全微分

全微分

全微分的定义

可微分的判定方法

全微分在近似计算中的应用

全微分的定义

复习 一元函数()y f x =的微分

()y A x o x ?=?+?

应用 ??? 近似计算

d ()y f x x '=? 估计误差

根据一元函数微分学中增量与微分的关系得 二元函数对x 、y 的偏微分

(,)(,)(,)x f x x y f x y f x y x +?-≈?,

二元函数对x 、y 的偏增量 (,)(,)(,)y f x y y f x y f x y y +?-≈?

(,)P x x y y '+?+?为这邻域内的任意一点, 则称 (,)(,)f x x y y f x y +?+?-为函数在点P 对应于自 变量增量x ?、y ?的全增量,记作z ?,即

设函数(,)z f x y =在点(,)P x y 某邻域内有定义, (,)(,)z f x x y y f x y ?=+?+?-.

(,)(,)z f x x y y f x y ?=+?+?-

可表示为 ()z A x B y o ρ?=?+?+,

定义 设函数(,)z f x y =在点(,)x y 某邻域内有定义,如

果函数在点(,)x y 的全增量

其中A 和B 不依赖于x ?和y ?而仅与x 和y 有关,

22()()x y ρ=?+?,则称函数(,)z f x y =在 点(,)x y 可微分, A x B y ?+?称为函数

(,)z f x y =在点(,)x y 的全微分, 记作d z ,即

d z A x B y =?+?.

推广 如果函数在区域D 内各点处处都可微分,则称这

函数在D 内可微分.

发现 如果函数(,)z f x y =在点(,)x y 可微分, 则函数

在该点必定连续.

事实上, ()z A x B y o ρ?=?+?+,0

lim 0z ρ→?=, ()(),0,00

lim (,)lim[(,)]x y f x x y y f x y z ρ??→→+?+?=+? (,)f x y =,

因此函数(,)z f x y =在点(,)x y 处连续.

可微分的判定方法

定理(必要条件) 如果函数(,)z f x y =在点(,)x y 可微

分, 则该函数在点(,)x y 的偏导数z x ??和z y

??必定存 在,且函数(,)z f x y =在点(,)x y 的全微分为

d z z z x y x y

??=?+???.

证明 设(,)P x x y y '+?+?为点(,)x y 某邻域内的任意一 点,()z A x B y o ρ?=?+?+, 当0y ?=时,

(,)(,)(||)f x x y f x y A x o x +?-=??+?,

0(,)(,)lim x f x x y f x y A x ?→+?-=?,即z A x

?=?. 同理有z B y

?=?.

说明二元函数的全微分等于它的两个偏微分之和,即

d

z z

z x y

x y

??

=?+?

??

称二元函数的微分符合叠加原理.

推广二元以上的多元函数微分也符合叠加原理.

问题一元函数有“可导是可微的充要条件”,多元函数是否有相同性质?

例 试证函数

222222, 0(,)0, 0

xy x y f x y x y x y ?+≠?=+??+=? 的偏导数(0,0)x f 、(0,0)y f 都存在,但(,)f x y 在(0,0) 不可微.

证明 可用定义求出(0,0)(0,0)0x y f f ==,

此时[(0,0)(0,0)]x y z f x f y ?-??+??

22()()x y

x y ???=?+?

若令点(,)P x x y y '+?+?沿着直线y x =趋于(0,0), 则有 2222

22, 0(,)0, 0

xy x y f x y x y x y ?+≠?=+??+=

22

22()()12()()

x y

x y x y x y ρ????+????==?+? 即[(0,0)(0,0)]x y z f x f y ?-??+??不是关于ρ的高阶 无穷小. (,)f x y 在(0,0)不可微.

2222

22, 0(,)0, 0

xy x y f x y x y x y ?+≠?=+??+=

定理(充分条件)如果(,)z f x y =的偏导数z x ??和z y

??在点 连续, 则该函数在该点可微分.

例 求函数326

45z xy x y =+的全微分. 解 z x

??36410y xy =+, 且这两个偏导数连续,

d z 36(410)d y xy x =+225

(1230)d xy x y y ++. z y ??2251230xy x y =+,

例求函数sin e

2yz

y

u x

=++的全微分.

u

x

?

?

1

=,

故所求全微分

d u

1

d(cos e)d e d

22

yz yz

y

x z y y z =+++.

u

y

?

