基于狄拉克方程的边缘态理论与应用

基于狄拉克方程的边缘态理论与应用
基于狄拉克方程的边缘态理论与应用

基于狄拉克方程的边缘态理论与应用

在量子霍尔效应的启示下,科学家们曾预言自然界中可能存在一种新的无自发对称破缺的物质状态。近年来发现的拓扑绝缘体恰好验证了该项理论。

拓扑绝缘体是当前凝聚态物理领域的热点问题,这类材料的典型特征是体内元激发存在能隙,但在边界上具有受能隙保护的无能隙边缘激发。我们基于狄拉克方程的边缘态解,从理论上讨论了边缘态形成的主要原因,即体系哈密顿量在时间反演对称下保持不变,导致体系具有两支在禁带内交义形成狄拉克锥的稳定结构。为了更加深刻的理解边缘态的概念,我们还利用BerneVig-HUgheS-Zhang模型,从细节上研究了山连续模型到附加边缘效应的过程。此外,我们简单介绍了第一个从实验上实现的拓扑绝缘材料HgTe/CdTe量子阱。

关键词拓扑绝缘体;量子霍尔效应;狄拉克方程

第一章绪论

在经典物理学中,人们常常根据朗道对称破缺理论对物质进行分类,大多数物质的简单相态或相变,都可以从对称性破缺的观点来了解。但近年来,凝聚态物理中发现的一种新的物理态一一整数量子霍尔效应和分数量子霍尔效应一一颠覆了这项理论。为了弄清楚它们的结构,人们把拓扑这个近代数学中的重要概念引进到了凝聚态物理中,拓扑绝缘体正是基于这项理论而发展起来的。

传统材料按照其导电特性可分为:导体,半导体,绝缘体三种。导体在费米能级附近存在一定密度的电子态,当加上足够小的电压时,电荷元就能够被激发,系统中就会出现电流(如图la)。半导体和绝缘体的费米面存在于禁带之中,电荷激发成为自曲电子需要克服一个有限大小的能隙,需要很大能量,因而一般不易导电(如图Ib)O拓扑材料则是一种十分特殊的绝缘体,理论上讲,这种材料内部是典型的绝缘体结构,但在它的表面,存在一些特殊受拓扑保护的量子态,这些边缘态联通了体系的价带顶和导带顶,从而使拓扑绝缘体的表面能够导电(如图Ic,图Id)。

(a) (b) (C) (d)

图1能带示意图,其中(a)为导体,(b)为绝缘体,(C)为拓扑绝缘体,(d)为时间反演不变的拓扑绝缘体

拓扑保护的一维边缘态曾在HgTe/CdTe量子阱中被预言,随后被证实, 很快,含祕的固体化合物中乂被预言存在拓扑绝缘体,不同实验组通过角分辨电子光谱的方法,在晞化钳,硒化钮等化合物中观察到了拓扑保护的表面量子态,这类材料山于自身存在较强的自旋轨道耦合,使得在不依赖外部磁场作用的下,表现出在表面,存在受到时间反演不变性保护的量子态。拓扑绝缘体近年来受到极大关注,部分原因是因为在自旋电子学和量子计算可能的技术应用。最近,人们乂在石墨烯中发现了奇特的电子结构,下面儿节,我们将具体讨论在石墨烯和一维HgTe/CdTe中的拓扑绝缘体。

从理论上,这类材料山狄拉克方程描述。由于时间反演不变性,自旋相反的两类手征态在费米面交叉,形成狄拉克锥。曲于边界周期性条件的存在,使得材料的布里渊区形成带有孔洞的(亏格)封闭曲面,这与没有边界限制的情形截然不同,此时将会在材料的边缘出现连接导带和价带的边缘态,从而其表面可以导电,内部绝缘。

当X轴或Y轴存在限制时,有边界条件的情况下,求解薛定谴方程,得到哈密顿量的精确解,即为边缘态。这种拓扑绝缘体的实现大多是在存在强磁场的情况下,然而,有一种材料在不加磁场时,山于其自身的自旋轨道耦合作用,即存在边缘态,成为了拓扑绝缘体,它的时间反演不变性完全没有被破坏,下面,将简要描述下石墨烯的Kane-MeIe模型以及二维HgTe/CdTe 量子阱。

本文将从理论上讨论拓扑绝缘材料的理论基础。首先给出边缘态理论,我们利用简单但极具启发性的BerneVing-HUgheS-Zhang模型介绍边缘态的基本概念;然后针对一类具体的拓扑绝缘材料,从狄拉克方程出发,基于理论和数值再现材料的边缘态;最后简要给出总结与展望。

第一节Kane-Me I e 模型

石墨烯是一种二维的碳纳米材料,它的每个碳原子有四个价电子,这四 个价电子通过杂化形成O ?键,剩下的电子通过共价结合形成兀 键,在费米面附近,它的电子性质主要靠兀键决定,石墨这种奇特的电子 结构引起了人们的注意。05年,Kdne 与MeIe 通过对单层石墨的研究,预 言了石墨烯中的量子自旋霍尔效应的存在,在S=自旋守恒的假设下, Kane-MeIe 模型的哈密顿量H 被写作

其中〈“)表示最近邻原子,第一项表示最近邻跃迁。将近邻原子标记为k, d 辻表示位置k 到i 的矢量,贝9式中v.. =2(^?×?)∕√3=±1,第二项 表示次近邻原子的自旋轨道耦合作用。

