单管放大电路实验
单管放大电路设计实训报告

一、实训目的1. 理解单管放大电路的基本原理和设计方法。
2. 掌握放大电路静态工作点的调试方法,分析静态工作点对放大器性能的影响。
3. 学会放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
4. 熟悉常用电子仪器及模拟电路实验设备的使用。
二、实训原理单管放大电路是模拟电子技术中最基本的放大电路之一,它主要由晶体管、偏置电路、负载电阻和耦合电容等组成。
放大电路的作用是将输入信号放大到所需的幅度,并保持信号的相位不变。
本实训以共射极单管放大电路为例,介绍其设计方法和实验步骤。
三、实训设备1. 模拟电路实验箱2. 函数信号发生器3. 双踪示波器4. 交流毫伏表5. 万用电表6. 连接线若干四、实训步骤1. 设计电路根据实验要求,设计一个电压放大倍数为40dB,最大不失真输出电压为1V的单管放大电路。
电路如图所示:```+Vcc|R1 ----|---- Q (晶体管)| |R2 ----|---- C2 (耦合电容)| |R3 ----|---- RL (负载电阻)| |GND |```2. 电路仿真使用电路仿真软件对设计好的电路进行仿真,观察电路的静态工作点和动态性能。
3. 电路制作根据仿真结果,制作实际电路板,并检查电路焊接质量。
4. 电路调试将电路接入实验箱,使用万用电表测量电路的静态工作点,包括基极电压、集电极电压和发射极电压。
根据实验要求调整偏置电阻R1和R2,使静态工作点符合设计要求。
5. 性能测试使用函数信号发生器输入一个频率为1kHz,幅度为100mV的正弦波信号,使用交流毫伏表测量输入信号和输出信号的幅度,计算电压放大倍数。
使用示波器观察输入信号和输出信号的波形,分析放大器的失真情况。
五、实验结果与分析1. 静态工作点经过调试,电路的静态工作点为:Vcc=12V,Vb=2.5V,Vc=7.5V,Ic=5mA。
2. 电压放大倍数输入信号幅度为100mV,输出信号幅度为4V,电压放大倍数为40dB。
单管放大电路实验报告

单管放大电路实验报告【摘要】本实验通过搭建单管放大电路,研究了该电路的放大特性。
实验结果表明,当输入信号幅值较小时,输出信号具有一定的放大倍数,且放大倍数随着输入信号的增大而逐渐减小。
【关键词】单管放大电路;放大倍数;输入信号;输出信号一、实验目的1. 了解单管放大电路的工作原理;2. 掌握搭建和调试单管放大电路的方法;3. 研究单管放大电路的放大特性。
二、实验器材和仪器示波器、信号发生器、直流电源、电阻、电容、三极管等。
三、实验原理单管放大电路是由一个三极管、少量无源器件和若干衔接接线构成的。
它可以将小信号放大成为大信号,通过不同组合的电容、电阻和三极管可以实现不同的放大倍数。
四、实验步骤和结果1. 按照电路图搭建单管放大电路;2. 将信号发生器接入输入端,示波器接入输出端;3. 通过调节信号发生器的频率和幅值,观察输出信号的变化;4. 记录输入信号的幅值和输出信号的幅值,计算放大倍数;5. 重复步骤3和步骤4,绘制输入信号幅值和输出信号幅值之间的关系曲线。
五、实验结果与分析实验结果表明,当输入信号幅值较小时,输出信号具有一定的放大倍数,且放大倍数随着输入信号的增大而逐渐减小。
这是由于三极管的非线性特性造成的,当输入信号幅值较小时,三极管工作在其饱和状态,此时输出信号的放大倍数较高;当输入信号幅值较大时,三极管工作在其线性状态,此时输出信号的放大倍数较低。
六、实验总结通过本次实验,我们深入了解了单管放大电路的工作原理,并掌握了搭建和调试该电路的方法。
我们还研究了单管放大电路的放大特性,发现输出信号的放大倍数与输入信号的大小有关,这为我们进一步设计和优化放大电路提供了参考。
单管交流放大电路

单管交流放大电路单管交流放大电路一、 实验目的实验目的(一)熟悉实验板上的元器件和电路布线。
(二)观察并测量电路参数的变化对电路的静态工作点(Q)、电压放大倍数(V A )及输出波形的影响。
二、知识要点(一)放大器静态工作点的设置与调整是十分重要的,静态工作点的合理设置能使放大器工作稳定可靠,为获得最大不失真电压,静态工作点应选在交流负载线的中点。
为使工作点稳定,必须满足以下条件 BQ >> I I ≈ I 21 (二)静态工作点可由下式计算CB B B BQ E +R R R =U 211E BEQ BQ EQ CQ R U U =≈I I -,或CCQC CQ R -U E =I)(E C CQ C RE ER C CEQ +R R -I =E -U -U =E UβI =I CQBQ (三)动态参数计算 电压放大倍数和输入输出电阻计算beL i o u r βR =u u =A '-,L c L //R =R R ' be B B i //r //R =R R 21,通常由于21B B be R <<R r 、,所以有be i r R ≈)()(26)1(mV I mV +β+=r r EQ 'bb be ,Ω=r 'bb 300c R R =0(四)输入电阻与输出电阻的测量方法输入电阻为 s i s ii R -u u u =R ×输出电阻为 L 'R u u R )1-(00=式中0u 为空载时的输出电压,'u 0为带负载时的输出电压。
注意!静态工作点用MF-47型指针万用表测量,输入输出电压用交流毫伏表测量或双踪示波器测量。
图2-2 输入、输出电阻测量电路三、实验电路原理图图2—1 单管交流放大电路*四、实验内容及步骤(一)检查实验板或实验装置接线无误后,方可接通电源。
(二)静态工作点和电压放大倍数测量及输出波形的观察。
单管放大电路仿真实验报告