?

1

cos e

22

yz

y

z

=+,

u

z

?

?

e yz

y

=,

全微分在近似计算中的应用

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有 xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(2 2 =-+-dy x y dx y x 解:当0)1)(1(2 2 ≠--y x 时,有 dx x x dy y y 1 12 2-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(2 2 =--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(2 2 为常数C C y x =--。 ⑵可化为变量可分离方程的方程:

①、形如)(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到 )(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程, 得到)(0 ),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(2 221 11c y b x a c y b x a f dx dy ++++= 解法:01、 02 2 11=b a b a ,转化为 )(by ax G dx dy +=,下同①; 0 2、 022 1 1≠b a b a ,?? ?=++=++00 222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u 得到,)()( )(221 12211u v g u v b a u v b a f v b u a v b u a f du dv =++=++=,下同②; 还有几类:xy u dy xy xg dx xy yf ==+,0)()( xy v xy f dx dy x ==),(2 22),(x y w x y xf dx dy == θθsin ,cos ,0))(,())(,(r y r x ydx xdy y x N ydy xdx y x M ===-++ 以上都可以化为变量可分离方程。 例2.1、 2 5 --+-=y x y x dx dy 解:令2--=y x u ,则du dx dy -=,代入得到u u dx du 71+=- ,有dx udu 7-= 所以)(72 2 为常数C C x u +-=,把u 代入得到)(72 22 为常数) (C C x y x =+--。 例2.2、 1 212+-+-=y x y x dx dy

(完整版)多元函数微分法及其应用期末复习题高等数学下册(上海电机学院)

第八章 偏导数与全微分 一、选择题 1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x x u x y =??=则=??=2x y y u [A ] A. 2 1 - B. 21 C. -1 D. 1 2.函数62622++-+=y x y x z [ D ] A. 在点(-1, 3)处取极大值 B. 在点(-1, 3)处取极小值 C. 在点(3, -1)处取极大值 D. 在点(3, -1)处取极小值 3.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 4. 设u=2 x +22y +32 z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)方向的导数 =??l u [ D ] A. 635 B.635- C.335 D. 3 3 5- 5. 函数xy y x z 333-+= [ B ] A. 在点(0, 0)处取极大值 B. 在点(1, 1)处取极小值 C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值 6.二元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 7. 已知)10(0sin <<=--εεx y y , 则dx dy = [ B ] A. y cos 1ε+ B. y cos 11ε- C. y cos 1ε- D. y cos 11 ε+ 8. 函数y x xy z 2050++ = (x>0,y>0)[ D ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值 C.在点(5, 2)处取极大值 D. 在点(5, 2)处取极小值 9.二元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要而非充分条件 B. 充分而非必要条件

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

全微分方程及积分因子

全微分方程及积分因子

全微分方程及积分因子 内容:凑微分法,全微分方程的判别式,全微分方程的公式解,积分因子的微分方程,只含一个变量的积分因子和其他特殊形式的积分因子。由于有数学分析多元微积分的基础,本节的定理1可以简化处理。对课本中第三块知识即全微分方程的物理背景可以留到后面处理,对第四块知识增解和失解的情况要分散在本章各小节,每次都要重视这个问题。关于初等积分法的局限性可归到学习近似解法时一起讲解。 重点:全微分方程的公式解和积分因子的计算,难点为凑微分法和积分因子的计算。 习题1(1,3,5),2,3 思考题:讨论其他特殊形式的积分因子。 方程:0),(),(=+dy y x N dx y x M 判定:全微分?x N y M ??≡?? 解法:C dy y x N dx y x M y y x x =+??00),(),(0 初值问题0=C 积分因子:x N y M y M x N ??-??=? ???????-??μμμ1

)(x μ: N x N y M dx d ?? -??=μμ1 )(y μ: M x N y M dy d ??- ??-=μμ1 1.解下列方程: 1)0)(222=-+dy y x xydx 解:x N y M ?? ≡??=x 2 ??=-+x y C dy y xydx 002 )0(2既 C y y x =-3/32 2)0)2(=+---dy xe y dx e y y 解:x N y M ??≡??=y e -- ??=-+-y x y C dy y dx e 00)2(既C y xe y =--2 3)0)1(222=---+dy y x dx y x x 解:x N y M ??≡??=y x --221 ??=---+x y C dy y dx y x x 002)1(2 C y y y x x =-+---+23 232322)(32 )(32 )(32 既C y x x =-+23 2 2)(32 4)0)ln (3 =++dy x y dx x y

