Copula函数

Copula函数
Copula函数

一、 C o p u l a 函数理论

Copula 理论的是由Sklar 在1959年提出的,Sklar 指出,可以将任意一个n 维联合累积分布函数分解为n 个边缘累积分布和一个Copula 函数。边缘分布描述的是变量的分布,Copula 函数描述的是变量之间的相关性。也就是说,Copula 函数实际上是一类将变量联合累积分布函数同变量边缘累积分布函数连接起来的函数,因此也有人称其为“连接函数”。

Copula 函数是定义域为[0,1]均匀分布的多维联合分布函数,他可以将多个随机变量的边缘分布连.起来得到他们的联合分布。

Copula 函数的性质

定理1 (Sklar 定理1959) 令F 为一个n 维变量的联合累积分布函数,其中各变量的边缘累积分布函数记为F i ,那么存在一个n 维Copula 函数C ,使得

111(,,)((),,())n n n F x x C F x F x ???=???

(1) 若边缘累积分布函数F i 是连续的,则Copula 函数C 是唯一的。不然,Copula 函数C 只在各边缘累

积分布函数值域内是唯一确定的。

对于有连续的边缘分布的情况,对于所有的[0,1]n ∈u ,均有 1111()((),,())n n C F F u F u --=???u

(2)

在有非减的边缘变换绝大多数的 从Sklar 定理可以看出, Copula 函数能独立于随机变量的边缘分布反映随机变量的相关性结构, 从而可将联合分布分为两个独立的部分来分别处理: 变量间的相关性结构和变量的边缘分布, 其中相关性结构用Copula 函数来描述。Copula 函数的优点在于不必要求具有相同的边缘分布, 任意边缘分布经Copula 函数连接都可构造成联合分布, 由于变量的所有信息都包含在边缘分布里, 在转换过程中不会产生信息失真。

Copula 函数总体上可以划分为三类: 椭圆型、Archimedean (阿基米德) 型和二次型, 其中含一个参数的Archimedean Copula 函数应用最为广泛, 多维Archimedean Copula 函数的构造通常是基于二维的,根据构造方式的不同可以分为对称型和非对称型两种. 三种常用的3-维非对称型Archimedean Copula 函数: Frank Archimedean Copula 函数 , Clayton Archimedean Copula 函数, Gumbe Archimedean Copula 函数

二、 Copula 函数的应用

Copula 函数的应用具体包括以下几个步骤: ①确定各变量的边缘分布; ②确定Copula 函数的参数"; ③根据评价指标选取Copula 函数, 建立联合分布; ④根据所建分布进行相应的统计分析。:

参数估计

Copula 函数的参数估计方法大致可分为三种:

○1关性指标法, 根据上面提到的Kendall 秩相关系数$ 与" 的关系间接求得。②适线法, 即在一定的适线准则下, 求解与经验点据拟合最优的频率曲线的统计参数。③极大似然法, 对于三维及以上的Copula 函数,相关性指标法显然不再适用, 此时大多采用极大似然法进行参数估计。

肖义在分析前两种方法的基础上,认为相对于单变量分布, Copula 函数的参数估计对资料的长度要求更高, 对于中小样本可能导致估计值抽样误差大, 估计值不稳定, 他采用自助法耦合这两种方法进行参数估计。统计试验表明, 相关性指标法参数估计值的置信区间较窄、结果更稳定, 自助法能够提高相关性指标法的估计能力, 对于适线法效果却不佳, 会造成估计值严重偏大。○4均方差(RMSE):可以用来评价参数估计的有效性

