过M (2,2) ,N(6,1)两点,O 为坐标原点, (I )求椭圆E 的方程;

(II )是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥u u u r u u u r

?若存在,写出该圆的方程,并求|AB

|的取值范围,若不存在说明理由。

解:(1)因为椭圆E:

22

22

1x y a b +=(a,b>0)过M (2,2) ,N(6,1)两点, 所以2222421611a b a b +=+=???????解得2211

8

114a b

?=????=??所以22

84a b ?=?=?椭圆E 的方程为

22184x y += (2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点

A,B,且OA OB ⊥u u u r u u u r

,设该圆的切线方程为

y kx m =+解方程组22

18

4x y y kx m +==+?????得222()8x kx m ++=,即222

(12)4280k x kmx m +++-=, w.w.w.k.s.5.u.c.o.m 则△=2

22222164(12)(28)8(84)0k

m k m k m -+-=-+>,即22840k m -+>

1222

1224122812km x x k m x x k ?

+=-??+?-?=?+?

,

2222222

2

212121212222

(28)48()()()121212k m k m m k y y kx m kx m k x x km x x m m k k k --=++=+++=-+=

+++要使OA OB ⊥u u u r u u u r

,

需使12120x x y y +=,即22222

28801212m m k k k --+=++,所以223880m k --=,所以223808

m k -=≥又22

840k m -+>,所以22

238

m m ?>?≥?,所以2

83m ≥,即26m ≥或6

3

m ≤-

,因为直线

y kx m =+为圆心在原点的圆的一条切线,所以圆的半径

为2

1m

r k =+,222

228381318

m m r m k ===-++

,

26r =,所求的圆为

2283

x y +=

,此时圆的切线

y kx m =+都满足

26m ≥

26

m ≤,而当切线的斜率不存在时切线为26x =22

184

x y +=的两个交点为2626(或

2626(,)-±满足OA OB ⊥u u u r u u u r ,综上, 存在圆心在原点的圆228

3x y +=,使得该圆的任意一条切线与椭圆

E 恒有两个交点

A,B,且OA OB ⊥u u u r u u u r . 因为122

2

12241228

12km x x k m x x k ?

+=-??+?-?=?+?

,

所以2222

2

21212122222

4288(84)

()()4()41212(12)km m k m x x x x x x k k k --+-=+-=--?=+++,

()

222

2

2

2

2

12121222

8(84)||()(1)()(1)

(12)k m AB x x y y k x x k k -+=-+-=+-=++

4224242

3245132[1]34413441

k k k k k k k ++=?=+++++, ①当0k

≠时2

2321

||[1]1344

AB k k

=

+++

因为2

2

1448k

k +

+≥所以2211

01844k k

<≤++, 所以2

232321[1]1213344

k k

<+≤++,

所以

4

6||233

AB <≤当且仅当22k =±时取”=”. w.w.w.k.s.5.u.c.o.m ② 当0k =时,46

||3

AB =

. ③ 当AB 的斜率不存在时, 两个交点为2626(

或2626(,所以此时46

||AB =综上, |AB |的取值范围为

46||233AB ≤: 4

||[6,23]3

AB ∈

圆锥曲线常见题型及答案

圆锥曲线常见题型归纳 一、基础题 涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。此类题在考试中最常见,解此类题应注意: (1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况; (3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中 222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=; 例题: (1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( ) A .421=+PF PF B .6 21=+PF PF C .1021=+PF PF D .122 2 2 1 =+PF PF (答:C ); (2) 方程8=表示的曲线是_____ (答:双曲线的左支) (3)已知点)0,22(Q 及抛物线4 2 x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2) (4)已知方程1232 2=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11 (3,) (,2)22 ---); (5)双曲线的离心率等于25 ,且与椭圆14 922=+y x 有公共焦点,则该双曲线的方程_______(答:2 214x y -=); (6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为 _______(答:226x y -=) 二、定义题 对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。常用到的平面几何知识有:中垂线、角平分线的性质,勾股定理,圆的性质,解三角形(正弦余弦定理、三角形面积公式),当条件是用向量的形式给出时,应由向量的几何形式而用平面几何知识;涉及圆的解析几何题多用平面几何方法处理; 圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例): ①范围:,a x a b y b -≤≤-≤≤; ②焦点:两个焦点(,0)c ±; ③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为 2a ,短轴长为2b ; ④准线:两条准线2 a x c =±; ⑤离心率:c e a =,椭圆?01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。 p e c b a ,,,,