由该哈密顿量H 描述的系统具有时间反演不变性,以 (C AT , C By , C AI , C Bl )为基,有 H=(H Ha I dan (φ = -∕Γ∕2)

_ O H IIeIIdane t V

(―&)

其中(1.1.2)式由(1.1.1)式变换到动量空间得到,通过上述两个互为 时间反演的Haldane 模型,我们可以得出Kane-MeIe 模型的整个系统时间 反演不变的结论。

通过对上述哈密顿量的傅里叶变换及展开,Kane 和MeIe 给出了石墨烯 中量子自旋霍尔态的具体区域:‰-Λ >√U 2V ÷9Λ2),其中几V 为 位能交错势。同

时,计算霍尔电导发现,非磁性杂质并不影响量子霍尔自 旋态。 O

、 HaIdane^ (Φ =Z + 兀'丿

1

÷-?

UJ

O

1 O π ka 2π Oπ ka 2π

图2 Kane-MeIe模型的能带和相图

可以看出Kane-MeIe模型边缘态的实现并非山于外加磁场的作用,而是由于其自身自旋轨道的耦合,其时间反演不变性完全未被破坏,该模型作为早期模型,对拓扑绝缘体的初期研究有不可估量的作用。

第二节二维HgTe/CdTe量子阱

山于磁场的导入破坏了体系的时间反演不变性,不引入磁场而实现自旋量子霍尔效应的模型最早山Kane和MeIe在Haldane模型的基础上通过引入自旋轨道耦合项而实现的,山于石墨烯的体能隙大约只有10^?ev,非常小,使得该系统只存在非常微弱的自旋轨道耦合作用,因此,至今为止,实验上还没有观测到石墨烯的量子自旋霍尔效应,寻找新的,具有强自旋轨道耦合的材料就变得十分有必要。2006年,有人在理论上预言了自旋量子霍尔效应可以在二维HgTe/CdTe 量子阱中实现,随后,该预言被德国一所大学的实验组证明。

HgTe/CdTe材料中,CdTe与半导体性质类似,它的S型对称电子在导带上而P型对称电子则在价带上,对于H g Te材料来说,由于Hg原子序数大,较重,使得血Te的自旋耦合作用远远大于CdTe,导致了能带的反转,从而令材料表现出了一种拓扑性质,如图3所示。

HgTo

? F 6 Γ6 HgTB El

HI CdTe

CdTe

CdTe ■ ■ ?w ■ Λ* 分 **? N

CeiTe El 4

----------------- ? ------ 几 Γ8 -------- ?— .............. ......……?

c c 图 3

d /∕l , d > d

e 时,E } < H X 考虑靠近费米能级的四个带,以|乓+,丁〉,∣Λ∕I +Λ), I 耳一,巧, E I -A)为

基矢,以泡利矩阵b,?表示两个子能带,可以在厂点得到有效的 四个能带的哈

密顿量

He 〃(匕'仇)=(S) H *( + ) =(*) + %(花)巧(121)

d ? + id? = q(Vι -H i^y ) ≡ A 花+(1 2 2)

d 3=M-B(k A 2+k y 2) E fi =C-Ddk 初(1.2.3)

A, B, C, D 均依赖于材料参数,由式中可以看出,参数H 可以连续变化, 当

M>0时,量子阱尺寸d

时,量子阱尺寸d>d c ,能带发生反转,系统为拓扑绝缘体,d 二£为临界 点,该点处,系统发生拓扑量子相变。图4为系统分别处于两态时能带图。

-0.10 -0.05 0.00 0.05 0.10-0.10 -0.05 0.00 0.05 0.10

k(ττ) k(π)

2O O -2OOOOOO 3 2 2

图4 (a)为系统处于拓扑绝缘态时能带图,(b)为系统处于正常绝

缘体时能带图

第二章狄拉克方程的边缘态

第一节边缘态

2. 1. 1 BerneV i ng-HUgheS-Zhang (BHZ)模型

为了清楚地理解边缘态的概念,我们从简单但极具启发性的BHZ 模型入 手。该模型描述了自旋粒子在晶格中的跃迁,它的精确哈密顿量为:

H 伙)= [A + coskγ + cosk Jcr.+A(SinCQl+sin 忍务)(2. 1. 1. 1)

其中△表示塞曼能级分裂,A 表示体系的自旋轨道耦合。从哈密顿量的形式 看,它是个简单的两带模型,在不考虑边缘态的情况下,能谱形成两支被 能隙隔离的价带和导带。为了简单起见,我们仅讨论“半” BHZ 模型,即该 模型仅在其中一个维度上作限定,使其满足周期性边界条件,而另一维度 保持原有的状态,因此在该维度上,它的动量分量依然是好量子数。

2. 1.2洋” BHZ 模型

(2. 1. 1. 1)式中所得精确哈密顿量是在未限定边界条件的惜况下求得的, 假设我们对y 限制边界,x 仍取无边界情况。首先利用欧拉公式将(2. 1. 1. 1) 式中三角函数转化为自然指数形式,X 方向保持原有的状态不变,可以得到 下式:

将边界条件N 代入上式:

(2」22)

e iky 和可变换为: 其中仏.+ι∣和仏」为近邻原子。

得到哈密顿方程精确解为:

1→

e ,kV → ∑∣n .v + 1){n y e ~,kv → +ι∣ (2.1.2.3)

H =[Δ + cosZ:A +

]σ7 + A(Sink V σx + σv ) (2.1.2.1)

