盘尼西林合成方法综述

盘尼西林合成方法综述
盘尼西林合成方法综述

盘尼西林合成方法综述

盘尼西林合成方法综述

姜昊(912103860236)化工学院

摘要:青霉素(Penicillin,或音译盘尼西林)又被称为青霉素G、peillin G、盘尼西林、配尼西林、青霉素钠、苄青霉素钠、青霉素钾、苄青霉素钾。青霉素是抗菌素的一种,是指分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素,是由青霉菌中提炼出的抗生素。在医药史上它与阿司匹林、安定并称为三大经典药物。鉴于它在医药史上的重要性,本文就此介绍一些比较成熟,有效的合成方法。

关键词:青霉素合成方法

青霉素是抗菌素的一种,是从青霉菌培养液中提制的药物,是第一种能够治疗人类疾病的抗生素。青霉素的出现开创了用抗生素治疗疾病的新纪元。在二战时期拯救了数千万人的生命。

天然青霉素:青霉素这族抗生素包括着若干种结构密切相联系的物质,他们共同的结构经证明如右式:

应优先地进行。此种反应收率只有百分之十,但对于合成天然青霉素已经比较高了。

半合成青霉素:半合成青霉素由于天然青霉素存在有抗菌谱窄、不耐胃酸口服无效及不耐酶易被水解等缺点,因此,通过改变天然青霉素G的侧链可获得耐酸、耐酶、广谱、抗铜绿假单胞菌及主要作用于G-菌等等一系列不同品种的半合成青霉素。

以6APA为中间体与多种化学合成有机酸进行酰化反应,可制得各种类型的半合成青霉素。6APA是利用微生物产生的青霉素酰化酶裂解

青霉素G或V而得到。酶反应一般在40~50℃、pH8~10的条件下进行;近年来,酶固相化技术已应用于6APA生产,简化了裂解工艺过程。6APA也可从青霉素G用化学法来裂解制得,但成本较高。侧链的引入系将相应的有机酸先用氯化剂制成酰氯,然后根据酰氯的稳定性在水或有机溶剂中,以无机或有机碱为缩合剂,与

6APA进行酰化反应。缩合反应也可以在裂解液中直接进行而不需分离出6APA。

经过研究人员与科研人员的不断研究,关于半合成青霉素的合成有了很大的进展。

唐广安等[2]以D-天门冬氨酸和阿莫西林三水酸为原料,经过6步反应形成产物。经过IR, 1

H-NMR和13 C-NMR分析,证明产物是阿扑西林。本方法原料易得,反应条件温和,成本低,易于放大生产。该反应的流程如下:

熊振平等[3]研究了以6APA为母核,d-苯甘氨酸甲酯盐酸盐或p-羟基-苯甘氨酸甲酯盐酸盐为侧

链化合物,用酶缩合法制备苯苄青霉素(APC)羟苯苄青霉素(AMC),得到的收率相对较高。

夏莘强等[4]改进了左旋磺节青霉素的合成,苯乙酸的分拆系用L一赖氨酸为旋光分拆剂,甲醇为溶剂,使左右旋的磺苯乙酸赖氨酸盐分离,我们

试验成功用水为溶剂进行分拆,用乙醇和水精致的方法,分拆所得右旋磺苯乙酸在碱性下煮沸即可消旋成消旋体,而用于再分拆,很简单地就解

决了右旋体反复利用问题。

向红琳等[5]改进磺苄西林钠的合成工艺。方法:以苯乙酸为原料,经磺化、手性拆分、酰氯化后,再与6-氨基青霉烷酸(6-APA)缩合、成盐制备磺苄西林钠。对磺化反应和缩合反应进行了工艺改进。反应总收率为46%,产品结构经IR、1HNMR 等数据确证。本工艺操作过程简单,反应时间缩短,收率提高,适合工业化生产。

日本田边制药公司[6]开发出的世界第一支氨基酸

型半合成青霉素aspc:开发出了两种合成路线,一条路线系羟基苄青霉素与具有氨基保护剂的天冬酰胺缩合后再除去保护基,另一条路线为具有氨基保护基的天冬酰胺

【文献综述】四氨基铁酞菁的合成与表征

文献综述 高分子材料与工程 四氨基铁酞菁的合成与表征 1.引言 酞菁(Pc)类化合物的独特的物化性质,从1907年酞菁被发现至今越来越受到世界科技界的关注。作为一种高级功能材料,其在高科技领域中的应用与日俱增。广泛用于高效催化、生物模拟、超导材料、非线性材料、信息储存、智能识别等尖端技术中。然而,酞菁的难溶、难提纯和特殊构型分子的难合成,在一定程度上限制了其应用。 酞菁化合物是一类化学稳定性很高的化合物,其具有良好的耐晒、耐热、耐碱、耐酸性及色泽鲜明等性能。但由无取代基的酞菁类化合物存在溶解性能差缺点,在一定程度上影响了它们的应用性能,因此人们在研究一种可以应用无取代基酞菁类化合物的同时,也在努力寻找溶解性好而又能兼具无取代基酞菁化合物优点的新型酞菁类化合物。 在早期的研究中,酞菁和金属酞菁主要是被用作颜料和染料,这主要是酞菁化合物是一类化学稳定性很高的化合物,其具有良好的耐晒、耐热、耐碱、耐酸性及色泽鲜明等性能,制成的颜料和染料(蓝色、绿色)不仅色光十分鲜艳,着色力很高,而且十分稳定且无毒,。但由无取代基的酞菁类化合物存在溶解性能差缺点,在一定程度上影响了它们的应用性能,因此人们在研究一种可以应用无取代基酞菁类化合物的同时,也在努力寻找溶解性好而又能兼具无取代基酞菁化合物优点的新型酞菁类化合物。为此,酞菁颜料、染料被广泛的应用于印刷油墨、涂料、塑料、橡胶、皮革、纺织品及食品中。 2.酞菁的合成工艺及提纯 无取代酞菁及其配合物由于二电子之间的作用力很强,分子之间容易发生强烈的聚集作用,因此,在一般的溶剂中难以溶解,如难溶于水,在大多数有机溶剂中的溶解度也很小。这就限制了对它的研究和应用。为了提高其溶解性能,人们开发出各种方法,将多种多样的取代基团引入酞菁分子中。人们发现,四取代的金属酞菁配合物的溶解性比相应对称性的八取代的金属酞菁溶解性更好;a位取代基比p位的有更大的