单管放大电路仿真实验报告实验目的:通过搭建单管放大电路并进行仿真实验,掌握单管放大电路的基本原理、电路参数与特性,以及使用仿真软件进行电路设计和分析的能力。
实验器材:电脑、仿真软件(如Multisim、Proteus等)、电源、电阻、电容、二极管、NPN型晶体管、示波器等。
实验原理:共发射极放大模式是指输入信号与晶体管的发射极之间相连,通过控制基极电压来控制管中的电流,从而实现放大作用。
在这种模式下,晶体管的电压放大倍数为低阻输入电阻和高阻输出电阻之商。
共集极放大模式是指输入信号与晶体管的集电极之间相连,通过控制基极电流来控制输出信号的幅度。
晶体管在该模式下的输入电阻很高,输出电阻很低,所以适合用于电压放大和阻抗匹配。
实验步骤:1.搭建共发射极放大模式的单管放大电路。
按照晶体管型号的参数表和电路要求,选择合适的电阻值、电容值和电源电压,并按照电路图进行连线。
2.通过仿真软件验证电路是否正确。
打开仿真软件,选择合适的元件连接到电路中,并设置电路参数。
然后运行仿真,观察输出波形和电流电压等参数。
3.测量并记录电路中各元件的电流、电压值。
使用示波器测量输入信号波形和输出信号波形,记录各点的幅度值。
4.通过仿真结果和实测数据,计算电路的增益、输入电阻、输出电阻、功率增益等参数。
并与理论值进行比较,分析误差原因。
5.调整电路参数,观察电路各项指标的变化,并进行比较分析。
实验结果:根据实验步骤进行操作后,我们得到了如下实验结果:1.得到了理论计算出的电路增益、输入电阻、输出电阻、功率增益等参数,并与仿真结果进行比较。
2.经过调整电路参数的实验,观察到电路中各项指标的变化,并进行了比较分析。
3.实测数据与仿真结果基本吻合,分析了误差产生的原因。
结论:通过单管放大电路的仿真实验,我们掌握了单管放大电路的基本原理、电路参数与特性,以及使用仿真软件进行电路设计和分析的能力。
我们发现,实验结果与理论计算值基本吻合,说明了我们所搭建的电路正确。
单管电压放大器实验报告

一、实验目的1. 学习调试和测量单管电压放大器的静态工作点。
2. 掌握单管放大器的电压放大倍数Au、输出电阻Ro和输入电阻Ri的测试方法。
3. 熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理单管电压放大器是模拟电子技术中的一种基本放大电路,主要由晶体管、电阻、电容等元件组成。
本实验采用共射极单管放大器电路,通过调节基极电阻,可以调整晶体管的静态工作点,使晶体管工作在放大区,从而实现电压放大。
三、实验设备1. 单管电压放大器实验电路板2. 信号发生器3. 示波器4. 电压表5. 电流表6. 万用表7. 电阻箱8. 电容箱四、实验步骤1. 搭建单管电压放大器实验电路,按照电路图连接好各个元件。
2. 使用电阻箱和电容箱,根据电路图设置合适的静态工作点。
首先,调节电阻箱,使基极电阻RB的阻值符合要求;然后,调节电容箱,使电容C1的容值符合要求。
3. 使用万用表测量晶体管的静态工作点,即测量晶体管的基极电压U_B、集电极电压U_C和集电极电流I_C。
4. 在放大器的输入端接入信号发生器,输出频率为1kHz的正弦波信号。
5. 使用示波器观察放大器的输出波形,记录输出电压U_O。
6. 使用电压表测量放大器的输入电压U_I和输出电压U_O,计算电压放大倍数Au。
7. 使用电流表测量放大器的输入电流I_I和输出电流I_O,计算输入电阻Ri和输出电阻Ro。
8. 根据实验数据,分析静态工作点对放大器性能的影响,以及电压放大倍数、输入电阻和输出电阻与电路参数的关系。
五、实验结果与分析1. 静态工作点对放大器性能的影响实验结果表明,当静态工作点Q过低时,晶体管进入截止区,输出电压U_O接近于0,放大倍数Au接近于0;当静态工作点Q过高时,晶体管进入饱和区,输出电压U_O接近于电源电压VCC,放大倍数Au也接近于0。
因此,合适的静态工作点对于保证放大器的正常工作至关重要。
2. 电压放大倍数、输入电阻和输出电阻与电路参数的关系实验结果表明,电压放大倍数Au与晶体管的β(放大倍数)和集电极电阻Rc有关,与基极电阻RB和发射极电阻RE关系不大。
单管放大电路实验报告

单管放大电路实验报告单管放大电路实验报告引言:单管放大电路是电子学中最基础的电路之一,它可以将输入信号放大到更大的幅度,使得信号能够被更远的距离传输或被更多的设备接收。
本实验旨在通过搭建和测试单管放大电路,探究其工作原理和特性。
一、实验目的本实验的主要目的是:1. 理解单管放大电路的基本原理;2. 学习如何设计和搭建单管放大电路;3. 测试并分析单管放大电路的特性。
二、实验器材和元件1. 电源:直流电源供应器;2. 信号发生器:用于提供输入信号;3. 电阻:用于构建电路;4. 电容:用于滤波;5. 二极管:用于保护电路。
三、实验步骤1. 搭建单管放大电路a. 将一个NPN型晶体管与几个电阻和电容相连接,按照电路图搭建电路;b. 连接电源,并确保电路连接正确;c. 连接信号发生器,将其输出信号接入电路中。
2. 测试电路特性a. 调节信号发生器的频率和幅度,观察输出信号的变化;b. 测量输入信号和输出信号的幅度,并计算电压增益;c. 测量输入信号和输出信号的相位差。
四、实验结果与分析通过实验,我们得到了如下结果:1. 随着输入信号幅度的增加,输出信号的幅度也相应增加,但在一定范围内,输出信号的幅度增加不再线性;2. 随着输入信号频率的增加,输出信号的幅度先增加后减小,且在某一频率下达到最大值;3. 输入信号和输出信号之间存在相位差,且随着频率的增加而增大。
根据实验结果,我们可以得出以下结论:1. 单管放大电路的电压增益是非线性的,且受到输入信号幅度的限制;2. 单管放大电路的频率响应是有限的,存在一个截止频率,超过该频率后放大效果下降;3. 单管放大电路引入了相位差,这可能对特定应用产生影响。
五、实验总结通过本次实验,我们深入了解了单管放大电路的工作原理和特性。
我们学习到了如何设计和搭建单管放大电路,并通过测试分析了其电压增益、频率响应和相位差等特性。
这些知识对于我们理解和应用其他更复杂的放大电路非常重要。
单管放大电路实验