Hg=氏?0(") + e.亿(町 +氏(加)+ ?£(〃)+氏心"(加)(2? 1- 2. 4) 该式仅依赖于X 方向的动量分量。

基于哈密顿量的矩阵形式,我们可以通过严格对角化给出体系的能谱, 我们注意到该哈密顿量的矩阵元含有虚数项,但山于哈密顿量是厄米的,对角化时需要将矩阵的维数扩大一倍,进而得到两支能谱。具体的结果如图可示。从图上我们可以看到在价带顶和导带底山两条自旋相反的边缘态联系起来,它们在费米面出交义形成狄拉克锥,山于时间反演不变的保护,它们的状态是稳定的,只有改变体系的拓扑结构才能破坏这种稳定性。而改变体系的拓扑结构意味着改变原有的哈密顿量,只有外部条件的引入才能导致哈密顿量连续性的遭到破坏。

-4 -2 0 2 4

kx

图5

第二节狄拉克方程下的边缘态

我们以三维拓扑绝缘体BicSe3为模型,我们同样仅考虑半无限情形的边界条件。假定该材料是沿Z轴生长的薄膜材料,因此在该维度上体系的状态将受到限制,而在x-y平面保持电子的平面波状态。Ill于材料中存在强的自旋轨道耦合作用,两个具有相反宇称的轨道巳在了点发生了能带反转, 使得BicSe3/点附近的电子结构可以决定该材料的拓扑性质,在Se和Bi 的P轨道耦合的情况下,

我们以{∣77ζΛ),∣p27Λ),∣pltΛ),∣p27Λ)}为基矢,

偏微分方程理论的归纳与总结

偏微分方程基本理论的归纳与总结 偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显著差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象. 根据数学的特征,偏微分方程主要被分为五大类,它们是: (1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法; (2)椭圆型方程,它的方法是先验估计+泛函分析手段; (3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计; (4)双曲型方程,对应于Galerkin方法; (5)一阶偏微分方程,主要工具是数学分析方法. 从自然界的运动类型出发,偏微分方程可分为如下几大类: (1)稳态方程(非时间演化方程); (2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容; (3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征; (4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制. 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论. 关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green 函数方法. 关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green 函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier 变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性. 椭圆、抛物和双曲这三类线性偏微分方程解的适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则的求解区域试图求出满足特定线性偏微分方程和定解条件的具体解,这就决定了存在性问题;再利用方程本身所具有的特殊性质,将证明所求解是唯一的,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空

偏微分方程的历史与应用

偏微分方程的历史及应用 数学与信息科学学院 09级数学与应用数学专业 学号 09051140129 姓名项猛猛 摘要 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,很多重要的物理、力学等学科的基本方程本身就是偏微分方程。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。本文旨在介绍偏微分方程的起源和历史,以及偏微分方程在人口调查、传染病动力学等实际问题中的应用。了解偏微分方程曲折的发展史并了解其广阔的应用前景,从而激励读者更深入的学习和研究偏微分方程。 关键字偏微分方程偏微分方程历史偏微分方程应用 引言 偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁.本文阐述了偏微分方程的发展历史及在实际生活中的应用,为以后更深入的研究及更广的应用提供了例证。 正文 一、偏微分方程的起源及历史 微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶偏微分方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。这些著作当时没有引起多大注意。1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。这样就由对弦振动的研究开创了偏微分方程这门学科。 和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。 对物理学中出现的偏微分方程研究在十八世纪中叶导致了分析学的一个新的分支------数学物理方程的建立。 J.达朗贝尔(D’Alembert)(1717-1783)、L.欧拉(Euler)(1707-1783)、D.伯努利(Bernoulli)(1700-1782)、J.拉格朗日(Lagrange)(1736-1813)、P.拉普拉斯(Laplace)(1749-1827)、S.泊松(Poisson)(1781-1840)、J.傅里叶(Fourier)(1768-1830)等人的工作为这一学科分支奠定了基础。它们在考察具体的数学物理问题中,所提出的思想与方法,竟适用于众多类型的微分方程,成为十九世纪末偏微分方程一般理论发展的基础。 十九世纪,偏微分方程发展的序幕是由法国数学家傅里叶拉开的,他于1822

常微分方程在数学建模中的应用(免费版)

常微分方程在数学建模中的应用 这里介绍几个典型的用微分方程建立数学模型的例子. 一、人口预测模型 由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型. 例1( 马尔萨斯 (Malthus ) 模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型. 解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ?+时间段内,人口的增长量为 t t rN t N t t N ?=-?+)()()(, 并设0t t =时刻的人口为0N ,于是 ?????==. , 00)(d d N t N rN t N 这就是马尔萨斯人口模型,用分离变量法易求出其解为 )(00e )(t t r N t N -=, 此式表明人口以指数规律随时间无限增长. 模型检验:据估计1961年地球上的人口总数为9 1006.3?,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3?=N ,02.0=r ,于是 ) 1961(02.09 e 1006.3)(-?=t t N . 这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间地球上的人 口大约每35年翻一番,而上式断定34.6年增加一倍(请读者证明这一点). 但是,后来人们以美国人口为例,用马尔萨斯模型计算结果与人口资料比较,却发现有很大的差异,尤其是在用此模型预测较遥远的未来地球人口总数时,发现更令人不可思议的问题,如按此模型计算,到2670年,地球上将有36 000亿人口.如果地球表面全是陆地(事实上,地球表面还有80%被水覆盖),我们也只得互相踩着肩膀站成两层了,这是非常荒谬的,因此,这一模型应该修改. 例2(逻辑Logistic 模型) 马尔萨斯模型为什么不能预测未来的人口呢?这主要是地