金属酞菁

金属酞菁 金属酞菁配合物是一类独特的二维p-π共轭大环体系物质,具有很好的热稳定性和化学稳定性。过去几十年的研究表明:酞菁由于其比较特殊的结构特点,显示出良好的二阶和三阶非线性光学性质[3,4],以酞菁为母体的非线性光学材料的开发和应用范围越来越广泛。目前,酞菁环内已经和70 多种金属或非金属结合而得到不同中心原子的酞菁配合物[5],而且,在酞菁的苯环上也能方便地引入多种取代基,从而通过对内部中心原子和外围取代基的化学修饰,可以得到不同光学性能的新材料。 紫外-可见光谱由于金属酞菁配合物在多种有机溶剂中的溶解性很差,研究选择浓硫酸来溶解它们。通过表3 可以知道,所有合成的金属酞菁配合物300~900 nm 的紫外-可见区内都有两个较强的吸收溶剂不仅会影响酞菁的π-π* 跃迁能级,还会影响到金属离子内层电子的跃迁能级。溶剂不仅会影响酞菁的π-π* 跃迁能级,还会影响到金属离子内层电子的跃迁能级。研究表明:过渡金属离子影响酞菁的π-共轭时涉及一些电荷转移机理。其中包括金属离子-配体(d-π) 电荷转移机理、配体-金属离子(π-d)电荷转移机理和金属-金属(d-d)电荷转移机理。这些电荷转移机理将在HOMO-LUMO 之间产生新的能级差,从而改变酞菁的光电性能[15,16]。铁,钴,镍,铜作为过渡金属元素,也存在上述电荷转移机理,由于本研究用溶液法测量,所以可以不考虑d-d 电荷转移机理。但是随着原子序数的增加,金属离子的d 电子也相应增加。在电荷转移过程中,原子序数大的金属离子与酞菁环之间的d-π电子共轭水平也要比原子序数低的金属离子的共轭水平高一些。所以随着金属的原子序数的增加,酞菁环的紫外吸收也会发生红移。金属离子与酞菁环平面的扭曲程度、即非共面程度越高,越有利于酞菁环上电子云的流动,从而更容易使电子发生跃迁。 d 轨道的电子与酞菁环上的大π共轭电子之间的再共轭。所以随着原子序数的增加,过渡金属离子的d 电子也会增加,从而加强了整个金属酞菁体系的电子共轭程度、提高了其非d 轨道的电子与酞菁环上的大π共轭电子之间的再共轭。所以随着原子序数的增加,过渡金属离子的d 电子也会增加,从而加强了整个金属酞菁体系的电子共轭程度、提高了其非线性光学系数。而主族元素铝为中心的酞菁配合物的非线性光学系数的大小则处于这四个过渡金属为中心的酞菁配合物的中间,即大于酞菁亚铁(II)和酞菁钴(II)的三阶非线性系数而小于酞菁镍(II)和酞菁铜(II) 的系数。这是因为分子构型呈金字塔锥型的酞菁铝的酞菁环平面受Al3+离子的影响发生扭曲、非共面程度比较高,这种构型有利于酞菁环上电子云的流动,所以酞菁铝同过渡金属铁、钴等d 电子较少的金属离子为中心的金属酞菁配合物相比时,扭曲的平面对三阶非线性光学性能的促进作用大于 d 电子与酞菁环共轭造成的对非线性光学系数的提高效果;当与d 电子数目较多的镍、铜为中心离子的金属酞菁配合物比较时,扭曲平面的作用就小于再共轭的效果。

免费在线查合成路线

免费在线查合成路线 https://www.360docs.net/doc/8911157074.html,/depts/chem... tice/medialib/data/ 有机合成: Organic Syntheses(有机合成手册), John Wiley & Sons (免费) https://www.360docs.net/doc/8911157074.html,/ Named Organic Reactions Collection from the University of Oxford (有机合成中的命名反应库) (免费) https://www.360docs.net/doc/8911157074.html,/thirdyearcomputing/NamedOrganicReac... 有机化学资源导航Organic Chemistry Resources Worldwide https://www.360docs.net/doc/8911157074.html,/ 有机合成文献综述数据库Synthesis Reviews (免费) https://www.360docs.net/doc/8911157074.html,/srev/srev.htm CAMEO (预测有机化学反应产物的软件) https://www.360docs.net/doc/8911157074.html,/products/cameo/index.shtml Carbohydrate Letters (免费,摘要) https://www.360docs.net/doc/8911157074.html,/Carbohydrate_Letters/ Carbohydrate Research (免费,摘要) https://www.360docs.net/doc/8911157074.html,/locate/carres Current Organic Chemistry (免费,摘要) https://www.360docs.net/doc/8911157074.html,/coc/index.html Electronic Encyclopedia of Reagents for Organic Synthesis (有机合成试剂百科全书e-EROS) https://www.360docs.net/doc/8911157074.html,/eros/ European Journal of Organic Chemistry (免费,摘要) https://www.360docs.net/doc/8911157074.html,/jpages/1434-193X/ Methods in Organic Synthesis (MOS,有机合成方法) https://www.360docs.net/doc/8911157074.html,/is/database/mosabou.htm Organic Letters (免费,目录) https://www.360docs.net/doc/8911157074.html,/journals/orlef7/index.html Organometallics (免费,目录) https://www.360docs.net/doc/8911157074.html,/journals/orgnd7/index.html Russian Journal of Bioorganic Chemistry (Bioorganicheskaya Khimiya) (免费,摘要) http://www.wkap.nl/journalhome.htm/1068-1620 Russian Journal of Organic Chemistry (Zhurnal Organicheskoi Khimii) (免费,摘要) http://www.maik.rssi.ru/journals/orgchem.htm Science of Synthesis: Houben-Weyl Methods of Molecular Transformation https://www.360docs.net/doc/8911157074.html,/ Solid-Phase Synthesis database (固相有机合成)