ri = R S
Vi V s−V i
信号V 信号Vi输入 示波器CH1 示波器CH1
Vi
R2 100K
C B E
在电路接线前 在电路接线前,先检测三极管: 检测三极管: 万用表二极管测量档检查PN结 二极管测量 用万用表二极管测量档检查PN结!
2k
Vs
V=-2.01095e-12
J1
1 2 3 4 SIL-156-04
40%
Vi
C2
V=6.217
V=-7.42803e-06 VO
Vs
RS
3K
C1
10u
VC
V=0.97304 10u
Vo
VB
Q
VE V=0.2905 V=0.2905
9013
RV1 SW1
10K
SW2 R2
100k
C3
RE
100 10u
表-1 单管放大器静态工作点调试测量表 单管放大器静态工作点调试测量表 静态工作点调试
VCE /V
(6) 7.3
参见操作示意 参见操作示意图- 4 操作示意图
VCC=12V
电路状态 正常范围 截止失真 截止失真 饱和失真 饱和失真
9
VB /V
VC /V
Ic /mA
(1.5) 1.0
Vipp /mv 100 100 100
2011-10-9 长江大学 龙从玉 5
3.4、单管放大电路的仿真调试 3.4、
信号发生器
+
*1)单管放大电路实时仿真图 龙 *1)单管放大电路实时仿真 实时仿真图
A VCC VALUE=12 B C D
示波器
AM
FM
-
单管交流放大电路实验原理

单管交流放大电路实验原理一、实验原理单管交流放大电路是电子技术中常用的一种模拟信号放大电路,其基本原理是通过晶体管的放大作用,将微弱的交流信号放大成较大的信号。
该实验主要探讨单管交流放大电路的基本工作原理和性能。
单管交流放大电路主要由电源、输入信号、晶体管、输出信号和负载等部分组成。
其中,晶体管是核心元件,其工作状态直接影响放大电路的性能。
在实验中,通常采用双极型晶体管(如锗管或硅管)或场效应管。
放大电路的主要性能指标包括电压放大倍数、输入电阻、输出电阻和通频带等。
电压放大倍数表示输出信号电压与输入信号电压的比值,是衡量放大电路放大能力的重要参数;输入电阻和输出电阻则分别表示信号源与放大电路输入端和放大电路输出端之间的等效电阻;通频带则是指放大电路对不同频率信号的放大能力。
单管交流放大电路的原理主要是利用晶体管的电流放大作用,通过反馈电路的调整,控制输入信号通过晶体管的电流,使输出信号得到适当的电压放大。
在这一过程中,反馈电路起到关键作用,它能够减小放大电路内部信号的失真和噪声干扰,提高信号的纯度和稳定性。
二、实验步骤1.搭建电路:根据实验原理图搭建单管交流放大电路,确保连接无误。
2.调整元件参数:根据实验要求,调整晶体管的偏置电流、集电极电压和输入信号的幅度等参数。
3.测试输入电阻:利用电压表和信号源测量输入电阻,确保输入信号能够有效地输入到放大电路中。
4.测试输出电阻:在输出端接上适当的负载,测量输出电阻,以了解放大电路的带载能力。
5.测量电压放大倍数:通过测量输入信号和输出信号的电压,计算电压放大倍数,以评估放大电路的放大能力。
6.研究通频带:通过改变输入信号的频率,观察输出信号的变化,了解放大电路对不同频率信号的响应。
7.测试噪声和失真特性:通过测量噪声和失真参数,了解放大电路的性能表现。
8.数据分析与处理:整理实验数据,利用表格和图表等形式进行整理和分析,以全面了解单管交流放大电路的性能。
单管共射放大电路实验报告

一、实验目的1. 掌握单管共射放大电路的基本原理和组成;2. 学习如何调试和测试单管共射放大电路的静态工作点;3. 熟悉单管共射放大电路的电压放大倍数、输入电阻和输出电阻的测量方法;4. 分析静态工作点对放大电路性能的影响。
二、实验原理单管共射放大电路是一种基本的放大电路,由晶体管、电阻和电容等元件组成。
其工作原理是:输入信号通过晶体管的基极和发射极之间的电流放大作用,使输出信号的幅值得到放大。
单管共射放大电路的静态工作点是指晶体管在无输入信号时的工作状态。
静态工作点的设置对放大电路的性能有重要影响,如静态工作点过高或过低,都可能导致放大电路的失真。
电压放大倍数、输入电阻和输出电阻是衡量放大电路性能的重要参数。
电压放大倍数表示输入信号经过放大后的输出信号幅值与输入信号幅值之比;输入电阻表示放大电路对输入信号的阻抗;输出电阻表示放大电路对负载的阻抗。
三、实验仪器与设备1. 晶体管共射放大电路实验板;2. 函数信号发生器;3. 双踪示波器;4. 交流毫伏表;5. 万用电表;6. 连接线若干。
四、实验内容与步骤1. 调试和测试静态工作点(1)将实验板上的晶体管插入电路,连接好电路图中的电阻和电容元件。
(2)使用万用电表测量晶体管的基极和发射极之间的电压,确定静态工作点。
(3)调整偏置电阻,使静态工作点符合设计要求。
(4)测量静态工作点下的晶体管电流和电压,记录数据。
2. 测量电压放大倍数(1)使用函数信号发生器产生一定频率和幅值的输入信号。
(2)将输入信号接入放大电路的输入端。
(3)使用交流毫伏表测量输入信号和输出信号的幅值。
(4)计算电压放大倍数。
3. 测量输入电阻和输出电阻(1)使用交流毫伏表测量放大电路的输入端和输出端的电压。
(2)计算输入电阻和输出电阻。
五、实验结果与分析1. 静态工作点根据实验数据,晶体管的静态工作点为:Vbe = 0.7V,Ic = 10mA。
2. 电压放大倍数根据实验数据,电压放大倍数为:A = 100。
晶体管单管共射放大器实验报告