圆锥曲线的七种常考题型详解【高考必备】

圆锥曲线的七种常考题型 题型一:定义的应用 1圆锥曲线的定义: (1) 椭圆 ________________________________________________________________ (2) 双曲线 ________________________________________________________________ (3) 抛物线 ________________________________________________________________ 2、 定义的应用 (1) 寻找符合条件的等量关系 (2 )等价转换,数形结合 3、 定义的适用条件: 典型例题 2 2 2 2 例1、动圆M 与圆C i : x 1 y 36内切,与圆C 2: x 1 y 4外切,求圆心M 的 轨迹方程。 例2、方程x 6 2 y 2 x 6 $ y 2 8表示的曲线是 __________________ 题型二:圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断) 1、椭圆:由x 2、y 2分母的大小决定,焦点在分母大的坐标轴上。 2、双曲线:由x 2、y 2系数的正负决定,焦点在系数为正的坐标轴上; 3、抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 典型例题 (1) 是椭圆;(2)是双曲线. 例1、已知方程 x 2 1表示焦点在y 轴上的椭圆,贝U m 的取值范围是 _______________ 例2、k 为何值时,方程 1表示的曲线:

题型三:圆锥曲线焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题 1常利用定义和正弦、余弦定理求解 2、 PF 1 m, PF 2 n , m n, m n, mn, m 2 n 2四者的关系在圆锥曲线中的应用 典型例题 2 2 例1、椭圆x 2 每 i (a b 0)上一点P 与两个焦点F i , F 2的张角FPF , a b 求F 1PF 2的面积。 例2、已知双曲线的离心率为 2, F i 、F 2是左右焦点,P 为双曲线上一点,且 F 1PF 2 60 , S F ,PF 2 12:一3 .求该双曲线的标准方程 题型四:圆锥曲线中离心率,渐近线的求法 1、a,b,c 三者知道任意两个或三个的相等关系式,可求离心率,渐进线的值; 2、a,b,c 三者知道任意两个或三个的不等关系式,可求离心率,渐进线的最值或范围; 3、注重数形结合思想不等式解法 典型例题 2 例1 >已知F 1、F 2是双曲线一2 a 2 r 1( .2 1 ( a b 0 b 0 )的两焦点,以线段 F 1 F 2为边作 正三角形MFF 2,若边MF 1 2 例2、双曲线—2 a 上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为 A. (1 , 3) B. 13 C.(3,+ ) D. 3, B. 3 2 話 1(a

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

高考圆锥曲线中的定点与定值问题(题型总结超全)

专题08解锁圆锥曲线中的定点与定值问题 一、解答题 1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点. (Ⅰ)求椭圆的标准方程; (Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标. 【答案】(1)(2) 【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得 。设x轴上的定点为,可得 ,由定值可得需满足,解得可得定点坐标。 解得。 ∴椭圆的标准方程为. (Ⅱ)证明: 由题意设直线的方程为, 由消去y整理得, 设,,

要使其为定值,需满足, 解得 . 故定点的坐标为 . 点睛:解析几何中定点问题的常见解法 (1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意. 2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k 的直线l 经过点()1,0-与抛物线2 :2C y px =(0,p p >为常数)交于不同的两点,M N ,当1 2 k =时,弦MN 的长为15(1)求抛物线C 的标准方程; (2)过点M 的直线交抛物线于另一点Q ,且直线MQ 经过点()1,1B -,判断直线NQ 是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1)24y x =;(2)直线NQ 过定点()1,4- 【解析】试题分析:(1)根据弦长公式即可求出答案; (2)由(1)可设()()() 2221122,2,,2,,2M t t N t t Q t t ,则1 2 MN k t t =+, 则()11:220MN x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++= ()1212:220NQ x t t y t t -++=. 由()1,0-在直线MN 上1 1 t t ?= (1); 由()1,1-在直线MQ 上22220t t tt ?+++=将(1)代入()121221t t t t ?=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ?-+-+-=,即可得出直线NQ 过定点.