Copula 函数的假设检验

卡方检验 Kolmogorov- Smirnov( K-S)检验

Copula 函数的拟合优度评价

( 1) 离差平方和准则法。采用离差平方和最小准则(OLS) 来评价Copula 方法的有效性, 并选取OLS 最小的Copula 作为联结函数。OLS

(2)AIC 信息准则法。AIC 信息准则包括两个部分: Copula 函数拟合的偏差和Copula 函数的参数个数导致的不稳定性

( 3)Genest–Rivest 方法。Genest 和Rivest提出了一种比较直观地选择Copula 函数的方法, Copula 函数主要应用方向如下

(1)在分期设计洪水中的应用

分期设计洪水既要满足防洪标准,又能反映洪水的季节性变化特征。现行分期设计洪水模式假定各分期频率均等于防洪标准T 的倒数,使得分期设计洪水值不能满足防洪标准的要求。选择合适的Copula 函数构建汛期分期为三分期、边缘分布为PIII 分布的分期设计洪水的联合分布。在假定分期设计洪水的联合重现期等于防洪标准T 的前提下,推导基于Copula 函数的分期设计洪水频率和防洪标准的关系,进而推求分期洪水设计值,并与现行分期设计洪水模式的计算成果相比较,分析论证了基于Copula 函数分期设计洪水的合理性,从理论和方法上回答和解决现行分期设计洪水中存在的问题,为分期设计洪水研究提供了一种新的途径。

现行方法采用分期最大洪水选样,根据这种洪水系列计算的洪水频率不同于通常根据全年最大洪水系列计算的频率。现行的分期设计洪水模式假定分期设计洪水频率均采用原来的年防洪标准,分期最大洪水系列中的部分(有时候甚至为全部)洪水不是年最大洪水,这些洪水在一年内就可能被超过多次。也就是,在各分期分别取样以后,其分期设计洪水值均小于或等于年最大设计洪水值,不能保证分期设计洪水能够真正达到规定的防洪标准,主汛期设计洪水一般较年最大值取样得到的设计洪水小,这样可能导致主汛期汛限水位较原设计汛限水位抬高这一明显不合理的现象,从

而降低水库的防洪标准。为避免这种现象的发生,规范与设计手册中将主汛期设计洪水值强制等于年最大取样计算的设计洪水值,但这种处理方法只能确保主汛期设计洪水达到指定的防洪标准,并不包含其它分期,因而仍不能够达到指定的年防洪标准。现行方法反映了洪水的季节性规律,却不能满足设计标准。正确计算分期设计洪水的途径应既要反映洪水的季节性规

律,又要使计算的分期设计洪水符合防洪设计标准(以年为单位的重现期表示)。

(2)在径流随机模拟中的应用

CAR(1)模型:基于Copula函数的一阶非平稳时间序列模型

随机模型的核心问题是构建联合分布或条件概率分布。建立了基于Copula函数的一阶非平稳时间序列模型,即季节性CAR(1)模型,并与季节性AR(1)模型进行比较。以宜昌站月径流模拟为例,研究了季节性CAR(1)模型的实用性。结果表明,所建模型能较好的模拟原序列的统计特性,尤其是偏态特性、非线性相关性和概率密度特征的保持上,为水文水资源随机模拟研究提供了一种新的途径。

(3)基于Copula 函数的设计洪水过程线方法

采用Copula 函数构造边缘分布为PIII 分布的联合分布,用以描述年最大洪峰和年最大时段洪量,并介绍两变量情形下的重现期定义,根据建立的联合分布和两变量的重现期提出基于两变量联合分布的设计洪水过程线推求方法. 研究有助于进一步认识设计洪水过程线的推求方法,并为设计洪水过程线推求提供了一种新思路.

(4)分期设计洪水频率与防洪标准关系研究

现行分期设计洪水模式估算的分期设计洪水值均小于或等于年最大设计值,达不到规定的防洪标准。采用Gumbel-Hougaard Copula函数描述两个分期的分期最大洪水之间的相关性结构,并构造边缘分布为P-Ⅲ分布的分期最大洪水联合分布,建立分期最大洪水与年最大洪水的关系式,讨论分期设计洪水频率与防洪标准应满足的关系,探讨能够满足防洪标准的新的分期设计洪水模式。应用示例表明,新模式主汛期设计值相对年最大设计值小幅度增加,而非主汛期设计值则小于年最大设计值,既满足不降低防洪标准的要求又能够起到优化设计洪水的作用,为分期设计洪水研究提供了一条新的思路。

(5)基于Copula 函数的设计洪水过程线方法

采用Copula 函数构造边缘分布为PIII 分布的联合分布,用以描述年最大洪峰和年最大时段洪量,并介绍两变量情形下的重现期定义,根据建立的联合分布和两变量的重现期提出基于两变量联合分布的设计洪水过程线推求方法. 研究有助于进一步认识设计洪水过程线的推求方法,并为设计洪水过程线推求提供了一种新思路.