一、实验目的1. 理解晶体管单管共射放大器的工作原理。
2. 掌握晶体管单管共射放大器静态工作点的调试方法。
3. 学习放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
4. 熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理晶体管单管共射放大器是一种常用的模拟电子电路,主要用于信号的放大。
本实验采用共射极接法,其基本电路如图1所示。
图1 晶体管单管共射放大器实验电路1. 静态工作点:晶体管单管共射放大器的静态工作点是指在没有输入信号时,晶体管的工作状态。
它决定了放大器的线性范围和输出信号的幅度。
静态工作点通常由偏置电路确定。
2. 电压放大倍数:电压放大倍数是指放大器输出电压与输入电压的比值。
它反映了放大器对信号的放大能力。
3. 输入电阻:输入电阻是指放大器输入端对信号源呈现的电阻。
它反映了放大器对信号源的影响。
4. 输出电阻:输出电阻是指放大器输出端对负载呈现的电阻。
它反映了放大器对负载的影响。
三、实验仪器与设备1. 晶体管(如3DG6)2. 电阻(如10kΩ、2.2kΩ、1kΩ、220Ω、100Ω、10Ω等)3. 电位器(如10kΩ)4. 直流电源(如+12V)5. 函数信号发生器(如AS101E)6. 双踪示波器(如DS1062E-EDU)7. 交流毫伏表(如GB7676-98)8. 直流电压表9. 万用电表四、实验步骤1. 根据实验电路图,搭建晶体管单管共射放大器实验电路。
2. 调节偏置电路,使晶体管工作在合适的静态工作点。
测量静态工作点(Uce、Ic)。
3. 在放大器输入端加入频率为1kHz的正弦信号,调节函数信号发生器的输出幅度,使放大器输入电压在合适的范围内。
4. 测量放大器的输出电压,计算电压放大倍数。
5. 测量放大器的输入电阻和输出电阻。
6. 测量放大器的最大不失真输出电压。
五、实验数据及分析1. 静态工作点:Uce=3V,Ic=2mA。
2. 电压放大倍数:Aυ=20倍。
单管放大电路的实训报告

一、实验目的1. 熟悉单管放大电路的基本原理和组成;2. 掌握单管放大电路的静态工作点调试方法;3. 学习单管放大电路的动态性能指标测量方法;4. 了解放大电路在信号处理中的应用。
二、实验原理单管放大电路是一种基本的模拟电子电路,主要由晶体管、电阻、电容等元件组成。
它可以将微弱的输入信号放大到所需的幅度,广泛应用于音频、视频、通信等领域。
1. 单管放大电路的基本原理单管放大电路主要利用晶体管的电流放大作用来实现信号放大。
当晶体管工作在放大区时,输入信号经过晶体管放大后,在输出端得到一个与输入信号相位相反、幅值放大的输出信号。
2. 单管放大电路的组成单管放大电路主要由以下元件组成:(1)晶体管:作为放大元件,具有电流放大作用;(2)偏置电路:为晶体管提供合适的静态工作点;(3)输入电路:将输入信号引入晶体管;(4)输出电路:将放大后的信号从晶体管输出;(5)耦合电容:实现交流信号的传递;(6)旁路电容:滤除直流分量,使交流信号顺利通过。
三、实验内容1. 单管放大电路的搭建(1)根据电路原理图,选用合适的元件,包括晶体管、电阻、电容等;(2)按照电路原理图连接电路,注意连接顺序和方向;(3)检查电路连接是否正确,确保电路安全可靠。
2. 单管放大电路的静态工作点调试(1)调整偏置电阻,使晶体管工作在放大区;(2)使用万用表测量晶体管的静态电流和电压,确保静态工作点符合设计要求;(3)根据需要调整偏置电路,优化静态工作点。
3. 单管放大电路的动态性能指标测量(1)使用信号发生器产生输入信号,频率和幅度根据实验要求设定;(2)使用示波器观察输入信号和输出信号的波形,分析电路的幅频特性和相位特性;(3)使用交流毫伏表测量输入信号和输出信号的幅度,计算电压放大倍数;(4)测量输入电阻和输出电阻,分析电路的负载特性。
四、实验结果与分析1. 静态工作点调试结果经过调试,晶体管的静态电流约为1mA,静态电压约为5V,符合设计要求。
单管放大实验报告