多元函数微分法word版

§5.3 多元函数微分法 一、复合函数微分法――链式法则 模型1. ()()()z f u v u u x y v v x y ==,,,,=, z z u z z z u z x u x x y u y y νννν??????????=?+?=?+???????????; 模型2. ()()u f x y z x y =,,,z=z , x z y z u z f f x x u z f f y y ???''=+????? ???''=+???? 模型3. ()()()u f x y z y y x z x ===,,,,z ()()x y z du f f y x f z x dx '''''=++ 模型4. ()()()w f u v u u x y z v v x y z ===,,,,,,, u v u v u v w u v f f x x x w u v f f y y y w u v f f z z z ????''=+????? ????''=+? ????????''=+????? 还有其他模型可以类似处理。 【例1】 设()u f x y z =,,有连续的一阶偏导数,又函数()y y x =及()z z x =分别由 下列两式确定2xy e xy -=和0sin x z x t e dt t -= ?,求du dx 。 解 根据模型3. x y z du dy dz f f f dx dx dx '''=++

由2xy e xy -=两边对x 求导,得0xy dy dy e y x y x dx dx ???? +-+= ??????? 解出 dy y dx x =-(分子和分母消去公因子()1xy e -) 由0 sin x z x t e dt t -= ? 两边对x 求导,得()()sin 1x x z dz e x z dx -??=- ?-?? 解出 ()() 1sin x e x z dz dx x z -=- - 所以 ()()1sin x e x z du f y f f dx x x y x z z ??-???=-+-?? ??-??? 【98】设1 ()()z f xy y x y x ?=++,f ,?具有二阶连续导数,则 2________z x y ?=??。 答案:()()()yf xy x y y x y ??'''''++++ 注:①混合偏导数在连续的条件下与求导次序无关; ②此题中f 和?均为一元函数。 【05】设函数(,)()()()d x y x y u x y x y x y t t ??ψ+-=++-+? ,其中函数?具有二阶导数,ψ 具有一阶导数,则必有( ) (A )2222u u x y ??=-??;(B )2222u u x y ??=??;(C )222u u x y y ??=???;(D )222 u u x y x ??=??? 答案:B 全微分形式不变性 例:利用全微分形式不变性求sin u z e v =,u xy =,v x y =+的偏导数。 【06】设函数()f u 在(0,)+∞内具有二阶导数,且z f =满足等式 2222 0z z x y ??+=??

各种类型的微分方程及其相应解法教程文件

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1))(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得?? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1)2ln(23)1ln(C x u u u +=----

高等数学多元函数微分法

第 八 章 多元函数微分法及其应用 第 一 节 多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数 概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。 教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、 区域 1. 邻域 设),(000y x p 是xoy 平面上的一个点,δ是某一正数。与点),(000y x p 距离小于δ的点(,)p x y 的全体,称为点0P 的δ邻域,记为),(0δP U ,即 ),(0δP U =}{0δδ为半径的圆内部的点),(y x P 的全体。 2. 区域 设E 是平面上的一个点集,P 是平面上的一个点。如果存在点P 的某一邻域E P U ?)(,则称P 为E 的内点。显然,E 的内点属于E 。 如果E 的点都是内点,则称E 为开集。例如,集合 }41),{(221<+<=y x y x E 中每个点都是E 1的内点,因此E 1为开集。

如果点P 的任一邻域内既有属于E 的点,也有不属于E 的点(点P 本身可以属于E ,也可以不属于E ),则称P 为E 的边界点。E 的边界点的全体称为E 的边界。例如上例中,E 1的边界是圆周12 2 =+y x 和 22y x +=4。 设D 是点集。如果对于D 内任何两点,都可用折线连结起来,且该折线上的点都属于D ,则称点集D 是连通的。 连通的开集称为区域或开区域。例如,}0),{(>+y x y x 及 }41),{(22<+0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 h r V 2 π=。 这里,当r 、h 在集合}0,0),{(>>h r h r 内取定一对值),(h r 时,V 的对应值就随之确定。