常微分方程的实际应用

常微分方程的实际应用 于萍 摘要:常微分方程在当代数学中是极为重要的一个分支,它的实用价值很高,应用也很广泛,本文主要介绍常微分方程在几何、机械运动、电磁振荡方面的应用,并举例说明,体会常微分方程对解决实际问题的作用,在解决实际问题过程中通常是建立起实际问题的数学模型,也就是建立反映这个实际问题的微分方程,求解这个微分方程,用所得的数学结果解释实际问题,从而预测到某些物理过程的特定性质,以便达到能动地改造世界,解决实际问题的目的。 关键字:常微分方程,几何,机械运动,电磁振荡,应用

Abstract: Nomal differential equation is an important part of math at it has a high practical value. This thesis shows the use in geometry, mechaics and electrothermal and makes some examples. Also, it summarizes the normal move of dealing with practical problems by the normal differential equation. Normal, we set up the maths matic model of the problem, solute the normal differentical equation make the use of the result to explain practical problems and make a forecast of some special character of physical process. Key: Normal differetial equation geometry mechanics electrothermal use

二阶常微分方程的解法及其应用.

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

偏微分方程的应用

偏微分方程在生物学上的应用 刘富冲pb06007143 1偏微分方程的发展 偏微分方程是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式。许多领域中的数学模型都可以用偏微分方程来描述,物理学中的许多基本方程本身就是偏微分方程。早在微积分理论刚形成后不久,人们就开始用偏微分方程来描述、解释或预见各种自然现象,并将所得到的研究方法和研究成果运用于各门科学和工程技术中,不断地取得了显著的成效,显示了偏微分方程对于人类认识自然界基本规律的重要性。逐渐地,以物理、力学等各门科学中的实际问题为背景的偏微分方程的研究成为传统应用数学中的一个最主要的内容,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法,不断地促进着许多相关数学分支(如泛函分析、微分几何、计算数学等)的发展,并从它们之中引进许多有力的解决问题的工具。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。 在国外,对偏微分方程的应用发展是相当重视的。很多大学和研究单位都有应用偏微分方程的研究集体,并得到国家工业、科学部门及军方、航空航天等方面的大力资助。比如在国际上有重大影响的美国的Courant研究所、法国的信息与自动化国立研究所等都集中了相当多的偏微分方程的研究人员,并把数学模型、数学方法、应用软件及实际应用融为一体,在解决实际课题、推动学科发展及加速培养人才等方面都起了很大的作用。 2偏微分方程的应用 在科技和经济发展中,很多重要的实际课题都需要求解偏微分方程,为相应的工程设计提供必要的数据,保证工程安全可靠且高效地完成任务。 在很多的实际课题中,有不少课题(特别是国防课题)是不能或很难用工程试验的方法来进行研究的(一方面是危险系数大,另一方面是耗费大),因此就需要尽可能地减少试验的次数或在试验前给出比较准确的预计。 随着电子计算机的出现及计算技术的发展,电子计算机成为解决这些实际课题的重要工具。但是有效地利用电子计算机,必须具备如下先决条件: 针对所考虑的实际问题建立合理的数学模型,而这些能精确描述问题的模型大都是通过偏微分方程给出的。 对相应的偏微分方程模型进行定性的研究。 根据所进行的定性研究,寻求或选择有效的求解方法。 编制高效率的程序或建立相应的应用软件,利用电子计算机对实际问题进行模拟。 因此,总体上来说,上述这些先决条件都属于偏微分方程应用的研究范围,这些问题解决的好坏直接影响到使用电子计算机所得结果的精确性及耗费的大小。如果解决得好,就会对整个问题的解决起到事半功倍的效果。 到目前为止,偏微分方程已经在解决有关人口问题、传染病动力学、高速飞行、石油开发及城市交通等方面的实际课题中做出了重大的贡献。 下面主要讲一下大家比较熟悉的人口问题及传染病动力学问题,详细阐述偏微分方程在解决实际问题中的应用。

偏微分方程在人口问题中的应用

偏微分方程在人口问题中的应用 06数学系杜慧通PB06001022 在老师的带领下,经过一个学期的偏微分方程的学习,我们深刻的认识到偏微分方程不仅是反映有关的未知变量关于时间的导数和关于空间变量的导数之间制约关系的等式,在许多领域中的数学模型都可以用偏微分方程来描述,不难发现,课本中所主要提及的三类方程都是有一定的物理学背景的。早在微积分理论刚形成后不久,人们就开始用偏微分方程来描述、解释或预见各种自然现象,并将所得到的研究方法和研究成果运用于各门科学和工程技术中,不断地取得了显著的成效,显示了偏微分方程对于人类认识自然界基本规律的重要性。逐渐地,以物理、力学等各门科学中的实际问题为背景的偏微分方程的研究成为传统应用数学中的一个最主要的内容,它直接联系着众多自然现象和实际问题,不断地提出和产生出需要解决的新课题和新方法,不断地促进着许多相关数学分支(如泛函分析、微分几何、计算数学等)的发展,并从它们之中引进许多有力的解决问题的工具。偏微分方程已经成为当代数学中的一个重要的组成部分,是纯粹数学的许多分支和自然科学及工程技术等领域之间的一座重要的桥梁。 面对各种复杂的现实问题,我们常常采用的方法是针对所考虑的实际问题建立合理的数学模型,而这些能精确描述问题的模型大都是通过偏微分方程给出的。对相应的偏微分方程模型进行定性的研究。根据所进行的定性研究,寻求或选择有效的求解方法。