酞菁铁Ⅱ的制备及表征

酞菁铁(Ⅱ)的制备及表征 武汉大学化学与分子科学学院 王小尚 200331050033 摘要: 通过制备Fe(OH)2·4H2O制备酞菁铁(Ⅱ), 并对产品进行纯化,通过紫外及红外的方法分析确定其组成 关键字:酞菁铁(Ⅱ);制备;纯化;红外;紫外分光法 1.前言 酞菁类化合物可以看成四氮杂卟啉的衍生物,具有D2h点群对称性。其在染料工业和光电功能材料等方面获得了巨大的应用,并具有电致变色效应,在室温下有很好的液晶相,也在催化剂,抗辐射剂等方面也有重要作用。 酞菁类化合物的合成一般采用Linstead合成方法,其提纯比较困难。反应产物中含有大量的杂质,包括原料和一些其他高分子聚合物,常用的提纯方法有微热丙酮索氏萃取除杂,真空升华,浓H2SO4再沉淀或色谱柱提纯。 合成酞菁铁的前体有:邻苯二甲酸,邻苯二甲酸酐,邻苯二甲氰,邻苯二甲酸氨酯等。 本实验以邻苯二甲酸酐,Fe(OH)2·4H2O(自制),尿素为原料,以(NH4)2MoO4为催化剂,采用固相熔融法合成FePc,用真空升华法提纯产物,纯产物经元素分析,红外及紫外可见光谱表征。 2.实验部分 2.1试剂及仪器: 1.试剂 还原铁粉,6mol/L盐酸,邻苯二甲酸酐,尿素,乙醇,10%氢氧化钠,酸铵,浓硫酸2.仪器 减压过滤装置,旋转蒸发仪,真空干燥器,量筒(50mL),三口瓶(250mL,100mL),滤纸,烧杯(250mL),24#圆底烧瓶(100mL),24#空气冷凝管,24#磨口弯头,24#磨口塞,油泵,19#导气管,橡皮管,电热套(250mL), 研钵,温度计(3000C),长玻棒,容量瓶(50mL)表面皿,牛角勺,天平,氮气钢瓶,管式电炉,旋子流量计,石英管,烘箱,小瓷舟,UV-Vis 分光光度计,红外光谱仪。 2.2实验步骤: 1. FeCl2·4H2O的制备 称取5.67g还原铁粉放入100 mL的三口烧瓶中,并向其中加入30 mL6mol/L的盐酸溶液,缓缓通入氮气至液面下,烧瓶上的一个瓶口用导气管将逸出气体(包括反应的生的H2和为了防止氧化而通入的N2以及少量HCl气体)通经过安全瓶(防倒吸)导入稀碱溶液(中和逸出的少量HCl气体)。适当控制通气量,大约每秒钟两个气泡。 当反应进行大约两个半小时后,反应瓶中H2产生的速度减慢时,迅速减压过滤得到氯化亚铁浅绿色溶液。过滤时可向减压漏斗上方通N2,减少Fe2+的氧化。将滤液迅速转入已用氮气冲洗过的100mL24#圆底烧瓶中,旋转蒸发出现大量浅绿色结晶。将三口瓶取出,冷却,放入冰水浴中待其结晶,但要使晶体能够倒出(留少量液体),迅速抽滤,立即转移至

香兰素的合成工艺设计

有机合成课程设计 题目香兰素的合成工艺 系(院)化学与化工系 专业应用化学 班级11应化本2 学生姓名王春莲 学号1114100327 指导教师张圣燕 职称讲师 2013年 12月 20日

香兰素的合成工艺设计 1 产品简介 1.1 中英文名称,化学式,结构式 中文名称:香兰素 别名:香荚兰醛;香荚兰素;香兰醛 化学名称:3-甲氧基-4-羟基苯甲醛 英文名称:Vanillin 分子式:C8H8O3 结构式: CHO OH OCH3 1.2 物化性质 白色至微黄色鳞片状结晶或结晶性粉末,存在有不同熔点的四种结晶变型。呈甜克力香气及强烈的香兰素所独有的芳香气,香气比香兰素强3-4 倍。沸点285 ℃,点76.5 ℃。微溶于水,溶于乙醇、乙醚、甘油、丙二醇、氯仿和碱溶液。基本上无毒害,但其蒸气对皮肤及粘膜有局部刺激作用 1.3 用途 香兰素是重要的食用香料之一,是食用调香剂,具有香荚兰豆香气及浓郁的奶香,是食品添加剂行业中不可缺少的重要原料,广泛运用在各种需要增加奶香气息的调香食品中,如蛋糕、冷饮、巧克力、糖果、饼干、方便面、面包以及烟草、调香酒类、牙膏、肥皂、香水、化妆品、冰淇淋、饮料以及日用化妆品中起增香和定香作用。 香兰素在国外的应用领域很广,大量用于生产医药中间体,也用于植物生长促进剂、杀菌剂、润滑油消泡剂、电镀光亮剂、印制线路板生产导电剂等。国内香兰素主要用于食品添加剂,近几年在医药领域的应用不断拓宽,已成为香兰素应用最

有潜力的领域。 香兰素在国外的应用领域很广,大量用于生产医药中间体,也用于植物生长促进剂、杀菌剂、润滑油消泡剂、电镀光亮剂、印制线路板生产导电剂等。国内香兰素主要用于食品添加剂,近几年在医药领域的应用不断拓宽,已成为香兰素应用最有潜力的领域。目前国内香兰素消费:食品工业占55%,医药中间体占30%,饲料调味剂占10%,化妆品等占5%。 1.4 前景分析 国内外行业现状中国是世界香兰素出口大国,2002年国内需求量2350吨,占产量的30%,其余70%用于出口。而1988年仅出口273吨,1993年为1700吨,2002年为4653吨。1993~2002年,中国香兰素出口量年均增长率为12%。中国香兰素在北美、欧洲、东南亚等地市场享有良好信誉。 2 合成方法 2.1 第一种合成方法——愈创木酚法 (1)合成基本原理 愈创木酚在碱性条件下和乙醛缩合成3-甲氧基-4-羟基苯乙醇酸,3-甲氧基-4-羟基苯乙醇酸在碱性条件下被氧化成3-甲氧基-4-羟基苯乙酮酸(香草扁桃酸),然后在碱性条件下脱羧生成香兰素。其反应方程式如下: OCH 3 OH CHOCOOH CHOHCOOH OH OCH3 O2 OH OCH 3 CCOOH O CHO OH OCH3

金属酞菁的合成及表征

金属酞菁的合成及表征 摘要:本实验是以苯酐-尿素法合成酞菁钴,以邻苯二甲酸酐、无水CoCl2、尿素为原料,以(NH4)2MoO4为催化剂,采用金属模版法合成酞菁钴,用浓硫酸再沉淀法提纯产物,纯产物通过红外光谱、紫外可见光谱进行表征。 关键词:苯酐-尿素;酞菁钴;合成;光谱测定 1 引言 酞菁类化合物是四氮大环配体的重要种类,酞菁是一个大环化合物,环内有一个空穴,可以容纳铁、钴、铜等金属元素,并结合生成金属配合物。金属原子取代了位于该平面分子中心的两个氢原子。由于与金属元素生成配位化合物,所以在金属酞菁分子中只有16个π电子,又由于分子的共轭作用,与金属原子相连的共价键和配位键在本质上是等同的。故酞菁类化合物具有高度共轭π体系。它能与金属离子形成金属酞菁配合物,其分子结构式如图。这类配合物具有半导体、光电导、光化学反应活性、荧光、光记忆等特性。金属酞菁是近年来广泛研究的经典金属类大环配合物中的一类,其基本结构和天然金属卟啉相似,具有良好的热稳定性,因此金属酞菁在光电转换、催化活性小分子、信息存储、生物模拟及工业染料等方面有重要的应用。金属酞菁的合成方法主要是模版法,即通过简单配体单元与中心金属离子的配位作用,然后再结合成金属大环配合物,金属离子起模版作用。 金属酞菁的分子结构