多元函数微分法

第十章 多元函数微分学 一、学习要点 1.关于二元函数 会求二元函数的定义域和相应的函数值。求二元函数定义域及函数值的方法与一元函数的方法相似。 2.关于二元函数微分 (1)熟练掌握一阶、二阶偏导数的计算方法和复合函数、隐函数一阶偏导数的计算方法,尤其是形如z=f (x 2-y 2 ,e xy )等的复合函数的偏导数。能熟练地求全微分。 偏导数的定义、计算公式基本与一元函数导数公式相同。求偏导数时,对一个变量求导时,将另一变量视为常数。如求函数32ln z y x u ++=的偏导数 32121z y x x u ++=??(y ,z 为常数),32221z y x y y u ++=??(x ,z 为常数) 复合函数求偏导数是难点。一般用链式法则,即z=f (u ,v),u=u(x ,y),v=v(x ,y),有 y v v z y u u z y z x v v z x u u z x z ????????????????????+=+= 具体情况有两种: (一)全部函数关系都给出:这时可按前边方法求偏导数,如求二元函数 )ln(2v u z +=,xy e v y x u =+=,22. 的偏导数y z x z ????,,可以把u ,v 代入z 中,再求偏导数,即 z=ln(x 2+y 2+e 2xy ),求偏导数有 xy xy e y x ye x x z 222222+++=?? xy xy e y x xe y y z 222222+++=?? (二)部分函数关系没有给出:此时只有用链式法则。如求函数z=f(xy ,x 2+y 3),

的一阶偏导数,则不能用如上方法求解.正确求法是记u=xy ,v=x 2+y 3,用链式法则 x v f y u f x v v z x u u z x z 2??????????????+=+=,23y v f x u f y z ??????+= 上例也可以用链式法则,有 xy xy xe v u v y v u y z ye v u v x v u x z 2222221,221+++=+++=???? 求隐函数的偏导数,是复合函数求偏导数的应用,方法仍然同一元隐函数的求导. 如求函数32ln z y x u ++=的偏导数. 32121z y x x u ++=??(y ,z 为常数),32221z y x y y u ++=??(x ,z 为常数) (2)知道函数连续、可微、偏导数存在的关系。 3.关于偏导数的几何应用 掌握求曲线的切线与法平面,曲面的切平面与法线的方法. (1)设空间曲线方程为x =x (t),y =y (t),z = z (t),在t=t 0处的切线方向为 ))(),(),((000t z t y t x l '''=ρ,则在t 0处曲线的 切线方程为 )()()()()()(000000t z t z z t y t y y t x t x x '-='-='- 法平面方程为 )())(()())(()())((000000t z t z z t y t y y t x t x x '-+'-+'-=0 (2)曲面F (x ,y ,z)=0(或z=f (x ,y)),在曲面上的点P(x 0,y 0,z 0)处的法方向为)}1,,{(},,{),,(),,(000000z y x y x z y x z y x f f F F F n -'''''=或ρ,则在点(x 0,y 0,z 0)处的 切平面方程为 0)()()(000=-'+-'+-'z z F y y F x x F z y x 法线方程为 z y x F z z F y y F x x ' -='-='-000

第八章多元函数微分法及其应用

第八章多元函数微分法及其应用 第一节多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、区域 1.邻域 设P o(x°,y。)是xoy平面上的一个点,是某一正数。与点P o(X o,y°)距离小于:的 点p(x,y)的全体,称为点p的「?邻域,记为U(P0,、),即 U(P°,、)= {P PPo < }, 也就是 U (P o,、)= {(X, y)丨..(X -X。)2(y - y o)2、}。 在几何上,U(P o「J就是xoy平面上以点p o(x o,y。)为中心、:-0为半径的圆内部 的点P(x,y)的全体。 2.区域 设E是平面上的一个点集,P是平面上的一个点。如果存在点P的某一邻域U(P) E, 则称P为E的内点。显然,E的内点属于E。 如果E的点都是内点,则称E为开集。例如,集合E, ={(x, y)1 vx2+ y2£4}中每个点都是E,的内点,因此E,为开集。 如果点P的任一邻域内既有属于E的点,也有不属于E的点(点P本身可以属于E,也可以不属于E ),则称P为E的边界点。E的边界点的全体称为E的边界。例如上例中,E ,的边界是圆周x2 y2 = 1和x2 y2=4o