本文在边缘分布为PIII 型分布的联合分布的基础上,初步探讨了设计洪水过程线推求方法,并与现行的基于单变量分布的同频率设计洪水过程线方法进行了比较. 单变量方法能够分别处理描

述洪水过程线的多个特征量,并控制各个特征量的重现期分别等于设计标准,但重现期的概念仅仅针对特征量,而不是针对整个设计洪水过程. 本文提出的基于峰量两变量联合分布的方法,将描述设计洪

水过程线的变量简化成峰量两个特征量,能够在考虑峰量相关性的前提下描述设计洪水过程的重现期. 所提出的方法适用于峰量均起控制作用情况下设计洪水过程线的推求,为设计洪水过程线研究提供了一条新思路. 本文仅对于两变量情形进行讨论,对于考虑3 个变量以上的设计洪水过程线推求,需要借助于多变量Copula 函数.

(6)基于Copula函数法推求分期设计洪水和汛限水位

采用3-维非对称型Frank Copula函数结构,构建汛期分期为三分期、边缘分布为P-Ⅲ型分布的分期洪水联合分布.在假定分期设计洪水值的联合重现期等于防洪标准T的前提下,推导基于Frank Copula函数的分期设计洪水频率和防洪标准的关系,解决了分期设计洪水达不到防洪标准和分期频率与年频率不一致的问题,为分期设计洪水、分期汛限水位优化设计提供了一条新思路.

采用Copula函数构建分期设计洪水的联合分布进而根据利用防洪标准的等价形式推求分期汛限水位,不仅考虑了各分期之间的相关性,而且在反映分期洪水季节性特征的同时,解决现行分期设计洪水达不到防洪标准的问题,同时用年组合频率作为下游防洪标准的等价形式,避开了现行汛限水位方法中年频率和分期频率含义不一致的问题,因而本文在联合设计分期洪水的基础上,从年组合频率和分期频率的关系出发,初选分期汛限水位,从而为分期设计洪水、分期汛限水位优化设计提供了一条新思路.

其他应用,在洪水频率分析计算中的应用,在降雨频率分析计算中的应用,在干旱特征分析中的应用,在洪水或降雨遭遇问题中的应用,在水文随机模拟中的应用

三、结论与展望

今后的研究将集中于以下三方面:

(1) Copula 函数理论与方法本身的完善:

函数虽早在1959 年就已提出, 但直到上个世纪90 年代才得以迅速发展, 其本身尚处于不断发展完善阶段,与其他理论如Bayes 理论、马尔可夫链等的结合将是该理论的一个发展趋势。2006 年, Huard 等通过Bayes 技术确定Copula 函数的选择, 这也是水文学家提出或改进数学方法理论的一个典型例子。另外, 当考虑到样本的尾部相关特征时, 如何选择与之相适应的Copula 函数也将是今后一个研究热点。

(2)Copula 函数应用范围的拓广。

凡是具有相关性的两个或多个变量, 无论是互相关还是自相关, 理论上都可以用Copula 函数刻画其相依结构, 这就使得Copula 函数将有很大的应用空间。具体到水文分析计算领域, 例如降雨与径流, 水沙关系, 防洪体系的防洪标准问题, 区域水文风险研究等等, 都可以应用该理论

进行研究。

( 3)Copula 函数维数拓展及相关问题。

目前对于Copula 函数的研究和应用多限于二维, 随着计算机技术的进步及研究问题的复杂性, 三维及以上Copula 函数的应用以及伴之而来的参数估计、函数类型选择等问题都需要进一步的研究。