合成反应途径如下(以邻苯二甲酸酐为原料): 2 实验内容与步骤 2.1仪器与试剂 仪器:台秤、研钵、三颈瓶(250ml)、空气冷凝管、圆底烧瓶(100mL)、铁架台、玻璃棒、抽滤瓶、布氏漏斗、可控温电热套(250mL)、电炉、温度计、抽滤瓶 DZF-III型真空干燥箱 SHZ-III型循环水真空泵、紫外─可见分光光度计 试剂:邻苯二甲酸酐、尿素、钼酸铵、无水CoCl 煤油、无水乙醇、2%盐 2、 酸、氢氧化钠溶液、蒸馏水 2.2 酞菁钴粗产品的制备 称取邻苯二甲酸酐3.69g,尿素5.95g和钼酸铵0.25g于研钵中研细后加入0.85g无水氯化钴,混匀后马上移入250ml三颈瓶中,加入60ml煤油,加热(200℃)回流2h左右,在溶液由蓝色变为紫红色后停止加热,冷却至70℃左右,加入10到15ml无水乙醇稀释后趁热抽滤。并用乙醇洗涤2次,丙酮洗涤1次,得粗产品。 2.3 粗产品提纯 将滤饼加入2%盐酸加热煮沸后趁热抽滤,再将滤饼加入去离子水,煮沸后趁热抽滤,滤饼再加入适量氢氧化钠碱液煮沸抽滤,重复上述步骤2次,直至滤液接近无色。 将产品放在表面皿上在70℃真空干燥8h。 2.4 样品的表征与分析 干燥好后取少量样品溶于二甲基亚砜中,做紫外可见光谱分析。 3 结果和讨论 3.1 数据处理

酞菁的制备和纯化

钼酸铵 4邻苯二甲酸酐+4尿素+M2+MPc+H2O+CO 2 2.1.2 金属酞菁的制备和纯化 金属酞菁(MPc)按如下模板反应制备:(M=Mn,Cu,Ni,Co) () 对于不同的中心离子M2+,具体制备方法也不同。 (1)酞菁锰(MnPc)的制备和纯化 苯酐5.92g 尿素9.01g 锰1.69g 钼酸铵2.47*10-3 g 加入量:苯酐5.92 (0.04 mol),尿素9.01(0.15mol),钼酸铵2.47*10-3(2*10-6mol),锰1.69(0.01mol)。 一定量的苯酐和尿素置于250ml三颈烧瓶中,加入千分之二的钼酸铵作催化剂,再加入150ml二甲苯作溶剂。加热至120℃使固体完全溶解,趁热加入硫酸锰。升温至140℃下回流,20min后溶液变混浊,升温至150℃回流1h,溶液变清,底部有浅黄色沉淀。倒出二甲苯,160o C下恒温3h蒸出溶剂。粗产品用6M HCl 浸泡12h,在烧杯中静置后,倒掉上层清液体,反复用蒸馏水洗涤,静置,直至倒出液体为无色且中性。再用丙酮浸泡,静置,洗至倒出的上层清液为无色。再用1mol/L的NaOH溶液浸泡(时间?),静置,倒掉上层清夜,再用蒸馏水洗至倒出液为无色且为中性。在100℃下干燥12h,即得MnPc。 (2)酞菁铜(CuPc)的制备和纯化 在250ml三颈烧瓶中将苯酐、尿素和氯化铜按4:4:1的摩尔比混合,再加入千分之二的钼酸铵作催化剂,加入150ml二甲苯作溶剂。加热,在160℃下回流,20min后溶液变混浊,在此温度下继续回流0.5h,溶液变清,并呈浅蓝色,烧瓶底部有蓝色沉淀。在200℃下继续回流4h,蒸出溶剂。粗产品置于6N HCl 中,浸泡12h,过滤,用蒸馏水将蓝色沉淀洗至滤出液为无色,再用丙酮洗至滤出液为无色。在120℃下干燥12h,即得CuPc。 (3)酞菁镍(NiPc)的制备和纯化 苯酐、尿素和硫酸镍配料的摩尔比为4:4:1,先将苯酐、尿素置于250ml

布洛芬合成路线综述

布洛芬合成路线综述 姓名:XXX 班级:制药XXX班学号:XXX 【摘要】 布洛芬(C12H8Q)又名异丁苯丙酸,芳基丙酸类非甾体抗炎药物,本品为白色晶体性粉末,有异臭,无味。不溶与水,易溶于乙醇、乙醚三氯甲烷基丙酮,易溶于氢氧化钠及碳酸钠溶液中。布洛芬具有抗炎、镇痛、解热作用,适用于治疗风湿性关节炎、类风湿性关节炎、骨关节炎、强直性脊椎炎和神经炎等。布洛芬的基本机构为笨环,苯环上含有异丁基与a-甲基乙酸。作为新一代非甾体消炎镇痛药物,具有比阿司匹林更强的解热、消炎和镇痛作用,副作用则比阿司匹林小得多。 【关键词】 布洛芬抗炎镇痛解热非甾体消炎镇痛药物合成路线 【前言】 1964年英国的Nicholso n 等人最早合成了布洛芬,其他各国也逐渐对布洛芬展开研 究,英国的布茨药厂首先获得专利权并投入生产。在最初的生产过程中,由于生产工艺落 后,导致布洛芬的生产成本高,产量低,企业规模受到很大限制。直到20世纪80年代后期,随着羧基化法和1, 2-转位法等布洛芬新工艺的出现,布洛芬的生产成本大大降低, 企业的规模也越来越大。目前,德国的巴斯夫公司,美国的Albemarle公司和乙基公司都 具有庞大的生产规模。他们分别具有自己的核心技术,选择合适的工艺,从而具有经济效 益和规模优势。近十多年来,由于政府扶持,印度的医药工业发展迅速。印度的Sumitra公司和Chemi nor公司的生产规模也达到上述西方国家大公司的水平,而且由于印度的劳动