设D是点集。如果对于D内任何两点,都可用折线连结起来,且该折线上的点都属于 D,则称点集D是连通的。 连通的开集称为区域或开区域。例如,{(x, y) x + y a 0}及{( x, y)d 0}及{(x, y) | 1< x y <4} 都是闭区域。 对于平面点集E ,如果存在某一正数r,使得 E U(0,r), 其中0是原点坐标,则称E为有界点集,否则称为无界点集。例如,{(x,y) | K x2 y2< 4}是有界闭区域,{(x, y) | x y>0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1圆柱体的体积V和它的底半径r、高h之间具有关系 V =二r2h 。 这里,当r、h在集合{(r,h) r 0,h 0}内取定一对值(r,h)时,V的对应值就随之确定。 例2 一定量的理想气体的压强p、体积V和绝对温度T之间具有关系 RT P =— V 其中R为常数。这里,当V、T在集合{(V,T) V >0,T >T0}内取定一对值(V,T)时,p的 对应值就随之确定。 定义1设D是平面上的一个点集。称映射 f : D》R为定义在D上的二元函数,通 常记为 z 二f(x, y) , (x, y) D (或z 二f(P) , P D )。 其中点集D称为该函数的定义域,x、y称为自变量,z称为因变量。数集

各类微分方程的解法大全

创作编号:BG7531400019813488897SX 创作者:别如克* 各类微分方程的解法 1.可分离变量的微分方程解法 一般形式:g(y)dy=f(x)dx 直接解得∫g(y)dy=∫f(x)dx 设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐 式通解 2.齐次方程解法 一般形式:dy/dx=φ(y/x) 令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u] =dx/x两端积分,得∫du/[φ(u)-u]=∫dx/x 最后用y/x代替u,便得所给齐次方程的通解 3.一阶线性微分方程解法 一般形式:dy/dx+P(x)y=Q(x) 先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce- ∫P(x)dx,再令y=u e-∫P(x)dx代入原方程 解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C] 即y=Ce-∫P(x)dx +e- ∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解 4.可降阶的高阶微分方程解法 ①y(n)=f(x)型的微分方程 y(n)=f(x) y(n-1)= ∫f(x)dx+C1

y(n-2)= ∫[∫f(x)dx+C1]dx+C2 依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程 令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1) 即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2 ③y”=f(y,y’) 型的微分方程 令y’=p则y”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C1) 即dy/dx=φ(y,C1),即dy/φ(y,C1)=dx,所以∫dy/φ(y,C1)=x+C2 5.二阶常系数齐次线性微分方程解法 一般形式:y”+py’+qy=0,特征方程r2+pr+q=0 6.二阶常系数非齐次线性微分方程解法 一般形式: y”+py’+qy=f(x) 先求y”+py’+qy=0的通解y0(x),再求y”+py’+qy=f(x)的一个特解y*(x) 则y(x)=y0(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解 求y”+py’+qy=f(x)特解的方法: ①f(x)=P m(x)eλx型 令y*=x k Q m(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m(x)的m+1个系数 ②f(x)=eλx[Pl(x)cosωx+P n(x)sinωx]型

最新多元函数微分法及其应用习题及答案

第八章 多元函数微分法及其应用 (A) 1.填空题 (1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ???2,x y z ???2 ,则在D 上, x y z y x z ???=???22。 (2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。 (3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。 2.求下列函数的定义域 (1)y x z -=;(2)2 2 arccos y x z u += 3.求下列各极限 (1)x xy y x sin lim 00→→; (2)11lim 0 0-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ???23及2 3y x z ???。 5.求下列函数的偏导数 (1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。 6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数 dt dz 。 7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dt du 。 8.曲线?? ???=+= 4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少? 9.求方程122 2222=++c z b y a x 所确定的函数z 的偏导数。 10.设y x ye z x 2sin 2+=,求所有二阶偏导数。

第九章多元函数微分法及其应用教案

第九章多元函数微分法及其应用 【教学目标与要求】 1、理解多元函数的概念和二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件, 了解全微分形式的不变性。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大值和最小值,并会解决一些简单的应用问题。 【教学重点】 1、二元函数的极限与连续性; 2、函数的偏导数和全微分; 3、方向导数与梯度的概念及其计算; 4、多元复合函数偏导数; 5、隐函数的偏导数;多元函数极值和条件极值的求法; 6、曲线的切线和法平面及曲面的切平面和法线; 【教学难点】 1、二元函数的极限与连续性的概念; 2、全微分形式的不变性; 3、复合函数偏导数的求法; 4、二元函数的二阶泰勒公式; 5、隐函数(包括由方程组确定的隐函数)的偏导数; 6、拉格郎日乘数法,多元函数的最大值和最小值。 【教学课时分配】 (18学时) 第1 次课§1第2 次课§2 第3 次课§3 第4 次课§4 第5次课§5 第6次课§6 第7次课§7 第8次课§8 第9次课习题课 【参考书】 [1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社. [2] 同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社. [3] 同济大学数学系.《高等数学习题全解指南(下)》,第六版.高等教育出版社