copula函数及其应用.doc

copula函数及其应用 陆伟丹2012214286 信息与计算科学12-2班Copula函数及其应用Copula函数是一种〃相依函数"或者“连接函数",它将多维变量的联合分布函数和一维变量的边际分布函数连接起来,在实际应用中有许多优点。 首先,由于不限制边缘分布的选择,可运用Copula理论构造灵活的多元分布。其次,运用Copula理论建立模型时,可将随机变量的边缘分布和它们之间的相关结构分开来研究,它们的相关结构可由一个C opu 1 a函数来描述。另外,如果对变量作非线性的单调增变换,常用的相关性测度——线性相关系数的值会发生改变,而由Cop u1 a函数导出的一致性和相关性测度的值则不会改变。此外,通过C o p u1 a函数,可以捕捉到变量间非线性、非对称的相关关系,特别是容易捕捉到分布尾部的相关关系。 正是这些性质与特点使得C opu 1 a为研究变量问的相关性提供了一种新方法,使得投资组合风险管理度量方法有了一个新的突破。 Copula函数是现代概率论研究的产物,在2 0世纪5 0年代由S k1 a r( 19 5 9 )首先提出,其特点在于能将联合分布的各边缘分布分离出来,从而简化建模过程,降低分析难度,这也是著名的S k 1 a r定理。S c hwe i z e r Sklar( 1983) 对其进行了阶段性的总结,在概率测度空间理论的框架内,介绍了C opu1 a函数的定义及Copula函数的边缘分布等内容。J oe ( 1 9 9 7 )又从相关性分析和多元建模的角度进行了论述,展示了Copula 函数的性质,并详尽介绍了Copula函数的参数族。Ne 1 s e n(1999 )在其专著中比较系统地介绍了C o pula的定义、 构建方法、Archimedean Copula及相依性,成为这一研究领域的集大成者。D a v i d s i on R A, Res nick S 1.( 1984)介绍了C o p u 1 a的极大似然估计和矩估计。而J o e , H .提出了二步极大似然估计,并说明它比极大似然估计更有效。在选择最适合我们要求的Copula 函数上,最常用的方法是拟合优度检验,W. B reymannn ,A.Dias , P ? Embrecht s ( 2 0

【良心出品】Copula理论及MATLAB应用实例

%-------------------------------------------------------------------------- % Copula理论及应用实例 %-------------------------------------------------------------------------- %******************************读取数据************************************* % 从文件hushi.xls中读取数据 hushi = xlsread('hushi.xls'); % 提取矩阵hushi的第5列数据,即沪市的日收益率数据 X = hushi(:,5); % 从文件shenshi.xls中读取数据 shenshi = xlsread('shenshi.xls'); % 提取矩阵shenshi的第5列数据,即深市的日收益率数据 Y = shenshi(:,5); %****************************绘制频率直方图********************************* % 调用ecdf函数和ecdfhist函数绘制沪、深两市日收益率的频率直方图 [fx, xc] = ecdf(X); figure; ecdfhist(fx, xc, 30); xlabel('沪市日收益率'); % 为X轴加标签 ylabel('f(x)'); % 为Y轴加标签 [fy, yc] = ecdf(Y); figure; ecdfhist(fy, yc, 30); xlabel('深市日收益率'); % 为X轴加标签 ylabel('f(y)'); % 为Y轴加标签 %****************************计算偏度和峰度********************************* % 计算X和Y的偏度 xs = skewness(X) ys = skewness(Y) % 计算X和Y的峰度 kx = kurtosis(X) ky = kurtosis(Y) %******************************正态性检验*********************************** % 分别调用jbtest、kstest和lillietest函数对X进行正态性检验 [h,p] = jbtest(X) % Jarque-Bera检验 [h,p] = kstest(X,[X,normcdf(X,mean(X),std(X))]) % Kolmogorov-Smirnov检验 [h, p] = lillietest(X) % Lilliefors检验

copula函数.docx

copula函数 1、Sklar定理 Sklar定理(二元形式):若H(x,y)是一个具有连续边缘分布的F(x)与G(y)的二元联合分布函数,那么存在唯一的copula函数C使得H(x,y)=C(F(x),G(y))。反之,如果C是一个copula函数,而F,G是两个任意的概率分布函数,那么由上式定义的H函数一定是一个联合分布函数,且对应的边缘分布函数刚好就是F和G。 Sklar定理告诉我们一件很重要的事情,一个联合分布关于相关性的性质完全由它的copula函数决定,与它的边缘分布没有关系。在已知H,F,G的情况下,能够算出它们的copula: C(u,v)=H[F-1(u),G-1(v)] 2、什么是copula函数? copula函数实际上是一个概率。假设我们有n个变量(U 1,U 2 ,…,U N ),这n 个变量都定义在[0,1],copula函数C(u 1,u 2 ,…,u n )即是P{U 1 [0,1] (2)C(u,0)=c(0,v)=0;C(u,1)=u;C(1,v)=v (3)0≤?C/?u≤1;0≤?C/?v≤1 4、copula函数的种类 (1)多元正态分布的copula(高斯copula):(边缘分布是均匀分布的多元正态分布) (2)多元t分布的copula:t-copula (3)阿基米德copula(人工构造) 令φ:[0,1]→[0,∞]是一个连续的,严格单调递减的凸函数,且φ(1)=0,其伪逆函数φ[-1] 由下式定义:那么由下式定义的函数C:[0,1]*[0,1]→[0,1]是一个copula,通过寻找合适的函 数φ利用上式所生成的copula都是阿基米德类copula,并称φ为其生成函数,且阿基米德类copula都是对称的,即C(u,v)=C(v,u)。只要找到合适的生成函数,那么就可以构造出对应的阿基米德类copula。 5、为什么金融风险管理中常用copula? 不同的两个资产会始终同时达到最糟的状况吗?因为有资产相关性的影响,可以使两个资产之间在一定程度上同向变动或反向变动,可能发生对冲,从而减少风险,因此我们需要知道资产之间的相关性,然而金融中的分布,大多都不是