力价格低廉,使得生产成本较低。印度低价格的布洛芬大量出口,大大冲击了全球的布洛分市场。 【研究现状】 对于布洛芬这种医药结晶产品而言,质量的好坏对产品能否在国际市场竞争中占据有 利地位往往起着重要的作用。目前,国内布洛芬同国外同类产品相比存在着晶形不好、颗粒不均匀等质量方面的差距。国内生产企业所使用的落后结晶技术与设备,一方面导致产品质量差,另一方面导致生产成本居高不下,使得国内布洛芬产品难以与国外产品相竞争,导致在国内市场和中国外的布洛芬产品占主导地位,如中美史可公司的布洛芬制剂占据了中国的70%勺市场份额。如今我国已经加入 WTO要改变这种现状,就必须对结晶及装置进行改进,从而生产出高质量的布洛芬结体产品。有关其工艺改进和新工艺、拆分或不对称合成获得其手性体、其衍生物以及各种制剂的研究报道层出不穷。 【布洛芬的合成】 1转位重排法 芳基1,2-转位重排法是目前国内厂家普遍采用的一种合成方法。它以异丁苯为原料, 经与2-氯丙酰氯的傅克酰化,与新戊二醇的催化缩酮化,催化重排,水解等制得布洛芬反应式为: 该工艺的优点为:避免了酰化时以石油醚作溶剂其中所含微量芳烃杂质所带来的副产 物,或使用二氯乙烷作溶剂时所带来的毒性和溶剂残留问题,避免了传统工艺使用冷冻盐 水的要求,降低了能耗和设备腐蚀等。 2醇羰基化法 醇羰基化法即BHC法,以异丁苯为原料,经与乙酰氯的傅克酰化、催化加氢还原和催化羰基化3步反应制得布洛芬,为目前最先进的工艺路线,为国外多数厂家所采用。

【开题报告】水溶性铁酞菁的合成

开题报告 应用化学 水溶性铁酞菁的合成 一、选题的背景和意义 酞菁是由英国的A.Braun和T.C.Tcherniac在1907年研究邻苯二甲酰亚胺和邻氰基苯甲酰胺的性质时,偶然发现的。1927年,德国弗来堡大学的H.de Diesbach和E.von der Weid试图通过邻二溴苯和氰化亚铜反应制备邻苯二腈,但是他们却意外得到了第一个酞菁金属配合物——酞菁铜。1928年苏格兰的Scottish Dyes Co.Ltd.染料工厂在玻璃为内衬的铁制反应器中由邻苯二甲酸酐和氨制备邻苯二甲酰亚胺时,发现了以杂质形式出现在反应体系中的蓝色铁酞菁。 在早期的研究中,酞著和金属酞著主要是被用作颜料和染料,这主要是因为酞著(特别是铜酞著)制成的颜料和染料(蓝色、绿色)不仅色光十分鲜艳,着色力很高,而且十分稳定和无毒,是任何其它己知化合物不能比拟的。为此,酞著颜料(染料)被广泛的应用于印刷油墨、涂料、塑料、橡胶、皮革、纺织品及食品中。近年来,随着纺织品等工业对染料新品种的需求趋向于饱和,染料工业的发展也日益成熟,因此在传统染料等方面的研究也趋向于缓慢,然而在许多特殊的领域,尤其是一些高科技领域,对于所谓的功能性染料的需求一直在增加。 酞菁化合物作为一种优良的功能性染料,具有良好的化学性质、催化活性、热稳定性和光稳定性。酞菁类化合物独特的物理化学性质使它们在催化化学、光化学、电化学、非线性光学、晶体化学、超导物理学、信息材料学和医学等学科的前沿领域有着广泛的应用。 二、研究目标与主要内容(含论文提纲) 目前,对金属酞菁配合物的合成方法研究比较多,通常有两种途径合成:一种是以邻苯二氰和相应的金属盐为起始物的邻苯二氰法;另一种是以苯酐、尿素和金属盐为起始物,在钼酸铵催化下完成的苯酐/ 尿素法。工业上制备酞菁铁主要是用苯酐法,苯酐法又分为固相法和液相法两种。较液相法生产条件苛刻且存在有机溶剂污染和回收问题,固相法原料价廉易得,工艺简单,也是实验室制备酞菁铁经常采用的方法。

全合成综述

阿枯米灵生物碱(?)-Vincorine的全合成分析 阿枯米灵生物碱(?)-Vincorine具有复杂的多环结构以及重要的生物活性一直吸引着众多化学合成工作者的关注。早在2009年,秦勇课题组率先完成了(?)-Vincorine的全合成工作,最近马大为课题组应用分子内氧化偶联的方法成功地以18步,总收率5%的路线合成了(?)-Vincorine。本文将对马课题组合成该化合物的方法进行简单的介绍。 一:(?)-Vincorine的逆合成分析 先将N4-C21键断开得到化合物11,化合物11可由12得到,12可由化合物13经分子内氧化偶联而得,化合物13则由14与15经迈克尔加成得到(Figure1)。 Figure1:(?)-Vincorine的逆合成分析 二:(?)-Vincorine的合成路线 该课题组以市售的5 - 甲氧基色胺为原料(16)经(Boc)2O及Pd(OAc)2的催化作用得到1,2,3,5四取代吲哚17,后烯烃双键氢化加成,酯基还原得到化合物18。18在IBX氧化下得到醛与丙二酸二甲酯反应得到化合物14,后经迈克尔加成得到化合物20.化合物20为一非对映异构体,将其混合物进行反应,氧化消除

得烯烃化合物21,该化合物为E式和Z混合物。选择性还原醛基,加上TBS保护,移除Boc即得化合物13。(Figure2) Figure2 得到关键化合物13后便可尝试分子内氧化偶联反应,经反复实验确定在LiHMDS, I2, THF, ?40 °C to r.t.条件可以成功得到只有一种构型的目标产物23且

产率为67%。后经Krapcho的反应条件成功去除一个酯基,再通过氯化,环合,甲基化成功合成得到(?)-Vincorin。(Figure3) Figure3 三:关键反应的应用 在全合成的路线中,用到了一些关键反应,正是这些反应的精妙使用,使这个复杂的分子的合成得以实现。 1:钯催化的C-H功能化反应 反应广泛应用于吲哚等的芳基化和烯烃化反应中,它不需要以往所需的卤素等离去集团的参与,直接在C-H键上交叉耦合。其普遍形式如Figure4。