多元函数微分学总结

多元函数微分学总结内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

`第八章多元函数微分学 基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。 (1)基本概念

①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记 作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且 0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于这 一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元 函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24(,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++, k ∴不同,极限值就不同,故 (,)(0,0) lim (,)x y f x y →不存在。

多元函数微分法及其应用

第八章多元函数微分法及其应用 (讲授法18学时) 上册研究了一元函数微分法,利用这些知识,我们可以求直线上质点运动的速度和加速度,也可以求曲线的切线的斜率,可以判断函数的单调性和极值、最值等,但这远远不够,因为一元函数只是研究了由一个因素确定的事物。一般地说,研究自然现象总离不开时间和空间,确定空间的点需要三个坐标,所以一般的物理量常常依赖于四个变量,在有些问题中还需要考虑更多的变量,这样就有必要研究多元函数的微分学。 多元函数微分学是一元函数的微分学的推广,所以多元函数微分学与一元函数微分学有许多相似的地方,但也有许多不同的地方,学生在学习这部分内容时,应特别注意它们的不同之处。 一、教学目标与基本要求 1、理解多元函数的概念,理解二元函数的几何意义。 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3、理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性,了解全微分在近似计算中的应用。 4、理解方向导数与梯度的概念并掌握其计算方法。 5、掌握多元复合函数偏导数的求法。 6、会求隐函数(包括由方程组确定的隐函数)的偏导数。 7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。 8、了解二元函数的二阶泰勒公式。 9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 二、教学内容及学时分配: 第一节多元函数的基本概念2课时 第二节偏导数2学时 第三节全微分2学时 第四节多元复合函数的求导法则2学时 第五节隐函数的求导公式2学时 第六节多元函数微分学的几何应用2学时 第七节方向导数与梯度2学时 第八节多元函数的极值及其求法2学时 三、教学内容的重点及难点: 重点: 1.多元函数的极限与连续; 2.偏导数的定义;全微分的定义 3.多元复合函数的求导法则;隐函数的求导法则 4.方向导数与梯度的定义 5.多元函数的极值与最值的求法 难点: 1.多元函数微分学的几个概念,即多元函数极限的存在性、多元函数的连续性、偏导数的存在性、全微分的存在性、偏导数的连续性之间的关系; 2.多元复合函数的求导法则中,抽象函数的高阶导数; 3.由方程组确定的隐函数的求导法则; 4.梯度的模及方向的意义; 5.条件极值的求法

多元函数微分学及其应用归纳总结

第八章 多元函数微分法及其应用 一、多元函数的基本概念 1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念 2、多元函数的极限 ? 00(,)(,) lim (,)x y x y f x y A →=(或0 lim (,)P P f x y A →=)的εδ-定义 ? 掌握判定多元函数极限不存在的方法: (1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言 函数极限不存在; (2)找两种不同趋近方式,若 00(,)(,) lim (,)x y x y f x y →存在,但两者不相等, 此时也可断言极限不存在。 ? 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商, 等价无穷小替换,夹逼法则等)与一元类似: 例1.用εδ-定义证明 2222 (,)(0,0) 1 lim ()sin 0x y x y x y →+=+ 例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数22 2 222 ()+++-x y x y x y 的极限是否存在?证明你的结论。 例3 设22 2222,0 (,)0,0xy x y x y f x y x y ?+≠?+=??+=? ,讨论(,)(0,0) lim (,)x y f x y →是否存在? 例4(07年期末考试 一、2,3分)设222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y ,讨论 (,)(0,0) lim (,)→x y f x y 是否存在?