应用上述方法,我们一起来看一看大家都感兴趣的人口问题。对人口的发展进行研究最先所采用的大多是常微分方程模型。例如,马尔萨斯模型[1]: ,:)()(0 0?????===p p t t t ap dt t dp 其中)(t p 表示t 时刻的人口总数,0p 为初始时刻0t 时的人口总数,a 表示人口净增长率。 马尔萨斯模型只在群体总数不太大时才合理。因为当生物群体总数增大时,生物群体的各成员之间由于有限的生存空间、有限的自然资源及食物等原因,就要进行生存竞争。而马尔萨斯模型仅考虑了群体总数的自然线性增长项)(t ap ,没有考虑生存竞争对群体总数增长的抵消作用。因此在群体总数大了以后,马尔萨斯模型就不再能预见群体发展趋势,这时就要采用威尔霍斯特模型[2]: ,:)()()(0 02?????==-=p p t t t p a t ap dt t dp 其中,a 称为生命系数,而且a 比a 要小很多。)(2t p a 就是考虑到生存竞争而引入的竞争项。当群体总数)(t p 不太大时,由于a 比a 小很多,则可以略去上面方程中右端的第二项而回到马尔萨斯模型。但是当群体总数增大到一定程度时,上面方程中右端的第二项所产生的影响就不能忽略。 不论是马尔萨斯模型还是威尔霍斯特模型,它们都是将生物群体中的每一个个体视为同等地位来对待的,这个原则只适用于低等动

常微分方程在高中物理中的应用

微分方程在高中物理中的应用 高中阶段,我们经常会遇到一些需要定性分析的物理问题,其实如果我们应用高等数学 的知识,可以把其中一些问题进行定量的分析。 例如,质量为m 的物体从高度H 自由下落,所受阻力f 与速度v 成正比,g 为重力加速 度这是我们平时常见的一类问题。但我们只知道速度V 最终会趋近于某一数值v0。下面我 进行一下定量分析。 根据题目所给信息,可列出动力学方程 mg-kv=ma ① a=dv/dt ② 结合①式可得mg-kv=mdv/dt 这里移项可得dt=mdv/(mg-kv)③ 两边同时积分便可的到 V=mg(ce*(-kt/m)+1)/k 又∵自由下落,可得t=0时v=.0 ∴v=mg(1-e*(-kt/m))/k ④ 由④式知,当t 趋近于正无穷时,e*(-kt/m)=0, 此时v=mg/k ⑤ 若按照正常思路,当物体受力平衡时,mg=kv,此时也能得到⑤式的结论。 而在高考中,更为常见的是在电磁场中的同类问题,我们不妨看一下下面这一道例题 (2012·山东理综)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹 角为θ,上端接有定值电阻,匀强磁场垂直于导轨平面,磁感应强度为B 。将质量为m 的导 体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的 拉力,并保持拉力的功率为P ,导体棒最终以2v 的速度匀速运动。导体棒始终与导轨垂直 且接触良好,不计导轨和导体棒的电阻,重力加速度为g ,下列选项正 确的是 A .P =2mg sin θ B .P =3mg sin θ C .当导体棒速度达到v /2时加速度为12 g sin θ D .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力 所做的功 我们根据题目也可以列出动力学方程 Mgsin θ-B*2L*2V/R=ma ① a=dv/dt ② 同样可以解得v=(mgR sin θ/B*2L*2)(1-e*(-B*2L*2t/mR))③ 从③式可以看出当t 趋近于正无穷时,v=mgR sin θ/B*2L*2即B*2L*2v/R=mg sin θ转化而来。 所以题目中所说当速度到达V 时开始匀速运动存在明显错误。应改为近似于做匀速直线运 动。

基于狄拉克方程的边缘态理论与应用

基于狄拉克方程的边缘态理论与应用 在量子霍尔效应的启示下,科学家们曾预言自然界中可能存在一种新的无自发对称破缺的物质状态。近年来发现的拓扑绝缘体恰好验证 了该项理论。拓扑绝缘体是当前凝聚态物理领域的热点问题,这类材料 的典型特征是体内元激发存在能隙,但在边界上具有受能隙保护的无能 隙边缘激发。我们基于狄拉克方程的边缘态解,从理论上讨论了边缘态 形成的主要原因,即体系哈密顿量在时间反演对称下保持不变,导致体 系具有两支在禁带内交叉形成狄拉克锥的稳定结构。为了更加深刻的理 解边缘态的概念,我们还利用Bernevig-Hughes-Zhang模型,从细节上 研究了由连续模型到附加边缘效应的过程。此外,我们简单介绍了第一 个从实验上实现的拓扑绝缘材料HgTe/CdTe量子阱。 关键词拓扑绝缘体; 量子霍尔效应; 狄拉克方程 第一章绪论 在经典物理学中,人们常常根据朗道对称破缺理论对物质进行分类,大多数物质的简单相态或相变,都可以从对称性破缺的观点来了解。但近年来,凝聚态物理中发现的一种新的物理态——整数量子霍尔效应和分数量子霍尔效应——颠覆了这项理论。为了弄清楚它们的结构,人们把拓扑这个近代数学中的重要概念引进到了凝聚态物理中,拓扑绝缘体正是基于这项理论而发展起来的。 传统材料按照其导电特性可分为:导体,半导体,绝缘体三种。导体在费米能级附近存在一定密度的电子态,当加上足够小的电压时,电荷元就能够被激发,系统中就会出现电流(如图1a)。半导体和绝缘体的费米面存在于禁带之中,电荷激发成为自由电子需要克服一个有限大小的能隙,需要很大能量,因而一般不易导电(如图1b)。拓扑材料则是一种十分特殊的绝缘体,理论上讲,这种材料内部是典型的绝缘体结构,但在它的表面,