圆锥曲线大题专题训练答案和题目

圆锥曲线大题专题训练 1.如图,曲线G 的方程为22(0)y x y =≥.以原点为圆心.以(0)t t >为半径的圆分别 与曲线G 和y 轴的正半轴相交于点A 与点B .直线AB 与x 轴相交于点C . (Ⅰ)求点A 的横坐标a 与点C 的横坐标 c 的关系式 (Ⅱ)设曲线G 上点D 的横坐标为2a +, 求证:直线CD 的斜率为定值. 1.解: (Ⅰ)由题意知,(A a . 因为OA t =,所以2 2 2a a t +=.由于0t > 由点(0)(0)B t C c ,,,的坐标知,直线BC 的方程为 1c t +=. 又因点A 在直线BC 上,故有 1a c +=,将(1)代入上式,得1a c =, 解得2c a =+ (Ⅱ)因为(2D a +,所以直线CD 的斜率为 1CD k = ===-. 所以直线CD 的斜率为定值. 2.设F 是抛物线2 :4G x y =的焦点. (I )过点(04)P -,作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足0FA FB =u u u r u u u r g ,延长AF ,BF 分别交抛物线G 于点C D ,,求 四边形ABCD 面积的最小值. 2.解:(I )设切点2 004x Q x ?? ???,.由2x y '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为 2000()42x x y x x -=-. 即2 04 24x x y x =-. 因为点(0)P -4,在切线上. 所以2 044 x -=-,2 016x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,. 由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >.

圆锥曲线常见综合题型整理(供参考)

【知识点梳理】 一、直线与圆锥曲线的位置关系 注意:直线与椭圆、抛物线联立后得到的方程一定是一元二次方程(二次项系数a 不为0),但直线与双曲线联立后得到的不一定是一元二次方程,因此需分类讨论。 即: 1. 一次方程,只有一个解,说明直线与双曲线相交,只有一个交点,此时直线与渐进性平行; 2. 二次方程,?? ???>?=??≠且a 此外,在设直线方程时,要注意直线斜率不存在的情况。 二、直线与圆锥曲线相交的弦长公式 设直线l :y=kx+n ,圆锥曲线:F(x,y)=0,它们的交点为P 1 (x 1,y 1),P 2 (x 2,y 2), 且由???+==n kx y y x F 0),(,消去y →ax 2+bx+c=0(a ≠0),Δ=b 2 -4ac >0。 则弦长公式为: 4)(1 ||1||212212122x x x x k x x k AB ?-+?+=-?+=。 三、用点差法处理弦中点问题 设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 【典型例题】 题型一 直线与圆锥曲线的交点问题 例 1 k 为何值时,直线2y kx =+和曲线22 236x y +=有两个公共点?有一个公共点?没有公共点?

圆锥曲线经典例题及总结(全面实用,你值得拥有!)

圆锥曲线 1.圆锥曲线的两定义: 第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 方程22 Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A ,B ,C 同号,A ≠B )。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。方程 22Ax By C +=表示双曲线的充要条件是什么?(ABC ≠0,且A ,B 异号)。 (3)抛物线:开口向右时2 2(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时 22(0)x py p =>,开口向下时22(0)x py p =->。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由x 2 ,y 2 分母的大小决定,焦点在分母大的坐标轴上。 (2)双曲线:由x 2,y 2 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 提醒:在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 4.圆锥曲线的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两 个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。 (2)双曲线(以22 2 21x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 22 ,0x y k k -=≠;④准线:两条准线2a x c =±; ⑤离心率:c e a =,双曲线?1e >,等轴双曲线 ?e =e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。 (3)抛物线(以2 2(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2 p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);

(完整版)高考圆锥曲线题型归类总结(最新整理)

)直接法:直接利用条件建立之间的关系; 和直线的距离之和等于 ),端点向圆作两条切线

的距离比它到直线的距离小于 :和⊙:都外切,则动圆圆心 代入转移法:动点依赖于另一动点的变化而变化,并且又在某已知曲线上,则可先用的代数式表示,再将代入已知曲线得要求的轨 是抛物线上任一点,定点为,分所成的比为 参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。 过抛物线的焦点作直线交抛物线于