Copula函数

一、 C o p u l a 函数理论 Copula 理论的是由Sklar 在1959年提出的,Sklar 指出,可以将任意一个n 维联合累积分布函数分解为n 个边缘累积分布和一个Copula 函数。边缘分布描述的是变量的分布,Copula 函数描述的是变量之间的相关性。也就是说,Copula 函数实际上是一类将变量联合累积分布函数同变量边缘累积分布函数连接起来的函数,因此也有人称其为“连接函数”。 Copula 函数是定义域为[0,1]均匀分布的多维联合分布函数,他可以将多个随机变量的边缘分布连.起来得到他们的联合分布。 Copula 函数的性质 定理1 (Sklar 定理1959) 令F 为一个n 维变量的联合累积分布函数,其中各变量的边缘累积分布函数记为F i ,那么存在一个n 维Copula 函数C ,使得 111(,,)((),,())n n n F x x C F x F x ???=??? (1) 若边缘累积分布函数F i 是连续的,则Copula 函数C 是唯一的。不然,Copula 函数C 只在各边缘累 积分布函数值域内是唯一确定的。 对于有连续的边缘分布的情况,对于所有的[0,1]n ∈u ,均有 1111()((),,())n n C F F u F u --=???u (2) 在有非减的边缘变换绝大多数的 从Sklar 定理可以看出, Copula 函数能独立于随机变量的边缘分布反映随机变量的相关性结构, 从而可将联合分布分为两个独立的部分来分别处理: 变量间的相关性结构和变量的边缘分布, 其中相关性结构用Copula 函数来描述。Copula 函数的优点在于不必要求具有相同的边缘分布, 任意边缘分布经Copula 函数连接都可构造成联合分布, 由于变量的所有信息都包含在边缘分布里, 在转换过程中不会产生信息失真。 Copula 函数总体上可以划分为三类: 椭圆型、Archimedean (阿基米德) 型和二次型, 其中含一个参数的Archimedean Copula 函数应用最为广泛, 多维Archimedean Copula 函数的构造通常是基于二维的,根据构造方式的不同可以分为对称型和非对称型两种. 三种常用的3-维非对称型Archimedean Copula 函数: Frank Archimedean Copula 函数 , Clayton Archimedean Copula 函数, Gumbe Archimedean Copula 函数 二、 Copula 函数的应用 Copula 函数的应用具体包括以下几个步骤: ①确定各变量的边缘分布; ②确定Copula 函数的参数"; ③根据评价指标选取Copula 函数, 建立联合分布; ④根据所建分布进行相应的统计分析。: 参数估计 Copula 函数的参数估计方法大致可分为三种:

Copula函数

一、 Copula 函数理论 Copula 理论的是由Sklar 在1959年提出的,Sklar 指出,可以将任意一个n 维联合累积分布函数分解为n 个边缘累积分布和一个Copula 函数。边缘分布描述的是变量的分布,Copula 函数描述的是变量之间的相关性。也就是说,Copula 函数实际上是一类将变量联合累积分布函数同变量边缘累积分布函数连接起来的函数,因此也有人称其为“连接函数”。 Copula 函数是定义域为[0,1]均匀分布的多维联合分布函数,他可以将多个随机变量的边缘分布连.起来得到他们的联合分布。 Copula 函数的性质 定理1 (Sklar 定理1959) 令F 为一个n 维变量的联合累积分布函数,其中各变量的边缘累积分布函数记为F i ,那么存在一个n 维Copula 函数C ,使得 111(,,)((),,())n n n F x x C F x F x ???=??? (1) 若边缘累积分布函数F i 是连续的,则Copula 函数C 是唯一的。不然,Copula 函数C 只在各边缘累积分布函数值域内是唯一确定的。 对于有连续的边缘分布的情况,对于所有的[0,1]n ∈u ,均有 1111()((),,())n n C F F u F u --=???u (2) 在有非减的边缘变换绝大多数的 从Sklar 定理可以看出, Copula 函数能独立于随机变量的边缘分布反映随机变量的相关性结构, 从而可将联合分布分为两个独立的部分来分别处理: 变量间的相关性结构和变量的边缘分布, 其中相关性结构用Copula 函数来描述。Copula 函数的优点在于不必要求具有相同的边缘分布, 任意边缘分布经Copula 函数连接都可构造成联合分布, 由于变量的所有信息都包含在边缘分布里, 在转换过程中不会产生信息失真。 Copula 函数总体上可以划分为三类: 椭圆型、Archimedean (阿基米德) 型和二次型, 其中含一个参数的Archimedean Copula 函数应用最为广泛, 多维Archimedean Copula 函数的构造通常是基于二维的,根据构造方式的不同可以分为对称型和非对称型两种. 三种常用的3-维非对称型Archimedean Copula 函数: Frank Archimedean Copula 函数 , Clayton Archimedean Copula 函数, Gumbe Archimedean Copula 函数

Copula函数的估计问题

Copula函数的估计问题 摘要对Copula函数的研究是统计研究问题的一个热点,Copula函数揭示了蕴含在变量间所有的相依关系,与传统的相依度量有着紧密的联系,因而在理论和实际问题中都有着重要的意义。文章较全面总结了关于Copula函数的三类估计即参数估计,半参数估计及非参数估计的基本思路和估计方法并进行了比较。 关键词Copula;参数估计;半参数估计;非参数估计 一、引言 多个随机变量之间的相依关系的度量是统计的一个基本问题,很多的相依度量测度被提出,如Pearson相关系数,Dendall ,Pearman等,它们仅仅抓住了相依关系的某个方面,只有Copula函数揭示了蕴含在变量间所有的相依关系,所以Copula函数有着广阔的应用前景,如在生存问题,风险管理和资产投资等方面。对于Copula的理论研究,主要有两个方面,一是相依性度量研究,二是多元分布族的构造。但在实际问题中,如何由样本数据估计Copula函数尤为重要。根据对样本分布族和Copula函数分布族的结构,对Copula函数的估计,可以分为三种情况:参数估计,半参数估计,非参数估计。本文总结了这三类估计的基本思路和估计方法及各种方法的比较。 Copula函数的估计最基本的依据就是Sklar定理:设X=(X■,X■,……,X■)■是随机向量,F是X的分布函数,Fk(x1,x2,……xd)是X的边际分布函数,则存在上[0,1]d的多元分布函数C满足F(x■,x■,……,x■)=C(F■(x■),F■(x■)……,F■■(x■)),函数C就称X的Copula函数,它联接了X的边际分布和联合分布函数。进一步,如果函数C偏倒数存在,则称c(?滋■,?滋■,……,?滋■)=■为Copula密度函数。且如果X的密度函数及边际密度函数分别为F(x■,x■,……,x■)及fk(xk)(k=1,2,……d),则有F (x■,x■,……,x■)=c(?滋■,?滋■,……,?滋■)■f■(x■)由此,可以看到Copula密度函数完全包含了除了边际密度和联合密度之外所有变量相关关系的信息.而且也可以分析出基本的推断方法。 为行文的方便,下仅以d=2为例来叙述,且设样本为(x1i,x2i)(i=1,2,……n)。 二、Copula函数的参数估计 当样本边际分布族和Copula函数分布族都已知时,估计Copula函数分布族中的参数,因为所有分布仅仅是参数未知,故称此情况下的估计为Copula函数的参数估计。基本思路主要是最大似然法。当然还有矩方法,实际问题中应用很少,在此就不叙述了。根据最大似然方法的不同使用情况和不同计算方法,Copula