数学建模——微分方程的应用

第八节 数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 分布图示 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量. 用x 表示该放射性物质在时刻t 的质量, 则 dt dx 表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 .kx dt dx -= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少. 解方程(8.1)得通解.kt Ce x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解 ,)(00t t k e x x --= 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( U 238)的半衰期约为50亿年;通常的镭( Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226 衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.

第三讲微分方程的理论与数学建模

第三讲 微分方程的理论与数学建模 一、微分方程模型的建立 函数是事物的内部联系在数量方面的反映,如何寻找变量之间的函数关系,在实际应用中具有重要意义。在许多实际问题中,往往不能直接找出变量之间的函数关系,但是根据问题所提供的情况,有时可以列出含有要找的函数及其导数的关系式。这就是所谓的微分方程,从而得出微分方程模型。 例1 物体冷却过程的数学模型 将物体放置于空气中,在时刻0=t 时,测量得它的温度为1500=u C ,10分钟后测量得温度为 C u 1001=。我们要求此物体的温度u 和时间t 的关系,并计算20分钟后物体的温度。这里我们假定 空气温度保持为C u a 24=。 解 为了解决上述问题,需要了解有关热力学的一些基本规律。例如,热量总是从温度高的物体向温度低的物体传导的;在一定的温度范围内,一个物体的温度变化速度与这一物体的温度和其所在介质温度的差值成正比。这是已为实验证实了的牛顿(Newton )冷却定律。 设物体在时刻t 的温度为)(t u u =,则温度的变化速度以 dt du 来表示。注意到热量总是从温度高的物体向温度低的物体传导的,因而a u u >0。所以温度差a u u -恒正;又因物体将随时间而逐渐冷却,故温度变化速度dt du 恒负。故有: dt du )(a u u k --= (1.1) 这里0>k 是比例常数。方程(1.1)就是物体冷却过程的数学模型,它含有未知函数u 及它的一阶导数dt du ,这样的方程称为一阶微分方程。 为了解出物体的温度u 和时间t 的关系,我们要从方程(1.1)中解出u 。注意到a u 是常数,且0>-a u u ,可将(1.1)改写成 kdt u u u u d a a -=--)( (1.2) 这样u 和t 就被分离开了。两边积分,得到 c kt u u a ~)ln(+-=- (1.3) 这里c ~是任意常数。上式可写成 c kt a e u u ~+-=- 令c e c ~=,则有 kt a ce u u -+= (1.4) 再根据初始条件: 当0=t 时,0u u = (1.5) 可得a u u c -=0,于是 kt a a e u u u u --+=)(0 (1.6) 如果k 的数值确定了,(1.6)就完全决定了温度u 和时间t 的关系。 根据条件10=t 时,1u u =,得到 k a a e u u u u 1001)(--+= 由此得到a a u u u u k --=10ln 101051.066.1ln 10 1≈=。从而 t e u 051.012624-+= (1.7)

狄拉克方程

1928年英国物理学家狄拉克(Paul Adrien MauriceDirac)提出了一个电子运动的相对论性量子力学方程,即狄拉克方程。利用这个方程研究氢原子能级分布时,考虑有自旋角动量的电子作高速运动时的相对论性效应,给出了氢原子能级的精细结构,与实验符合得很好。从这个方程还可自动导出电子的自旋量子数应为1/2,以及电子自旋磁矩与自旋角动量之比的朗德g因子为轨道角动量情形时朗德g因子的2倍。电子的这些性质都是过去从分析实验结果中总结出来的,并没有理论的来源和解释。狄拉克方程却自动地导出这些重要基本性质,是理论上的重大进展。利用这个方程还可以讨论高速运动电子的许多性质,这些结果都与实验符合得很好。这些成就促使人们相信狄拉克方程是一个正确地描写电子运动的相对论性量子力学方程。 既然实验已充分验证了狄拉克方程的正确,人们自然期望利用狄拉克方程预言新的物理现象。按照狄拉克方程给出的结果,电子除了有能量取正值的状态外,还有能量取负值的状态,并且所有正能状态和负能状态的分布对能量为零的点是完全对称的。自由电子最低的正能态是一个静止电子的状态,其能量值是一个电子的静止能量,其他的正能态的能量比一个电子的静止能量要高,并且可以连续地增加到无穷。与此同时,自由电子最高的负能态的能量值是一个电子静止能量的负值,其他的负能态的能量比这个能量要低,并且可以连续地降低到负无穷。这个结果表明:如果有一个电子处于某个正能状态,则任意小的外来扰动都有可能促使它跳到某个负能状态而释放出能量。同时由于负能状态的分布包含延伸到负无穷的连续谱,这个释放能量的跃迁过程可以一直持续不断地继续下去,这样任何一个电子都可以不断地释放能量,成为永动机,这在物理上显然是完全不合理的。 针对这个矛盾,1930年狄拉克提出一个理论,被称为空穴理论。这个理论认为由于电子是费米子,满足泡利不相容原理,每一个状态最多只能容纳一个电子,物理上的真空状态实际上是所有负能态都已填满电子,同时正能态中没有电子的状态。因为这时任何一个电子都不可能找到能量更低的还没有填入电子的能量状态,也就不可能跳到更低的能量状态而释放出能量,也就是说不能输出任何信号,这正是真空所具有的物理性质。按照这个理论,如果把一个电子从某一个负能状态激发到一个正能状态上去,需要从外界输入至少两倍于电子静止能量的能量。这表现为可以看到一个正能状态的电子和一个负能状态的空穴。这个正能状态的电子带电荷-e,所具有的能量相当于或大于一个电子的静止能量。按照电荷守恒定律和能量守恒定律的要求,这个负能状态的空穴应该表现为一个带电荷为+e的粒子,这个粒子所具有的能量应当相当于或大于一个电子的静止能量。这个粒子的运动行为是一个带正电荷的“电子”,即正电子。狄拉克的理论预言了正电子的存在。 1932年美国物理学家安德森(Carl David Anderson)在宇宙线实验中观察到高能光子穿过重原子核附近时,可以转化为一个电子和一个质量与电子相同但带有的是单位正电荷的粒子,从而发现了正电子,狄拉克对正电子的这个预言得到了实验的证实。正电子的发现表明对于电子来说,正负电荷还是具有对称性的。狄拉克的空穴理论给出了反粒子的概念,正电子是电子的反粒