?OA OB ⊥?121K K ?=-?0OA OB ?= ?12120 x x y y += ②“点在圆内、圆上、圆外问题” “直角、锐角、钝角问题” “向量的数量积大于、等于、小于0问题”?? >0; ?1212x x y y + ③“等角、角平分、角互补问题” 斜率关系(或);?120K K +=12K K = ④“共线问题” (如: 数的角度:坐标表示法;形的角度:距离转化法); AQ QB λ= ?(如:A 、O 、B 三点共线直线OA 与OB 斜率相等);? ⑤“点、线对称问题” 坐标与斜率关系;? ⑥“弦长、面积问题” 转化为坐标与弦长公式问题(提醒:注意两个面积公式的合理选择);?六、化简与计算;七、细节问题不忽略; ①判别式是否已经考虑;②抛物线问题中二次项系数是否会出现0.基本解题思想: 1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无关;⑵也可先在特殊条件下求出定值,再给出一般的证明。 4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求出定点;⑵也可先取参数的特殊值探求定点,然后给出证明 5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 7、思路问题:大多数问题只要忠实、准确地将题目每个条件和要求表达出来,即可自然而

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

圆锥曲线大习题习题型归纳

圆锥曲线大题题型归纳 基本方法: 1. 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a 、b 、c 、e 、p 等等; 2. 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题; 3. 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根; 4. 点差法:弦中点问题,端点坐标设而不求.也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式; 5. 距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题; 基本思想: 1.“常规求值”问题需要找等式,“求范围"问题需要找不等式; 2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解; 3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关; 4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决; 5.有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 6.大多数问题只要真实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。 题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题 例1、 已知F 1,F 2为椭圆2100x +2 64 y =1的两个焦点,P 在椭圆上,且∠F 1 PF 2=60°,则△F 1 P F2的面积为多少? 点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。 变式1、 已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且 12F PF ∠=120?,求12F PF ?的面积。

圆锥曲线大题题型归纳3

圆锥曲线大题题型归纳 基本方法: 1. 待定系数法:求所设直线方程中的系数,求标准方程中的待定系数a 、b 、c 、e 、p 等等; 2. 齐次方程法:解决求离心率、渐近线、夹角等与比值有关的问题; 3. 韦达定理法:直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。要注意:如果方程的根很容易求出,就不必用韦达定理,而直接计算出两个根; 4. 点差法:弦中点问题,端点坐标设而不求。也叫五条等式法:点满足方程两个、中点坐标公式两个、斜率公式一个共五个等式; 5. 距离转化法:将斜线上的长度问题、比例问题、向量问题转化水平或竖直方向上的距离问题、比例问题、坐标问题; 基本思想: 1.“常规求值”问题需要找等式,“求范围”问题需要找不等式; 2.“是否存在”问题当作存在去求,若不存在则计算时自然会无解; 3.证明“过定点”或“定值”,总要设一个或几个参变量,将对象表示出来,再说明与此变量无关; 4.证明不等式,或者求最值时,若不能用几何观察法,则必须用函数思想将对象表示为变量的函数,再解决; 5.有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验; 6.大多数问题只要真实、准确地将题目每个条件和要求表达出来,即可自然而然产生思路。 题型一:求直线、圆锥曲线方程、离心率、弦长、渐近线等常规问题 例1、 已知F 1,F 2为椭圆2100x +2 64 y =1的两个焦点,P 在椭圆上,且∠F 1PF 2=60°,则△F 1PF 2的面积为多少? 点评:常规求值问题的方法:待定系数法,先设后求,关键在于找等式。 变式1、已知12,F F 分别是双曲线223575x y -=的左右焦点,P 是双曲线右支上的一点,且

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型 总论:常用的八种方法 1、定义法 2、韦达定理法 3、设而不求点差法 4、弦长公式法 5、数形结合法 6、参数法(点参数、K 参数、角参数) 7、代入法中的顺序 8、充分利用曲线系方程法 七种常规题型 (1)中点弦问题 (2)焦点三角形问题 (3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题 1.曲线的形状已知--------这类问题一般可用待定系数法解决。 2.曲线的形状未知-----求轨迹方程 (6) 存在两点关于直线对称问题 (7)两线段垂直问题 常用的八种方法 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、设而不求法 解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 02 20=+k b y a x 。(其中K 是直线AB 的斜率) (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 020 20=-k b y a x (其中K 是直线AB 的斜率) (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. (其中K 是直线AB 的斜率) 4、弦长公式法 弦长公式:一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 2 0++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·| |12a k △ ·+,若直接用结论,能减少配方、开方等运算过程。 5、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来

圆锥曲线基本题型总结

圆锥曲线基本题型总结:提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题:

4、韦达定理的应用: 一、定义的应用: 1. 定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处 理) 1.设F1, F2 为定点,|F1F2| =6,动点M满足|MF1| + |MF2| = 6,则动点M的轨 迹是() A.椭圆 B.直线 C.圆 D.线段【注:2a>|F1 F2| 是椭圆,2a=|F1 F2|是线段】 2. 设 B - 4,0) , C4,0),且厶ABC的周长等于18,则动点A的轨迹方程为) x2 y2 y2 x2 A.25+ -9 = i y z0) B.25^9 = 1 徉0) x2 y2 y2 x2 C.^+16= 1 y z 0) D£+_9 = 1 y z 0) 【注:检验去点】 3. 已知A0, - 5)、B0,5) ,|PA| - |PB| = 2a,当a= 3 或 5 时,P点的轨迹为) A. 双曲线或一条直线 B. 双曲线或两条直线 C. 双曲线一支或一条直线

D. 双曲线一支或一条射线【注:2av|F1 F2|是双曲线,2a=|F1 F2|是射线,注意一支与两支的判断】

圆锥曲线高考常见题型与分析

圆锥曲线高考常见题型与分析 湖南 黄爱民 有关圆锥曲线的高考命题一般紧扣课本,突出重点,全面考查.既有对基础知识的考查,又有与其他知识的综合考查,通过知识的重组与链接,使知识形成网络,下面例谈圆锥曲线高考题常见类型. 一、轨迹问题 例1 椭圆方程为2 2 14y x +=,过点(01)M ,的直线l 交椭圆于点A B O ,,是坐标原点,点P 满足1()2 OP OA OB =+u u u r u u u r u u u r ,当l 绕点M 旋转时,求动点P 的轨迹方程. 解:设()P x y ,,11()A x y ,,22()B x y ,, 由题意,得122x x x +=,122 y y y +=,21211y y y x x x --=-. 又∵A B ,在椭圆上, 代入椭圆方程并相减,得121212121()()()()04x x x x y y y y -++-+=. 当12x x ≠时,有121212121()04y y x x y y x x -++ +=-g . 即112204y x y x -+=g g , 整理,得2240x y y +-=;① 当12x x =时,点A B ,的坐标分别为(02),,(02)-,,这时点P 的坐标为(00),,也满足①. 故点P 的轨迹方程为:2 212111 1616 y x ??- ???+=. 评析:本题主要考查椭圆的方程和性质等基础知识及轨迹的求法与应用和综合解题能力.利用点差法是求解的关键. 二、对称问题 例2 已知椭圆C 的方程22 143 x y +=,试确定m 的取值范围,使得C 上有不同的两点关于直线4y x m =+对称. 解:设椭圆上两点为11()A x y ,,22()B x y ,, 代入椭圆方程并相减,得121212123()()4()()0x x x x y y y y +-++-=.①

圆锥曲线常见题型解法42140

高中数学常见题型解法归纳及反馈检测第81讲; 圆锥曲线常见题型解法 【知识要点】 圆锥曲线常见的题型有求圆锥曲线的方程、几何性质、最值、范围、直线与圆锥曲线的关 系、圆锥曲 与x 轴垂直. (1)求椭圆的方程; (2)过A 作直线与椭圆交于另外一点 B ,求 AOB 面积的最大值. 【解析】⑴有已知h u 二土,—二近一二b 扛、*: = 4; 故驱方曲訐才" 心)当一毎斜率不存険h £*^ =;工〉匝乂2 = 2忑, 当曲斜率存在吋;设其方程为:了―C = 耳技工半" > = + 4C^5-2jt)Ax+2(^-2jfc)*-8=0 , jc _ +2>" =& 由已知:A = 16(^2 -2Q 2it 2-8<2^ + 1)[(<5-4]= 8(2t 十?V nO, 线与圆锥曲线的关系、轨迹方程、定点定值问题等 【方法讲2 x 【例1】已知椭圆— a 2 占1 ( a b 0 )的左、右焦点为 R , F ?,点A (2, .. 2)在椭圆上,且AF 2 b