Copula简介

Copula 简介 Copula理论的是由Sklar在1959年提出的,Sklar指出,可以将任意一个n 维联合累积分布函数分解为n个边缘累积分布和一个Copula函数。边缘分布描述的是变量的分布,Copula函数描述的是变量之间的相关性。也就是说,Copula 函数实际上是一类将变量联合累积分布函数同变量边缘累积分布函数连接起来的函数,因此也有人称其为“连接函数”。 1 二元Copula函数 定义1 二元Copula函数(Nelsen,2006) 二元Copula函数是指具有以下性质的函数C: (1)C的定义域为I2,即[0,1]2; (2)C有零基面(grounded),且是二维递增(2-increasing)的; (3)对任意的变量u、v [0,1],满足:C(u,1) = u,C(1,v) = v。 其中: 有零基面(grounded)指的是:在二元函数H(x, y)的定义域S1×S2(S1、S2为非空的实数子集)内,如果至少存在一个a1 S1和一个a2 S2,使得H(x, a2) = 0 = H(a1, y),那么称函数有零基面(grounded)。 二维递增(2-increasing)指的是:对于二元函数H(x, y),若在任意的二维实数空间B = [x1, x2]×[y1, y2]中,均有V H(B) = H(x2, y2) - H(x2, y1) - H(x1, y2) + H(x1, y1)≥0,那么称H(x, y)是二维递增(2-increasing)。 二元Copula函数有以下几点性质: (1)对u、v [0,1]中的任一变量,C(u, v)都是非减的; (2)对任意的u、v [0,1],均有C(u,0) = C(0,v) = 0,C(u,1) = u,C(1,v) = v;(3)对任意的u1、u2、v1、v2 [0,1],若有u1 < u2、v1 < v2,则 C(u2, v2) - C(u2, v1) - C(u1, v2) + C(u1, v1)≥0 (4)对任意的u、v [0,1],均有max(u+v-1, 0)≤C(u, v)≤min(u, v); (5)对任意的u1、u2、v1、v2 [0,1],均有 |C(u2, v2) - C(u1, v1)|≤| u2 -u1| + | v2 -v1 | (6)若u、v独立,则C(u, v) = uv。 定理1二元Copula的Sklar定理:令H为具有边缘分布F、G的联合分布函数,那么存在一个Copula函数C,使得 () =(1) H x y C F x G y (,)(),() 如果F,G是连续的,则函数C是唯一的。

基于Copula函数的有效分布式算法

Estimation of Distribution Algorithms based on Copula Functions Rogelio Salinas-Gutiérrez ? Department of Computer Science Center for Research in Mathematics(CIMA T) Guanajuato,México rsalinas@cimat.mx Arturo Hernández-Aguirre ? Department of Computer Science Center for Research in Mathematics(CIMA T) Guanajuato,México artha@cimat.mx Enrique R.Villa-Diharce ? Department of Probability and Statistics Center for Research in Mathematics(CIMA T) Guanajuato,México villadi@cimat.mx ABSTRACT The main objective of this doctoral research is to study Esti-mation of Distribution Algorithms(EDAs)based on copula functions.This new class of EDAs has shown that it is pos-sible to incorporate successfully copula functions in EDAs. Categories and Subject Descriptors I.2.8[Arti?cial Intelligence]:Problem Solving,Control Methods,and Search—Heuristic methods;G.1.6[Numerical Analysis]:Optimization—Global optimization,Unconstrained optimization General Terms Algorithms,Design,Performance Keywords EDAs,copula functions,graphical models 1.INTRODUCTION Estimation of Distribution Algorithms(EDAs)are a well established paradigm in Evolutionary Computation(EC). This class of evolutionary algorithms employs probabilistic models for searching and generating promissory solutions. The goal in EDAs is to take into account the dependence structure in the best individuals and transfer them into the next population.A pseudocode for EDAs is shown in Algo-rithm1. ?Doctoral student ?Advisor ?Co-Advisor Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for pro?t or commercial advantage and that copies bear this notice and the full citation on the?rst page.To copy otherwise,to republish,to post on servers or to redistribute to lists,requires prior speci?c permission and/or a fee. GECCO’11,July12–16,2011,Dublin,Ireland. Copyright2011ACM978-1-4503-0690-4/11/07...$10.00.Algorithm1Pseudocode for EDAs 1:assign t←?0 generate the initial population P0with N individuals at random 2:select a collection of M solutions S t,with M