双曲型偏微分方程的求解及其应用[文献综述]

毕业论文文献综述 信息与计算科学 双曲型偏微分方程的求解及其应用 一、前言部分 在科学技术日新月异的发展过程中,人们研究的许多问题用一个自变量的函数来描述已经显得不够了,不少问题有多个变量的函数来描述。比如,从物理角度来说,物理量有不同的性质,温度、密度等是用数值来描述的叫做纯量;速度、电场的引力等,不仅在数值上有不同,而且还具有方向,这些量叫做向量;物体在一点上的张力状态的描述出的量叫做张量,等等。这些量不仅和时间有关系,而且和空间坐标也有联系,这就要用多个变量的函数来表示。 应该指出,对于所有可能的物理现象用某些多个变量的函数表示,只能是理想化的,如介质的密度,实际上“在一点”的密度是不存在的。而我们把在一点的密度看作是物质的质量和体积的比当体积无限缩小的时候的极限,这就是理想化的。介质的温度也是这样。这样就产生了研究某些物理现象的理想了的多个变量的函数方程,这种方程就是偏微分方程[1]。 随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。 其中,可以变的标准型有:椭圆型、双曲型、抛物型。而基本方程可以归结为四大类:波动、热传导、传输[2]。 随着电子计算机的出现和发展, 偏微分方程的数值解得到了前所未有的发展和应用.在科学的计算机化进程中,科学与工程计算作为工具性、方法性、边缘交叉性的新学科开始了自己的新发展.由于科学基本规律大多是通过偏微分方程来描述的,因此科学与工程计算的主要任务就是求解形形色色的偏微分方程,特别是一些大规模、非线性、几何非规则性的方程. 双曲型和抛物型方程描述了物质扩散和波动等不定常物理过程,这两类偏微分方程的定解问题在力学、热传导理论、燃烧理论、化学、空气动力学、电磁学和经济数学等方面都有

最新常微分方程及其应用

常微分方程及其应用

第5章常微分方程及其应用 习题5.2 1.求下列各微分方程的通解: (1)?Skip Record If...?;(2)?Skip Record If...?; (3)?Skip Record If...?;(4)?Skip Record If...?; (5)?Skip Record If...?;(6)?Skip Record If...?. 2.求下列各微分方程满足所给初始条件的特解: (1)?Skip Record If...?,?Skip Record If...?;(2)?Skip Record If...?,?Skip Record If...?; (3)?Skip Record If...?,?Skip Record If...?;(4)?Skip Record If...?,?Skip Record If...?; (5)?Skip Record If...?,?Skip Record If...?;(6)?Skip Record If...?,?Skip Record If...?. 5.3 可降阶微分方程及二阶常系数线性微分方程 案例引入求微分方程?Skip Record If...?的通解. 解两边积分,得?Skip Record If...? 两边再积分,得?Skip Record If...? 所以,原方程的通解为?Skip Record If...?,其中?Skip Record If...?为任意常数. 5.3.1 可降阶微分方程 仅供学习与交流,如有侵权请联系网站删除谢谢20

1. 形如?Skip Record If...?的微分方程 特点:方程右端为已知函数?Skip Record If...?. 解法:对?Skip Record If...?连续积分?Skip Record If...?次,即可得含有 ?Skip Record If...?个任意常数的通解. 2. 形如?Skip Record If...?的微分方程 特点:方程右端不显含未知函数?Skip Record If...?. 解法:令?Skip Record If...?,则?Skip Record If...?.于是,原方程可化为?Skip Record If...?.这是关于?Skip Record If...?的一阶微分方程.设其通解为?Skip Record If...?,即?Skip Record If...?.两边积分,即可得原方程通解?Skip Record If...?,其中?Skip Record If...?为任意常数. 3. 形如?Skip Record If...?的微分方程 特点:方程右端不显含自变量?Skip Record If...?. 解法:令?Skip Record If...?,则?Skip Record If...?.于是,原方程可化为?Skip Record If...?.这是关于?Skip Record If...?的一阶微分方程.设其通解为?Skip Record If...?,即 ?Skip Record If...?.分离变量,得?Skip Record If...?.然后两边积分,即可得原方程通解 ?Skip Record If...?,其中?Skip Record If...?为任意常数.例5-7求微分方程?Skip Record If...?的通解. 解两边积分,得?Skip Record If...? 仅供学习与交流,如有侵权请联系网站删除谢谢20