O 到直线的距离:才」 二 Ss 弓|屈逅口- .'.2P + 1E [14U (2’S, 二 2-養吕 €[-24)1102), 二此时临, 综上所求:当 AB 斜率不存在或斜率存在时: AOB 面积取最大值为 2 2 ? (1)求椭圆M 的方程; A 、B 两点,且以AB 为直径的圆过椭圆的右顶点 C ,求△ ABC 面积的 最大值. 【例2】已知椭圆 2 2 务占1 a b a b 0的左顶点和上顶点分别为 A 、 B ,左、右焦点分别是F 1,F 2 , 在线段AB 上有且只有一 个点 P 满足PF 1 PF ?,则椭圆的离心率的平方为( ) A.乜 B 巧1 V 5 C . D . .5 1 2 2 3 2 【点评】(1) 求圆锥曲线的方程,一般利用待定系数法,先定位,后定量 .(2)本题用到了椭圆双曲 线的通径公式d 竺,这个公式很重要,大家要记熟 a 【反馈检测1】已知椭圆 2 2 a 2 b 2 1 (a b 0)的离心率为 晋,且椭圆上一点与椭圆的两 个焦点构成的三角形的周长为 4.2 ? (2)设直线I 与椭圆M 交于

圆锥曲线经典题型总结(含答案)

圆锥曲线整理 1.圆锥曲线的定义: (1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d . 圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时 要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在x 轴上时12 222=+b y a x (0a b >>),焦点在y 轴上时22 22b x a y +=1(0a b >>)。 (2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:22 22b x a y -=1(0,0a b >>)。 (3)抛物线:开口向右时22(0)y px p =>,开口向左时2 2(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。 注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。 2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): 椭圆:由x 2 ,y 2分母的大小决定,焦点在分母大的坐标轴上。 双曲线:由x 2 ,y 2项系数的正负决定,焦点在系数为正的坐标轴上; 抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 在椭圆中,a 最大,2 2 2 a b c =+,在双曲线中,c 最大,2 2 2 c a b =+。 3.与双曲线x 2a 2- y 2 b 2 =1有相同渐近线的双曲线方程也可设为x 2a 2- y 2 b 2 =λ(λ≠0), 渐近线方程为y =±b a x 的双曲线方程也可设为x 2a 2- y 2 b 2 =λ(λ≠0).要求双曲线x 2a 2- y 2b 2 =λ(λ≠0)的渐近线,只需令λ=0即可. 4.直线与圆锥曲线的位置关系的判断是利用代数方法,即将直线的方程与圆锥曲线的方程联立,根据方程组解的个数判断直线与圆锥曲线的位置关系. 解决直线与圆锥曲线问题的通法 (1)设方程及点的坐标. (2)联立直线方程与曲线方程得方程组,消元得方程. (3)应用韦达定理及判别式. (4)结合已知、中点坐标公式、斜率公式及弦长公式求解. 5.若直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),且直线P 1P 2的斜率为 k ,则弦长|P 1P 2|=1+k 2|x 1-x 2|= 1+1 k 2|y 1-y 2|(k ≠0).|x 1-x 2|,|y 1-y 2|

圆锥曲线常见题型归纳

圆锥曲线常见题型归纳 一、基础题 涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。此类题在考试中最常见,解此类题应注意: (1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况; (3)注意2,2,a a a ,2,2,b b b ,2 ,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=; 二、定义题 对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。常用到的平面几何知识有:中垂线、角平分线的性质,勾股定理,圆的性质,解三角形(正弦余弦定理、三角形面积公式),当条件是用向量的形式给出时,应由向量的几何形式而用平面几何知识;涉及圆的解析几何题多用平 p e c b a ,,,,

面几何方法处理; 三、直线与圆锥曲线的关系题 (1)写直线方程时,先考虑斜率k 存在,把直线方程设为b kx y +=的形式,但随后应对斜率k 不存在的情况作出相应说明,因为k 不存在的情况很特殊,一般是验证前面的结论此时是否成立; (2)联立直线方程和圆锥曲线方程,消去x 或消去y ,得到方程02=++c bx ax ① 或02=++c by ay ②,此方程是后一切计算的基础,应确保不出错。 (3)当方程①或②的二次项系数0=a 时,方程是一次方程,只有唯一解,不能用判别式,这种情况是直线与双曲线的渐近线平行或直线与抛物线的对称轴平行;(过抛物线外一点作与抛物线只有一个公共点的直线有三条,过双曲线含中心的区域内一点(不在渐近线上)作与双曲线只有一个公共点的直线有四条;) (4)当方程①或②的二次项系数0≠a 时,判别式△0<、△0=、△0>,与之相对应的是,直线与圆锥曲线分别相离、相切、相交。如直线与圆锥曲线有公共点,应用△0≥来求斜率k 的范围; (5)直线与圆锥曲线相交成弦(前提0≠a ,△0>),记为AB ,其中),(11y x A ,),(2 2y x B ,AB 的坐标可由方程①或

相关文档
最新文档