香料香兰素的合成

合成香兰素的工作任务 1.香兰素简介 香兰素(Vanillin )为白色或微黄色针状结晶,具有类似香荚兰豆的香气及浓郁的奶香,味微甜;熔点81~83℃,化学名为3-甲氧基-4-羟基苯甲醛。香兰素是重要的食用香料之一,为香料工业中最大的品种,是人们普遍喜爱的奶油香草香精的主要成份,广泛用于食品、巧克力、冰淇淋、饮料以及日用化妆品中起增香和定香作用。另外香兰素还可作饲料的添加剂、电镀行业的增亮剂、制药行业的中间体。 13.2 合成香兰素工作任务分析 13.2.1目标化合物分子结构的分析 ①香兰素的分子式:C 8H 8O 3 ②香兰素的分子结构式: CHO OCH 3 不难看出,目标化合物基本结构为取代苯酚结构,醛基和甲氧基分别处于酚羟基的对位和邻位。 13.2.2香兰素的合成路线分析 从苯环上基团引入的角度看,醛基可以直接引入,也可以采用氧化(或还原)的方法引入。 分析1: 相应合成路线1: CH 3 O NH 2 CH 3 O +HSO 4 N 23 分析2: 相应合成路线2: OH CH 3 O CH 3 O HO CHCOOH OH 分析3: OCH 3 OH FGI CH 3 O CHCOOH OH HO CH 3 O OH CH CH CH 3 TM FGR FGI OCH 3 OH + OHCCOOH 丁香酚 CHO OCH 3 OH 2 OCH 3 NaNO 2 H 2SO 4 CH 3Cl NaOH [O] OHCCOOH TM TM TM

相应合成路线3: CH 2CH=CH 2 OCH 3 ONa CH=CH-CH 3 OCH 3 ONa CHO OCH 3 OH 分析4: 相应合成路线4: 从基团变换的角度,也可以有下面的逆向推导。 分析5: CHO OH Br CHO OH 相应合成路线5: 分析6: CH 3 相应合成路线6 显然,路线5和路线6由于卤化时能发生多卤化及甲氧基化反应较难的问题,不是好的合成路线。路线1~4各有特点,只要条件具备,都可值得尝试。 13.2.3 文献中常见的香兰素的合成方法 目前香兰素的生产方法较多,典型的主要有: 路线一:以邻硝基氯苯为原料的多步合成的方法。 (1)甲氧基化反应 ++CH 3O NO 2 Cl KOH CH 3OH NO 2 ++KCl H 2 O (2)还原反应 OCH 3 OH CO 2 CHO OH TM CH 3 O OH COOH FGI FGR FGR [O] 异构化 TM TM OCH 3 OH CH 3 O OH COOH [H] NaOCH 3 TM TM CH3 OH TM Cl 2 CH 3 Cl NaOCH 3 CH 3 OCH 3OH

四氨基锌酞菁的固相合成【开题报告】

毕业论文开题报告 高分子材料与工程 四氨基锌酞菁的固相合成 一、选题的背景和意义 酞菁类化合物是具有四氮杂四苯并卟啉结构的化合物。自1907年最初发现以来,其发展相当迅速, 在短短几十年时间里已有5000多种酞菁类化合物问世,用途也由最初的有机颜料和染料扩展到其他许多重要领域。酞菁颜料以其优良的耐热、耐晒、耐酸碱性能及鲜艳的蓝绿色泽在工业上广泛用于汽车、服装、食品、印刷、橡胶、纺织、皮革等的着色工艺;尤其80年代以来,酞菁类化合物在光电复印等现代高技术领域得到新的应用,掀起了酞菁类化合物的研究热潮。 近些年来,随着纺织等行业对染料新品种的需求趋于饱和、染料工业的发展日益趋于成熟,对应于传统行业的染料品种的开发缓慢。功能材料的研究拓展了研究范围。酞菁化合物以其独特的物理性质、化学特性最早受到研究者的关注。目前酞菁已涉及太阳能电池、电子照相、光盘存储和非线性光学等领域的研究,同时,一些金属酞菁化合物由于具有较强的光催化、光敏化和荧光特性,在新型功能材料中起着举足轻重的地位。 影响金属酞菁合成产率的因素有反应温度、反应物的比例、催化剂和反应时间等,本论文主要采用固相法,根据不同反应物的比例和温度来研究合成四氨基锌酞菁的最佳条件。本实验主要研究:在不同的实验条件下,先合成硝基为取代基的四硝基锌酞菁,再将硝基还原为氨基为取代基的四氨基锌酞菁,通过比较实验数据,(产率、红外和紫外光谱测定,),研究金属酞菁的结构,并测定其各种物理化学性能,并进一步探索出最优条件。合成的四氨基锌酞菁与四硝基锌酞菁相比,具有更加优良的物理化学性能,对扩大酞菁化合物在各领域中的应用有非常重要的意义。 二、研究目标与主要内容(含论文提纲) 在相同的实验条件下,通过多组对比实验,用固相法探索出合成硝基为取代基的四硝基锌酞菁的最优条件,然后,研究出将硝基取代基还原为氨基为取代基的四氨基锌酞菁所需的最佳反应条件。最后,在最佳条件下合成产物,并对每步生成的物质进行红外光谱和紫外光谱检测,确定其成分。

金属酞菁

实验六金属酞菁配合物的合成及光谱性质研究 一实验目的 (1)通过合成酞菁金属配合物,掌握这类大环配合物的一般合成方法,了解金属模板反应在无机合成中应用。 (2)进一步熟练掌握配合物合成中的常规操作方法和技能。 二实验原理 金属酞菁的合成 自由酞菁(H2Pc)的分子结构见图1(a)。它是四氮大环配体的重要种类,具有高度共轭π体系。它能与金属离子形成金属酞菁配合物(MPc),其分子结构式如图1(b)。这类配合物具有半导体、光电导、光化学反应活性、荧光、光存储等特性。金属酞菁是近年来广泛研究的经典金属大环配合物中的一类,其基本结构和天然金属卟啉相似,且具有良好的热稳定性和化学稳定性,因此金属酞菁在光电转换、催化活化小分子、信息储存、气敏传感器、生物模拟及工业染料等方面有重要的应用。 N N H N N N H N N N N N N N N N N N M M = Cu,Co,Ni,Zn,Pb,Pd a b 图1 酞菁配合物的结构示意图 金属酞菁的合成一般有以下两种方法:①通过金属模板反应来合成,即通过简单配体单元与中心金属离子的配位作用,然后再结合形成金属大环配合物。这里的金属离子起着一种模板作用;②与配合物的经典合成方法相似,即先采用有机合成的方法制得并分离出自由的有机大环配体,然后再与金属离子配位,合成得到金属大环配合物。其中模板反应是主要的合成方法。金属酞菁配合物的合成的方法主要有以下几种途径(以2价金属M为例)。