一、实验目的1. 熟悉晶体管放大电路的基本原理和实验方法;2. 掌握单管放大电路静态工作点的调试方法;3. 学习测量放大电路的电压放大倍数、输入电阻和输出电阻;4. 分析放大电路的性能参数,提高电子电路实验技能。
二、实验原理单管放大电路是模拟电子电路中常见的一种基本放大电路。
它由晶体管、电阻和电容等元件组成。
晶体管作为放大元件,具有电流放大作用;电阻用于提供偏置电流和分压作用;电容用于滤波和耦合作用。
单管放大电路的基本工作原理是:输入信号经过耦合电容C1进入晶体管的基极,晶体管将输入信号放大后,从集电极输出。
输出信号与输入信号相位相反,且幅值放大了晶体管的β倍。
三、实验仪器与设备1. 晶体管(例如:3DG6、3CX201等)2. 电阻(例如:Rb、Rc、Ri、Rl等)3. 电容(例如:C1、C2、C3等)4. 直流稳压电源5. 函数信号发生器6. 双踪示波器7. 万用表8. 连接线、测试夹具等四、实验步骤1. 搭建实验电路:根据实验要求,搭建单管放大电路,包括晶体管、电阻、电容等元件。
连接电路时,注意正负极性、输入输出端口等。
2. 调试静态工作点:首先,将直流稳压电源电压调至合适值,例如12V。
然后,调节电阻Rb,使晶体管基极电流Ib约为1mA。
使用万用表测量晶体管基极电压Ub、发射极电压Ue和集电极电压Uc,记录数据。
3. 测量电压放大倍数:在放大电路输入端加入频率为1kHz的正弦信号,调节函数信号发生器输出幅度。
使用示波器观察输入信号和输出信号,记录数据。
4. 测量输入电阻和输出电阻:在放大电路输入端加入正弦信号,调节输出幅度。
使用示波器观察输入信号和输出信号,记录数据。
根据公式计算输入电阻和输出电阻。
5. 分析实验结果:对比理论计算值和实验测量值,分析放大电路的性能参数,如电压放大倍数、输入电阻和输出电阻等。
五、实验结果与分析1. 静态工作点调试:实验中,调节电阻Rb,使晶体管基极电流Ib约为1mA。
单管交流实验报告(3篇)

第1篇一、实验目的1. 理解并掌握单管交流放大电路的工作原理。
2. 学习静态工作点的调试方法,分析其对放大器性能的影响。
3. 掌握电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。
4. 熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理单管交流放大电路是一种常见的模拟电子电路,主要由晶体管、电阻、电容等元件组成。
其基本工作原理是通过晶体管的放大作用,将输入信号放大并输出。
电路的静态工作点对放大器的性能有重要影响,需要通过调试来确保放大器正常工作。
三、实验仪器与设备1. 晶体管(如BC547)2. 电阻(1kΩ、10kΩ、100kΩ、220Ω、2.2kΩ)3. 电容(0.1μF、1μF、10μF)4. 信号源(1kHz,10mV)5. 示波器6. 交流毫伏表7. 直流电源(12V)8. 连接线、测试笔四、实验内容及步骤1. 搭建电路根据实验原理图,搭建单管交流放大电路。
电路包括晶体管、电阻、电容等元件,连接方式如下:- 晶体管发射极接1kΩ电阻,电阻另一端接地。
- 晶体管基极接10kΩ电阻,电阻另一端接12V直流电源。
- 晶体管集电极接2.2kΩ电阻,电阻另一端接地。
- 晶体管集电极接电容(0.1μF),电容另一端接地。
- 信号源正极接晶体管基极,负极接地。
2. 调试静态工作点- 打开直流电源,调节电位器,使晶体管集电极电流约为2mA。
- 用示波器观察晶体管集电极电压波形,调整电位器使波形稳定。
3. 测量电压放大倍数- 将信号源输出频率设为1kHz,幅值为10mV的正弦波信号。
- 用示波器观察输入信号和输出信号波形,确保波形不失真。
- 用交流毫伏表测量输入信号幅值(Vi)和输出信号幅值(Vo)。
- 计算电压放大倍数(Au = Vo / Vi)。
4. 测量输入电阻和输出电阻- 在晶体管发射极串接1kΩ电阻,测量发射极电压(Ve)。
- 在晶体管集电极串接1kΩ电阻,测量集电极电压(Vc)。
实验1单管放大电路及常用电子仪器使用

1.实验一:单管放大电路及常用电子仪器使用一.实验目的:(1)学会用万用表判别三极管的类别和管脚。
(2)掌握测试三级管输出特性曲线的方法。
(3)基本放大电路的静态工作点测试。
二.实验原理:1.三极管的类型及管脚判别(1)管型和基极b的测试:三极管可以看成是两个背靠背的PN结,结构如下图1-1和1-2所示。
图1-1 NPN三极管结构示意图图1-2 PNP三极管结构示意图用万用表测试三极管的PN结时,万用表红表棒接基极,黑表棒接另外两个极,阻值都很小,则为NPN型三极管的基极,如万用表黑表棒接基极,红表棒接另外两个极,阻值都很小,则为PNP型三极管的基极。
(2)发射极e和集电极c的判别。
在三极管的类型和基极确定后,在三极管基极b与三极管的另外两个极串联一个电阻(20~100KΩ),如图1-3所示。
若集电极与发射极间加的是正常放大所需极性的电源电压,则I C≈βI B,反之电源电压极性相反,则I Cr几乎为0。
用万用表接入NPN型三极管的c和e端时,若红表棒接c端,黑表棒接e端时,表指针偏转角大,若将两表棒对调,表指针偏转角小,这样就可以判断NPN型三极管的发射极e和集电极c。
对于PNP型三极管方法类同。
图1-3 c和e极判断接线图图1-4 万用表内部示意图2.三极管输出特性曲线测试三极管输出特性曲线,它分为三个区域:截止区、放大区和饱和区。
一般将I B≤0的区域称为截止区,此时相应的I C也近似为零,三极管处于截止区;在放ce大区内,每条曲线近似为水平的直线,即当I B 一定时,I C 基本上不随U CE 的变化而变化。
I C 的数值主要取决于I B ,而且当I B 有微小的变化量时,相应的I C 变化量要放大β倍,这就体现了三极管的放大作用;饱和区在靠近纵坐标的附近,当I B 改变时,I C 基本上不随之改变,不受I B 的控制,这时三极管已失去了放大作用。
3. 基本放大电路的静态工作点测试基本放大电路要使三极管起到放大作用,外加电源的极性必须使三极管的发射结处于正向偏置状态,而集电结处于反向偏置状态,即U BE >0,U BC <0。
单管低频放大电路实验报告