例5.求222 (,)(0,0)sin() lim x y x y x y →+ 3、多元函数的连续性0000(,)(,) lim (,)(,)x y x y f x y f x y →? = ? 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含 在定义域内的区域或闭区域。 ? 在定义区域内的连续点求极限可用“代入法” 例1. 讨论函数3322 22 22,0(,)0,0x y x y x y f x y x y ?++≠?+=??+=? 在(0,0)处的连续性。 例2. (06年期末考试 十一,4分)试证222 24 22,0(,)0,0?+≠?+=??+=? xy x y x y f x y x y 在 点(0,0)不连续,但存在一阶偏导数。 例3.求 (,)(1,2)lim x y x y xy →+ 例4 .(,)(0,0)lim x y → 4、了解闭区域上商连续函数的性质:有界性,最值定理,介值定理 二、多元函数的偏导数 1、 二元函数(,)z f x y =关于,x y 的一阶偏导数的定义(二元以上类似定义) 如果极限00000 (,)(,) lim x f x x y f x y x ?→+?-?存在,则有 00 000 0000000 (,)(,) (,)lim x x x x x y y x x x x y y y y f x x y f x y z f z f x y x x x =?→=====+?-??= ===??? (相当于把y 看成常数!所以求偏导数本质是求一元函数的导数。)

多元函数微分法及其应用

第九章多元函数微分法及其应用 一、基本要求及重点、难点 1. 基本要求 (1)理解二元函数的概念,了解多元函数的概念。 (2)了解二元函数的极限、连续性概念,有界闭域上连续函数的性质。 (3)理解偏导数和全微分的概念,熟练掌握偏导数的计算,了解全微分存在的必要条件 和充分条件。 (4)了解方向导数与梯度的概念及其计算方法。 (5)掌握复合函数一阶偏导数的求法,会求复合函数的二阶偏导数。 (6)会求隐函数(包括由方程组确定的隐函数)的偏导数(主要是一阶)。 (7)了解曲线的切线和法平面及曲面的切平面与法线、并会求出它们的方程。 (8)理解多元函数极值和条件极值的概念,会求二元函数的极值。了解求条件极值的拉 格朗日乘数法,会求解一些较简单的最大值和最小值的应用问题。 2. 重点及难点 (1)重点:多元函数概念,偏导数与全微分概念,偏导数计算,微分在几何上的应用,多元函数的极值的计算。 (2)难点:二重极限的定义与计算,多元函数连续;偏导数存在与可微之间的关系;复合函数的高阶偏导数;方向导数、偏导数、梯度之间的关系。。 二、内容概述 多元函数微分学是一元函数微分学的推广,因此两者之间有许多相似之处,但是要特别注意它们之间的一些本质差别。 1.多元函数的极限和连续 (1)基本概念 1)点集和区域。 2)多元函数的定义、定义域。 3)二元函数的极限、连续。 (2)基本定理 1)多元初等函数在其定义域内是连续的。 2)多元连续函数在有界闭区域上一定有最大值M、最小值m;且必取到最大值 M和最小值m之间的任何值。 2.多元函数微分法 (1)基本概念

偏导数、全微分、高阶偏导数的定义。 (2) 计算方法 1) 偏导数:),(y x f z =在),(00y x 处对x 的偏导数 x x x z =??,就是一元函数 ),(0y x f z = 在0x x =处的导数;对y 的偏导数 x x x z =??(同理)。 2) `全微分:),(y x f z =的全微分dy y z dx x z dz ??+??= 3) 复合函数求导法则:画出函数到自变量的路经,然后利用链式迭加法则:即同 条路经的偏导数相乘,不同路经的偏导数相加,求出所要的偏导数。 A. 设),(v u f z =,)(),(t v t u ψ?==,则全导数dt dv v z dt du u z dt dz ??+ ??=。 B. 设),(v u f z =,),(),,(y x v y x u ψ?== 则: x v v z x u u z x z ????+ ????=??,y v v z y u u z y z ????+????=??。 4) 隐函数求导法则: A. 设函数)(x f y =由隐函数0),(=y x F 确定,则 y x F F dx dy -=。 B. 设函数),(y x f z =由隐函数0),,(=z y x F 确定,则 z x F F dx dz -=,z y F F dy dz - =。 C. 设函数)(),(x g z x f y ==由隐函数方程组?? ?==0 ),,(0 ),,(z y x G z y x F 确定,从 ???? ?='+'+='+'+0)()(0 )()(x g G x f G G x g F x f F F z y x z y x ,求出导数)(),(x g x f ''。 (3) 多元函数连续、可导、可微的关系 (4) 基本定理

相关文档
最新文档