石墨烯电子的能带和狄拉克方程(三)

石墨烯电子结构之态密度 (2019年9月28日) 北京东之星应用物理研究所 (Estarlabs, Beijing ) 伍 勇 引言 有关石墨烯电子结构的前两篇文档在百度网发表以后,电子结构没有态密度(The density of states (DOS))的内容我总感觉有些缺失,现在我已完成两篇拓扑半金属的文档,在空余间隙里,把石墨烯电子态密度的图补上。 根据文献[1], 石墨烯电子态密度原始公式如下 ))k (E E () (k d )E (N -=?δπ2222 积分位于蜂房晶格的布里渊区,因子2考虑了自旋简并。对于小能量0→E ,积分贡献仅来自K 和 'K 点附近,并且)q (E E =线性依赖于一阶近似波矢的大小。于是 dq /dE )E (q ))q (E E ()(dq q )E (N πδπ22220 =-??=?∞ 对于电子和空穴 : vq E h ,e ±=,,得到态密度随能量的线性变化关系 2v E )E (N π= (K 和 'K 点附近,0→E ) (1) 而一般自由电子能谱m q E 22 2 =的D 2固态系统能态密度是常数: dE m E dE m mE )qdq dz 22222 ππππ==??=(21 22 , 2 πm dE dz )E (N == (2) 在写本文档前两篇内容时,见到文献[2]包含四段区间的椭圆积分态密度的完全表达式,那时,我还不知道,怎么在整个布里渊区画出这个复杂的态密度图形。感谢文献[3],帮助我完成了这个作业,文献[3]给出一种更紧凑的石墨烯DOS 形式。

))()((K Re )()() t /()(D εεε εεπεε-+-+=3116314332 30<<ε 函数)x (K 是第一类椭圆积分。下面是在软件Mathematica 我输入的指令。 Plot[(4Abs[x]/(3.88*\[Pi]))/Sqrt[(Abs[x]+1)^3*(3-Abs[x])]*Re[EllipticK[Sqrt[(16Abs[x])/((Abs[x]+1)^3*(3-Abs[x]))]]],{x,-3.1,3.1},PlotStyle->{Blue,Thickness[0.005]},PlotRange->{{2.7,-2.7},{0,1.25}},Frame->True,FrameTicks->{{{0,0.2,0.4,0.6,0.8,1.0,1.2},None},{{-3,-2,-1,0,1,2,3},None}},FrameStyle->{{Directive[Thick,12],Directive[Thick,12]},Directive[Thick,12]}] 可以对照文献[1]提供的DOS 图: 在石墨烯电子能带M 处存在鞍点,也是态密度的范霍夫奇点:M E E ln )E (N --∝δ 对应图中在1±=ε点对数发散是态密度的范霍夫奇异性。 参考文献: [1] M. Katsnelson, GRAPHENE Carbon in Two Dimensions,2012 0.40.2 ε ) (D ε

经济数学 偏微分方程在金融中的运用

偏微分方程概述 如果一个微分方程中出现多元函数的偏导数,或是说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数, 则这类方程称为偏微分方程,该类方程反映有关的未知变量关于时 间的导数和关于空间变量的导数之间制约关系的等式.偏微分方程这 门学科开创于 1946 年,19 世纪随着数学物理问题研究的繁荣,偏 微分方程得到了迅速发展,以物理、力学等各门科学中的实际问题为背景的偏微分方程已经成为应用数学的一个核心内容很多重要的物理、力学等学科的基本方程本身就是偏微分方程,而其他很多学科领域中在建立数学模型时都可以用偏微分方程来描述,或者用偏微分方法来研究.在科技和经济发展中,很多重要的实际课题都需要 求解偏微分方程,为相应的工程设计提供必要的数据,保证工程安全可靠且高效地完成任务。 在很多的实际课题中,有不少课题(特别是国防课题)是不能或很难用工程试验的方法来进行研究的(一方面是危险系数大,另一方 面是耗费大),因此就需要尽可能地减少试验的次数或在试验前给出 比较准确的预计。随着电子计算机的出现及计算技术的发展,电子 计算机成为解决这些实际课题的重要工具。但是有效地利用电子计 算机,必须具备如下先决条件: 针对所考虑的实际问题建立合理的数学模型,而这些能精确描述问题的模型大都是通过偏微分方程给出的。对相应的偏微分方程 模型进行定性的研究。根据所进行的定性研究,寻求或选择有效的 求解方法。编制高效率的程序或建立相应的应用软件,利用电子计 算机对实际问题进行模拟。 因此,总体上来说,上述这些先决条件都属于偏微分方程应用 的研究范围,这些问题解决的好坏直接影响到使用电子计算机所得 结果的精确性及耗费的大小。如果解决得好,就会对整个问题的解 决起到事半功倍的效果。 到目前为止,偏微分方程已经在解决有关人口问题、传染病动 力学、高速飞行、石油开发及城市交通等方面的实际课题中做出了 重大的贡献。 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

相关文档
最新文档