单管低频放大电路实验报告一、实验目的1、熟悉电子电路实验设备的使用方法。
2、掌握单管低频放大电路的工作原理。
3、学会测量和调试单管低频放大电路的静态工作点。
4、研究负载电阻对放大电路电压放大倍数的影响。
二、实验原理1、单管低频放大电路的组成单管低频放大电路通常由三极管、电阻、电容等元件组成。
三极管作为核心元件,起到放大电流和电压的作用。
电阻用于确定三极管的静态工作点,电容则用于耦合交流信号和隔断直流。
2、静态工作点的设置静态工作点是指在没有输入信号时,三极管各极的直流电压和电流值。
合适的静态工作点可以保证三极管在输入信号作用下工作在放大区,避免出现截止失真或饱和失真。
静态工作点通常由基极电阻和集电极电阻的阻值来决定。
3、电压放大倍数电压放大倍数是衡量放大电路放大能力的重要指标,它等于输出电压与输入电压的比值。
在单管低频放大电路中,电压放大倍数主要由三极管的电流放大倍数、集电极电阻和负载电阻的值决定。
三、实验仪器和设备1、示波器用于观察输入和输出信号的波形。
2、信号发生器产生一定频率和幅度的输入信号。
3、直流电源提供电路所需的直流电压。
4、万用表测量电路中的直流电压和电流。
5、面包板、电阻、电容、三极管等电子元件四、实验内容及步骤1、电路搭建按照电路图在面包板上搭建单管低频放大电路,注意元件的布局和连接要正确。
2、静态工作点的测量将电路接通直流电源,用万用表测量三极管的基极电压、发射极电压和集电极电压,计算基极电流、集电极电流,从而确定静态工作点是否合适。
3、输入信号的连接将信号发生器产生的正弦波信号连接到放大电路的输入端,调节信号的频率和幅度。
4、输出信号的观察和测量用示波器观察放大电路的输出信号,测量输出信号的幅度和相位,并与输入信号进行比较。
5、改变负载电阻的值分别接入不同阻值的负载电阻,观察输出信号的变化,测量电压放大倍数,研究负载电阻对放大性能的影响。
五、实验数据记录与分析1、静态工作点的测量数据|测量项目|测量值|计算值||||||基极电压(V)|_____ |_____ ||发射极电压(V)|_____ |_____ ||集电极电压(V)|_____ |_____ ||基极电流(μA)|_____ |_____ ||集电极电流(mA)|_____ |_____ |分析:根据测量数据,判断静态工作点是否在三极管的放大区。
单管共射放大电路实验报告

单管共射放大电路实验报告一、实验目的1、熟悉电子电路实验装置的使用方法。
2、掌握单管共射放大电路的基本原理和分析方法。
3、学会使用示波器、万用表等仪器测量电路参数。
4、了解静态工作点对放大电路性能的影响。
二、实验原理单管共射放大电路是一种基本的晶体管放大电路,其基本结构如下图所示:!单管共射放大电路原理图(单管共射放大电路原理图jpg)在该电路中,晶体管 T 是核心元件,它起到放大电流和电压的作用。
基极电阻 Rb 用于提供合适的基极电流 IB,集电极电阻 Rc 用于将集电极电流 IC 的变化转换为集电极电压的变化,从而实现电压放大。
耦合电容 C1 和 C2 起到隔直流通交流的作用,使输入和输出的交流信号能够顺利通过,同时阻止直流信号进入前后级电路。
放大电路的性能指标主要包括电压放大倍数、输入电阻、输出电阻、通频带等。
其中,电压放大倍数 Av 是输出电压与输入电压的比值;输入电阻 Ri 是从放大电路输入端看进去的等效电阻;输出电阻 Ro 是从放大电路输出端看进去的等效电阻。
静态工作点是指在没有输入信号时,晶体管各极的直流电流和电压值。
合适的静态工作点对于保证放大电路的正常工作和性能至关重要。
如果静态工作点设置不当,可能会导致放大电路出现失真等问题。
三、实验设备与器材1、示波器2、函数信号发生器3、万用表4、直流电源5、面包板6、电阻、电容、晶体管等电子元件四、实验内容与步骤1、按照电路图在面包板上搭建单管共射放大电路。
2、调节直流电源,使电路的电源电压为+12V。
3、用万用表测量晶体管的基极发射极电压 VBE 和集电极发射极电压 VCE,计算静态工作点的电流 IB、IC 和 VCE。
4、将函数信号发生器的输出端连接到放大电路的输入端,设置输入信号的频率为 1kHz,峰峰值为 10mV。
5、用示波器观察输入和输出信号的波形,测量输出信号的峰峰值,并计算电压放大倍数 Av。
6、改变基极电阻 Rb 的阻值,观察静态工作点的变化对放大电路性能的影响。
单管共射放大电路实验报告