(1) 中心金属的置换 MX + LiPc MPc + 2LiX (2) 以邻苯二甲腈为原料 MX n +CN CN 4 MPc ℃300溶 剂 (3) 以邻苯二甲酸酐、尿素为原料Δ MX n +Co Co 4 MPc ℃ 300O + CO(NH 2)2 200 ~424 (4) 以2-氰基苯甲酸胺为原料 M + CN CONH 2 4 MPc + H 2O ℃250Δ 本实验按反应(2)制备金属酞菁,原料为金属盐、邻苯二甲腈,催化剂为1,8-二氮杂双环[5,4,0]十一-7-烯(DBU)。利用溶液法进行制备。 酞菁大环中的空穴可容纳铁、铜、铝、镍、钴等许多金属元素而形成金属酞菁配合物,在周期表中从IA 到VB 的元素都可与酞菁生成金属酞菁配合物,至今已知有70多种金属元素可以与萘酞菁形成配合物。萘酞菁周边共有24个氢原子,可被多种原子和基团取代,形成具有特定功能的酞菁衍生物。 对于半径较小的二价离子的金属萘酞菁和无金属萘酞菁为平面大环结构,分子对称性为D 4h (H 2Pc 为D 2h )。而对于半径较大的二价金属离子,由于酞菁环中心空间的限制,金属将位于酞菁环平面之上,则形成非平面四角锥金属酞菁配合物, 如Pb(Ⅱ)Pc [20]。对于三价或三价以上的中心金属(铝、钒、硅、锗等)可通过轴向配位形成六配位的四角双锥和五配位的四方锥酞菁配合物(图2)。 N N N N M N N N N M N N N N M L L L a b c 图2 不同配位的萘酞菁配合物的几何图示 a. 四配位平面正方形结构 b.五配位四方锥结构 c.六配位四角双锥结构 金属酞菁配合物的热稳定性与金属离子的电荷及半径比有关。由电荷半径比较大的金属

仑伐替尼磺酸盐项目立项报告

[键入公司名称] 乐伐替尼磺酸盐立项报告*****部 2018/12/1

目录 1品种概况简述 (1) 1.1 乐伐替尼产品相关信息 (2) 1.2上市品图样及结构 (3) 1.3 作用机制及药代 (4) 1.3.1作用机制 (4) 1.3.2药代动力学 (4) 1.4临床研究 (5) 1.4.1晚期放射性-碘难治性分化型甲状腺癌 (5) 1.4.2晚期或转移性肾细胞癌 (5) 1.4.3不良反应 (5) 2市场概述 (6) 2.1患病率和人群分布 (6) 2.1.1甲状腺癌 (6) 2.1.2肾细胞癌 (6) 2.1.3肝细胞癌 (7) 2.2 临床试验/实践情况 (7) 2.2.1新颖的作用机制 (7) 2.2.2与现有一线用药相比,有效性明显提高,不良反应类似 (7) 2.2.3新适应症的临床实验正在开展 (8) 3市场分析 (9) 3.1 国外市场情况 (9) 3.2 国内市场情况预估 (9) 3.3 国外(内)已上市的竞品药 (11) 3.2.1分化型甲状腺癌 (11) 3.2.2 肾细胞癌 (12) 3.4乐伐替尼的市场机会与风险分析 (12) 3.4.1乐伐替尼市场优势 (12) 3.4.2乐伐替尼横空出世,为中国患者量身打造 (13) 3.4.3 乐伐替尼REFLECT研究的中国结果 (14) 附件1:乐伐替尼合成路线 (15) 附件2:相关杂质 (18) 附件3:FDA溶出数据 (20)

乐伐替尼磺酸盐原料及其制剂 缩略语 新药注册申请(New Drug Application,NDA) 中国国家食品药品监督管理局(CFDA) 美国食品药品管理局(FDA) 日本医药品医疗器械综合机构(PMDA) 欧洲药物管理局(EMA) 甲磺酸乐伐替尼(Lenvatinib mesylate),也称甲磺酸乐伐替尼,本文简称乐伐替尼

香兰素的合成方法及技术展望

.- 香兰素的合成方法及技术展望 吴志尚化工一班 3014207025 (天津大学化工学院,天津 300072) 摘要:香兰素是世界上最重要的香料之一,广泛应用在食品饮料、香精香料和医药工业等领域中, 全球每年的需求量超过16000t。鉴于人们对纯天然绿色食品的追求日益增长,天然香兰素高效的生产方法也成为研究的热点。本文综述了香兰素的多种不同的合成途径以及合成关键因素等方面的研究进展, 分析探讨了不同合成途径的优劣之处。并展望了利用微生物高产天然香兰素存在的瓶颈以及有潜力的发展方向。 关键词:香兰素;天然香料;合成途径 The synthesis methods of vanillin and technical outlook Wu Zhishang Class 1 3014207025 (School of chemical engineering institute,Tianjin University,Tianjin 300072) Abstract:Vanillin is one of the most important flavoring compounds, and it is widely used in the food industry, spice fragrance, and medicine industry, etc. The annual worldwide consumption is estimated over 16 000 tons. Due to people's increasing concern for natural food,the product of natural vanillin has become the major point of scientific research. By comparing different production methods of vanillin, we concluded that the microbial transformation to vanillin is the most promising method. Research developments on different biosynthetic pathways for vanillin, as well as the genes and enzymes involved, were discussed. In addition,the advantages and disadvantages of each pathway were compared and explained. Finally, the existing bottlenecks in biosynthesis of high-yield natural vanillin with the help of genetic and metabolic engineering, and the potential development direction in this field were elucidated. Natural spices ; Synthetic pathway Vanillin;Keywords: 香兰素(Vanillin, 4-羟基-3-甲氧基苯甲醛)主要存在于天然植物香荚兰中, 是世界上最重要的香料之一。香兰素的晶体为白色针状,呈香兰荚特有的香气,它微溶于冷水,易溶[1]于热水、乙醇、乙醚、氯仿和热挥发油中。其化学结构为:

坦西莫司研究进展

坦西莫司研究进展 摘要】坦西莫司是用于治疗晚期肾细胞癌(RCC)的首个哺乳动物雷帕霉素靶蛋 白(mTOR)抑制剂。治疗晚期RCC的Ⅱ/Ⅲ期临床研究显示,坦西莫司对RCC有 显著疗效。具有较高的开发价值。本文就坦西莫司的研究取得的主要进展进行了 综述,为原料合成、制剂开发及质量研究等提供有价值的参考。 【关键词】坦西莫司肾癌靶向 【中图分类号】R943 【文献标识码】A 【文章编号】2095-1752(2012)09-0381-02 2007年5月美国FDA批准惠氏公司惠氏制药子公司的坦西莫司注射剂(商品名:Torise|),用于治疗晚期肾细胞癌。是首个雷帕霉素哺乳动物靶(mammalian target of rapamycin,mTOR)蛋白抑制剂靶向治疗肾癌的药品,是已上市唯一可特 异性抑制mTOR激酶(细胞内调节细胞增生、细胞生长和细胞存活的关键蛋白质) 的药品。其III临床试验结果显示,与α-干扰素(目前治疗肾细胞癌的常规物,temsirolimus可将中位生存期延长3.6个月(增加50%)。[1] 坦西莫司Temsirolimus为白色或类白色粉末,无吸湿性。难溶于水;易溶乙醇。别名:CCI-779;中文名:雷帕霉素 42-[3-羟基-2-(羟甲基)-2-甲基丙酸酯;英 文名:rapamycin 42 [3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate];分子 式:C56H87NO16;相对分子质量:1030.30,CAS登记号: 162635-04-3。 1 结构研究 近年的研究表明,西罗莫司在预防同种异体肾移植术后排斥反应、各种支架 管置入导致的血管再狭窄及抗肿瘤等方面具有重要作用。由惠氏公司开发的西罗 莫司作为抗癌药现已进入临床试验阶段,大量的试验已经证实,西罗莫司可抑制 多种癌细胞的生长。虽然西罗莫司的生物活性很强,但由于起生物利用度低和水 溶性差、结构不稳定等,使得该药物一直是通过非肠道给药系统使用,为了在临 床上更好地发挥疗效,人们对西罗莫司的结构和功能进行了大量的研究,并获得 了一系列具有临床价值的西罗莫司衍生物。 坦西莫司是惠氏公司在依维莫司的基础上研发的西罗莫司C42位丙酸酯类衍 生物,亲水性明显强于西罗莫司,是一种代表性的细胞增殖抑制药,在体外抑制 平滑肌细胞增殖方面与西罗莫司具有相似的趋势,但在相同药物浓度下,抑制作 用是西罗莫司的3倍;同时该衍生物具有与西罗莫司相当的抗肿瘤活性和细胞毒性,可单独或与其他化学药物联合给药,能够有效地抑制人类早期神经外胚层及 成神经细胞瘤的生长。更为重要的是,该药物对在体外耐西罗莫司的U251恶性 胶质瘤细胞也具有抑制作用。目前该药物已经上市,商品名为Torisel,主要治疗 肾细胞癌;同时基于该药物的洗脱支架目前正在处于动物模型实验阶段。[3] 2 合成工艺研究 坦西莫司是雷帕霉素(rapamycin)的衍生物,其专利报道的合成方法有三种。 合成方法一[4]:都是以2,2-二羟甲基丙酸为原料,经过羟基保护、成混合酸酐通 固定化酶催化对雷帕霉素进行酰化和脱保护基生成目标产物。 合成方法二[5]:首先是雷帕霉素的31位经四甲基硅烷的甲硅烷化,再以2,2-二 羟甲基丙酸为原料,经过羟基保护、成混合酸酐对雷帕霉素进行酰化和脱保护基 生成目标产物。 合成方法三[6]:区域选择性合成方法,首先是雷帕霉素的31和42位经氯化三甲 基甲硅烷的甲硅烷化,随后经过硫酸区域选择性在42位脱甲硅烷化,然后再进

纤维素共价固定功能化酞菁【任务+翻译+开题+综述+正文】

一、题目
任务书 纤维素共价固定功能化酞菁
二、主要内容和基本要求(指明本课题要解决的主要问题和大体上可从哪几
个方面去研究和论述该主要问题的具体要求)
主要目标和任务:金属酞菁衍生物由于其特殊的结构而具有优良的催化氧化性 能,广泛运用于各行各业。本实验首先合成酞菁化合物,再制备纤维素薄膜,然后 采用直接将金属酞菁衍生物负载到纤维素上的方法,制备得到一种金属酞菁负载纤 维催化剂。本文采用微波消解-火焰原子吸收光谱法测定酞菁衍生物中的金属元素的 含量,从而根据金属元素的含量换算出金属酞菁在纤维素纤维上的负载量。
主要内容包括: (1)合成外环有氨基官能团的金属酞菁化合物 (2)以乙酸纤维素原料制备薄膜,通过水解得到纤维素薄膜,并对其进行氧化 处理使其表面形成功能化基团。 (3)通过共价键的方式将酞菁固定于纤维素纤维表面,制备得到一种负载型的 催化剂。 (4)考察各反应条件对负载量的影响。

三、起止日期及进度安排
起止日期: 2010 年 11 月 8 日 至 2011 年 4 月 18 日
进度安排: 序号
时间
1 2010.11.08 至 2010.11.18
2 2010.11.21 至 2010.12.23
3 2011.12.26 至 2011.01.10
4 2011.01.10 至 2011.01.24
5 2011.02.19 至 2011.03.10
6 2011.03.15 至 2011.3.31
7 2011.04.15 至 2011.04.18
内容 文献的查阅与实验方案制定 完成开题报告、英文翻译和文献综述
合成四氨基金属酞菁 完成纤维素薄膜的制备与固定 完成反应温度和时间对固定量的影响 根据实验结果,完成论文初稿 修改毕业论文,最终完稿
四、推荐参考文献(理工科专业应在 5 篇以上,文科类专业应在 8 篇以上,其中外文文
献至少 2 篇。) 3. 沈永佳,酞菁的合成及应用[M],北京:化学工业出版社,2000,2 第一版. 4. 姚玉元,陈文兴,吕素芳.催化纤维的制备及催化性能[J] .纺织学报,2007,28(4):5-7 5. 陈文兴,陈世良,吕慎水,等.负载型酞菁催化剂的制备及其光催化氧化苯酚[J].中国科学, 2007,50(3):379-384. 6. 殷焕顺.易溶性金属酞菁衍生物的合成及其性质研究:学位论文.湖南:湘潭大学,2004 [5] B. Kippelen, S. Yoo, J. A. Haddock, B. Domercq, S. Barlow,B. A. Minch, W. Xia, S. R. Marder and N. R. Armstrong,in Organic Photovoltaics: Mechanisms, Materials, and Devices,ed. S. sariciftic and S. Sun, CRC Press, Boca Raton, FL,2005. [6]F. Armand, H. Perez, S. Fouriaux, O. Araspin, J.-P. pradeau,C. G. Claessens, E. M. Maya, P. Va′quez and T. Torres, synth.Met., 1999, 102, 1476; Z. Wang, A.-M. Nygrd, M. J. Cook andD. A. Russell, Langmuir, 2004, 20, 5850.

相关文档
最新文档