单管共射放大电路实验报告单管共射放大电路实验报告引言:单管共射放大电路是电子学中常见的一种电路结构,它可以将输入信号放大并输出。
本实验旨在通过搭建单管共射放大电路并进行实验观察,深入理解其工作原理和特性。
实验设备:1. NPN型晶体管2. 直流电源3. 信号发生器4. 电阻、电容等元器件5. 示波器6. 万用表实验步骤:1. 按照实验电路图搭建单管共射放大电路。
2. 将直流电源接入电路,调整电源电压为合适的数值。
3. 连接信号发生器,调节频率和幅度。
4. 使用示波器观察输入和输出信号波形。
5. 测量电路中各个元器件的电压和电流数值。
实验结果:通过实验观察和测量,我们得到了以下结果:1. 输入信号经过放大后,输出信号的幅度明显增大。
2. 输入信号的频率对放大效果有一定影响,不同频率下放大倍数可能有所不同。
3. 输出信号的波形与输入信号的波形基本一致,只是幅度发生了变化。
4. 在特定的输入信号幅度范围内,输出信号的幅度变化基本线性。
讨论与分析:单管共射放大电路的放大效果和特性与电路中的元器件参数有关。
在实验中,我们可以通过调整电源电压、改变电阻和电容的数值来观察其对放大效果的影响。
此外,晶体管的工作状态也会对放大效果产生影响,如静态工作点的选择和偏置电流的设置等。
在实际应用中,单管共射放大电路常用于音频放大、信号处理等领域。
通过调整电路中的元器件参数,可以实现对不同频率和幅度的信号的放大。
然而,单管共射放大电路也存在一些问题,例如频率响应范围有限、输出波形失真等。
因此,在实际应用中需要根据具体需求选择合适的电路结构。
结论:通过本次实验,我们成功搭建了单管共射放大电路,并观察了其放大效果和特性。
实验结果表明,单管共射放大电路能够有效地放大输入信号,并输出相应的放大信号。
通过进一步的实验和研究,可以深入了解电路的工作原理和优化方法,为实际应用提供参考。
总结:单管共射放大电路是电子学中重要的电路结构之一,通过本次实验我们深入理解了其工作原理和特性。
实验3.2 单管放大电路Multisim仿真实验

实验3.2 单管放大电路
二、实验设备及材料
1.装有Multisim 14的计算机 2. 函数信号发生器 3. 双踪示波器 4. 数字万用表 5. 模拟电路实验箱
实验3.2 单管放大电路
三、实验原理
图3-13 电阻分压式单管放大电路
实验3.2 单管放大电路
三、实验原理
1.静态工作点调试
具体现象 调整动作
V
PR1
V: 7.90 V V(p-p): 1.21 pV V(rms): 0 V V(dc): 7.90 V V(freq): --
V
PR2
C2
10µF Q1 2N3903
V: 1.90 V V(p-p): 0 V V(rms): 0 V V(dc): 1.90 V V(freq): --
PR3
V
R3 100Ω
R6 2.4kΩ
R2 20kΩ
R4
C3
1kΩ
100µF
图3-17 测量探针测量静态工作点示意图
图3-18 使用万用表测量静态工作点示意图
实验3.2 单管放大电路
四、计算机仿真实验内容
C1 10µF
VCC 12V
Rw 100kΩ
R5 2.4kΩ
Key=A 42 %
U2
+
R1 20kΩ
1.705m A
-
C2
DC 1e-009Ohm
U1
10µF
Q1
U3
+
-
0.023m A
+
6.005 V
-
DC 1e-009Ohm
2N3903 DC 10MOhm
R2 20kΩ
R3 100Ω
单管共发射极放大电路实验报告

单管共发射极放大电路实验报告单管共发射极放大电路实验报告引言:单管共发射极放大电路是一种常见的电子电路,用于放大信号。
本实验旨在通过实际操作,验证该电路的放大性能,并探究其工作原理和特点。
一、实验目的本实验的主要目的有以下几点:1. 了解单管共发射极放大电路的基本原理和工作方式;2. 掌握实验中所使用的电路元件的特性和使用方法;3. 验证单管共发射极放大电路的放大性能,并分析其特点。
二、实验原理单管共发射极放大电路是一种基于晶体管的放大电路。
其基本原理是利用晶体管的放大特性,将输入信号的小幅变化转化为输出信号的大幅变化。
在单管共发射极放大电路中,晶体管的发射极作为输入端,基极作为输出端,集电极作为共用端。
三、实验器材和元件1. 电源:提供所需的直流电源;2. 晶体管:选择适合的晶体管,如2N3904;3. 电阻:用于构建电路的电阻,如1kΩ、10kΩ等;4. 电容:用于构建电路的电容,如10uF、100uF等;5. 示波器:用于观测电路的输入输出信号。
四、实验步骤1. 按照电路图连接电路,确保连接正确无误;2. 调整电源电压,使其符合晶体管的额定工作电压;3. 接入示波器,观测输入信号和输出信号的波形;4. 调节输入信号的幅度,记录相应的输出信号幅度;5. 改变输入信号频率,观察输出信号的变化;6. 尝试改变电阻和电容的数值,观察电路的放大性能变化。
五、实验结果与分析通过实验观察和记录,我们得到了一系列输入信号和输出信号的数据。
根据这些数据,我们可以计算放大倍数,并绘制输入输出特性曲线和频率响应曲线。
根据计算和实验结果,我们可以得出以下结论:1. 单管共发射极放大电路具有较好的放大性能,输入信号的小幅变化可以得到相应的大幅输出变化;2. 放大倍数与输入信号的幅度呈线性关系,且与电路中的电阻和电容数值有关;3. 频率响应曲线显示出电路对不同频率信号的放大程度不同,存在一定的频率选择性。
六、实验总结通过本次实验,我们深入了解了单管共发射极放大电路的工作原理和特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
出。CE为旁路电容。
VCC
图-1 单管 共射极放大电路
电路主要动态参数:
RB1 10K
Vi
C1 10uF
RC
2K
C2
Vo
10uF
电压放大倍数Av :
(Av=-β*RL’/rbe=VoIVi)
RB2
输入电阻 ri(ri =rbe//RB) 10K
输出电阻 ro (ro=RC)。
R2
100K
RE
100
CE 10uF
C读取测量电压: a、用数字示波器:直接读出直流电压值;
b、用模拟示波器:直流电压=垂直灵敏度×垂直偏转格数。
2020/3/29
长江大学 龙从玉
3
3.3、放大电路动态参数的测量原理
单管放大电路的动态参数测量电路如图- 3 ,其中的虚框
部分为单管放大电路动态参数的等效电路。
Vi
RS
单管放大电路
VO
ro
长江大学 龙从玉
2
2)静态工作点的设置原则
在有负载的情况下,输入信号的变化使工作点沿交流负载线变
化,从图- 4中VCE的变化规律可以看出:在不考虑三极管的饱和 压降时,VCE向减小方向的变化幅度为VCEQ,向增大方向的变化 幅度为ICQ×RL’ ,要获得最大的不失真输出幅度,则:
VCEQ=ICQ×RL’ 。 由于VCEQ和ICQ满足直流负载线方程VCEQ=VCC - ICQ*RC 代入 上式得:VCEQ=VCC*RL/(RC+2RL) 上式表明:
变量设置:
VB1:
起点:0.0
终点:5.0 横步数:100 VC1:
VB1
VALUE=1
起点:0.0
终点:5.0
纵线数:10
Y轴标尺设置:
-10.0mA
180.0mA
VC1
VALUE=10
IC
Q(B)
Q
2N222
R1
10k
R2
10k-X
VB
R5
100k
R3
X
VCC
VALUE=12V
RC
2k
VC
Q1
9013 VE
(CE=100uF)
2020/3/29
长江大学 龙从玉
7
4、实验内容与实验步骤
4.1、静态工作点的调整与测量
参见操作示意图- 4
1)先用万用表二极管测量档检查并判断所用三极管的好坏;
2)按图- 4电路构成单管放大电路。调节电位器Rw1,观察电压 VCE的变化范围,测量VCE的最大值和最小值,记录在表-1中。 3)对放大电路输入f=1KHz、Vipp=100mV的正弦信号,用示
SW2
RL
2k
(CE=10uF)
横轴:频率 左纵轴:幅度 右纵轴:相位
电路模拟分析电压波形相位图
电路交流扫描幅频相频曲线
横轴:时间 纵轴:电压 左轴:mV;右轴:V
电路电压放大倍数
AV=VO/Vi
输入电阻 r i r i =RS*Vi /(VS-Vi )
输出电阻r O r O =RL*(VO-VOL)/VOL
RE
100R
静态工作点调试 放大电路直流扫描 扫变量:X 起始:0 终止:10K步数:100 横轴:电位器阻值. 纵轴:VE.VB.VC电压值.
2020/3/29
长江大学 龙从玉
6
*3)单管放大电路动态参数测量 龙
VCC
VALUE=12V
电路频率分析幅频相频曲线
J1
1 2
Vs
3 4
Vo
SIL-156-04
Vs
ri
VO
RL
图-3 单管放大电路的动态参数测量电路
1)放大电路电压放大倍数AV的测量:AV =VO/Vi
2)放大电路输入电阻ri与输出电阻ro的测量原理
电阻的测量采用串联电阻的间接测量法:串联合计算电阻:
输入电阻ri = RS*Vi /(Vs-Vi) 输出电阻ro= RL*(VO-VOL )/VOL
3)测量注意事项:信号源、示波器的输入与输出要共地。
2020/3/29
长江大学 龙从玉
4
3.4信、号波单形管放大电路的仿真调试
*1)单管放大电路实时仿真图 龙
信号发生器
+
信号频率
信号A幅M 值FM
-
单管放大电路 ①静态工作点的测量 SW1接地1, 测量VE、VB、VC。 ②电压放大倍数的测量 SW1接3,短接RS, 测量VO、Vi AV=VO/Vi。 ③输入电阻的测量 SW1空接2, 测量VS、 Vi
3、实验原理
3.1、单管放大电路的工作原理
三极管本是电流控制电流源器件(IC=β×IB),本实验采用单管 共射极放大电路如图-1所示。通过合理设置静态工作点,实现对
信号电压的放大。基极电压通过电阻RB1RB2分压获取,基极串 联R2接分压可减少分压电阻对输入电阻测量的影响。
输入交流信号通过C1直接输入基极。输出交流信号通过C2 输
当RL=RC时:VCEQ=VCC/3时获得最大不失真输出电压。 当RL=∞ 时:VCEQ=VCC/2时获得最大不失真输出电压。
3)静态工作点的测量方法:①用万用表测量直流电压;
②用示波器测量直流电压方法:
A 校正示波器零电压基准,将输入端短路,调整垂零电压线;
B将示波器探头接入被测电路,采用直流DC耦合输入测量;
AMP=30m Vs FREQ=1k
Vs V=-2.01095e-12
RS
3K
SW1
40%
R1
10K V=-2.04352e-13
Vi
RC
2k
C2
C1
V=6.217 VC
V=0.97304 10u
10u
VB
Q 9013
RV1 R2
10K 100k
VE V=0.2905
C3
RE
100
10u
VO V=-7.42803e-06 VO
GND
2020/3/29
长江大学 龙从玉
1
3.2、电路的调试与测量原理
1)放大电路的静态工作点
静态工作点是指在电路输入信号为零时,电路中各支路电流和各节点的电压 值。通常直流负载线与交流负载线的交点Q所对应的参数IBQ、ICQ、VCEQ是 主要观测对象,如图-2所示。
图- 2 静态工作点 示意图
2020/3/29
10K 100k
+88.8
AC mV
长江大学 龙从玉
VC VB
VE
VCC VALUE=12
RC
2k
C2
示波器 电压 A 同步
触发
B C
D 时间
VO
10u
Q
9013
SW3
VO
SW2
+88.8
AC Volts
RL
RE
C3 2k
100
10u
5
*2) 三极管传输特性与放大电路直流分析 龙
三极管传输特性
将变量IC添加至图表中
ri=Rs*Vi /(VS-Vi) ④输出电阻的测量 SW2接通, 测量VOL r O=RL*(Vo-VOL)/VoL。
f=1KHz Vipp=100mV
RV2
44%
10k
+88.8
AC mV
SW1
断开SW3,则电流 串联负反馈电阻为REF 。
2020/3/29
40%
R1
10K
C1
10u
RV1 R2